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ABSTRACT

This paper introduces a technology, a data-driven optimization model of manufacturing service in 
intelligent manufacturing process using deep learning algorithm and resource agent (DDR), and 
a data-driven resource agent that represents available manufacturing resources. Asset agent is an 
intelligent module of entity production unit, which has powerful functions of data processing and 
service management. This paper includes the method of designing expert-based processes, the current 
process realization model, and the key performance indicators (KPI) used to evaluate the optimization 
work. The model aims to maximize efficiency, reduce the cost of manufacturing resources, improve 
the production and maintenance efficiency of network resources, and improve the manufacturing 
service level. Finally, the efficiency and technical feasibility of the model are evaluated through a 
typical example of industrial product production process.
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INTRODUCTION

In the industrial sector, creating profitable and marketable products is crucial (Clancy et al., 2023). To 
significantly improve production efficiency, machine learning plays an important role in the production 
process by connecting multiple enterprises and using inexpensive sensors to build models (Yan et al., 
2023). However, there are still challenges in reducing costs and improving the quality of manufacturing 
services. To address these challenges, this study proposes a technical solution—namely, a data-driven 
process manufacturing service optimization model. This model uses deep learning algorithms and 
resource proxies to intelligently represent available manufacturing resources and use these resources 
efficiently to minimize costs. Resource proxy is an intelligent module with powerful data processing 
and service management capabilities. We designed our model to improve the quality of manufacturing 
services and reduce manufacturing costs by fully using the output of resources, raw materials, and 
support networks. We also evaluated the proposed optimization model to measure its performance. 
By comparing experimental results from multiple perspectives, we have demonstrated the advantages 
of our approach. The results of this study will provide valuable references for improving production 
efficiency and reducing costs in the field of industrial manufacturing.
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In this article we cover methods for building expert-based processes, existing models for 
implementing strategies, and key performance indicators (KPIs) for gauging optimization initiatives. 
We used a standard industrial manufacturer’s production scenario to evaluate the suggested model’s 
performance, economic viability, and feasibility.

LITERATURE REVIEW

In this section we provide an overview of an assessment of current data analytics project modeling 
techniques and address the methods used by experts to model processes. KPIs were considered a 
basis for assessing the efficacy of process enhancement strategies. Baardman et al. (2023) proposed 
design of dynamic experiments, an innovative data-driven experimental design methodology for 
optimizing industrial crystallization processes (OICP). In this case, the technique was applied to the 
batch crystallization process to establish the optimum lowering improvement, which when integrated, 
yielded the optimal temperature profile. For the batch crystallization of potassium nitrate in water, we 
compared literature on the optimum temperature profile produced using a model-based optimization 
strategy with the data-driven optimum temperature profile to evaluate the efficacy of the OICP 
optimization method. This comparison revealed some degree of overlap between the distributions 
when only the parametric volatility was analyzed (Sun et al., 2023). There was significant overlap 
when the variation in the design variables and the seed capital distribution parameters were evaluated 
(Mandl & Minner, 2023).

Bernabei et al. (2023) introduced location-specific allocation problems over time intervals during 
a disease outbreak, factoring in state data collected at regular intervals from different locations and 
expanding understanding of transport protocol. The problem was formulated as a dynamic optimization 
model applied to a system of standard equations describing the transmission patterns of infection in 
various geographic regions (Liu et al., 2023). The data-driven optimization approach determined the 
optimal distribution of intervention funds across an indefinite number of communities and periods. 
The results showed that our data-driven optimization technique helps resolve inter-decision problems 
with unknown system dynamics.

Finally, we reviewed research on centralized and decentralized resource allocation problems, 
wherein each patch can impose its interference options with or without awareness of other locations. 
Jieyang et al. (2023) introduced a comprehensive data-driven paradigm for enhancing the efficiency 
of combustors. In the first step, create a model of fuel economy and nitrous oxide (NOx) output 
using a deep belief network (DBN). Then, integrate the predictions based on a DBN, the operational 
constraints, and the control variable constraints into an inter-optimization model. Two goals were 
considered during optimization: increasing combustion effectiveness and decreasing NOx emission 
(Bag et al., 2023). The optimization model was nonlinear and complex; hence, standard exact solution 
techniques could not be used to solve it. The created optimization model’s optimum solutions were 
obtained using the Jaya algorithm (JAYA), a recently introduced swarm intelligence technology. 
The results showed that modifying the control parameters of the combustion system could improve 
combustion efficiency and NOx emission. Zdolsek Draksler et al. (2023) introduced mechanization 
to digitization using information and communications technology (ICT). In contrast, Industry 4.0 
describes production techniques that use modern machinery, materials, and worker movement. It 
changes the manufacturing process to create an efficient system that lowers prices and enhances 
customer satisfaction.

