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ABSTRACT

An accurate perception of the state of smart substation equipment is a strong guarantee for the reliable 
operation of the large power grid. This article proposes using deep learning for the device condition 
monitoring and analysis method in a power internet of things cloud edge collaboration mode. The 
speeded up robust features (SURF) feature detector is used at the edge of the network to accurately 
collect the interest points from the image data set, providing a reliable and complete sample data set 
support for the cloud-based deep learning network. Adding the attention mechanism module to the 
cloud improves the Yolov5 network model, enhance feature extraction, and increase the monitoring 
and analysis capabilities of the equipment. The simulation results show that the proposed method has 
achieved a recall rate of 91.21% and an accuracy rate of 90.54% for insulator fault evaluation indicators.
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INTRoDUCTIoN

The power equipment at smart substations plays a key role in transmitting electric energy. The stable 
operation and the transmission of electric energy greatly impact the substation equipment’s life, 
performance, safety, and other factors (Wang et al., 2022). During actual operation, power equipment 
will be affected by overload, overvoltage, internal insulation aging, abnormal natural environment and 
other events, and abnormal operation status will lead to equipment defects and failures (Ye et al., 2022).

As a key component of the power system, power equipment will not only affect the power 
equipment itself, but also have an immeasurable impact on the large power grid system when serious 
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faults occur (He et al., 2022). Therefore, the reliability of power equipment in smart substations must 
receive due attention, particularly in increasingly complex power systems.

Traditional power equipment status recognition is realized through regular inspection by operation 
and maintenance personnel, which makes it difficult to realize the timely perception of the status 
of power equipment, and the increasing power load will also cause the lines and supporting power 
equipment at various voltage levels to go up in the station (Yang et al., 2021). The surge in patrol 
inspection workload overwhelms the operation and maintenance personnel, and the inspection of 
some electrical equipment could be wrongly performed.

The traditional planned maintenance method can hardly obtain the operation status and health 
status of power equipment in smart substations with accuracy and reliability. “Condition-based 
maintenance” has become a prevailing trend for the maintenance system. Furthermore, the trend 
of combing information and energy technology has provided new solutions for power equipment 
condition monitoring (Liu P. et al., 2020).

The power Internet of Things (pIoT) can realize resource integration of substation communication 
system and power system (Han, 2021; Long, 2022; Hason et al., 2021), collect the effective image 
data set of the state quantity of the power equipment with multiple types of terminal intelligent 
devices, and achieve accurate analysis of the equipment state through intelligent algorithms (Lei et 
al., 2022). Chen et al. (2020) describes the application of pIoT technology in equipment lifecycle 
research, compares and analyzes the traditional maintenance methods based on time. LuXH et al. 
(2022) realized the health detection of power equipment by optimizing and upgrading the network 
security processor. Wang et al. (2021) placed multiple sensors in the power transformer, built the 
Internet of Things network in the station, and established a mathematical model of power transformer 
fault diagnosis to achieve state monitoring and analysis.

Machine vision technology and deep learning technology can be introduced to help realize power 
equipment’s condition monitoring and analysis. Deep learning can realize intelligent analysis of image 
data sets of acquisition equipment in the pIoT, extract and analyze information features of sample data 
through multi-layer network structure, and achieve analysis and judgment of equipment status (Hou 
et al., 2019; Liu et al., 2020; Davari et al., 2022). Zheng et al. (2021) introduced a feature pyramid to 
obtain image information features, and uses clustering algorithms to change the sliding frame of image 
analysis adaptively. Su et al. (2022) collected a video dataset and used a pyramid module to capture 
information of interest, obtaining an effective dataset and reducing the computational complexity 
of the model. Based on the Yolov4 network model, real-time status evaluation of transformers was 
achieved. Liu et al. (2022) used Yolov4 network-based analysis for infrared image datasets, analyzed 
the impact of relevant factors on target detection performance, and established the optimal detection 
model. Zhao et al. (2021) adopted a limited sliding network (LSNet) to achieve regional and centralized 
defect detection, and uses the STYLE model and non-maximum suppression method to locate the 
target and enrich the features of the image, achieving accurate classification. Ullah et al. (2020) 
combined random forest algorithm and support vector machine, extracts rich feature maps from the 
convolution layer of AlexNet pre training model, and trains random forest (RF) and support vector 
machine (SVM) to learn defective and non-defective high-voltage electrical equipment, to achieve 
early prevention and analysis of thermal anomalies of electrical equipment.

