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ABSTRACT

This article describes how the last decade has been characterized by the production of huge amounts of 
different types of biological data. Following that, a flood of bioinformatics tools have been published. 
However, many of these tools are commercial, or require computational skills. In addition, not all tools 
provide intuitive and highly accessible visualization of the results. The authors have developed GEView 
(Gene Expression View), which is a free, user-friendly tool harboring several existing algorithms and 
statistical methods for the analysis of high-throughput gene, microRNA or protein expression data. 
It can be used to perform basic analysis such as quality control, outlier detection, batch correction 
and differential expression analysis, through a single intuitive graphical user interface. GEView is 
unique in its simplicity and highly accessible visualization it provides. Together with its basic and 
intuitive functionality it allows Bio-Medical scientists with no computational skills to independently 
analyze and visualize high-throughput data produced in their own labs.
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INTRoDUCTIoN

Advanced high-throughput technologies have been developed and extensively used in the last decades 
(microarrays since the mid-1980s (Schena, Shalon, Davis, & Brown, 1995) and Next Generation 
Sequencing (NGS) (Goodwin, McPherson, & McCombie, 2016) since the mid-2000s). Mass 
spectrometry technologies were originally invented almost 100 years ago and further developed 
during the 1990s (Glish & Vachet, 2003). All these technologies and others are being routinely used 
by Bio-medical (Bio-Med) scientists for production of high-throughput data. However, currently, 
it is very difficult for Bio-Med researchers with no computational skills to analyze their own data. 
Various free, online and user-friendly tools have been developed and are routinely used for gene 
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expression and proteomics data analysis. For example, Expander (Ulitsky et al., 2010), Chipster 
(Kallio et al., 2011), SAM (Tusher, Tibshirani, & Chu, 2001), Limma (Ritchie et al., 2015), DESeq 
(Love, Huber, & Anders, 2014), Morpheus (https://software.broadinstitute.org/morpheus/), MeV 
(Howe, Sinha, Schlauch, & Quackenbush, 2011) for gene expression analysis, and MaxQuant (Cox 
& Mann, 2008) for proteomics data analysis. However, these tools usually perform a large range of 
tasks, which are sometimes not straightforward and may necessitate some computational skills. In 
addition, they usually lack a single-gene trivial visualization (such as box plots), which is a basic 
request of lab researchers in order to study the expression pattern of a specific gene of interest. While 
the Morpheus tool (https://software.broadinstitute.org/morpheus/) does provide box plots for single 
genes, it has the limitation of not providing differential expression statistical analysis of more than 
two groups of samples. The result is that many Bio-Med researchers are reluctant to use such tools 
and often outsource for the analysis of their data. Outsourcing creates a gap in time and expenditure of 
financial resources, in addition to the fact that it is performed by a computational expert, who doesn’t 
necessarily have a biological view of results. Thus, there is a need for a more basic and intuitive tool, 
with functionalities such as quality control measures, simple statistics, differential expression analysis 
and intuitive visualization of the results, including single-gene visualizations.

GEView is a free, easily downloadable tool suitable for Windows and Linux platforms, written 
in MATLAB (https://www.mathworks.com). It provides intuitive quality control analysis of the 
experiment, outlier exclusion and easy identification of differential expression of gene, microRNA or 
protein data. The great advantage of GEView is its usage simplicity and the output Excel table which 
provides immediate visualization of the analyzed data on a single-gene basis. It serves all available 
expression platforms, given that expression values for each gene/microRNA/protein are provided in a 
tab-delimited file as input, after normalization. GEView is freely available to non-commercial users 
and can be downloaded from http://www.weizmann.ac.il/complex/compphys/software/geview/. It 
includes a convenient “help” menu and an example test data (Teuffel et al., 2004).

We believe GEView may be highly useful for Bio-Med researchers who are not computational 
experts. Such researches, who were previously reluctant to use computational tools and were dependent 
on external bioinformatics services, have now an opportunity to analyze their own data. In addition, the 
readily available single-gene graphical representation enables laboratory scientists to simply return to 
the results table each time they become interested in a new gene or protein and explore its expression 
pattern in their data. Thus, by improving the access to basic expression analysis, GEView improves 
the ability of laboratory scientists to produce significant results from their various experiments.

IMPLEMENTATIoN

In this paper we present GEView, a useful tool for various types of expression analysis (genes, 
microRNAs and proteins). Our aim is to enable the Bio-Med researchers with no computer-science 
skills, to simply analyze and visualize high-throughput data produced in their wet experiments (see 
workflow in Figure 1), using an intuitive user interface (see Figure 2).