Because Industry 4.0 is still a relatively new topic, there is much ambiguity, little information, 
and few published materials about evaluating and controlling quality and efficiency in this setting 
(Sarna et al., 2023). Thus, manufacturers are still learning about Industry 4.0. Performance 
and quality are reviewed and monitored using industry standards. Our research examines the 
industrial standards used by the manufacturing industry for balanced scorecards and quality 
control management (Sarna et al., 2023). Digitization explores the existing techniques, industrial 
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standards, KPIs, and case studies used to assess performance evaluation systems in information 
Industry 4.0.

We also address research constraints and openings in data-driven Industry 4.0 and quality Industry 
4.0. Nadim et al. (2023) proposed a complete model for predicting multistep machine speed by 
presenting current deep-learning experiments in intelligent manufacturing. The model’s construction 
uses a long short-term memory (LSTM) encoder-decoder design. Predicting when machines will 
reach their maximum pace allows automated systems to flexibly adapt manufacturing processes to 
changes in the system conditions, increasing productivity while decreasing energy use. Comparisons 
with province forecasting analytics were made using detailed experimental evaluations of actual data 
from a metal packaging mill, improving the suggested method’s efficacy (Aljarrah et al., 2023). Peng 
et al. (2023) introduced laser additive manufacturing optimization to enhance their external qualities.

In recent years, engineers have used metal alloys, chromium, copper pyrites, and zinc-based 
alloys. Zhang et al. (2023) investigated the influence of experimental parameters (scan speed and laser 
power) on morphology and roughness characteristics, and the results revealed consistent adhesion of 
coatings to the substrate. The best operating parameters for both metals with genetic flaw structures 
at a preheating temperature of 400 °C were 1,200–1,600 W at 8–12 mm/s with face-centered cubic 
(FCC) layers and body-centered cubic (BCC) phases (Erkip, 2023). The settings of the laser altered 
the strength and durability of the metals. The results indicated that the performance of metals with 
potential coatings and steel fabrication might be improved by tweaking the laser parameters acquired 
by heating temperatures (Mu et al., 2023).

RELATED MATERIALS AND METHODS

A Data-Driven Optimization Model for the Manufacturing Process
Emerging techniques, such as artificial intelligence (AI), the internet of things (IoT), cloud technology, 
machine learning, and big data, are driving the fast development of contemporary technological 
innovation (Sun & Liu, 2023). The fields of science and business are being revolutionized at lightning 
speed by scientific computing in particular (Hu et al., 2023). Given the prevalence of inter-limited 
optimization issues in design and production, deep learning is well positioned to benefit the process 
manufacturing sector (Zhu et al., 2023). For high-dimensional, non-convex, confined, and inter-
optimization problems, the best new approaches in machine learning are data-driven optimization 
techniques that get better with more information.

In this article we discuss the benefits and drawbacks of implementing data-driven research and 
technology. The primary topic of this study is the requirement for machine learning methods that are 
easy to interpret, generally applicable and understandable. We discuss issues of paramount importance 
in the design process, production, testing, affirmation, and service delivery in light of emerging 
algorithms and technology developments. The capability of a manufacturing system to sift through 
large datasets and draw forth actionable insights is crucial to the platform’s effectiveness. Figure 
1 illustrates the structure of the DDR data-driven approach model for the manufacturing process. 
Data-driven approaches have become popular in this setting because they are simple to deploy and 
yield helpful information for decision managers. The data-driven methodology can handle various 
circumstances and adapt to changing objectives, all while uncovering previously unknown patterns 
within massive databases. Data-driven deep learning algorithms have been proven valuable tools for 
optimizing industrial processes and allocating scarce resources more effectively. Given the complexity 
of the manufacturing operation and the enormous number of data involved in geology, geophysics, 
petrophysics, and design, it appears reasonable that optimizing and predicting manufacturing would 
be the best way to get ahead of the competition.

The proposed method in manufacturing process optimization uses financial and production 
data as the data input to the deep learning algorithm, which uses the artificial neural network 
(ANN). Deep learning is a learning algorithm that uses a very intricate design to evaluate vast 
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amounts of information. A vital component of this method is the use of deep neural networks, 
which are systems of brain cells organized in a way that allows them to analyze and learn a 
large amount of information and extract relevant abstract aspects from it. As shown in Figure 1, 
ANNs are a type of technology that draws inspiration from studying the brain and the nervous 
system. These networks mimic the operation of a neural network while employing only a subset 
of the ideas behind neural systems. A hidden layer is a processing element that can communicate 
with other processing components via connections. The hidden layers are frequently arranged in 
layers or vectors, with the outcome among one layer functioning as the source to the following 
or subsequent layers. The information flow between network nodes, precisely the electrical 
impulses of an input layer, is modeled by feeding a neurode with signals of various intensities. 
A connecting weight compounds the input parameters of a functional block, wnm, to simulate 
the production enhancement of neural networks. One way that ANNs “learn” is by modifying 
network “weights,” which affect the effects of experience. Compared with more conventional 
methods for technical indication, using a neural network allows a deliberate choice to be based 
on a comprehensive study of the requisite data.

