
ADVANCES ON CONCEPT DRIFT DETECTION IN REGRESSION
TASKS USING SOCIAL NETWORKS THEORY

Jean Paul Barddal, Programa de Pós-Graduação em Informática, Pontifícia Universidade Católica do

Paraná, Brasil

Heitor Murilo Gomes, Programa de Pós-Graduação em Informática, Pontifícia Universidade Católica do
Paraná, Brasil

Fabrício Enembreck, Programa de Pós-Graduação em Informática, Pontifícia Universidade Católica do
Paraná, Brasil

ABSTRACT
Mining data streams is one of the main studies in machine learning area due to its application in many
knowledge areas. One of the major challenges on mining data streams is concept drift, which requires the
learner to discard the current concept and adapt to a new one. Ensemble-based drift detection algorithms
have been used successfully to the classification task but usually maintain a fixed size ensemble of
learners running the risk of needlessly spending processing time and memory. In this paper we present
improvements to the Scale-free Network Regressor (SFNR), a dynamic ensemble-based method for
regression that employs social networks theory. In order to detect concept drifts SFNR uses the Adaptive
Window (ADWIN) algorithm. Results show improvements in accuracy, especially in concept drift
situations and better performance compared to other state-of-the-art algorithms in both real and
synthetic data.

Keywords: Supervised Learning, Data Stream Mining, Machine Learning, Regression, Ensemble-
based Methods, Social Network Analysis

INTRODUCTION
One of the main subjects in machine

learning is concept learning. Usually, a
learner is presented to a finite amount of
labeled instances generating a hypothesis to
predict labels of unlabeled instances.
However, concept learning may rely on a
context which is not present in the initial
training dataset, e.g. prediction rules which
depend on the season. Changes in the
context may cause changes in the concept to
be learned, phenomenon known as concept
drift (Bifet, Holmes, & Pfahringer, 2010).
Thus, an inductor created to learn from data

streams must be able to detect these drifts,
adapting its hypothesis in response to the
new concept. Also, it must be robust enough
to discriminate between true concept drifts
and noise. To cope with concept drift,
ensemble-based methods were proven a
good approach (Oza & Russell, 2001; Bifet,
Holmes, & Pfahringer, 2010). These
methods maintain a set of experts and
combine their predictions in order to obtain
a global prediction. The maintenance of the
ensemble (addition and removal of experts)
depends on each algorithm. Yet, the
majority of the ensemble-based methods
keep a static number of experts. Therefore,

how many experts will compose the
ensemble depends on parameterization prior
to execution which can lead to less or more
experts than are needed for effectively and
efficiently representing the given data
stream, i.e. if too few experts are created
perhaps the accuracy will be suboptimal,
conversely if too many experts are created
then memory and processing time will be
negatively affected. In addition, the state-of-
the-art ensemble-based algorithms are not
adapted to the regression task since their
heuristics were developed for classification.
In our approach the ensemble is a network
of experts that evolves naturally accordingly
to the Scale-free model (Albert & Barabási,
2002). The network allows the usage of
centrality metrics, which determine the
importance of each actor in the network and
are used to poll experts' votes. In addition,
we propose the usage of a detector, namely
ADWIN (Bifet & Gavaldà, 2007), to detect
concept drifts.

The remainder of this work is
organized as follows. In Section 2 we
present related algorithms for data stream
regression. Section 3 introduces the main
aspects of social networks relevant to this
work. Section 4 discusses the SFNR
algorithm while Section 5 focuses on the
improvements of the SFNR, namely
SFNR+ADWIN. Section 6 presents the
experimental evaluation and a discussion
over the results obtained. Finally, Section 7
presents our conclusions and future work.

RELATED WORK
Most of the existing works on

ensembles rely on developing algorithms to
improve overall accuracy coping with
concept drift explicitly (Bifet, Holmes,
Pfahringer, Kirkby, & Gavaldà, 2009) or
implicitly (Kolter & Maloof, 2005; Widmer
& Kubate, 1996). Authors in (Kuncheva,
2004) shows that an ensemble can surpass
an individual expert's accuracy if its

component experts are diverse. An ensemble
is said to be diverse if its members
misclassify different instances (in regression
tasks if they predict instances with different
values). Another important trait of an
ensemble refers to how it combines
individual decisions. If the combination
strategy fails to highlight correct and
obfuscate incorrect decisions then the
method is jeopardized. In the remainder of
this section we present the state-of-the-art
algorithms for data stream regression,
including single classifier and ensemble
methods.

Moving Average

The Moving Average is one of the
oldest indicators of technical analysis for
stock market forecasting (Brockwell &
Davis, 2002). Its computation is based on a
weighted average of historic stock values.
We chose the Exponential Moving Average
(EMA) since a conventional Moving
Average takes too long to predict market
tendencies. Equation 1 presents the
Exponential Moving Average computation
where stands for the price of a given
stock in a time and is the
algorithm's window size.

