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ABSTRACT

Denizens of the Internet are under a barrage of phishing attacks of increasing frequency and 
sophistication. Emails accompanied by authentic looking websites are ensnaring users who, 
unwittingly, hand over their credentials compromising both their privacy and security. Methods 
such as the blacklisting of these phishing websites become untenable and cannot keep pace with the 
explosion of fake sites. Detection of nefarious websites must become automated and be able to adapt 
to this ever-evolving form of social engineering. There is an improved framework that was previously 
implemented called “Fresh-Phish”, for creating current machine-learning data for phishing websites. 
The improved framework uses a total of 28 different website features that query using python, then a 
large labeled dataset is built and analyze over several machine learning classifiers against this dataset 
to determine which is the most accurate. This modified framework improves the accuracy of modeling 
those features by using integer rather than binary values where possible. This article analyzes not 
just the accuracy of the technique, but also how long it takes to train the model.
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INTRODUCTION

The Internet has ushered in a new evolution of electronic deception called phishing, that involves 
the one-two punch of web and email that is very difficult for users to detect. In fact, according to 
Alsharnouby et al. only 53% of users successfully detect phishing websites (Alsharnouby et al., 2015).

Phishing, defined as, “the attempt to obtain sensitive information such as user-names, passwords, 
and credit card details, often for malicious reasons, by masquerading as a trustworthy entity in an 
electronic communication” (Wikipedia, 2016), is a problem that is as old as the Internet itself. Trying 
to get unsuspecting users to give up their money, credentials or privacy is a particularly insidious 
form of social engineering that can have disastrous effects on people’s lives. Often this type of attack 
arrives in the form of an email containing the first part of what Chaudhry et al. describe as the lure, 
the hook and the catch (Chaudhry, Chaudhry, & Rittenhouse, 2016).

The lure is what entices the user to click on a link. It can be advertising a way to get easy money, 
obtain an illicit product, or a warning that a user’s account has been compromised or blocked in some 
fashion. The hook is often a website that is designed to mimic a legitimate website of a reputable 
organization such as a bank or other financial institution. The hook is used to trick the user into 
entering and submitting their credentials such as user-name, password, credit card number, etc. The 
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catch is when the user has submitted their private information and the malicious owner of the website 
collects and uses this information to exploit the user and his accounts.

Figure 1 shows the number of phishing attacks has been increasing year over year for the last 
decade. Anti-Phishing Working Group (APWG) reported an alarming 250% increase from the last 
quarter of 2015 to the first quarter of 2016 (APWG, 2016).

Not only have phishing attempts evolved and become more sophisticated, the motivation for 
implementing these attacks has changed as well. Attackers today have moved beyond simply probing 
the security of systems; now their primary goal has become financial gain. This commercialization of 
phishing is charted in Figure 2 showing the fourth quarter of 2016 where 41% of targeted industries 
are retail/services and 19% of them financial institutions. This wide diversity of targeted services, 
coupled with the trend of increasing attacks demonstrates that end-users are in more danger, from 
more sources, than ever before.

Phishing is a growing multi-vector problem that has real and devastating consequences for users. 
It is also a problem growing in sophistication, scope and reach. Automated detection techniques are 
critical to a safe and secure Internet. We use machine learning algorithms because they have been 
proven to have the capability to discover complex correlations among different data items of similar 
nature, however work to date leaves out one critical variable in this equation; we need an open and 
extensible framework capable of generating up-to-date data for researchers. We call this framework, 
Fresh- Phish.

There is no recent machine learning data that has been published on phishing websites. The data 
that does exist is several years out of date, a serious problem given the dynamic nature of the Internet. 
There is also no published framework, that we are aware of, for gathering new data.

In this paper, we introduce an open-source python-based framework called Fresh-Phish for 
generating up-to-date data of websites for training machine learning algorithms. The Fresh-Phish 
framework is intended to be an extensible building block that other researchers can modify, add, 
delete, or change what features are used to build datasets. We used our framework to crawl over 
5,000 websites to generate a large labeled dataset with which we tested and analyzed several different 
machine learning techniques to accurately identify phishing websites.

