University of Wollongong

Research Online

Faculty of Engineering and Information Faculty of Engineering and Information
Sciences - Papers: Part A Sciences
1-1-2015

An agent-mediated platform for business processes

Hoa Khanh Dam
University of Wollongong, hoa@uow.edu.au

Aditya Ghose
University of Wollongong, aditya@uow.edu.au

Mohammad Qasim
University Of Wollongong

Follow this and additional works at: https://ro.uow.edu.au/eispapers

0 Part of the Engineering Commons, and the Science and Technology Studies Commons

Research Online is the open access institutional repository for the University of Wollongong. For further information
contact the UOW Library: research-pubs@uow.edu.au

https://ro.uow.edu.au/
https://ro.uow.edu.au/eispapers
https://ro.uow.edu.au/eispapers
https://ro.uow.edu.au/eis
https://ro.uow.edu.au/eis
https://ro.uow.edu.au/eispapers?utm_source=ro.uow.edu.au%2Feispapers%2F5070&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/217?utm_source=ro.uow.edu.au%2Feispapers%2F5070&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/435?utm_source=ro.uow.edu.au%2Feispapers%2F5070&utm_medium=PDF&utm_campaign=PDFCoverPages

An agent-mediated platform for business processes

Abstract

Business processes have been widely becoming crucial assets of organisations across various industries
and domains. The flexibility in dealing with changes when business processes are executed has
significant impact on the success of an organisation's business operations, especially in the current ever-
changing business environment. In this context, agent-based systems offer a promisingly powerful
platform for business process execution. In this paper, the authors propose an agent-mediated platform
for business processes with the aim to contribute to bridge the gap between business process
management and agent-oriented development. They present a conceptual mapping method for a
seamless transition from business process models in Business Process Modelling Notation (BPMN) to
agent-oriented models in the Prometheus methodology, which is implemented using the ATLAS
Transformation Language. The authors also developed an Eclipse-based plug-in which allows the
designer to import BPMN models into the Eclipse-based Prometheus Design Tool.

Disciplines
Engineering | Science and Technology Studies

Publication Details

Dam, H. Khanh., Ghose, A. & Qasim, M. (2015). An agent-mediated platform for business processes.
International Journal of Information Technology and Web Engineering, 10 (2), 43-61.

This journal article is available at Research Online: https://ro.uow.edu.au/eispapers/5070

https://ro.uow.edu.au/eispapers/5070

International Journal of Information Technology and Web Engineering, 10(2), 43-61, April-June 2015 43

An Agent-Mediated Platform
for Business Processes

Hoa Khanh Dam, School of Computer Science and Software Engineering, University of
Wollongong, Wollongong, Australia

Aditya Ghose, School of Computer Science and Sofiware Engineering, University of
Wollongong, Wollongong, Australia

Mohammad Qasim, School of Computer Science and Software Engineering, University of
Wollongong, Wollongong, Australia

ABSTRACT

Business processes have been widely becoming crucial assets of organisations across various industries and
domains. The flexibility in dealing with changes when business processes are executed has significant impact
on the success of an organisation’s business operations, especially in the current ever-changing business
environment. In this context, agent-based systems offer a promisingly powerful platform for business process
execution. In this paper, the authors propose an agent-mediated platform for business processes with the aim
to contribute to bridge the gap between business process management and agent-oriented development. They
present a conceptual mapping method for a seamless transition from business process models in Business
Process Modelling Notation (BPMN) to agent-oriented models in the Prometheus methodology, which is
implemented using the ATLAS Transformation Language. The authors also developed an Eclipse-based
plug-in which allows the designer to import BPMN models into the Eclipse-based Prometheus Design Tool.

Keywords: Agent-Oriented Sofiware Engineering, Business Process Design, Business Process Execution,
Business Process Management, Multi-Agent Systems

1. INTRODUCTION

A business process is defined as consisting of a set of activities, performed by their relevant roles
or collaborators, to intentionally achieve the common business goals (Smith & Fingar, 2003).
Business processes are the core assets of any enterprise since they generate revenue and often
represent a significant proportion of costs. A recent study (Hill, Cantara, Deitert, & Kerremans,
2007) has shown that the business process management (BPM) software market reached nearly
$1.7 billion in total software revenue in 2006 and this number continues to grow. The flexibility
and reactivity in process execution through IT-systems have significant impact on the success
of an organisation’s business operations, especially in the current constantly changing business
environment. Existing BPM systems, which require a priori representation of a business pro-
cess and all potential deviations from that process, however, do not provide adequate support

DOI: 10.4018/IJITWE.2015040103

Copyright © 2015, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

44 International Journal of Information Technology and Web Engineering, 10(2), 43-61, April-June 2015

to achieve these requirements in a satisfactory way (Burmeister, Arnold, Copaciu, & Rimassa,
2008; Fingar, 2008).

A software agent (Wooldridge, 2002) is a piece of software which is situated in an environ-
ment, autonomous (i.e. acts on its own), social (interacts with other similar entities), and being
reactive (responding to changes in its environment) and/or being proactive (working to achieve
its goals). Multi-Agent systems (MAS) provide powerful and flexible execution platform for
business processes. On such a platform, the executing process is able to pursue persistent goals
over time despite previously failed attempts due to the availability of multiple ways of dealing
with a given goal, as in the Beliefs-Desires-Intentions (BDI) platform (Rao & Georgeff, 1995).
The agent view also provides an intuitive, well-suited level of abstraction for modelling and
implementing process execution. For instance, a process participant can be explicitly represented
as an agent at the execution level, which reflects more accurately the structure of an organisa-
tion. Existing process execution platforms such as the Business Process Execution Language'
(BPEL) do not capture such structural information at the business level (Endert, Kiister, Hirsch,
& Albayrak, 2007).

Since the late 1980s, the field of agent technology has attracted a substantial amount of
interest from researchers (Jennings, Sycara, & Wooldridge, 1998; Luck, McBurney, Shehory,
& Willmott, 2005). In particular, there have been a number of different agent theories, archi-
tectures, and languages proposed in the literature. Agent technology, however, still faces many
challenges in being adopted by the industry despite its popularity and attractiveness as a research
area (Weyns, Parunak, & Shehory, 2009). Therefore, closing the gap between the business com-
munity, BPM in particular, and agent technology can bring substantial benefits to both sides:
agents gaining better industry traction whilst BPM having a powerful solution to deal with its
current challenges (Ghose, 2009).