However, it should be noted that good public data set for power equipment images is not available 
because of the particularity and confidentiality of smart substations, and the small data sample set 
entails processing the data set. Meanwhile, given that the defect ratio of power equipment may be 
smaller than that of equipment size, it is necessary to enhance the ability of deep network model to 
extract key information features.

Aiming to meet the requirement of condition detection of a huge amount of equipment in smart 
substations, this paper proposes an equipment condition monitoring and analysis method based on 
the pIoT architecture. The innovations involved in the article include:
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1.  To ensure efficient preprocessing of image data, the image processing capability of traditional 
cloud centers is lowered to the edge of the network, and the data universality is enhanced based 
on geometric transformations and other processing methods. Furthermore, at the edge of the 
network, the Speed Up Robust Features (SURF) feature detector is used to collect interest points 
in the image dataset accurately.

2.  On the cloud center side of the Power Internet of Things, build a Yolov5 optimized network and 
introduce a convolutional attention mechanism module to focus on the content that needs to be 
located, enhance the feature extraction ability of the image analysis network, and obtain more 
useful feature information.

SMART SUBSTATIoN PIoT ARCHITECTURE

In the pIoT context, the perception layer’s multi-dimensional state information is often huge in 
quantity and has many attributes (Lee & Lee, 2020). To meet the demand of pIoT for “real-time state 
perception and real-time data acquisition” of smart substation equipment (Shao & Chen, 2022; Wei 
et al., 2021), cloud computing and edge computing are combined to build the collaborative smart 
substation power IoT architecture.

The pIoT and artificial intelligence have promoted the emergence of edge computing. The 
combination has greatly improved the data processing capabilities of cloud computing centers and 
edge intelligent terminals (Zhang et al., 2021; Xu et al., 2020).

The smart substation equipment status detection architecture based on cloud edge collaboration 
mode is shown in Figure 1.

As shown in Figure 1, the smart substation pIoT terminal device can realize the collection and 
uploading of the equipment status data set of the substation, including the electrical quantity data set 
and non-electrical quantity data set. The smart substation is different from the traditional substation. 
The smart substation’s intelligent control cabinet, protection and monitoring devices can upload rich 
electrical data through optical fiber. In addition, modern substations are fitted with equipment such 
as patrol robots, drones, etc., which can help achieve reliable uploading of image data sets. Therefore, 
heterogeneous and massive data sets can effectively support the cloud and edge side of the pIoT to 
achieve reliable and rapid equipment status detection and analysis.

The intelligent computing device on the edge side of the pIoT can realize fast analysis close 
to the data side. Multiple edge computing devices are set in the smart substation to preprocess the 

Figure 1. Cloud edge collaborative structure of smart substation
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equipment status acquisition data (Chen et al., 2021). Simultaneously, the cloud center will sink 
some of its computing power to the edge computing equipment. At the edge of the smart substation, 
it is possible to quickly perceive the network status and accurately study and judge the equipment 
status. The edge intelligent computing terminal of the power Internet of Things can be placed in the 
main control room of each intelligent substation, achieving fast and efficient data processing and 
calculation at the station end, and delegating decision-making and data to the intelligent terminal or 
monitoring terminal.