Next, the information is given to the data optimization process, which uses resource 
agents for the data-driven approach. For this study, we introduced a resource agent system for 
optimizing services to businesses based on collected data. The company’s current components 
are packaged into a single, cohesive resource agent that leverages malware platform traits. Data 
analysis is a strength of the agent, and its processing characteristics are packaged as discrete 
operations. Organizational hierarchies are being replaced by maintenance linkages generated by 
implementing ideas linkages between production resources. The optimization model optimizes 
corporate manufacturer operations, automatically organizing complicated production methods 
by enhancing resource agents’ manufacturing capacities and optimizing resource distribution 
throughout the maintenance network. We discuss KPIs for evaluating optimization strategies 
in the next section, along with established internet control protocol processes. The approach 
adopted in this study is geared toward reducing production costs and increasing the likelihood of 
long-term success in the industry. Although it is not easy to develop an ideal system that can be 
adaptable and smart, it may be worthwhile to insert sophisticated algorithms into mechanization 
and production to cut costs and enhance product quality. Life cycle management, design and 
manufacturing management, economy networking devices, and company strategy are where 
process automation research primarily focuses its attention.

Figure 1. Data-driven optimization model using deep learning resource agents
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A Deep Learning Algorithm for Feature Selection
Machine learning and deep learning are two important branches in the field of artificial intelligence 
(Karaboga et al., 2023). Machine learning algorithms are usually built on statistical and mathematical 
models, with the goal of identifying and learning patterns through training data to make predictions 
or decisions (Feng et al., 2023). In contrast, deep learning algorithms use multilayer neural network 
structures for learning and inference, resulting in higher algorithm complexity. Machine learning 
algorithms typically require high requirements for feature engineering and data preprocessing, 
requiring manual extraction and selection of effective features for modeling. Deep learning algorithms 
can automatically learn feature representations from raw data without the need for manual feature 
engineering (Gandhi et al., 2023). Machine learning is a relatively simple learning method suitable 
for small and medium-sized data and tasks, whereas deep learning is a complex learning method 
suitable for large-scale data and complex pattern recognition tasks. They play important roles in 
different application scenarios and complement each other.

For this study we designed a feature selection procedure that uses an ANN and resource agents 
to find the best features to use as inputs for subclassifications. The research creates a method for 
segmentation using artificial neural networks (the weighted sum methodology). The technique can be 
used as long as an inquiry is conducted within the context of feature matching, adaptive maximizing, 
and defect detecting. Growth is possible only via investments in bettering the quality and quantity 
of the production elements. Tolerance levels in maintenance and design are two characteristics often 
considered during the feature selection process. The cost of materials, processing capacity needs, 
and strategies to support this system are all essential considerations. The proposed deep learning 
system uses a combination of multimodal transportation and an adaptive feature selection technique 
to acquire data on the relevant variables. The regressive relationship between features can be explored 
by including an ANN in a framework. Smarter machine learning can provide cheaper monitoring and 
processing to boost manufacturing performance. There are two ways to look at industrial automation 
in action. First, manufacturing has emerged as a significant force in the finance sector, and second, 
the boundary between digital and physical systems is blurring. Thus, industrial modes and methods 
may consider architectural approaches, such as service-oriented architectures. Implementing those 
fixes paves the road for massive analysis to reduce costs and increase output. Many processes are 
involved in creating a functional model, such as information reformatting and data sterilization for 
discovery. Because information quality affects results, utilizing a method for preparing data is crucial. 
Figure 2 represents the deep learning algorithm consisting of weighted input neurons, hidden units, 
and output neurons.

Figure 2. A deep learning algorithm for feature selection
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Feature selection is an important task in machine learning; it can improve the generalization 
ability of models, reduce overfitting risks, and accelerate model training speed (Wang et al., 
2023). Feature selection-based deep learning algorithms typically include the following steps: 
(a) extracting useful features from raw data, (b) selecting the features that have a significant 
impact on the predictive performance of the model from the extracted features, and (c) training 
deep learning models using filtered features. Each layer’s output feeds into the next layer (and 
maybe others) in the hidden structure, often laid out in a layer or vector arrangement. Information 
transmission inside the network is modeled by weighted data signals propagating through an 
intermediary layer. By raising the input data to a processing system by a connecting weight, 
wnm, the algorithm simulates the strengthening of neural systems. ANNs can mimic learning 
because of the ability to fine-tune the connection strengths, also known as weights. Replicating 
network nodes and weights across time enables period ANNs to have their layers’ sources become 
time-shifted representations of the same time information. Still, attempts to improve financial 
time-series modeling and prediction by adding temporal units to an ANN have typically been 
met with limited success. A supervised neural network approach results from the numerical 
value provided by the input data in the training set during learning. A supervised neural network 
approach also results in the numerical value of the input data in the training set during education. 
The feed-forward neural network’s multilayer perceptron often generates ANNs (MLPs) using 
the backpropagation algorithm. The network’s outputting of approximate goal-calculated values 
data that are not in the training dataset is the main reason for employing a computational model, 
but having this capability on its own might be helpful.