Although it is possible to execute business processes with traditional business process man-
agement systems, the use of MAS for implementation of business processes offers several key
advantages. Business processes tend to be initially designed in such a high-level, abstract manner
which does not provide in depth understanding of the process and its ability to achieve desired
goals. Such processes usually capture only the normal/main behaviour and tend to miss out on
exceptional alternatives. We believe that translating business process models to an agent-based
platform would provide a mediation facility to help business process designers explore alterna-
tive flows in the process. Therefore, in this paper our focus is on proposing a mapping between
business process models specified in Business Process Modelling Notation? (BPMN) to concepts
and artifacts of the Prometheus agent-oriented methodology (Padgham & Winikoff, 2004). We
have chosen BPMN since it is a standard for business process modelling and has been widely
used and supported in numerous modelling tools. The choice of Prometheus is due to various
reasons: its wide use in both industrial and academic settings, considerable detailed support
for most of the software engineering development phases, and the availability of tool support,
Prometheus Design Tool® (PDT). We take the model transformation approach and implemented
the mapping using Atlas Transformation Language (Jouault, Allilaire, Bezivin, & Kurtev, 2008).
This transformation forms the main part of an Eclipse-based plugin that we have developed for
PDT to allow the designer to import BPMN models.

The organization of this paper is as follow. In section 2, we provide a brief description of
BPMN and the Prometheus methodology. We then discuss our approach to transform BPMN
models to Prometheus models in section 3. Section 4 provides a description of a plug-in for
Prometheus Design Tool that supports the transformation. Related work is presented in section
5. Finally, we conclude and discuss some directions for our future work in section 6.

Copyright © 2015, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

International Journal of Information Technology and Web Engineering, 10(2), 43-61, April-June 2015 45

2. BACKGROUND
2.1. Business Process Modelling

The Business Process Modelling Notation (BPMN) is a standard for business process model-
ling (Object Management Group, 2009). It provides graphical notation for specifying various
types of activities, decision responsibilities, control and data flow in business process within
one organization and in cross-organizational settings. There are more than 60 products*, both
commercial and open-source, providing the implementation of the BPMN standard. BPMN has
been widely used in the industry due to its powerful notation which is readily understandable by
both the business stakeholders and the technical developers. Figure 1 shows a BPMN diagram
describing a typical conference management process. The author submits a paper to the PC
Chair who will store the paper, send an acknowledge receipt to the author, distribute the papers
to reviewers’ . After the notification due date, the PC Chair sends out the notification which can
be either reject or accept. If the paper is accepted, the author prepares a camera-ready version
and sends it to the PC Chair who will collect all the camera-ready papers and send them to the
publisher for printing proceedings. We use this as an example to illustrate the key components
of BPMN. Conference management systems are industrial systems that involve many process
participants. The example that we use here has many key characteristics in a business process
model which also exist in an industrial business process.

There are three major categories of notational elements in BPMN: Flow Objects, Connect-
ing Objects and Swimlanes. The elements known as Flow Objects are: Events, Activities, and
Gateways. An event denotes something that happens during the course of a business process,
e.g. receipt of a message, expiration of a timer, detection of an error, etc. Each event usually
has a cause (trigger) and/or an impact (result). An internal icon within an event symbol is used
to differentiate the various types of triggers and results. For instance, a TimerEvent represents a
specific time-date or a specific cycle (e.g., every Monday at 9am) while a MessageEvent repre-
sents a message arriving or being sent from a participant. With regard to when events affect the
flow, there are three types of Events: Start (a trigger of the process), End (the result of a process),
and Immediate (something that happens between the start and end events). The business process
represented in Figure 1 has a number of events. For instance, “Ack Received” is a Message and
Immediate Event whilst “Paper received” is also a Message but Start Event triggering the busi-
ness process of a “PC chair”. There is also a Timer Event “Notification due date” denoting the
arrival of the date for paper notification.

Figure 1. A process of submitting papers to a conference

Prepare Send
5 @ @] - —{Lamera- >{ camera- vo
2 Subrmik Actept ready ready
= aper Ack received potifikation
received

Reject
- Store Send) Send Collect Send to
‘3 Review f—- —) , -
£ paper Ack NOEEEion | notification camera-raady publisher
5 |Paper received due date Camera-ready f

received

Copyright © 2015, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

46 International Journal of Information Technology and Web Engineering, 10(2), 43-61, April-June 2015

Activity is another type of Flow Objects which describes the kind of work which must be
performed. A Task is an atomic activity while a Sub-Process is a composite activity, which
contains additional levels of business process detail. In Figure 1, “Submit paper” and “Prepare
camera-ready” are examples of activity tasks. A Gateway is used to control the divergence and
convergence of Sequence Flow and determines branching, forking, merging, and joining of
paths. There are different types of gateways (exclusive, inclusive, complex, and parallel) and
the behaviour of each type gateway specifies how many of the gates will be available for the
continuation of flow. Figure 1 has an event-based exclusive gateway “Notification received”
modelling decisions that are based on the events received, i.e. accept or reject.

Flow Objects are connected in three different ways: by sequence flows, message flows or
association. Sequence Flows are used to show the order in which a series of flow objects have
to be completed. A Message Flow describes the exchange of messages between two process
participants while an Association is used to associate information (e.g. an Artifact or text) with
Flow Objects. Process participants are represented in a BPMN diagram as a Pool. For instance,
there are two pools, i.e. “Author” and “PC Chair”, in the process in Figure 1 and they exchange
messages with one another, e.g. the “Submit paper” task in the “Author” pool sends a message
to the “PC chair” pool. In order to separate different processes, a pool can be sub-partitioned
into swimlanes. Finally, Artifacts are used to provide additional information about the process. A
typical artifact in BPMN is Data Object which represents data required or produced in an activity.

2.2. Intelligent Software Agents and Prometheus Methodology

The concepts associated with agents, also called software agents or intelligent agents, have
been discussed for many years within the Artificial Intelligence community. A software agent
(Wooldridge, 2002) is generally considered to have the following basic characteristics:

* Situatedness: Agents are embedded in an environment in terms of using their sensors to
perceive the environment and using their effectors to affect the environment. For instance,
arobot soccer player can be designed as an agent, which is situated in a soccer field. One of
the robot’s sensors is a group of cameras that keep track of where the ball and other players
are. The robot agent also has several effectors such as its legs or its body, which are used
to kick or pass the ball;

* Autonomy: Agents are able to operate independently, i.e. decide which action they should
take, independent of humans or other agents. As a result, agents cannot be directly invoked
like objects [Odell, 2002]. In our robot soccer player example, when a robot agent has the
ball, the decision whether to kick the ball for a goal or to pass the ball to its teammates is
totally up to the agent. This is an example of the autonomy of agents due to the fact that
those decisions are made without direct intervention of humans or other robot soccer agents
on the field;

* Reactivity: Agents can perceive their environment and respond in a timely fashion to
changes that occur in it. For example, when our robot soccer player detects the ball being
within its control area, it has to quickly perform some actions (to respond to that event)
such as passing or shooting the ball;

* Pro-activeness: Agents are pro-active if they have goals that they pursue over time. In our
example, the major goal of a robot soccer player is to win the game, which can be achieved
by scoring goals and defending against conceding goals. The agents pursue this goal by
performing actions (e.g. passing the ball to their other teammates, kicking for goals, etc.)
that contribute toward accomplishment of the goal;

Copyright © 2015, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

International Journal of Information Technology and Web Engineering, 10(2), 43-61, April-June 2015 47

* Social ability: Agents can interact with other agents and humans with the aim of accom-
plishing their goals. In our example, social ability is reflected by the fact that each robot
soccer agent should be able to communicate and coordinate with their teammates, or their
coaches (which may be humans).