The rest of the paper is organized as follows: In the related work section, we discuss several 
works that use automated techniques to identify phishing websites. In the methods section, we layout 
how we implement our Fresh-Phish framework for calculating a phish rank on 28 website features 
originally defined by Mohammad et al. (Mohammad, Thabtah, & McCluskey, 2012). We show how 
we use our framework to build an up-to-date dataset with thousands of labeled examples. In the results 
and discussion section we calculate which features are the most important in detecting phishing 
websites as well as examine various machine learning algorithms trained and tested on our dataset for 
accuracy and training time. In the conclusion and future work section we summarize how our open 
and published framework was built and how it can be successfully used to generate data for further 
research and discuss future work with regards to the other features that we plan to explore. Next, we 
look at additional machine learning algorithms that we would like to apply for detecting phishing 
websites. Finally, we compare the use of binary values for features versus using integer based values 
for features such as the length of a URL.

Related Work
Work to date on detecting phishing attacks largely follows a two-pronged approach: detecting and 
filtering. This ‘detect and filter’ approach has increasingly become insufficient as attacks have 
become more complex and arrive from multiple sources. For example, phishing email has become 
more sophisticated and targeted. Often referred to as ‘spear phishing’ this type of attack can slip past 
statistical based filtering techniques. Additionally, there are several other vectors that are used by 
phishers that bypass email such as malware attacks, session hijacking, and search engine phishing, 
SMS, social networking and even online games! (Hong, 2012).
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Basnet et al. employed a wide range of machine learning techniques including Support Vector 
Machines (SVM), Neural-Networks, self-organizing maps and K-Means to detect phishing emails 
(Basnet, Mukkamala, & Sung, 2008). They used features of emails only, not the websites that were 
linked in the email.

Figure 1. Graph of reported phishing incidents - First quarter of 2016 (APWG, 2016)

Figure 2. Graph of reported phishing incidents - Fourth quarter of 2016 (APWG, 2016A)
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Miyamoto et al. (Miyamoto, Hazeyama, & Kadobayashi, 2008) provide an overview of several 
different machine learning techniques, including SVM, Random Forests, Neural Networks, Naive 
Bayes and Bayesian Additive Regression Trees. They analyze how accurate each one is on a dataset 
developed by Z. Hong et al., called CANTINA (Zhang, Hong, & Cranor, 2007). Miyomoto et al. 
achieved a maximum accuracy of 91.34%.

Qian Cui et al. (Q. Cui, 2017) tried to find similarities between different attacks for 10 months 
study with monitoring more than 19000 websites. They found that 90% of attacks have similar DOM 
structure and over 90% of these attacks were actually replicas or variations of other attacks in the 
database. Zhang et al (Y. Zhang, 2017) created a dataset to make use of well-known TF-IDF (short 
term for Term Frequency–Inverse Document Frequency) algorithm to find out 5 most important 
words in each webpage. The 5 words are concatenated to form a lexical signature and then queried 
the lexical signature in Google search engine. If the website appears in the very first results of the 
query, then it is considered genuine. This approach provides an accuracy of 94-97%.

The popular browser, Firefox, checks each website that you visit against reported phishing, 
unwanted software and malware lists. These lists are automatically downloaded and updated every 
30 minutes or so when the “Phishing and Malware Protection” feature is enabled (Mohammad, 
Thabtah, & McCluskey, 2014).

Finally, we looked at Mohammad et al. (Mohammad et al., 2012) data published to the UCI 
database and their follow-up work that applies machine learning techniques to this data where they 
achieve an accuracy of 94.07%. They defined a good set of features and then created their dataset 
(Mohammad et al., 2014).