GEView performs a basic quality control step of Principal Component Analysis (PCA) (Jolliffe 
& Cadima, 2016). The researcher may correlate PCA output with experimental design and sample 
replicates and examine whether all biological replicates cluster together (otherwise, unknown variables 
may have affected the data). It may also indicate biological outliers among the samples. In addition, 
various experimental batches resulting from experimental design and/or other technical constraints can 
be easily corrected using GEView, implementing the ComBat batch correction algorithm (Johnson, Li, 
& Rabinovic, 2007; Leek, Johnson, Parker, Jaffe, & Storey, 2012). Moreover, GEView uses Analysis 
Of Variance (ANOVA) (Bewick, Cheek, & Ball, 2004) (http://www.mathworks.com/help/stats/
anova1.html) to identify genes (/microRNAs /proteins) which are differentially expressed between 
the various experimental conditions. The single output Excel file provides immediate visualization 
of all genes’ differential expression in the various experimental conditions (box plots) together with 
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Figure 1. GEView flow chart

Figure 2. GEView user interface
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ANOVA P-values and fold-change values, through a click on each gene-link in the output file. The 
expression pattern of each single gene can be easily and immediately viewed by clicking on the link 
in the output file, which opens a pre-computed box plot (for illustration, see an example of a results 
table in Table 1; the links in the column “Box Plots” open a box plot for each of the genes). In order 
to complete data examination and analysis, links are also provided for GeneCards (Safran et al., 
2010), UCSC (Kent et al., 2002) and NCBI (https://www.ncbi.nlm.nih.gov/gene) databases, for each 
specific entry (for illustration, see the links in columns 3-5 of Table 1).

RESULTS

Test Data: The “Zurich” Dataset
In order to demonstrate GEView functionality, we use a gene expression dataset of leukemia blood 
samples that were processed at the department of Oncology, University Children’s Hospital, Zurich, 
Switzerland (Teuffel et al., 2004) and measured by Affymetrix HG-U133A microarrays. We utilize as 
an example three sample groups that represent three leukemia subtypes, each with different genomic 
characteristics: E2A-PBX1 (E2A; 5 samples), High hyperdiploid (HD; 4 samples) and TEL-AML1 
(TEL; 8 samples). E2A-PBX1 is characterized by a translocation that fuses two genes, E2A and 
PBX1, High hyperdiploid is characterized by gain of chromosomes (overall 51-67 chromosomes) 
and TEL-AML1 is characterized by a translocation that fuses two genes, TEL and AML1.

Data Input File and Details for obtaining It
A tab-delimited text file with normalized expression values for each entry (resulting from microarray, 
NGS or proteomics) is required as input by GEView. Data can be provided as raw expression data 
or log 2 transformed, according to the user`s preference. The format is fully described in the “help” 
document; an example input table is given in Additional File 1 (http://www.weizmann.ac.il/complex/
compphys/software/geview/0.4/Additional_File1_Zurich_HD_TEL_E2A_data_labeled.txt).

Various tools are available for free download in order to obtain the normalized expression values. 
EXPANDER tool (Ulitsky et al., 2010) (http://acgt.cs.tau.ac.il/expander/) or the Expression console 
tool (for Affymetrix microarray data; https://www.affymetrix.com/support/technical/byproduct.
affx?product=expressionconsole) can be used for microarray data, Chipster (Kallio et al., 2011) 
(http://chipster.csc.fi/) may be used for NGS data, MaxQuant (Cox & Mann, 2008) may be used for 
proteomics data and R software (https://www.r-project.org/), which requires programing skills, can 
be used for all types of data. Commercial tools such as Partek Genomics suite (http://www.partek.
com/) and MATLAB (https://www.mathworks.com) may also be used.

Load Data
Use the “Load” button (blue; see Figure 2) in order to browse through the input data file in the computer 
directory. After choosing the data file, the status bar will indicate when its loading is completed.

Principal Component Analysis (PCA) and Batch Effect Correction
In order to evaluate sample quality and homogeneity, PCA (Jolliffe & Cadima, 2016) may be plotted 
(using the “PCA” green button, see Figure 2), implemented by MATLAB software (http://www.
mathworks.com/help/stats/pca.html). The PCA calculation is based on the 1,000 highest variance 
genes (if there exists less than 1000 genes, then all genes are used). In Figure 3A the PCA of the 
“Zurich” test data is plotted. It can be seen that one of the TEL (yellow square) samples is clustered 
within the HD group (red triangles), and not with its own group. Using GEView, the researcher can 
exclude this sample from the analysis where, for instance, there is evidence that it was mislabeled, by 
right clicking on it (see Figure 3B). It should be noted that such a decision should be taken carefully, 
as it has the potential to bias the results.
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If various batches are seen by PCA or are known in advance, normalization according to 
experimental batches may be applied. “PCA after batch correction” button may be used to re-view 
the new PCA after the batch correction.