Note that it may not be necessary for an agent to have all the above characteristics. Agents
must be autonomous and social but it can be reactive or proactive or both and it can be situated
or communicative. Agent Oriented Software Engineering (AOSE) is a promising approach to
software engineering that uses the notion of agents as the primary method for analysing, designing
and implementing software systems (Jennings, 2001). The effectiveness of AOSE resides in its
ability to translate the distinctive features of agents (e.g. autonomy, reactiveness, pro-activeness,
etc.) into useful properties of (complex) software systems and to provide an intuitive metaphor
that operates at a higher level of abstraction compared to the object oriented model. Agent-
oriented software engineering has been growing rapidly in the past few years. There is strong
international interest in proposing methodologies, notations and programming languages for
the analysis, design and implementation of agent systems (Henderson-Sellers & Giorgini, 2005;
Bordini, Dastani, Dix, & Fallah-Seghrouchni, 2005; Bergenti, Gleizes, & Zambonelli, 2004). For
example, a large number of agent-oriented methodologies have been proposed such as Tropos
(Bresciani, Perini, Giorgini, Giunchiglia, & Mylopoulos, 2004), Gaia (Zambonelli, Jennings,
& Wooldridge, 2003), O-MaSE (DeLoach, 2005), ADELFE (Bernon, Gleizes, Peyruqueou, &
Picard, 2002; Rougemaille, Migeon, Maurel, & Gleizes, 2008) and Prometheus (Padgham &
Winikoff, 2004).

One of the most prominent agent-oriented software engineering methodologies which have
been used and developed over a number of years is Prometheus (Padgham & Winikoff, 2004).
The methodology is complete, described in considerable detail, and has tool support, i.e. Pro-
metheus Design Tool (PDT). We briefly describe the methodology in this section and refer the
reader to (Padgham & Winikoft, 2004) for further details. In section 3 we will also show some
examples of artefacts (i.e. diagrams) that are developed using Prometheus. There are three phases
in the Prometheus methodology: system specification, architectural design and detailed design.

The system specification phase involves: identifying actors and their interaction with the
multi-agent system; developing scenarios illustrating the system’s operation; identifying system
goals and subgoals; and grouping goals into the basic roles of the system. Actors are any stake-
holders who will interact with the system to achieve some goals, and can be humans or other
software systems. For each actor, percepts which are inputs from the actor to the agent system are
identified. In addition, outputs from the system to actors (actions) are identified. The interaction
between each actor and the system is described using scenarios in Prometheus. Each interaction
scenario is described in a structured form which includes a sequence of steps, where each step
can be an action being performed by a role, a percept being received by a role, a goal being
achieved by a role, or a sub-scenario® . Figure 2 shows an excerpt of a Prometheus metamodel
adopted from (Dam, 2009) which describes the relationships between those key concepts at the
specification phase of Prometheus.

Between the system specification phase and the detailed design phase where the system is
modelled as computational entities which are suitable for a particular agent platform, Prometheus
provides an intermediate phase called architectural design. The major purpose of the architec-
tural design phase in Prometheus is to identify the agent types within the agent system and the
interactions between these agent types. The main steps of this phase are: determining what agent
types will be implemented by grouping related roles; developing the interaction diagrams and

Copyright © 2015, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

48 International Journal of Information Technology and Web Engineering, 10(2), 43-61, April-June 2015

Figure 2. An excerpt of a Prometheus metamodel

]

Actor Action

il*

-read Data
Percept

Role Data

1.*

writenData

Scenario Goal

subgoal

interaction protocols that define the intended valid sequences of messages between agents; and
developing the system overview diagram which captures the system’s overall (static) structure.

The final stage of the Prometheus methodology is the detailed design. The internal structure
of each agent and how it will accomplish its goals within the overall system are addressed in this
phase. Specifying agent internals in Prometheus is a process of progressive refinement, including
the following activities: defining and developing capabilities (modules within agents) and their
relationships; developing process diagrams depicting the internal processing of each agent related
to the protocol specifications; and developing plans, events, and data and their relationship.

3. TRANSFORMATION FROM BPMN MODELS
TO PROMETHEUS MODELS

Dueto the high-level, abstract nature of business process models, there is a significant gap between
those models and an executable agent system. Agent-oriented methodologies such as Prometheus
provide concepts and techniques to close the gap between high-level system requirements and
low-level executable agent system. The very first stage in Prometheus, the system specification
phase, involves identifying system goals, defining the interfaces between the agent system with
its environment, developing scenarios, and establishing systemroles. There are close relationships
between business process models and the concepts and artifacts in this system specification of
the Prometheus methodology. In our previous work (Dam & Ghose, 2010), we have proposed
some preliminary ideas of how details contained in BPMN models can be directly translated to
Prometheus concepts. In this paper, we further develop those ideas and formalize them as a set
of transformation rules. These transformation rules have been developed based on deep analysis
of the semantics of BPMN models and Prometheus system specification models.

Copyright © 2015, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

International Journal of Information Technology and Web Engineering, 10(2), 43-61, April-June 2015 49

3.1. Introducing the System-to-Be

Most existing business process models available in an organisation describe an “as-is” system in
terms of how different stakeholders are currently operating to achieve common business goals.
For instance, the business process model in Figure 1 depicts the process of submitting papers,
reviewing and collecting camera-ready papers which takes place between an author and a PC
Chair, two typical stakeholders of a conference. The next step in the requirements phase is ex-
tending that conceptual model by including the target system or the system-to-be. A number of
methodologies have proposed to follow these two steps at the requirement phase: for example the
early requirements and late requirements phases proposed in the Tropos methodology (Bresciani
et al., 2004) using the i* model (Yu, 1995).

For BPMN models, we propose to represent the system-to-be as a pool which may be divided
in anumber of swimlanes. The process within this pool and its dependencies with the other pools
define the functionalities of the system-to-be. For instance, Figures 3 and 4 show BPMN models
which are extended to include the system-to-be, a conference management system (CMS). The
CMS is represented as a pool which contains three swimlanes: “Submission Management” for
handling paper submissions, “Review Management” for dealing with the reviewing and “Proceed-
ing Management” for the final paper printing. In Figure 3, “review” is shown as a sub-process
activity and its details are presented in Figure 4.