While Mohammad et al. published just their dataset, we created a framework which can measure 
all features defined by Mohammad et al. The framework can be used as a standard base in which 
to build up-to-date datasets as well as can be extended by other researchers to address the dynamic 
nature of phishing websites.

METHODS

Fresh-Phish Framework
The Fresh-Phish framework includes two major modules and each one has a series of Python classes: 
Evaluation Module which is responsible for creating the dataset itself by measuring different features 
within the website and Experiment Module which is responsible to calculating the phishing detection 
accuracy for the data in the previous step.

•	 Evaluation Module: This module, the first step of the framework, is used to prepare an updated 
dataset by calculating the set of defined features for each website. In this step, the module is 
fed a list of all websites to be measured, the features to be measured and assigns a label to each 
website. The module reads in a CSV file that includes the websites’ URL, then passes this URL 
to a set of feature classes that parse various characteristics of the website into categories. For 
each category, we implemented a python class that evaluates all of features in that category to 
determine a phish score per feature. After evaluating all of features and calculating a phish score, 
we add the score label to each data item -1 for clean and 1 for phishy. This process will continue 
for all of websites in the CSV file.

•	 Experiment Module: After the dataset is created, the framework uses this module to conduct 
the experiments and calculate accuracy and other results. This module loads feature values and 
labels and runs a K-Fold validation approach to estimate the accuracy of each classifier. This 
process consists of training and testing steps. Finally, the module calculates the results from each 
classifier and reports them in a result file.
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Creating a Phishing Dataset
The data based on features of websites on the Internet quickly become out of date and stale. To get 
an up-to-date analysis on the performance of our classifiers we built a framework for creating a 
new dataset for testing and it uses the same feature definitions that Mohammad et al. (Mohammad 
et al., 2012) used, but implemented in python. To create our dataset, we scanned the top 2500 sites 
in the Alexa database (Alexa, 2017) and 2500 online phishing sites obtained from PhishTank.com 
(PhishTank, 2017). We made two assumptions here. First, all the top 2500 websites on Alexa were 
legitimate sites. We believe this to be a valid assumption because of the ephemeral nature of phishing 
websites, they tend to pop in and out of existence (as is evidenced by the short domain registration 
times) to evade being blocked or tagged as phishing. The top 2500 sites ranked in Alexa must be 
popular, and have been around for a longer period to attain this ranking.

Second, we assumed that websites found on the PhishTank.com were phishing websites. 
PhishTank.com incorporates a community of registered users who report sites as phishing. Each 
member is ranked by the community and builds a good reputation by correctly reporting if a website 
is phishing or not. Since it is a very well-known repository for phishing websites, we can trust its 
decision for labeling a website as a phishing one.

Implemented Features
Mohammad et al. (Mohammad et al., 2012) used 28 different features to create their dataset using a 
three states definition for each feature as: phishing, neutral and legitimate. Limiting definition of each 
feature to a three-state variable removes some useful information for classifiers and might affect the 
accuracy. In this work, we used both three-state feature definition and original values of each feature 
to test its effect on the accuracy of the dataset.

The features can be categorized in five different categories:

•	 URL Based
•	 DNS Based
•	 External Statistics
•	 HTML Based
•	 JavaScript Based

In the following, we will explain each feature in the appropriate category.

URL Based

1. 	 Having IP Address: If an IP address is used as an alternative of the domain name in the URL, 
such as “http://125.98.3.123/fake.html”, users can be sure that someone is trying to steal their 
personal information. In a Python script, we checked that if the website URL is in the form of 
an IP, we will assume it as a phishing website otherwise it is a legitimate.

2. 	 URL Length: To ensure accuracy of our study, we calculated the length of URLs in the data set 
and produced an average URL length. The results showed that if the length of the URL is greater 
than or equal 54 characters then the URL classified as phishing. By reviewing our dataset, we 
were able to find 1220 URLs lengths equals to 54 or more which constitute 48.8% of the total 
dataset size.