Batch Correction Example
When combining datasets from various origins (for example, in case datasets were processed in 
different dates or laboratories), the samples are often clustered according to the technical origin 
instead of the experimental conditions. GEView implements the ComBat batch correction algorithm 
(Johnson et al., 2007; Leek et al., 2012) to enable correction of such technical artifacts. In the following 
example, we added to our test data that were processed at the department of Oncology, University 
Children’s Hospital Zurich, Switzerland (Teuffel et al., 2004) (labeled “Zurich”) an additional dataset, 
that was processed at St Jude Children’s Research Hospital, Memphis, TN (Ross et al., 2003) (labeled 
“StJude”). These datasets share two of the sample groups, TEL and HD. However, it can be seen in 
Figure 4A, where the samples are shaped and colored according to data origin (batches: “Zurich” – red 
triangles, “StJude” – blue circles), that the samples are grouped according to the batches; Zurich to 
the right and StJude to the left. After applying the batch correction algorithm (using the “PCA after 
batch correction” button, see Figure 2), it can be seen in Figure 4B that the batch effect disappeared, 
and the samples are grouped solely according to the experimental conditions (HD and TEL).

Run Statistical Analysis
By pressing the “RUN” red button (see Figure 2), ANOVA is applied for each probe set (gene/
microRNA/protein), testing whether the means of its expression significantly differ between each of 
the different conditions (see http://www.mathworks.com/help/stats/anova1.html for more details). 
P-values and Q-values (corrected P-values for multiple comparisons (Benjamini & Hochberg, 1995) 
are being calculated for each probe set. Running the statistical analysis of a typical dataset containing 
about 20,000 entries may take up to a few hours, using a computer with basic requirements such as 
8GB RAM and Intel Core i7 processor of 3.40 GHz. Running progress can be viewed by the status 
line at the bottom of the user interface (see Figure 2).

This stage generates a single Excel file which summarizes in each line the results for a specific 
probe set. Table 1 represents the resulting Excel table for 10 probe sets (see Additional File 2 for 
the complete ANOVA table for ~ 17,000 probe sets http://www.weizmann.ac.il/complex/compphys/
software/geview/0.4/Additional_File2_results_Zurich_HD_TEL_E2A_data_labeled.xlsx).

Figure 3. PCA quality control visualization: A) PCA is plotted for the “Zurich” dataset. Each of the experimental conditions is 
shaped and colored differently: E2A in blue circles, HD in red triangles and TEL in yellow squares. The colored large circles 
were added in order to emphasize the clustering into 3 biological groups. B) PCA is plotted for the “Zurich” dataset in the same 
manner as in A), after removing the outlier TEL sample (marked by the text “Removed”).
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Exploring the Results
The output single Excel file provides immediate visualization of all genes’ differential expression 
in the various experimental conditions (box plots) together with ANOVA P-values and fold-change 
values, through a click on each gene-link in the output file (Table 1 contains 10 rows, out of ~17,000, 
for illustration; the links on the “Box Plots” column can be clicked on). For example, in Figure 5, 
box plots of two genes are plotted, PBX1 and ELK3.

Each row represents a probe set ID, identified by a gene symbol (second column). Please note 
that 3 different probe set IDs for PBX1 gene and 2 for ELK3 gene are present. The Box plots column 
contains a link to a box plot of the mean expression values with standard errors and statistics resulting 
from ANOVA for each probe set. For each entry, links to GeneCards, UCSC and NCBI genome browser 
databases are provided. In addition, the same Excel file contains fold change values between each 
pair of experimental conditions. In case there are more than two experimental conditions, Tukey’s 
test (Tukey JW, n.d.) for multiple comparisons is performed (http://www.mathworks.com/help/stats/
multcompare.html), comparing between each pair, and the p-values are given.

As shown in Figure 5, probe sets belonging to the same gene are plotted together. This is done 
in order to estimate whether the different probe sets that belong to the same gene share a similar 
expression pattern (if they do, it significantly strengthens the validity of the pattern). It can be seen 
that PBX1 has 3 probe sets, all of which show a similar and significant expression pattern – high 
expression in E2A-PBX1 sample group and low in the rest (Figure 5A). E2A-PBX1 leukemia subtype 
is characterized by a fusion between the transcription factor E2A and PBX1 gene. While normally 
PBX1 is not expressed in lymphoid cells, the fusion with E2A causes its expression (Aspland, Bendall, 
& Murre, 2001). Thus, PBX1 is indeed expected to be expressed in E2A-PBX1 sample group and not 
expressed in the rest. The concordance between all 3 probe sets (Figure 5A) significantly increases 
the validation of this pattern. Another example of the gene ELK3, can be seen in Figure 5B. It has 
two probe sets, one showing a significant differential expression (Q= 0.024), while the other shows 
a different, non-significant pattern. Thus, the expression pattern of ELK3 is less validated than that 
of PBX1. When there is a need to decide on which gene to focus and perform further investigations 
and wet experiments, this information is crucial. Therefore, the simple grouping of the box plots of 
different probe sets of the same gene can improve the decision-making process.