The BPMN models were developed by adapting the description of a conference manage-
ment system presented in (DeLoach, 2002): “the Conference Management System is an open
multiagent system supporting the management of various sized international conferences that
requires the coordination of several individuals and groups. There are four distinct phases in
which the system must operate: submission, review, decision, and final paper collection. During
the submission phase, authors should be notified of paper receipt and given a paper submission

Figure 3. A process between an author and the conference management system (CMS)

repare Send
() camera- camera-
Submit {@} . Aceept ready ready

aper |

Author

Ack received

HFIH 1

Paper ID
Send
Ack

©@—

Paper received

Submission
Management

CMS

Send
notification

Review

MotHEEatic
due date

Rewview
Management

Proceeding
Management

Copyright © 2015, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

50 International Journal of Information Technology and Web Engineering, 10(2), 43-61, April-dune 2015

Figure 4. A reviewing process between a PC chair, a reviewer and the conference management
system (CMS)

P nter
= Read Make
g @ reviewer review decision
o SuBEIREion details gy EVIEWS ECISIon
2 | deadline passed deadline passed

e

c

o

:

&
wv i Reviewer " notification
= x detalls Invite O
~ % received |TEVISWENS Assign

B papers

H of s fRCaie

= Decline f rediew
1] . Send

Review

g '5:::: -. ;:: paper review
= . .
&J invitatinn receiv [— reports

number. After the submission deadline has passed, the program committee (PC) has to review
the papers by either contacting referees and asking them to review a number of the papers, or
reviewing them themselves. After the reviews are complete, a decision on accepting or rejecting
each paper must be made. After the decisions are made, authors are notified of the decisions and
are asked to produce a final version of their paper if it was accepted. Finally all final copies are
collected and printed in the conference proceedings”. We modified this slightly to assume that
the PC chair contacts directly the reviewers to distribute papers for reviewing.

3.2. Mapping BPMN to Prometheus

In this section, we present a set of transformation rules for BPMN elements and their counterparts
in Prometheus. These rules are in the form of LHS = RHS, where LHS (left-hand side) is an
element in the source model, and RHS (right-hand side) contains elements that are added to the
target model. The rules are also preferred to be applied in the order from 1 to 6.

A BPMN pool represents a process participant, which as seen in Figures 3 and 4 can be
the system or external entities interacting with the system (which we refer to as “non-system”
pools). Such pools can be mapped directly to Prometheus actors by applying rule 1. Note that
P is the set of pools in a given BPMN model and A is the set of actors in a Prometheus model.
In addition, a.name denotes the name of actor a and p.name denotes the name of pool p. For
instance, there are three actors of the Conference Management System: “author”, “PC Chair”,
and “reviewer”, corresponding to the three pools that interact with the CMS.

Rule 1 (Pool to Actor): Let p €P be a non-system pool of a given BPMN model.

p = a (where a is an actor):
a.name::= p.name
A:=Au{a}

Copyright © 2015, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

International Journal of Information Technology and Web Engineering, 10(2), 43-61, April-June 2015 51

A lane is situated in a pool and represents a group of similar behaviour within a process
participant. A role in Prometheus also represents chunks of behaviour which includes a grouping
of related goals, percepts, actions and data relevant to the behaviour. Therefore, BPMN lanes
which belong to a system pool are mapped directly to roles in Prometheus by applying rule 2.
Note that L is the set of lanes in a given BPMN model and R is the set of roles in a Prometheus
model. For example, the three swimlanes in the CMS pool, namely “Submission Management”,
“Review Management” and “Proceeding Management”, can be translated into three equivalent
roles. The “Submission Management” role is responsible for dealing with paper submission (e.g.
receiving papers, generating paper ids, sending acknowledgement, etc.), the “Review Manage-
ment” role for the paper reviewing (inviting reviewers, allocating papers, making decisions,
etc.), and the “Proceeding Management” for organising conference proceedings (e.g. collecting
camera-ready papers, contacting publishers, etc.).

Rule 2 (Lane to Role): Let 1 €L be a lane of a given pool p in BPMN model and p is a system
pool, i.e. p.type = system:

1= r (where r is a role)
r.name::= Lname
R::=Ru{r}

Message Event (a type of an activity) which represents the arrival of a message from a
participant (i.e. a pool) may trigger the start of the process (Start Event) or cause the process to
continue (Intermediate Event). Such message events, iftakes place within a system pool, represent
information from the environment that the system receives. Hence, those message events can
be transformed into percepts in Prometheus. Start Message Events can be translated to percepts
that trigger a particular scenario while Intermediate Message Events are mapped to other types
of percepts. In addition, the actor corresponding to the pool where this message is sent provides
the corresponding percept while the role corresponding to the lane where this message event
is located is responsible for handling the percept. This transformation is formally described in
rule 3. Note that A is the set of activities in a given BPMN model while P is the set of percepts
in a Prometheus model. In addition, p.actor denotes the set of actors producing percept p and
p.role’ denotes the set of roles handling percept p. For example, in Figure 3 there are two Mes-
sage Events in the CMS pool which can be translated to Prometheus percepts: “paper received”
and “camera-ready received” while in Figure 4 they are “reviewer details received”, “accept to

CLINT3

review”, “decline toreview”, “prefs received”, “review reports received’ and “decision received”.

Rule 3 (MessageEvent to Percept): Let o €A be a message event sent from pool p1 and located
in pool p2, i.e. a.type = EventStartMessage | EventIntermediateMessage, and p2.type =
system. Also, let 1 be the lane where a is located. Assume that a and r are respectively the
actor and role directly mapped to p1 and I:

a = p (where p is a percept)
p-name::= o.name
P::=Pu{p}

p.actor::= p.actor U{a}
p.role::= p.role U{r}

Copyright © 2015, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

52 International Journal of Information Technology and Web Engineering, 10(2), 43-61, April-dune 2015

An Intermediate Message Event can be used to represent the sending of a message to a
process participant. If the sender is the system pool and the receiver is a non-system pool, then
such a message event represents an output from the system to an actor. Therefore, those events
can be transformed to actions, which is formally defined in rule 4. Note that AC is the set of
actions in a Prometheus model. For example, in Figure 3 there are two Message Events in the
CMS pool which can be translated to Prometheus actions: “ack received”, “accept”, and "reject”
while in Figure 4 they are “invitation received”, “prefs request received”, and “paper received”.