3. 	 Shortening Service: URL shortening is a method on the “World Wide Web” in which a URL 
may be made considerably smaller in length and still lead to the required webpage. This is 
accomplished by means of an “HTTP Redirect” on a domain name that is short, which links 
to the webpage that has a long URL. For example, the URL “http://portal.hud.ac.uk/” can be 
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shortened to “bit.ly/19DXSk4”. If it used TinyURL, we will assume it as a phishing, otherwise, 
it is a legitimate website.

4. 	 Having At (@) Symbol: A URL that contains a “@” symbol is not trusted as the browser 
generally ignores everything proceeding the “@”. If the URL contains the “@” sign we marked 
it as phishing.

5. 	 Double Slash Redirecting: URLs that contain “//” are marked as phishing as the double slash 
is used to redirect users to another site. Phishing URLs employ this method to hide their real 
URL. An example is http://www.colostate.edu//http://www.phishing.com.

6. 	 Prefix Suffix: The dash symbol is rarely used in legitimate URLs. Phishers tend to add prefixes 
or suffixes separated by (-) to the domain name so that users feel that they are dealing with a 
legitimate webpage. For example, http://www.Confirme-paypal.com/ In our framework, we 
checked that website use a “-” in the name of URL or not. If it is used, we assume it as a phishing 
website.

7. 	 Having Subdomain: Let us assume we have the following link: http://www.hud.ac.uk/students/. 
A domain name might include the country-code top-level domains (ccTLD), which in our example 
is “uk”. The “ac” part is shorthand for “academic”, the combined “ac.uk” is called a second-level 
domain (SLD) and “hud” is the actual name of the domain. To produce a rule for extracting 
this feature, we firstly have to omit the (www.) from the URL which is in fact a sub domain in 
itself. Then, we have to remove the (ccTLD) if it exists. Finally, we count the remaining dots. If 
the number of dots is greater than one, then the URL is classified as “Suspicious” since it has 
one sub domain. However, if the dots are greater than two, it is classified as “Phishing” since 
it will have multiple sub domains. Otherwise, if the URL has no sub domains, we will assign 
“Legitimate” to the feature. We calculated number of dots in a URL. If it is more than 2 dots 
found, that will be phishing otherwise it is a legitimate website

8. 	 Unusual Port: Most legitimate website use ports 80 for unencrypted traffic and port 443 for 
encrypted traffic. Sites that use other ports are marked as phishing.

9. 	 Abnormal URL: This feature used Whois data. If the Identity field in Whois does not match 
the domain in the URL this is marked as phishing.

DNS Based

1. 	 Domain Registration Length: This feature uses data from Whois. If the field “updatedDate” 
phishing domains are typically not registered and paid for multiple years. If the updated date is 
less than half of a year, the site is marked as phishing.

2. 	 HTTPS Token: Phishing URLs will often try to make it look like the URL uses HTTPS. They 
will include HTTPS has part of the URL, for example, http://https-colostate.edu. These URLs 
are marked as phishing.

3. 	 Age of Domain: This feature can be extracted from WHOIS database. Most phishing websites 
live for a short period of time. By reviewing our dataset, we find that the minimum age of the 
legitimate domain is 6 months. Rule: If the age of domain is greater than 6 months, we will 
assume it as legitimate otherwise we will assume it as phishing.

4. 	 DNS Record: This feature can be extracted from Whois database. For phishing sites, either 
the claimed identity in not recognized by Whois database or the record of the host-name is not 
founded. If the DNS record is empty or not found then the website is classified as “phishing”, 
otherwise it will classify as legitimate. With implementing a python script which get DNS 
information from www.whoisxmlapi.com, we check that domain if the domain record is empty 
or not.

External Statistics
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1. 	 Page Rank: This feature looks at if the site is ranked in the Alexa database. If the site is not 
ranked or has no traffic then the site is marked as phishing.