The output of the neural network algorithm y1,y2…yn is represented as y(x) for the inputs i1,i2…
in and is described in the nodes as xi1,xi2….xin with the weighted nodes wm,n, which is calculated by 
equation (1):
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In equation (1), x(n) is the nth element input vector, w(m,n) is the adaptable weights of hidden layer 
neurons, and f is the neuron threshold function. Because these neurons can detect only the subsequent 
associations in the training phase, they are categorized as quadratic. Complicated neuron transfer 
functions, described below in equation (2), are necessary to account for higher-order correlations in 
the learning algorithm.
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An ANN can do complex algorithms to provide numerous indications in the industrial sector. 
Designers can take preventive measures to improve results by using analytics equipped with built-in 
AI to rapidly integrate and assess massive amounts of data and spot challenges in the initial stages 
of development. Continuous improvement quality is ensured by constantly tracking the state of all 
production processes, and the ANN provides more timely, precise forecasting of future projections 
with its optimization algorithms.

A Data-Driven Optimization Model for Process Manufacturing
Figure 3 shows the resource agents of the data-driven model for the manufacturing process. Automated 
systems incorporate sophisticated machinery, services, and various industries to produce goods. It is 
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typical for intricate production methods to necessitate coordination between different manufacturing 
levels. Smart manufacturing studies the issue of maximizing teamwork.

Similarly, industrial data are carried up the hierarchy and transformed into production information, 
while management data are transmitted down the layers and transformed into control orders. A system 
based on rankings cannot meet the requirements of modern information processing and a flexible 
supply network. The facilities at each industry level are incorporated as resource operators with a 
similar design, with the name resource relating to the four different qualities of complex processes 
(profound observation, proper analysis, logical outcome, and finding the most effective way). The 
agents have two parts: financial data and a physical component. The perceptive device’s dual roles 
of collecting proactive instructions from the agent’s minimal interaction and obtaining specific 
facts from the distinct asset or digital world are essential to their operation. The modeling method 
substantially improves data quality by integrating declarative data of various sorts and forms, extracting 
and analyzing production data, and merging conceptual aspects to generate communication hubs. 
The data-driven module combines manufacturing financial and process expertise with a training and 
inference engine to analyze real-time manufacturing data and arrive at optimal judgments that are 
both timely and effective. The implementation module carries out the approach and precisely controls 
the objects to maximize production output and cost reduction. Resource agents use various directive 
control sets to implement their execution modules in the data-driven approach. The manufactured 
skills of the agent are packaged as services by the process improvement module, which also handles 
legitimate service administration and monitoring and integrates seamlessly with those other units to 
achieve optimal performance. The hardware for data-driven optimization specifies the rules for how 
agents are to share information, taking into account concerns about privacy and integrity and the need 
to meet strict time constraints. With immersion, production assets are converted into autonomous, 
self-learning resource agents continuously exchanging data with data-driven financial entities and 
physical ones to maximize manufacturing capacities.

The data-driven confined improvement is the essential part of the data-driven idea. Management of 
this sort enables the resource agent to self-organize and optimize itself. Uniting data and manufacturing 
agents improves production efficiency and provides the groundwork for maximizing the value of 
product manufacturing. Although data volumes and categories created by various resource agents 
may vary, the process for optimizing data-driven capabilities remains constant. Information on the 
manufacturing network’s service sectors, resource beings’ interactions, the situation of the upstream 
industry, and domain-specific resources are all examples of internet-sourced information obtained by 
resource agents. The commercial industry’s information function ensures that information is sent to the 
appropriate agent. The cognitive tests then save the information in a centralized database after sorting 

Figure 3. Data-driven optimization module
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it into actual field measurements. Various data models are made available via data modeling. The 
resource data model not only stores the literal state and spatial computational methods of production 
resources but also uses vivid domain descriptions to document the production capabilities owned by 
the physical entity. In DDR, technical specifications for customer requests are recorded in the order 
data model. The agent can also refer to the process, scheduling, and management models, all of which 
explain the production mechanism and information, to help optimize its decisions.