Rule 4 (MessageEvent to Action): Let o €A be a message event sent from pool p1 and located
in pool p2, i.e. a.type = EventStartMessage | EventIntermediateMessage, and p2.type =
system. Also, let | be the lane where o is originated. Assume that a and r are respectively
the actor and role directly mapped to p1 and 1. and p2 is a system pool, i.e. p.type = system:

a = ac (where ac is a percept)
ac.name::= g.name
AC::=ACU {ac}

ac.actor::= ac.actor U {a}
ac.role::= ac.role U{r}

A process activity is an element on a process model that indicates certain things need to be
done for the process to progress toward achieving its goals. In this sense, each activity can be
mapped to a (sub-)goal in Prometheus. It is also noted that similarly to the labelling of activities
in BPMN models, system goals in Prometheus are usually named in the optative mood (i.e. a
desire), e.g. “inform authors”. In addition, each end event of a complete process in a business
process model leads to the achievement of a goal. Therefore, a process or sub-process can be
mapped to a goal and its sub-goals are related to the activities within the process. Business process
models also contain decision gateways. This can be translated to the AND/OR goal refinement in
Prometheus. Doing such a transformation, one should be able to construct a system goal hierarchy.
Figure 5 shows a goal diagram for the CMS. As can be seen, “manage conference” is the top
goal which contains a number of sub-goals, including “submitting papers”, “print proceeding”
and “reviewing papers”. Each of these sub-goals is translated from a corresponding process or
sub-process. For instance, “reviewing papers” is a sub-process in the business process model
and its tasks (e.g. “invite reviewers”) are mapped to sub-goals.

Rule 5 (Activity to Goal): Let o €A be an activity (either a task or a subprocess) within a process
n of a given BPMN model. Also, let g be the goal corresponding to process 7:

a = gl (where gl is a goal)
gl.name::= o.name
G:=Gu{gl}

g.subgoal::= = g.subgoal U{gl}

Each process is directly mapped to a scenario and consequently a high-level goal in Pro-
metheus. The rule to transform a process to a scenario and a goal is described as below.

Rule 6 (Process to Scenario and Goal): Let 1 €B be a process or sub-process of a given BPMN
model:

Copyright © 2015, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

International Journal of Information Technology and Web Engineering, 10(2), 43-61, April-June 2015 53

Figure 5. A goal overview diagram for the CMS (Note: all links are AND)

Manage conference

AND
print proceeding
submitting papers
9 pap= AND

AN _
y send to publisher collect camera-ready
generate paper ids

- : ARD send notification

collect prefs assign papers
ask for prefs collect review reports

m = s (where s is a scenario)
s.name::= w.name
S::=Su{s}

g (where g is a goal)
g.name::= m.name
G:=Gu{g}

Each process corresponds to a scenario in Prometheus which consists of a sequence of steps
including goal, action, percept, sub-scenario and others. Using the above rules, we can map cle-
ments in a process to steps in a corresponding scenario. For instance, a message event can be
mapped into either a percept step or an action step, depending whether it is related to a sending
orreceiving message. The transformation from BPMN processes to Prometheus scenarios should
also preserve the sequential constraint as imposed in the processes, i.e. one activity before the
other. The path resulting from split gateways such as XOR or OR can be translated to a variation
scenario. There is, however, no equivalent of an AND gateway in Prometheus scenarios. For
these cases, the transformation does not care about the other of activities on each of the outgoing
path of an AND gateway.

For example, based on the business process models in Figures 3 and 4 we can identify
scenarios: “submitting papers”, “reviewing papers”, and “printing proceeding”. Figure 6 shows
an analysis overview diagram in Prometheus which is the outcome of applying the above
transformation to the BPMN diagrams in Figures 3 and 4. Details of the “reviewing papers” are
presented in Figure 7. As can be seen, this scenario reflects the same semantics as described by
the BPMN model in Figure 4. For instance, the Start Message Event “reviewer details received”
(see Figure 4 is mapped to the “reviewer details” percept and consequently is translated to a
percept step in the “reviewing papers” scenario. “Invite reviewers” is a task and is translated to
a goal step in the same scenario. Since in the BPMN model the event “reviewer details received”
precedes the “invite reviewers”, their corresponding scenario steps also follow the same order.

Copyright © 2015, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

54 International Journal of Information Technology and Web Engineering, 10(2), 43-61, April-dune 2015

Figure 6. An analysis overview diagram for the CMS

— CAMEra-red

> print proceeding scenario

¥ Pochair

> reviewing papers scenario

Ravi

Figure 7 shows a scenario which is the outcome of applying the above transformation to the
BPMN diagrams in Figures 3 and 4. Note that the scenario described in Figure 7 is for agreeing
to review and then accepting a paper. In a different scenario (e.g. rejecting a paper or declining
to review), the relevant action and/or percept would appear.

4. IMPLEMENTATION

We have implemented a model transformation of the conceptual mapping proposed in section 3.
We have used the ATLAS Transformation Language® (ATL) which includes both a language and
a toolkit part of the Model-To-Model (M2M) Eclipse project. An ATL transformation has a set
of rules that define how source model elements are matched to create and initialize the elements
of the target models. ATL requires Ecore metamodels for both source and target models and thus
we have developed an Ecore metamodel for Prometheus based on the metamodel presented in
(Dam, 2009). Figure 8 shows the basic overview of the ATL transformation from a BPMN model
to a Prometheus model, each of which conforms to its respective metamodel in Ecore. The Ecore
BPMN metamodel which is part of the Eclipse SOA Tools Platform’ is chosen.

The ATL transformation rules are written based on the mapping rules presented in section
3.2. Figure 9 given an example of an ATL rule that transforms a Pool in BPMN to an Actor in
Prometheus (rule 1 in Section 3.2). The basic structure of an ATL consists of a header, some
helper functions and the actual transformation rules. The header starts with the keyword module
then the name of module, given that the names of the source and target models are defined.

Copyright © 2015, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

International Journal of Information Technology and Web Engineering, 10(2), 43-61, April-June 2015 55

Figure 7. The “reviewing papers” scenario of agreeing to review and accepting a paper

Scenario reviewing papers scenario

Mame reviBwing Papers SCenario
Description
Priority Mok Specified
Actors
Initiated by | System
Trigger
Steps & |Tvpe [Mame Fole Drescription Dnata used |Data produced
1 |Percept |raviewser detsils Review management |Receive detals of reviewer from the PC Chair
2 |Goal fimvite reviewers Rueview managament | Invite reviewsers ko join the program commithes
3 tion |inyitation Bgview management
4 [perceot [accept toreview [Review management
5 |Goal |askfor prefs Review managerment | Ask for reviewer's preferences in terms of topics
6 |Action |grefs request Beview Management |
7 |Percept |prefs Review management |Receive reviewers' preferences
& |Goal |ooleck Prefs Review management |collact all reviewers' preferences
9 |Goal Jassign 15 Review management | Assign papars to revievers
10 Az ipaper for review Review management
11 |Percept |revievs report Eeview management |Receive reviewer's reports
12|Goal |colect review reports | Review management | Collect all reviewers' reports
13| Percept |decision Review management |Receive decision From PC Chairs
14|Goal [finglise decisions Review management |Finalize ol decisons
15]Gaal ! ificaki Review management | Send out notifications
16| Action |accept Review management |
Yariation