2. 	 Google Index: This feature examines whether a website is in Google’s index or not. When a site 
is indexed by Google, it is displayed on search results. Usually, phishing web pages are merely 
accessible for a short period and as a result, many phishing web pages may not be found on the 
Google index. To finding Google Index of each site, we send a request to Google website then 
search website inside the result. If a website is indexed by Google, we mark it as legitimate, 
otherwise, we mark it as phishing.

3. 	 Statistical Report: This feature uses data from other Phishing site trackers such as PhishTank.
com. We did not implement this feature and set it to neutral.

HTML Based

1. 	 Favicon: A favicon is a graphic image (icon) associated with a specific webpage. Many existing 
user agents such as graphical browsers and newsreaders show favicon as a visual reminder of 
the website identity in the address bar. If the favicon is loaded from a domain other than that 
shown in the address bar, then the webpage is likely to be considered a Phishing attempt. For 
this attribute, we checked the HTML code of each website and found where Favicon is loading 
from. If it is loaded from a foreign domain, we assumed that website as a phishing.

2. 	 Request URL: This feature examines whether the external objects contained within a webpage 
such as images, videos and sounds are loaded from another domain. In legitimate webpages, the 
webpage address and most of objects embedded within the webpage are sharing the same domain. 
We implemented a Python script which look at all of address and mark them as domain-inside 
or domain-outside. If more than half of addresses are domain-outside, we will mark the site as 
phishing otherwise it is a legitimate one.

3. 	 URL of Anchor: This feature looks at the links in the website. If the links in the website point 
a domain different from the domain of the website more that 50% of the time, then the site is 
marked as phishing.

4. 	 Links in Tags: This feature looks at the domain in the tags of the header such as <SCRIPT>, 
<META>, and <LINK> tags. If more than 50% of these tags point to a domain different from 
that of the site, the site is marked as phishing.

5. 	 Submit Form Handler: This feature examines the action of the submit form on the page. If the 
action is, “None”, “blank”, or “about:blank”, then the site is marked as phishing. Legitimate 
sites will point to a URL.

6. 	 Redirect Page: If the site uses the HTML 301 redirect in the header, then the site is marked as 
phishing.

7. 	 Using iFrame: HTML used the <IFRAME> tag to display another page inside of the current 
page. This feature looks at if there is an <IFRAME> tag in the page and its border is set to 
transparent. If these two things are present mark the website as phishing.

8. 	 Links Pointing to Page: This feature looks at how many links from other websites are pointing 
the target site. If there are no links to the target page, then it is marked as phishing. We did not 
implement this and defaulted it to neutral.

JavaScript Based

1. 	 Submitting to Email: This feature looks for a “mailto:” action in the submit form. If it exists 
then mark the site as phishing.

2. 	 On Mouse Over: This method looks for the on mouse over re-writing of links in the status bar. This 
type of ruse has become less effective as browsers usually ignore this. We used the python library 
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Dryscrape to run a headless instance of web-kit. This allows us to run and evaluate JavaScript 
linked or embedded in the page. If the window.status JavaScript call exists in conjunction with 
onMouseOver then this site is marked as phishing.

3. 	 Right Click: This feature looks for JavaScript code that disables the right click action on a web 
page. This is meant to deter users from looking at the HTML source code for the site. It looks 
specifically for “event.button==2” in the JavaScript. If that is present the site is marked as 
phishing.

4. 	 Pop-up Window: This method uses Dryscrape which implements web-kit and can scrape a 
web page for JavaScript has well as HTML. JavaScript has alert, confirm, prompt, window.open 
methods if any of these are found then the site is marked as phishing.