Figure 4. Batch correction example: A) PCA is plotted for the union of HD and TEL samples from both “Zurich” and “StJude” 
datasets, before the batch correction is applied. The samples are shaped and colored by batch (red triangles for “Zurich” and 
blue circles for “StJude”). B) PCA is plotted for the union of HD and TEL samples from both “Zurich” and “StJude” datasets 
after the batch correction was applied. The samples are shaped and colored by experimental conditions (blue circles for HD, 
red triangles for TEL).
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HELP DoCUMENT

A comprehensive Help document can be easily accessed through GEView (press the “Help” button 
in the right lower corner of the user interface, as plotted in Figure 2; the full Help document is also 
given as Additional File 3 http://www.weizmann.ac.il/complex/compphys/software/geview/0.4/
Additional_File3_help.docx). The Help document contains:

• Installation instructions;
• Input format description for all data types;
• Description of the analysis flow, including a detailed description of the user interface functionality 

and the running parameters;
• Detailed description of each analysis type provided by GEView, including results of the “Zurich” 

test dataset.

DISCUSSIoN

There are many tools that perform gene or protein expression analysis. We offer GEView, a tool that 
implements basic analyses and intuitive visualization of the results for the non-programmer biologist. 
The great advantage of GEView is its intuitive, accessible and comprehensive results table, given 
in an Excel file with links to graphics and databases. Specifically, it provides a single results table, 

Figure 5. Box plots of PBX1 and ELK3 genes: A) Box plots for the 3 probe set IDs present in the “Zurich” dataset for the gene PBX1 
are plotted. In the title of each plot, the gene symbol and probe set ID (in parentheses) are presented. In addition, the ANOVA P and 
Q values (corrected p-value (Benjamini & Hochberg, 1995)) are provided. The Y-axis represents the Log2 expression value and 
the X-axis represents the 3 experimental conditions (see E2A, HD and TEL X-labels). The number of samples in each experimental 
condition is written in parentheses. Each sample expression value is marked by a red dot and the mean and standard deviation in 
each experimental condition are marked by a black line and a blue box, respectively. B) Box plots for the 2 probe set IDs present 
in the “Zurich” dataset for the gene ELK3 are plotted in the same manner as in A.
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including pre-calculated ANOVA p-values and links to pre-computed figures of the expression pattern 
of each of the genes/microRNAs/proteins across the experimental conditions. This is a significant 
improvement to the commonly available results tables, which usually include only p-values and 
fold-change differences and don’t provide visualization of expression patterns of single genes. The 
intuitive graphical representation, using box plots, enables the laboratory scientist to simply investigate 
many genes of interest. Gene expression patterns may easily be explored in the same results table, 
without the need for further external resources, through direct links to GeneCards, UCSC and NCBI 
databases for each gene (see Table 1).

CoNCLUSIoN

GEView was developed for Bio-Med researchers who are not computational experts. We believe that 
researchers who were previously dependent on external services for the analysis of their own data, 
will have a new opportunity to analyze expression results with GEView. Upon input of expression 
data of various types, GEView provides PCA analysis, batch correction and analysis of differential 
expression, with immediate graphical view and functional annotation of the results, in a single 
simple Excel file. While all algorithms used are published, implemented by standard and validated 
MATLAB functions (in the case of ComBat algorithm, using the original R software code (Leek et 
al., 2012), wrapping them together in a simple and intuitive tool with immediate access to graphical 
representation on a single-gene basis will enable the Bio-Med researcher to:

1.  Perform basic analyses without the need for external resources;
2.  Have immediate access to the visualization and statistics of the data;
3.  Compare the expression pattern validity of different gene probes for better wet experiments 

decision making;
4.  Improve their ability to produce significant results out of their various experiments.
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APPENDIX

Availability and Requirements
Project name: GEView
Project site: http://www.weizmann.ac.il/complex/compphys/software/geview/ 
Programming Language: MATLAB (https://www.mathworks.com). In order to facilitate the 

installation step, GEView contains the following R packages: sva (Leek et al., 2012), R.matlab 
(Bengtsson, n.d.) and their subsidiaries.

Operating Systems: The compiled version can be launched on either Windows or Linux. Using the 
MATLAB source code, that can be downloaded from GEView website (http://www.weizmann.
ac.il/complex/compphys/software/geview/), GEView can run on any operating system with 
MATLAB installed, including Mac OS.

Restrictions to use by non-academics: None
How to Cite GEView: The present paper should be cited if GEView is used in the preparation of 

a manuscript
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