As an alternative, the company’s many production methods are bundled into a decentralized 
subnetwork. Each device may process information, manage resources, and interact with information 
independently. In a data-driven processing pattern, a considerable amount of complicated, decentralized 
commercial data will be transmitted successfully between processes following the evaluation and 
decision-making needs of the agent. In addition, the service management module encapsulates the 
agent’s industrial capacity conventionally by taking the characteristics abstracted from the resource data 
model. Manufacturing processes of varying scales and granularity can be completed with resources 
at varying levels. During encapsulation, the agent conceals information about the physical entity’s 
controls. Industrial services are organized the same way as other production methods are when they 
are called. Therefore, breaking down large-scale manufacturing into smaller, more acceptable steps is 
the same as breaking down massive services to businesses into more refined, more manageable steps. 
The synchronicity of a similar production process is the everyday use of manufacturing excellence 
at the exact resolution. All contributions to the quality of the organization entity are comparable to 
the collection of shared service interactions produced between all production resources. As a result, 
once the industrial activity recorded in the data-driven portal is active, a communication network 
will be formed among the agents involved. The agent initially recorded the manufacturing service 
as responsible for delivering the service, while all agents on the resource model collaborated to 
complete the unique manufacturing activities. The optimization of productivity leads naturally to 
the efficiency of the use of resources.

Figure 4 shows the industry’s overall manufacturing process optimization based on a data-driven 
approach. At first, the data is collected in the database, which includes process information and 
financial data. In the demand analysis, the data-driven manufacturing model simplifies allocating 
and arranging factory assets to meet fluctuating demand. However, the performance of product 
creation cannot be enhanced compared with the conventional manufacturing model because the 
difficulty of optimizing the complex and variable production system has not been tackled. However, 
two approaches can be taken to maximize production efficiency after converting the business into a 
decentralized network of resource agents.

The resource data model proactively identifies production systems by mining the database for 
information and combining it with the expertise of the producing process to make the best possible 
decision about how to balance supply with demand. The associated manufacturing service is 
automatically created and added to the database if the agent possesses production skills. Alternatively, 
it sends the demand information to the agents responsible for the relevant resources. In the producing 
service, the resource agent will use the defect diagnostic and efficiency help to determine if the service 
agents can work together to carry out the production customizations. If some manufacturing resources 
fall short of the required assistance, a new resource agent is identified, and overall productivity is 
evaluated correctly to diagnose the fault. In the end, the improved data-driven model is implemented 
more methodically in the form of manufacturing choices. A unique industrial data management 
technology has been integrated into a dispersed storage and computation environment. After the 
quality of each machine has been verified, the operation’s data are sent to the performance analysis 
module, which thoroughly analyzes the current state and predicts critical performance indicators 
at each stage of the process. If the requirements of the request are satisfied, the precise control and 
execution module will transform the associated data into a workable manufacturing and distribution 
management plan.
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KPIs are used to assess the effectiveness of various methods for enhancing the production 
process and reducing costs. Historically, the financial sector has been the primary user of KPI 
systems. KPIs give teams goals to work toward, checkpoints to evaluate their success, and 
information that anybody in the company can use to make smarter choices. Later, KPIs were 
expanded to incorporate nonmonetary systems and quality measures. The suggested hierarchical 
structure for KPIs makes it possible to see how they are connected. Many other KPI systems 
are available today, each catering to a narrower subset of the industrial sector or offering a 
more general model without domain-specific KPIs. We provide a unique modeling approach for 
manufacturing data-driven projects by merging process variables with a KPI model to assess 
optimization methods. This approach corrects the flaws of prior methods. The system was 
developed to be implemented in current production setups. The KPI model has mathematical 
relationships that can be analyzed, whereas the links between the process parameters and the 
foundational KPIs are calculated using a learning method. Here, we use the dates and timestamps 
on data about operating parameters to connect them to characteristics of the core KPIs that 
determine how efficient our equipment is as a whole.

Figure 4. Manufacturing optimization process based on data-driven model in industry
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Consequently, the business’s product information is being used appropriately and effectively 
by the industrial assets. The precision of manufacturing excellence is elevated by the enhanced 
processing capabilities made possible by the data-driven managed service optimization method. 
The capacity for real-time scheduling, achieved by integrating the actual production rate of the 
sector with the current system of the devices, enables data-driven optimization of the allocation 
of resources.

RESULTS AND ANALYSIS

Analysis of Experimental Results
Performance Evaluation
In the Udemy course Deep Learning A-Z - ANN Dataset: Hands-On Artificial Neural Networks, given 
by Kirill Eremenko (data scientist and foreign exchange systems expert) and Hadelin de Ponteves, 
students analyze industrial data used for process optimization using an ANN . The dataset is excellent 
for beginners in machine learning because it offers a safe space to experiment with different methods. 
The total number of views is 38,318, and downloads are 3,715. For more information go to https://
www.kaggle.com/datasets/filippoo/deep-learning-az-ann

Accuracy, efficiency, transaction cost, and latency time are all measurements of the system’s 
performance when using resource agents, as are the performance ratio on employing the deep learning 
approach and optimizing financial data on the data-driven model.