The ATL transformation from BPMN to Prometheus is part of the BPMN2PDT plug-in
that we have developed for the Eclipsed-based Prometheus Design Tool (PDT). This plug-in
supports a seamless transformation from BPMN diagrams to Prometheus models that can be
edited using Eclipse-based PDT. More specifically, it allows the designer to import a BPMN
model (in the form of an XMI file) and it automatically produces a PDT model. Figure 10

Figure 8. Overview of the ATL transformation from BPMN to Prometheus

MOF — — == fransformation
. —— conformsTo
BPMMN metamodel ATL Prametheus
{Ecore) metamodel (Ecore)
f 9 f 5
BPMMN2Promet
heus.atl
BPMN model L J _ Prametheus
model

Copyright © 2015, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

56 International Journal of Information Technology and Web Engineering, 10(2), 43-61, April-dJune 2015

Figure 9. An ATL transformation rule from a pool to an actor

2Promett

2 Java - 3PMN2Prometheus/newBPh
File Edit Navigate Search Project PDTMenu Run ATLEditor Window Help

[l & ®iB-0 Q- #EGY OB FEera- o 4> Plug-i >
ar metheusatl 1 =
& ¥lelper COlLeXL BPMNTPUUT GELT dCCULNAE T = i (I
e if (self.lanes->size() >0) [
then OclUndefined 2 | @
else 1|2
self.name ¥
endif;
L]
rule BPMN2Prometheus { B
from
B
5:BPMN!Pool, S
s1:BPMN!Activity,
52:BPMN!Lane &
L]
to
tl: Prometheus!actor(
name<- if(s.name.oclIsUndefined())
then OclUndefined
else
if ((sl.activityType->tostring()='EventIntermediateMessage' and
(sl.incomingMessages->collect (c|c.source)->collect (d|d.lanes)->flatten () ->include
(sl.incomingMessages->collect (c|c.target)->collect (d|d.graph)->flatten () ->include
((sl.activityType->toString()='EventStartMessage' or sl.activityType->toString():
(sl.lanes->collect (c|c.name) ->includes (s2.name) and
(s1l.incomingMessages->collect (c|c.source)->collect (d|d.graph)->flatten () ->include¢
then s.actorName
else
OoclUndefined E |
‘ i v
n® Writable Insert 36:26 =1 s B

Figure 10. BPMN2PDT plug-in architecture

—Data Flow—s
Prometheus
metamodel

{Ecore)

BPMIMN

BPMMN2ZPrometheusTransformer
model

L

L 3
Prometheus
madel (Ecore)

Ecore2PDTConverter

Eclipse-based
Prometheus
Design Tool

(POT)

BPMMN2PDT plugin

Eclipse Platform

Copyright © 2015, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

International Journal of Information Technology and Web Engineering, 10(2), 43-61, April-June 2015 57

shows the implementation architecture of the BPMN2PDT plug-in has two components: BPM-
N2PrometheusTransformer and Ecore2PDTConverter, both of which are based on the Eclipse
platform. The former contains an ATL transformation that takes a BPMN model and produces a
Prometheus model in Ecore. The latter converts this Ecore-based Prometheus model to a model
that can be input into the Eclipse-based PDT. This step is challenging since we need to ensure
that the Ecore-based Prometheus model is well-formed and conforms to its metamodel. Future
work involves reducing these two steps into one, i.e. converting a BPMN model directly to an
Enclipse-based PDT model.

5. RELATED WORK

Having recognized the potential of multi-agent systems as a powerful platform for business
process execution, a range of work has recently explored this area. The work in (Endert, Kuster,
Hirsch & Albayrak, 2007) proposes an automated mapping from BPMN diagrams to BDI agent
concepts. They follow a model transformation approach in which a set of transformation rules
are defined to map elements of the source model (BPMN) to elements of the target model (BDI
agents). Their model transformation is graph-based and consequently BPMN models need to be
converted into an equivalent graph structure before the mapping is executed. Another work from
the same group of authors (Endert, Kuster, Hirsch & Albayrak, 2007) uses the same approach to
translate BPMN diagrams to a normalized form which is then transformed into a Petri-net. We,
however, do not believe that it is feasible to provide an automated mapping directly from busi-
ness languages (e.g. BPMN models) to an agent execution platform (e.g. BDI). This is due to a
significant gap between two different models and levels of abstraction: BPMN notation does not
have a formal behavioral semantics while implementation requires a behavioral specification.

The work in (Urzica & Tanase, 2009) takes a different direction in terms of only considering
how to map BPMN concepts to agent interaction models, specifically AUML (Bauer, Muller &
Odell, 2001). Their mapping covers a few simple BPMN elements such as swimlanes, message
events, timer events and gateways. Since their focus is on communicate acts of agents, they do
not take into account the internal of agents such as events and plans.

The ideas of using multi-agents as a simulation platform for business processes have also
recently gained some attention. For instance, the work in (Pascalau, Giurca & Wagner, 2009) aims
to design an agent-based simulation environment for a simple English auction which involves a
number of parties (e.g. sellers, auction hosts and bidders). The auction processes are described in
BPMN and they propose a mapping from BPMN models to Agent-Oriented Relationship (AOR)
(Wagner, 2003) models. Their work is, however, still preliminary since the mapping rules only
cover specific patterns in the English auction domain.

There have been some efforts in closing the gap between artifacts produced at the early re-
quirement phase and Prometheus models. For instance, the work in (Cysneiros & Zisman, 2004)
proposes a number of guidelines of how to generate Prometheus system specification artifacts
from organisational models specified in i*(Yu, 1995). The guidelines are heuristic based and
revolve around use case scenarios in Prometheus.

Proposing mapping from business process models to agent artifacts is one direction of
work in the application of agents to business process management. Another direction is to ex-
tend existing business process models with agent concepts. For instance, the work (Burmeister,
Arnold, Copaciu & Rimassa, 2008) proposes to extend BPMN with BDI concepts such as goals
and plans. In this context, the process designer needs to model a business process in terms of

Copyright © 2015, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

58 International Journal of Information Technology and Web Engineering, 10(2), 43-61, April-dune 2015

goals and plans. Details of those plans are represented using BPMN. This would allow a direct
execution of such a goal-oriented business process model through actual BDI agents. However,
extending such a standard like BPMN remains a challenging issue.

6. CONCLUSION AND FUTURE WORK

The BPM community is facing challenges in modelling and implementing business processes
that are able to adapt themselves to a changing environment. On the other hand, although multi-
agent systems potentially provide a powerful and flexible platform for process execution, they
still fail to attract a wide industry adoption. Therefore, it is very important to bridge the gap
between the BPM community and agent technology. In this paper, we have made contribution
to such an effort.

We have argued that providing mapping that automatically transforms business languages
directly to an agent platform is not feasible due to the significant gap between the two different
models and levels of abstraction. Therefore, we have proposed to translate business languages ina
form of BPMN models to artifacts of Prometheus, a prominent agent-oriented methodology. Such
artifacts are then used to implement an agent system that realizes those business requirements.
We have also developed a plug-in for the Prometheus Design Tool which allows the designer to
import a BPMN model and automatically generates Prometheus model in PDT.