The power IoT cloud computing control center will be placed at the operation monitoring terminal 
to organize and analyze the data collected by the underlying intelligent terminals. The smart substation 
pIoT cloud center has strong computing power. Based on big data technology, the cloud center platform 
can realize advanced applications such as intelligent switching operation, one key sequential control, 
and equipment fault detection. In addition, the operation and maintenance personnel in the station can 
also perceive and control the equipment in the station based on the cloud center platform.

STATE ANALySIS METHoD oF SMART SUBSTATIoN 
EQUIPMENT BASED oN THE yoLoV5 NETwoRK MoDEL

This paper aims to realize the detection and analysis of the equipment’s status in the pIoT station. 
Data enhancement and interest point acquisition are used to extract the image feature information 
at the edge of the network. The CBAM - Yolov5 image analysis model is built in the network cloud 
center based on the convolutional block attention module and Yolov5 network to achieve accurate 
and efficient status analysis of power equipment in the station.

Edge Side Data Processing
Image Enhancement
On the edge side of the pIoT, the intelligent device expands the number of training image data sets, 
eliminates the hidden danger of over fitting during model training, and strengthens the diversified 
training of network models by high-voltage transmission line fault data sets.

Data enhancement can ensure that the image information of the original dataset remains intact 
with more target feature information extracted repeatedly from the original data samples. Moreover, 
the network model can also learn and train the enhanced data more fully and absorb more feature 
information, thus effectively enhancing the robustness and generalization ability to target detection.

In the geometric transformation, this paper mainly adopts such geometric transformation methods 
as flipping, translation, scaling, and rotation. The geometric transformation is shown in Figure 2.

Adjusting the image brightness during color transformation can better simulate the light change 
of the substation equipment fault image obtained through aerial photography. Adjusting the image 
contrast can highlight the fault target contour, showing more vivid and rich target information of the 
image. Adjusting the image saturation can weaken the background content similar to the fault target 
but not the fault target in the image. Color transformation is shown in Figure 3.

Various transformations are carried out based on the actual conditions of different images via 
data enhancement processing to achieve the diversity and representativeness of data samples, which 
allows network training to learn more equipment status feature details.

Collection of Interest Points
Further, used at the edge of the pIoT to collect the interest points of the image dataset, SURF can 
better capture the effective information features in the substation equipment image, and then send the 
image features to the cloud-trained depth learning classifier to obtain the equipment status.

As a feature detector, SURF can detect objects’ recognition and arrangement, and perform image 
processing by using three integer operations of pre-configured basic pictures.
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SURF describes how to find and perceive objects and focuses on tracking objects. The interest 
point detection and scale are shown as follows.

1.  Point of interest detection.

SURF uses a square filter to estimate Gaussian smoothing, which is characterized by:

δ( , ) ( , )i j P i j
ji

=
==
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00

 (1)

Figure 2. Enhancement of geometric changes of acquired images

Figure 3. Color transformation enhancement of acquired image
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where, P i j( , )  is the point coordinate in the image. The main images in the rectangle can be added 
up quickly by using irreplaceable images.

This feature uses the blob identifier of the Hessian matrix to identify the key points. Instead of 
using the Hessian Laplacian locator, SURF uses the determinant of Hessian to select the scale, and 
Lindeberg to complete the positioning.

Suppose that point v i j( , )  in graph L  has the characteristics of Hessian matrix with scale u  
and point v :

H u v
I u v I u v

I u v I u v
ii ij
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In the formula, I u v
ii
( , )  is the second derivative in the grayscale image.

2.  Scale space representation and interest point area.

Points of interest can be found in different scale-spaces. In different feature detection algorithms, 
the area of a dimension can usually be viewed as an image pyramid. SURF uses a Gaussian filter 
to smooth the image area numerous times, then samples it to achieve a higher pyramid level, the 
improvised interest point area.