Initially, the throughput time displayed the maximum number of transactions that could occur 
in a given time. The integrated system’s outputs display similar behavior, albeit somewhat different 
outcomes. When contrasting this study’s experimental setting with others, we think it’s important to 
note that we used a publicly available application here, whereas previous research has been restricted 
to internal testing environments.

Equation (3) measures the accuracy and precision of the confusion matrix, which is used to assess 
the effectiveness of the suggested framework for extensive data analysis.

Accuracy
Tp Tn

Tp Fn Tn Fp
=

+
+ + +

	 (3)

In equation (3), Tp represents the typical profiles that were accurately identified, and the 
actual negative rate, Tn, is the number of anomaly files that have been accurately labeled. False 
positives (Fp) are the total number of abnormal profiles that were improperly tagged as usual 
(Fn) in the past.

A neural network forms the basis of the proposed feature selection technique, and tolerance 
levels for maintenance and design are common factors to consider when deciding which features 
to implement. Important factors include the price of resources, the required processing power, and 
the operations that need to be supported. Our data-driven approach uses a multilayer perceptron 
to calculate optimal financial data information by evaluating different feature subsets. When 
deciding on a starting population density, account for storage capacity, features count, and response 
rate. Employ trial and error to discover how many neurons to use. Note that we used the neural 
network to generate a cost function, with the primary purpose being to minimize that function. 
After several repetitive calculations, the algorithm reaches the optimal features, starting with 
the initial solutions. Finally, after looking at some classification models, we settled on the best 
one. Comparisons have been made between ANN and other classification models, such as the 
Gaussian support vector machine (SVM), the random forest (RF), and the convolutional neural 
network (CNN). Classification accuracies serve as the primary metrics by which classifiers are 

https://www.kaggle.com/datasets/filippoo/deep-learning-az-ann
https://www.kaggle.com/datasets/filippoo/deep-learning-az-ann
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ranked. Each technique’s success rate in determining the correct class is quantified and presented 
as a percentage. Table 1 includes some statistical findings (such as the proportion of accurate 
forecasts). We also used different feature extraction approaches and evaluated their performance 
compared with our suggested strategy.

We used typical approaches to reduce the dimensions of our data collection and then compared 
the outcomes. The chosen categorization is supplied with the retrieved features to achieve a higher 
performance ratio. The experimental findings (Table 2) suggest that our proposed method effectively 
achieves the conventional ones. The table shows the accuracy of the trained and test data on which 
the proposed model’s average accuracy is 95%. The performance accuracy of the DDR model using 
the ANN of the deep learning method is flexible for feature selection purposes, and it is calculated 
using equation (3).

Analysis of the Accuracy of Feature Selection
The graph produced to determine the accuracy using equation (3) of the highly adaptable deep 
learning approach on financial data to evaluate the cost of production is shown in Figure 5. Decision 
tree (DT), Gaussian SVM, and CNN are only a few mining techniques used to create the data-
driven optimization model strategy described in this work’s pervasive environment. The graph 
represents the accuracy rate of the ANN in the deep learning method, which has higher accuracy 
than the other algorithms. Specifically, we employed a flexible plan for selecting features in our 
approach comprising various channels for disseminating data about critical criteria for identifying 
malfunctions. As a result, we added ANN into our model to further investigate the irregular 
correlation between characteristics. The production’s precision level can be improved with the 
help of deep learning. The graph shows that the proposed model’s accuracy is higher than that of 
RF, SVM, and CNN.

Analysis of Optimization Model Efficiency
In Figure 6 the graph is plotted to calculate the efficiency ratio of the suggested data-driven model on 
resource agents using deep learning with neural networks. The proposed solution boosted productivity 

Table 1. Different classifications of machine learning algorithms

Classification Method The Success Rate of Feature Selection (%) The Failure Rate of Feature Selection (%)
Random forest 73 27
Linear discriminant 62 36
Guassian SVM 80 17
Convolutional neural network 85 14
ANN (proposed method) 93 5

Table 2. Examining the relative effectiveness of several feature extraction techniques

Feature Extraction Method Accuracy of Train Data (%) Accuracy of Test Data (%)

Correlation-based feature selection 78.34 73.65

Sequential forward selection 67.87 61.27

Sequential backward selection 82.39 80.18

Lasso regression 79.72 70.37

Filtration selection model 80.34 79.45

Feature selection modal using a deep learning method 95.46 92.45
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by automating corporate activities, evaluating data, connecting with customers and staff, and providing 
good financial improvement: specifically, managing relationships, investments, and obligations using 
the profitability ratio to maximize earnings using machine learning. The efficiency of the machine 
learning output is calculated by the input given to the optimization system. The proposed DRR model 
efficiency is higher when the graph is compared with the traditional approach, such as OICP, DBN, 
and intelligent manufacturing using the LSTM model. Industrial efficiency can be represented as 
a percentage by dividing the desired outputs by the actual performance. There is a wide range of 
production speeds because of the machines and procedures used. Generally speaking, slower rates 
lead to lower profitability as speeds fluctuate, whereas faster speeds impact quality management. 
Increasing productivity, or operational efficiencies, pinpoints the conditions under which products 
can be manufactured at the least potential per-unit cost. Production performance, and consequently 
profits, can be expanded by making the most of existing funds and cutting down on unnecessary 
trash. However, it has a low degree of accuracy and cooperation in its financial planning, making it 
impossible to meet modern group organizations’ more complicated economic control requirements. 
Efficiency is calculated as shown in equation (4):