There are a number of directions for future work. Firstly, we plan to develop a more complete
mapping from BPMN to Prometheus that covers other concepts in the two modelling languages.
More specifically, we would like to explore how other types of events (e.g. timer, error, cancel)
and decision gateways can be translated to the internal of a plan in Prometheus (e.g. triggering
events, context conditions). Secondly, we would like to investigate how the process of designing
and implementing an agent-based solution for a business process helps enrich it with alternative
behaviours. In our view, the agent design exercise would encourage the designers to consider
alternative behaviours and how to handle exceptions (e.g. in terms of subgoals and plans). There-
fore, a major topic for our future work involves further exploration of this area.

REFERENCES

Bauer, B., Muller, J. P., & Odell, J. (2001). Agent UML: A formalism for specifying multiagent software
systems. International Journal of Software Engineering and Knowledge Engineering, 11(3), 207-230.
doi:10.1142/S0218194001000517

Bergenti, F., Gleizes, M.-P., & Zambonelli, F. (Eds.). (2004). Methodologies and software engineering for
agent systems. The agent-oriented software engineering handbook. Kluwer Publishing. doi:10.1007/b116049

Bernon, C., Gleizes, M.-P., Peyruqueou, S., & Picard, G. (2002), ADELFE: a methodology for adaptive
multi-agent systems engineering. In Proceedings of the 3rd international conference on Engineering so-
cieties in the agents world III (pp 156-169) Paolo Petta, Robert Tolksdorf, and Franco Zambonelli (Eds.).
Springer-Verlag, Berlin, Heidelberg

Bordini, R. H., Dastani, M., Dix, J., & Fallah-Seghrouchni, A. E. (Eds.). (2005). Multi-agent programming:
Languages, platforms and applications (Vol. 15). Springer. doi:10.1007/0-387-26350-0 1

Bresciani, P., Perini, A., Giorgini, P., Giunchiglia, F., & Mylopoulos, J. (2004). Tropos: An agent-oriented
software development methodology. Autonomous Agents and Multi-Agent Systems, 8(3), 203-236.
doi:10.1023/B:AGNT.0000018806.20944.ef

Copyright © 2015, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

http://dx.doi.org/10.1142/S0218194001000517
http://dx.doi.org/10.1007/b116049
http://dx.doi.org/10.1007/0-387-26350-0_1
http://dx.doi.org/10.1023/B:AGNT.0000018806.20944.ef

International Journal of Information Technology and Web Engineering, 10(2), 43-61, April-June 2015 59

Burmeister, B., Arnold, M., Copaciu, F., & Rimassa, G. (2008, May). BDI-Agents for agile goal-oriented
business processes. In Padgham, Parkes, M™uller, & Parsons (Eds.), Proceedings of the 7th international
conference on autonomous agents and multiagent systems (AAMAS 2008) (pp. 37-44). Estoril, Portugal.

Cysneiros, G., & Zisman, A. (2004). Refining Prometheus methodology with i*. In Proceedings of the third
international workshop on agent-oriented methodologies (OOPSLA 2004). Vancouver, Canada.

Dam, H. K., & Ghose, A. (2010). Agent-based development for business processes (early innovation track).
In Proceedings of the 13th international conference on principles and practice of multi-agent systems
(PRIMA 2010). Kolkata, India.

Dam, K. H. (2009). Supporting software evolution in agent systems. PhD Thesis, RMIT University, School
of Computer Science and IT.

DeLoach, S. (2002). Modeling organizational rules in the multi-agent systems engineering methodology. /n
Al ’02: Proceedings of the 15th conference of the Canadian society for computational studies of intelligence
onadvancesinartificialintelligence (pp. 1-15). London, UK: Springer-Verlag. doi: 10.1007/3-540-47922-8 1

DeLoach, S. A. (2005). Engineering organization-based multiagent systems. In A. F. Garcia, R. Cho-
ren, C. J. P. de Lucena, P. Giorgini, T. Holvoet, & A. B. Romanovsky (Eds.), Software engineering for
multi-agent systems 1V, research issues and practical applications (Vol. 3914, pp. 109-125). Springer.
doi:10.1007/11738817_7

Endert, H., Hirsch, B., Kuster, T., & Albayrak, S. (2007). Towards a mapping from BPMN to agents. In
Aamas’07/socase’07: Proceedings of the 2007 AAMAS international workshop and socase 2007 confer-
ence on service-oriented computing (pp. 92—106). Berlin, Heidelberg: Springer-Verlag. doi:10.1007/978-
3-540-72619-7 7

Endert, H., Kuster, T., Hirsch, B., & Albayrak, S. (2007). Mapping BPMN to Agents: An Analysis. In First
international workshop on agents, web-services, and ontologies integrated methodologies (awesome’07)
(pp. 164—180).

Fingar, P. (2008). Business process management: The next generation (Research Report). BPTrends.

Ghose, A. (2009). Industry traction for mas technology: Would a rose by any other name smell as sweet.
[Inderscience]. International Journal of Agent-Oriented Software Engineering, 3(4),397-401. doi:10.1504/
IJAOSE.2009.025318

Henderson-Sellers, B., & Giorgini, P. (Eds.). (2005). Agent-oriented methodologies. 1dea Group Publishing.
doi:10.4018/978-1-59140-581-8

Hill, J. B., Cantara, M., Deitert, E., & Kerremans, M. (2007). Magic quadrant for business process man-
agement suites (Tech. Rep.). Gartner Research.

Jennings, N. R. (2001). An agent-based approach for building complex software systems. Communications
of the ACM, 44 (4), 35-41. doi: http://doi.acm .org/10.1145/367211.367250

Jennings, N. R., Sycara, K., & Wooldridge, M. (1998). A roadmap of agent research and development.
Journal of Autonomous Agents and Multi-Agent Systems, 1(1), 7-38. doi:10.1023/A:1010090405266

Jouault, F., Allilaire, F., B’ezivin, J., & Kurtev, 1. (2008, June). Atl: A model transformation tool. [Elsevier.].
Science of Computer Programming, 72(1-2), 31-39. doi:10.1016/j.scic0.2007.08.002

Luck, M., McBurney, P., Shehory, O., & Willmott, S. (2005). Agent technology: Computing as interaction
(a roadmap for agent based computing). AgentLink. Retrieved from http://www.agentlink.org/roadmap/
al3rm.pdf

Object Management Group. (2009). Business Process Model and Notation (BPMN), v1.2. http://www.
omg.org/spec/BPMN/1.2

Odell, J. Objects and agents compared. Journal of Object Technology, 1(1):41_53, 2002