Cloud Equipment Status Analysis
Input the processed image dataset of the intelligent substation into the backbone network of the 
Yolov5 network for image slicing and re merging processing, achieving physical computational 
simplification. Then, the processed image is input into the Neck network to achieve deep extraction of 
image features. At the same time, it can be seen that there is a small amount of information loss and 
background noise impact when simplifying the image dataset calculation in the backbone network, 
which can cause bias when extracting data in the Neck network. Therefore, the CBAM network module 
is introduced into the backbone network to achieve differential processing and multi-dimensional 
extraction of image information.

Yolov5 Network Model
YOLOv5 adopts a new backbone network architecture, namely CSPNet, which is better than YOLOv4 
in computing efficiency and accuracy; Meanwhile, YOLOv5 adopts an SPP structure that can process 
multi-scale features, and introduces new technologies such as PAN structure and adaptive enhancement, 
improving the accuracy and efficiency of detection.

Figure 4 shows the network model of YOLOv5. The backbone mainly comprises the Focus 
structure and CSP structure. The Focus module performs the slicing operation on the image before 
entering the backbone, and then turns the 320 320 6× ×  image into the 180 12×  feature map, as 
shown in Figure 5.

The 640 640 2× ×  feature map is formed after the 4 4×  convolution operation, and the feature 
information of the original map is retained to the maximum extent while down sampling.

The Neck structure of YOLOv5 adopts the structure of multi-scale feature pyramid FPN+PANet. 
As shown in Figure 6, FPN enhances the semantic information by up sampling and shallow feature 
fusion of the deep feature map, while PANet from bottom to top samples the shallow feature map with 
strong location information and fuses the deep feature map to enhance the feature fusion capability 
of the Neck network.
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Figure 4. Structure chart of YOLOv5

Figure 5. Structure chart of Focus

Figure 6. Structure chart of FPN+PAN
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Optimization of Feature Extraction Capability
YOLOv5 model is prone to the loss of small targets and interference from background in sampling. 
This paper, therefore, adds an attention mechanism to focus on the content to be located, and explores 
the optimization performance of attention mechanism on model performance.

CBAM is used in this paper to integrate time and space mapping processes with a hybrid attention 
mechanism to obtain more feature information. CBAM is a lightweight universal module that can 
seamlessly integrate into any CNN architecture compared to traditional attention mechanism modules, 
and can achieve synchronous training with CNN networks, making it widely applicable.

CBAM comprises two sub-modules: channel and spatial. The input feature map is processed 
on each convolution block in the depth network to obtain a complete feature map through two sub-
modules successively. Figure 7 shows the structure of CBAM.

Given an input feature map L  with size B W Y× × , CBAM deduces a one-dimensional feature 
map C

F
 with size B× ×1 1  and a two-dimensional feature map C

S
 with size 1× ×W Y  in sequence:

′ = ⊗L C L L
F
( )  (3)

′′ = ′ ⊗ ′L C L L
S
( )  (4)

where, C L
F
( )  is the output attention diagram of the channel attention module; ⊗  stands for dot 

product, representing the product of corresponding elements of two matrices; C L
S
( )′  is the output 

attention map; ′′L  is the feature map output.
Figure 8 shows the block diagram of each attention sub module in the CRAM module. The 

channel sub-module uses MaxPool and AvgPool to output a shared network.
CBAM first aggregates the spatial information through MaxPool and AvgPool, and generates 

two spatial descriptors after calculation: L
avg

 and L
max

. The two descriptors represent the 
corresponding channel feature map.

Channel Note Figure C L
F
( )  is calculated as follows:
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Figure 7. Model structure block diagram of CBAM



International Journal of Information Technologies and Systems Approach
Volume 16 • Issue 3

9

The MaxPool and AvgPool two-step operations can effectively generate feature descriptors, 
thereby effectively highlighting the information region. Then, the 6 6×  convolution layer is used to 
convolution the generated two feature maps to generate a two-dimensional spatial attention map. The 
calculation method is as follows:

C L l AvgPool L MaxPool L

l L L
S

avg

( ) ( ([ ( )); ( )]))

( ([ ; ]
max

=

=

×

×

δ

δ

6 6

6 6 )))
 (6)

The attention module of the space and channel modules enables multi-dimensional processing 
of information and more accurate and faster feature locating.