Productionefficiency
Actualoutput rate

standardoutput ra
�

� �

� �
=

tte
*100 	 (4)

Figure 5. The accuracy rate of deep learning methods in the manufacturing process
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Analysis of Average Transaction Rate Cost
Figure 7 shows that fluctuation in the process optimization transaction cost increases the likelihood 
of application failures in proportion to response flow throughput. As device density fluctuates, the 
transaction rate and compute units must manage a greater volume of requests. The resource agents 
report the number of inquiries processed to the infrastructure nodes. A transaction cost is a premium 
incurred when participating in any exchange process. The prices of a company’s economic system 
are referred to as transaction costs. Decision-makers develop firm strategies by analyzing transaction 
and production costs instead of only production costs. The transaction rate cost formula is shown in 
equation (5):

T F X
R H c
= + 	 (5)

In equation (5), TR is the transaction rate, FH denotes the fixed overhead of the process 
manufacturing, and XC is the operating costs. Fixed costs equal charges plus taxes; operating costs 
equal implementation costs plus potential costs.

The graph plotted in Figure 7 is compared with the traditional approaches, such as OICP, DBN, 
and intelligent manufacturing using the LSTM model. The proposed data-driven model using deep 
learning and resource agents (DDR) transaction cost is lower.

Figure 6. The efficiency of a data-driven model
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Analysis of Average Delay in Processes
Optimization of financial and process data driven by input retention data takes time to be successfully 
implemented. Figure 8 shows the average delay (in milliseconds) as a function of the total number 
of records in deep learning. The deep learning algorithm uses agent-based resources to calculate the 
delay based on the number of inputs. Delays introduced by the storage and retrieval of data packets 
are called data delays. The time required for a manufacturing process to obtain source data from 
a data warehouse is in milliseconds; this required time is called information delay in the industry. 
The ability of an organization to quickly adapt to changing market trends depends on minimizing 
transmission delays and enabling business users to access operational information in near real time. 
Delay is a measurable key statistic expressed in seconds or milliseconds in round trip time (RTT); 
that is, the accumulated time required for data to appear at the required location from its starting 
point. In the case of delay, as more and more users experience substandard performance, the average 
delay will also increase. RTT is calculated using the formula shown in equation (6) and taking Tp 
as the propagation delay.

RTT T
p

= 2 * 	 (6)

Figure 7. Average transaction rate cost for process manufacturing



International Journal of Information Technology and Web Engineering
Volume 19 • Issue 1

15

AverageLatency P Q T RTT
d d d

 = + + + 	 (7)

Average waiting time is calculated according to equation (7), where Pd represents the processing 
delay, Qd represents queuing delay, Td is the transmission delay, and RTT is round-trip time. When 
the number of users trying to use a service exceeds the number of resources supporting them, the 
delay will increase regardless of the user’s feeling about the quality of experience. See Figure 8 to 
see how the proposed solution improves the status quo regarding average latency. Note that the gap 
between modes widens with the increase of the number of users, which shows the superiority of the 
proposed method under serious network restrictions.

In intelligent factories, it is always a key challenge to effectively use data to organize complex 
operations and provide higher production services. This study presents a strategy for optimizing 
services for businesses that use data collected from the real world to boost manufacturing capability. 
In addition, in a traditional organization, the production relationship of each manufacturing unit is 
replaced by the interactions of operation concepts between raw materials and resources. The model 
can improve the production efficiency by adjusting the agents that constitute material recovery and 
improving the resource production capacity.

Analysis of Real-World Applications
With the development of manufacturing and continuous technological progress, the modern industrial 
production environment has become increasingly complex. To reduce costs, as well as improve 

Figure 8. Average latency (ms) of process manufacturing on data-driven optimization
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production efficiency and quality, many manufacturing enterprises have adopted various optimization 
methods and technologies. However, in practice, there are still some challenges, such as how to fully 
use available resources, how to ensure the quality of manufacturing services, and how to cope with 
complex manufacturing processes. These challenges require more intelligent methods and technologies 
to address. Therefore, in this article we explore the application of data-driven process manufacturing 
service optimization models in the industrial field to improve production efficiency, reduce costs, and 
improve the quality of manufacturing services. This study has a wide range of practical applications, 
especially in the industrial field.