Copyright © 2015, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

http://dx.doi.org/10.1007/3-540-47922-8_1
http://dx.doi.org/10.1007/11738817_7
http://dx.doi.org/10.1007/978-3-540-72619-7_7
http://dx.doi.org/10.1007/978-3-540-72619-7_7
http://dx.doi.org/10.1504/IJAOSE.2009.025318
http://dx.doi.org/10.1504/IJAOSE.2009.025318
http://dx.doi.org/10.4018/978-1-59140-581-8
http://doi.acm.org/10.1145/367211.367250
http://dx.doi.org/10.1023/A:1010090405266
http://dx.doi.org/10.1016/j.scico.2007.08.002
http://www.agentlink.org/roadmap/al3rm.pdf
http://www.agentlink.org/roadmap/al3rm.pdf
http://www.omg.org/spec/BPMN/1.2
http://www.omg.org/spec/BPMN/1.2

60 International Journal of Information Technology and Web Engineering, 10(2), 43-61, April-dune 2015

Padgham, L., & Winikoff, M. (2004). Developing intelligent agent systems: A practical guide. Chichester:
John Wiley & Sons. doi:10.1002/0470861223

Pascalau, E., Giurca, A., & Wagner, G. (2009). Validating auction business processes using agent-based
simulations. In Business process, services computing and intelligent service management (Vol. 147,p. 95-109).

Rao, A. S., & Georgeff, M. P. (1995). BDI-agents: from theory to practice. In Proceedings of the First
International Conference on Multiagent Systems. San Francisco.

Rougemaille, S., Migeon, F., Maurel, C., & Gleizes, M.-P. (2008). Model Driven Engineering for Designing
Adaptive Multi-Agents Systems. In A. Artikis, G. P. O’Hare, K. Stathis, & G. Vouros (Eds.), Engineering
Societies in the Agents World VIII. Springer Berlin Heidelberg. doi:10.1007/978-3-540-87654-0 18

Smith, H., & Fingar, P. (2003). Business process management: The third wave. Meghan-Kiffer Press.

Urzica, A., & Tanase, C. (2009). Mapping BPMN to AUML: Towards and Automatic Process. In Proceed-
ings of the 17th international conference of control systems and computer science, masts 2009 workshop
(pp- 539-547).

Wagner, G. (2003). The agent-object-relationship metamodel: Towards a unified view of state and behavior.
Information Systems, 28(5), 475-504. doi:10.1016/S0306-4379(02)00027-3

Weyns, D., Parunak, H. V. D., & Shehory, O. (Eds.). (2009). International journal of agent-oriented software
engineering (ijaose) - special issue on the future of software engineering and multi-agent systems (Vol. 3)
(No. 4). Inderscience Publishers.

Wooldridge, M. (2002). An introduction to multiagent systems. John Wiley & Sons (Chichester, England).
(ISBN 0 47149691X)

Yu, E. (1995). Modelling strategic relationships for process reengineering (PhD Thesis). University of
Toronto, Department of Computer Science.

Zambonelli, F., Jennings, N. R., & Wooldridge, M. (2003). Developing multi-agent systems: The Gaia
methodology. ACM Transactions on Software Engineering and Methodology, 12 (3), 317-370. doi: http://
doi.acm.org/ 10.1145/958961.958963

ENDNOTES

http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0
http://www.bpmn.org

http://www.cs.rmit.edu.au/agents/pdt
http://www.bpmn.org/BPMN _Supporters.htm
There is a paper assignment and bidding process that we do not show here for brevity.
There is also an “other” step type which can be used to represent miscellaneous things such as
waiting for a response.

This notation is based on the Object Constraint Language and uses the metamodel in Figure 2.
http://www.eclipse.org/atl
http://www.eclipse.org/stp

[S SO VO

8

Copyright © 2015, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

http://dx.doi.org/10.1002/0470861223
http://dx.doi.org/10.1007/978-3-540-87654-0_18
http://dx.doi.org/10.1016/S0306-4379(02)00027-3
http://doi.acm.org/10.1145/958961.958963
http://doi.acm.org/10.1145/958961.958963
http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0
http://www.bpmn.org
http://www.cs.rmit.edu.au/agents/pdt
http://www.bpmn.org/BPMN_Supporters.htm
http://www.eclipse.org/atl
http://www.eclipse.org/stp

International Journal of Information Technology and Web Engineering, 10(2), 43-61, April-June 2015 61

Hoa Khanh Dam is a Senior Lecturer at the School of Computing and Information Technology,
University of Wollongong, Australia. He holds PhD and Master degrees in Computer Science
Sfrom RMIT University, and Bachelor of Computer Science degree from the University of Mel-
bourne in Australia. His work has won multiple Best Paper Awards (at WICSA, APCCM, and
ASWEC) and ACM SIGSOFT Distinguished Paper Award (at MSR). His research has been
published in the top venues in sofiware engineering (ICSE, ASE, ICSM, ER, JSS), Al/intelligent
agents (AAMAS, JAAMAS), and service-oriented computing (ICSOC, SCC, BPM). He served as
Program Co-Chair for the International Conference on Principles and Practice of Multi-Agent
Systems (PRIMA) in 2014 and is on the Senior Program Committee (PC) panel for this conference
series. He has won the Best Senior Program Committee Member Award at PRIMA 2013. Other
major international conferences and journals that he has been involved with include AAMAS
(PC), ICSOC 2015 (Publication Chair and PC), ASWEC and EDOC 2015 (Publicity Chair),
and Journal of Systems and Software and the Science of Computer Programming journal (expert
reviewer). Prior to his academic career, he spent a number of years in the industry at various
positions, including technical architect, project manager and software engineer.

Aditya Ghose is Professor of Computer Science at the University of Wollongong. He leads a
team conducting research into knowledge representation, agent systems, services, business
process management, software engineering and optimization and draws inspiration from the
cross-fertilization of ideas from this spread of research areas. He works closely with some of the
leading global IT firms. Ghose is President of the Service Science Society of Australia and served
as Vice-President of CORE (2010-2014), Australia’s apex body for computing academics. He
holds PhD and MSc degrees in Computing Science from the University of Alberta, Canada (he
also spent parts of his PhD candidature at the Beckman Institute, University of lllinois at Urbana
Champaign and the University of Tokyo) and a Bachelor of Engineering degree in Computer
Science and Engineering from Jadavpur University, Kolkata, India.

Muhammad Qasim holds a Master degree in Computer Science from the University of Wollon-
gong. His interests include Software Engineering/Project Management and Artificial Intelligence/
Multimedia. Heis currently a Case Manager for Samsung Electronics Australia, Service Division
HHP, contracting through WDS, a Xerox Company.

Copyright © 2015, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

	An agent-mediated platform for business processes
	An agent-mediated platform for business processes
	Abstract
	Disciplines
	Publication Details

	JasperReports - _ARPAGING1