Machine Learning Classifiers
Using TensorFlow and TFcontrib (Abadi et al., 2016) we built a Deep Neural Network (DNN) using 
the following built-in optimizations; vanilla GradientDescent, Adagrad, Adadelta. The vanilla gradient 
descent tries to minimize the cost function by calculating the gradients over the entire dataset. The 
Adagrad algorithm adapts the learning rate dynamically based on the frequency of parameters. It 
affects larger changes to the learning rate given infrequent parameters and smaller changes for frequent 
parameters. We used this algorithm because it lends itself to sparse data such as is constructed using 
our framework (Duchi, 2011). The Adadelta algorithm is a refinement of the Adagrad algorithm used 
to dynamically adapt the learning rate by using the decaying average of all previous squared gradients. 
(Zeiler, 2012). For each optimization, we varied the structure of the neural network by changing the 
number of hidden layers from one to three and varying the number of neurons in each hidden layer 
from 10 to 1000. We also used TensorFlow to implement a linear classifier.

The SVM is a classifier based on finding a separating hyperplane in the feature space between 
two classes in such a way that the distance between the hyperplane and the closest data points of 
each class is maximized. Also, SVMs are well known for their generalization ability (Buczak, 2016), 
(Vapnik, 2013). We used this classifier two different kernels: Linear and Gaussian. In using SVM 
with a Gaussian kernel, we have to specify two important parameters: cost and gamma.

The gamma parameter affects how much influence a single example has; a low gamma imbues 
a Guassian radial bias with a large variance, while a high gamma makes the variance small and 
decreases the influence of the support vector. The cost parameter defines the penalty for misclassified 
examples. A low cost provides a softer or smother margin for the decision surface, while a high cost 
tries to classify all training examples correctly leading to hard margin. (Pedregosa, 2011).

To assign the cost and gamma parameters, we employed a grid search ranging from 10-3 to 105 and 
the gamma from 10-3 to 105. The best hyper-parameters found were: cost = 100 and gamma = 0.316.

Finally, we built a SVM using a linear kernel, again using stratified K-fold for validation. The 
code for the Fresh-Phish framework has been published on GitHub (Hossein Shirazi, 2016a).

RESULTS AND DISCUSSION

Fresh-Phish Dataset
Using our framework, we were able to measure features of about 2500 legitimate and 2500 phishing 
websites. We have published this dataset and made it publicly available on (Hossein Shirazi, 2016b). 
It includes values for 28 different features, assigned a label and URL for each data item.

We employed two different approaches to measure each feature. In our initial approach, we used 
a binary definition for features to create the dataset. We assigned a value based on if it was believed 
to be legitimate (+1), or phishing (-1). For non-binary features like (Age of Domain or Links Pointing 
to Page) we used a threshold, based on Mohammed et al feature definitions, to convert it to a binary 
value. In our second and improved approach, we created another dataset with original values of each 
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feature without using thresholds to convert non-binary values to binary ones. For example, we use 
an integer length for the URL in the model. We found that using these integer values improved the 
model’s accuracy and further discretization of the data was not needed.

Feature Elimination
To find the most important features in our dataset, we used the coefficients of a linear model as an 
external estimator that assigns weights to features. We next employed a Recursive Feature Elimination 
(RFE) approach (Granitto, 2006) to reduce the set of features to the most relevant by creating an RFE 
object in Scikit-learn and computing a cross-validated score whose accuracy is proportional to the 
number of correct classifications.

Figure 3 shows the trend of accuracy versus selected features. Per Figure 3, we recursively train 
the model and at each step we remove the weakest performing feature. Each feature is weighted by 
the fit estimator, in this case we employed a support vector machine with a linear kernel, and the 
least important features are removed. This procedure was recursively repeated until half of the feature 
set was removed. The figure shows the accuracy as we retain our top performing features into the 
model. Accuracy climbs until we reach the tenth most important feature, thereafter accuracy declines 
sharply and then becomes flat.

Based on what we have done, the following is the list of the 10 most important features of Fresh-
Phish dataset:

•	 URL length
•	 Using shortening service
•	 Prefix and suffix
•	 Uses non-standard port
•	 HTTPS token
•	 Request URL
•	 Redirect page
•	 OnMouseOver
•	 PopUp widnow
•	 Google index

Accuracy of Classifiers
We implemented four classifiers using the Tfcontrib (Abadi et al., 2016) library, and two classifiers 
using the scikit-learn library (Pedregosa et al., 2011) to compare their accuracy on our datasets.