Manufacturing Service Optimization
Through data-driven process manufacturing service optimization models, enterprises can maximize 
the reduction of manufacturing costs and improve the quality of manufacturing services. This model 
uses deep learning algorithms and resource proxies (DDR) to intelligently represent and manage 
available manufacturing resources, thereby optimizing production processes, reducing scrap rates, 
and improving production efficiency.

Productivity Improvement
Machine learning plays an important role in the production process. Connecting multiple enterprises 
and using inexpensive sensors to build models can significantly improve production efficiency. By 
using data-driven methods, enterprises can monitor and analyze the production process, promptly 
identify problems, and take corresponding measures, thereby improving production efficiency and 
reducing production downtime.

Resource Optimization Management
A data-driven process manufacturing service optimization model can intelligently manage and allocate 
available manufacturing resources. By fully using the output of resources, raw materials, and support 
networks, enterprises can better plan and manage the use of resources, thereby reducing costs and 
improving resource utilization.

Expert Strategy Assistance
The methods introduced in this article also include construction methods based on expert strategies. 
This means that enterprises can use expert knowledge and experience to guide the production process 
and optimize it in conjunction with data-driven models. This combination can improve the accuracy 
and efficiency of decision-making, helping enterprises better cope with complex manufacturing 
environments.

Cost Reduction and Profit Enhancement
By optimizing manufacturing services and resource management, enterprises can reduce manufacturing 
costs and improve production efficiency. This process will directly affect the profits of the enterprise 
and enhance its advantage in market competition. By using the data-driven process manufacturing 
service optimization model proposed in this article, enterprises can maintain competitiveness in a 
constantly changing market environment.

In summary, the research methods and models proposed in this article have broad practical 
application potential in the industrial field. By optimizing manufacturing services, improving 
production efficiency, optimizing resource management, and combining expert strategies, enterprises 
can reduce costs, increase profits, and gain an advantage in market competition. These applications 
will bring significant economic benefits and sustainable development to industrial enterprises.

The data-driven process manufacturing service optimization model discussed in this article has 
certain limitations in its application in the industrial field. By taking corresponding measures, we 
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can overcome the limitations of data-driven process manufacturing service optimization models in 
industrial applications, thereby improving production efficiency, reducing costs, and improving the 
quality of manufacturing services.

Data Collection and Processing
This model requires a large amount of production data and related information to train and optimize 
the model. However, in certain production environments, data collection and processing may be limited 
owing to the lack or unreliability of sensors and other data collection devices. Therefore, enterprises 
can increase data collection equipment and sensors, and they can also adopt other methods, such as 
simulation and model prediction, to collect and process necessary data.

Model Accuracy
Although data-driven models have been widely used in the production process, different production 
environments and conditions can have an impact on the accuracy of the model. Therefore, in different 
production scenarios, adjusting and optimizing the model to improve its accuracy and adaptability are 
necessary steps. Enterprises can regularly evaluate and adjust their models to ensure their accuracy 
and adaptability. In addition, the performance of the model can be improved by collaborating with 
other enterprises and experts to share experience and best practices.

Personnel Skills and Training
The data-driven process manufacturing service optimization model requires professional knowledge 
and skills to be effectively used and maintained. Therefore, it is necessary to train and educate 
production personnel to improve their understanding and application ability of the model. Enterprises 
can provide relevant training and education for production personnel to enhance their understanding 
and application ability of data-driven process manufacturing service optimization models and provide 
them with necessary skills and knowledge.

CONCLUSION

In the industrial sector, creating profitable and marketable products is crucial. To significantly 
improve production efficiency, machine learning plays an important role in the production process 
by connecting multiple enterprises and using inexpensive sensors to build models. To reduce costs, 
we proposed a technical solution, which is a data-driven process manufacturing service optimization 
model. This model uses deep learning algorithms and resource proxies (DDR) to intelligently represent 
available manufacturing resources to minimize costs. Resource proxy is an intelligent module with 
powerful data processing and service management capabilities. In this paper, we also introduced KPIs 
for evaluating optimization work, as well as other methods for implementing processes and building 
expert strategies. The purpose of our model is to improve the quality of manufacturing services and 
reduce manufacturing costs by fully using resources, raw materials, and support networks. Finally, 
we evaluated the effectiveness and practicality of the proposed model through an actual industrial 
manufacturing process scenario. We compared the experimental results from multiple perspectives 
and demonstrated the advantages of our solution. Although we discussed the advantages of using 
Resource Proxy (DDR) in our paper, the implementation of this method may require additional costs 
and resources, which is also a limitation. In the future, we can consider exploring more cost-effective 
data processing and service management technologies to reduce the additional costs and resources 
required for implementing this method. In addition, alternative methods, such as advantage-based 
algorithms, can be explored in the future to address the challenges faced by problem optimization 
and ensure continuous improvement of feature extraction and optimization strategies.
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