Optimization of Loss Function
Due to the problem of partial occlusion in the collected infrared images of power equipment, the 
distance between some power equipment is relatively short. Therefore, the loss function in this paper 
adopts improved DIOU_ as a loss function, and NMS replaces the slow convergence GIOU loss 
function, effectively solving the problem of occlusion of the power equipment image to be detected.

The loss calculation formula of DIOU is as follows:

L R U U
DIOU DIOU

= − + ′1 0 5. ( , )  (7)

where, R U U
DIOU
( , )′  is the penalty item of prediction box U  and target box ′U , and the specific 

calculation is as follows:

R
u u

eDIOU
=

′ρ2
2

( , )  (8)

where, u  and ′u  represent the center points of U  and ′U ; ρ  stands for Euclid distance.

Figure 8. Attention sub-module
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The specific definitions are:

d u u= ′ρ2( , )  (9)

Status Analysis Process
Relying on the proposed architecture, this paper preprocesses the image sample data set at the edge 
side, and further sends it to the pIoT cloud center to detect and analyze the equipment status used the 
CBAM-Yolov5 network model, and to understand the equipment status, and take corresponding measures.

The flow chart of the smart substation equipment status detection method proposed is displayed 
in Figure 9.

The proposed image detection method mainly consists of the following five steps:

Step 1:  The intelligent terminal realizes the collection of image sample data sets of power equipment.
Step 2:  The expression of feature information of the dataset is strengthened at the edge of the network 
through the operation of geometric change and color transformation.
Step 3:  SURF is used at the edge of the pIoT to collect the interest points of the image dataset, which 
allows better capturing of the effective information features in the substation equipment images.
Step 4:  The CBAM-Yolov5 network model is used in the network cloud to build the equipment status 
detection model, which facilitates an accurate real-time analysis of the health status of power equipment.
Step 5:  Output the final state determination results of the power equipment.

SIMULATIoN EXPERIMENT ANALySIS

The experimental environment built in this paper is shown in Table 1, including hardware environment 
and software environment.

Figure 9. Method flow chart
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The main network parameter settings of CBAM-Yolov5 image analysis model are shown in Table 2.
Aiming to ensure the universality of the detection categories, this paper studies the power supply 

equipment and transmission equipment of smart substations from large to small, including the external 
equipment and small parts, which mainly cover the following five categories: conservator, insulator, 
bushing, bolt, and current transformer.

The data sample set includes 350 training images and 150 test images with resolutions ranging 
from 100 100×  to 5000 5000× .

Convergence and Divergence Analysis of the Model
This paper analyzes the convergence and divergence of CBAM-Yolov5 image analysis model, and 
uses Yolov5 network structure as a comparison model for analysis. Each experiment was conducted 
10 times, and the final results were taken as an average of 10 tests.

Figure 10 shows how the loss value of CBAM-Yolov5 and Yolov5 varies with the iteration number. 
As can be seen from Figure 10, with the convolutional attention mechanism module it introduces, CBAM-
Yolov5 allows the proposed device detection method to achieve faster and more accurate image feature 
extraction than Yolov5, thus reducing the amount of network computing. Therefore, the training loss 
value of the network converges faster, reflecting a strong ability to jump out of the local optimal solution.