Figure 4 and Figure 5 shows the Receiver Operating Characteristic (ROC) curve for binary and 
non-binary dataset respectively. Table 1 shows the Area Under Curve (AUC) for different classifiers 
on both binary and non-binary dataset. The AUC for binary dataset is around 90% except where linear 
classifiers were used. The AUC for non-binary classifier is around 92% for all classifier except for 
the linear. The best AUC for binary and non-binary datasets belongs to SVM-Gaussian with AUC 
of 0.930 and 0.961 for binary and non-binary datasets respectively.

This symmetry shows that the classifiers correctly labeled both true-positives and true-negatives 
with an acceptable rate. Also, it should be added that classifiers on the non-binary dataset work better 
that binary dataset so it means using non-binary features helped classifier to achieve better accuracy.

Training and Testing Time
Table 2 shows the fitting and predicting time for binary dataset. The prediction time for all of the 
classifiers is nominal. For all of our experiments we fit the classifier 10 times over a shuffled dataset 
and calculated the average time to train. For each of these trained classifiers we calculated the average 
prediction time. For the binary dataset, the results show that the extra training required of neural 
networks over SVM was not worth the minuscule gains in accuracy.
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CONCLUSION AND FUTURE WORK

Detecting phishing websites is an evolving game of cat and mouse. Publishers of phishing websites 
have developed increasingly sophisticated techniques and authentic looking sites to fool unsuspecting 
users. We developed the Fresh- Phish framework, as there is no open-source framework which measures 
features for any given website. Also, we created an up-to-date data set which can be used by other 

Figure 3. Feature removal vs. Accuracy

Figure 4. ROC Curve of implemented models, binary dataset
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researchers. We took 2500 clean websites and 2500 phishing websites and created our Fresh-Phish 
dataset subsequently we trained our classifier over this dataset. To study the effect of using binary 
versus non-binary values for defined features, we created two different datasets. The one with binary 
values using threshold to convert actual values of features to the binary values and one dataset that 
we used actual values without converting them to binary values.

We also analyzed a TensorFlow-based neural network, a TensorFlow-based linear classifier, 
an SVM with a Gaussian kernel and an SVM with a linear kernel against the Fresh- Phish data set. 
We found that the TensorFlow implementations took significantly longer to train while being only 

Figure 5. ROC Curve of implemented models, non-binary dataset

Table 1. Data Accuracy

Classifier AUC

Binary Non-Binary

TensorFlow Adagrad 0.901 0.921

TensorFlow Adadelta 0.901 0.923

TensorFlow GradientDescent 0.904 0.922

TensorFlow Linear 0.765 0.821

SVM Guassian 0.930 0.961

SVM Linear 0.791 0.804
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marginally more accurate than the SVM. Also, we found that classifiers work great on both datasets. 
We achieved and accuracy of 93% on binary dataset and 96% on non-binary dataset which is acceptable 
rate. Also, it shows that the idea of using non-binary values helps to improve the accuracy.

Next, we will explore further correlations between phishing sites and hosting and DNS registration 
companies. We will also look at additional features that can be leveraged, such as Content Security 
Policies, certificate authorities, and TLS fingerprinting. Additionally, we will implement other 
machine learning techniques such as random forest classifiers for speed and accuracy and compare 
them to SVMs, and neural networks.

Finally, we will look at the underlying HTML structure for features, specifically counts of tags, 
placement of tags, use of and counts of specific JavaScript functions, inline and included CSS, etc.
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Table 2. Training Time and Predicting Time

Classifier Time(s)

Training Testing

TensorFlow Adagrad 181.01 0.62

TensorFlow Adadelta 186.47 0.63

TensorFlow GradientDescent 178.31 0.52

TensorFlow Linear 139.48 0.13

SVM Guassian 7.13 0.38

SVM Linear 3.75 0.28
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