Evaluation Index
The widely recognized Average Precision (AP) is used to measure performance. The evaluation cross 
over Union (IoU) is set to 0.5. The average precision is obtained by calculating the precision integral 
on different levels of recall. This standard is widely used in image analysis tasks:

Table 1. Simulation experiment setup environment

Project Parameter

CPU processor Intel Core i5-8400

GPU GTX 3060

Memory 8G DDR4

Operating system Windows 10

Programming environment Pycharm

Python version Python 3.6

Pytorch version Pytorch l.6

CUDA Version 10.2

Graphic database Neo4j

Table 2. CBAM-yolov5 network model parameters

Project Value

Learning rate 0.0015

Momentum factor 0.85

Weight attenuation 0.0006

Batch Size 32

Cross merger ratio 0.65

Number of training rounds 400
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Precision =
TP

TP+ FP
 (10)

Recall =
TP

TP+ FN
 (11)

Among them, TP  is the number of correctly predicted positive samples; FP  is to predict the 
negative sample as true; FN  refers to the number of undetected positive samples predicted as false.

Method Performance Analysis
To demonstrate its superior performance, this paper uses the methods of Su et al. (2022) and Zhao 
et al. (2021) for comparison.

The deep network used in constructing recognition networks by Su et al. (2022) and Zhao et al. 
(2021) can achieve state recognition and fault detection in power equipment. Among them, Zhao et 
al. (2021) implemented defect detection of transmission lines based on LSNet networks, and Su et al. 
(2022) used the Yolov4 network to complete real-time analysis and evaluation of transformer status.

The state detection effect of insulator equipment in smart substations is shown in Figure 11.
It can be seen from Figure 11that the proposed CBAM-Yolov5 network model for insulator fault 

analysis has a recall rate of 91.21%, which is 1.61% and 1.39% higher than that in Yolov4 network 
and LSNet network respectively. The accuracy rate is 90.54%, while the corresponding evaluation 
indicators of the comparison methods are less than 90%. The improvement relative to the comparison 
method is because of how this study uses a cloud edge collaboration analysis model, which places data 
preprocessing on the network edge side for implementation. The method based on data enhancement 
and interest point extraction improves the reliability and completeness of the sample data of the 
analysis model. At the same time, the CBAM attention mechanism module is introduced into the 
Yolov5 model in the cloud to achieve accurate acquisition of deep image features. The use of the loss 
function DIOU_ NM is used to replace the slow convergence GIOU loss function, which effectively 
solves the problem of occlusion of the power equipment image to be detected, and further improves 
the detection capability of the model.

Figure 10. Loss comparison between CBAM-Yolov5 and Yolov5
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Furthermore, this paper also conducted research on the calculation and analysis efficiency of the 
method. Table 3 shows the calculation efficiency and identification accuracy of different methods. 
Table 3 shows the average identification accuracy of the proposed method for all equipment states 
in the sample set is 90.68%, which is 2.84% higher than that used Yolov4 network. However, the 
average identification accuracy of LSNet network is 89.59%, which is close to the identification 
performance of the proposed method. However, for the time of image analysis, the calculation cost 
of LSNet network is 1.541s, which is 0.44s more than that of the proposed method.

Our results show that the cloud edge collaboration model based on the pIoT in this paper sinks part 
of the computing and analysis capabilities to the network’s edge. This approach can greatly enhance 
the computing and analysis performance of the entire network model and achieve the optimization 
of computing and analysis efficiency.

CoNCLUSIoN

Based on the pIoT architecture, this paper proposes a smart substation equipment condition monitoring 
and analysis method based on deep learning. SURF detector and image enhancement are used to 
improve the reliability and completeness of the sample data set based on the edge computing device. 
The cloud center can effectively perceive and accurately analyze equipment status when using the 
CBAM-Yolov5 network model. The experimental simulation results prove that the proposed method 
has exemplary state monitoring capability for power equipment in smart substations.

Although the simulation results prove that the proposed method has excellent network 
performance, it should also be emphasized that all the analyzed sample data sets were acquired under 

Figure 11. Insulator status identification

Table 3. Identification accuracy and calculation efficiency

Method Accuracy (%) Time (s)

The proposed method 90.68 1.101

Yolov4 network 87.84 1.357

LSNet network 89.59 1.541
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good weather conditions. The follow-up research, therefore, should conduct research and analysis on 
equipment state perceptions in varying and complex weather environments.
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