 (1)

FIMT-DD

Fast and Incremental Model Trees
with Drift Detection (FIMT-DD) performs
in real-time, observing each instance only
once and maintaining a model tree
(Ikonomovska, Gama, & Džeroski, 2011).
The tree leaves contain linear models
induced from the instances assigned to them,
a process with low complexity. The
algorithm has a drift detection mechanism,
which adapts the model learned by updating
the tree structure, enabling it to maintain
accuracy during drifts.

Adaptive Model Rules

Adaptive Model Rules (AMRules)
learns ordered and unordered rule set from
data streams (Almeida, Ferreira, & Gama,
2013). These rules use a Page-Hinkley test
(Mouss, Mouss, Mouss, & Sefouhi, 2004) to
detect changes in the process which
generates data, thus, enables the algorithm to
react to drifts by pruning and enlarging the
rule set.

IBLStreams

In (Shaker & Hüllermeier, 2012)
authors presented an induction instance-
based algorithm (IBLStreams) for both
classification and regression. For regression
problems, this algorithm uses the Root Mean
Squared Error (RMSE) to determine how
many neighbors will be used for resolving
an instance class value, namely AdaptK.
Another important feature of IBLStreams is
the usage of the windowing technique,
where older instances are eliminated.

AddExp

AddExp bounds algorithm's
performance over changing concepts relative
to the actual performance of an online

learner trained on each concept individually
(Kolter & Maloof, 2005). Authors
demonstrated that AddExp suffers a loss of
 on any concept, where is the loss of a
base learner when trained only on a single
concept.

SOCIAL NETWORKS
Social Networks Theory has been

applied in many research fields, mainly due
to its precise and formal description of
structural variables. Regardless of social
network analysis to subjective topics, such
as individual behavior in society, the
network can be precisely represented
computationally as a graph. A social
network is characterized by a set of actors,
one or more relations and a set of
connections between pairs of actors for each
relation (Albert & Barabási, 2002).

There are three major network
models presented in the bibliography,
namely Random, Small-world and Scale-
free. The Random Networks (Erdos &
Rényi, 1960), (see Figure 1-a), whose
construction is based on the hypothesis that
the existence of a connection between a pair
of nodes is given by a global probability .

Figure 1. Network models.

In Small-World model (Watts &
Strogatz, 1998), most actors are not
neighbors of one another, yet, most of them
can be reached from every other by a small
number of steps (Figure 1-b) as experiments
conducted in (Milgram, 1967). This model
ties in characteristics of both random and
regular networks. Thus, this topology
presents a high clustering coefficient (as
regular networks) and a small average path
length (as random networks).

Finally, the Scale-free (Albert &
Barabási, 2002) model aims on modeling
real-world networks more accurately than
Random and Small-world models. An
example of Scale-free network topology is
presented in Figure 1-c. Authors designed
the construction (assembly) and evolution
(growth) of the network as follows. The
growth element defines that starting with a
determined network size (), for every
time unit, a new actor is added to the
network establishing connections with other
actors. The assembly element defines the
preferential attachment process. When
choosing the actors which the new actor will
connect to, it is assumed a probability that
states the chances of each actor receives a
new connection.

The value of depends on the
actor's degree centrality and is calculated by
Equation 2 where stands for the degree
metric for the actor and ∑

 is the sum

of the degree metrics for each actor in the
network .

∑

 (2)

Due to the preferential attachment
process, Scale-free networks are
“dominated” by few vertices namely hubs
(Correa, Crnovrsanin, & Ma, 2012). Thus,
its network degree distribution follows the
exponential law where is
the probability of a random node being

connected to other nodes where {
 | in many real networks.
Figure 2 shows an example of a Scale-free
network where nodes are squares and its
hubs are highlighted in darker colors.

In order to determine the importance
of actors in social networks centrality
metrics were developed. These metrics
determine quantitatively the importance of
actors in a social network and which are
more prominent than others. Centrality
metrics such as Degree, Betweenness,
Closeness, Eigenvector and PageRank are
discussed in (Newman, 2010).

PRELIMINARIES
Many ensemble-based methods

presented in literature associate each expert
a weight. This weight is usually used to
determine the importance of an expert’s vote
in polling a new instance prediction. This is
the case of AddExp (Kolter & Maloof,
2005). Nevertheless, the ensemble is static
(does not grow and shrink) and there is no
representation of the relationships between
experts.

The algorithm presented in (Barddal
& Enembreck, 2013) is based in an evolving
network model which is able to maintain a
dynamic-sized ensemble. The representation
between experts is also explored and
discussed in (Gomes & Enembreck, 2014;
Barddal, Gomes, & Enembreck, 2014).

Figure 2. Scale-free network
and its hubs.

The Scale-free Network Regressor
(SNFR) was presented at (Barddal &
Enembreck, 2013) as an ensemble-based
regressor which can detect and recover from
concept drifts. Also, experts are represented
as nodes and they establish connections
following a Scale-free network model.

Whilst many experts would need
many instances to detect and adapt to a
concept drift, SFNR maximizes centrality
metrics of hubs, thus, simple reconnections
between nodes may turn an underrated node
into a hub, without the need for great
amounts of additions and removals in the
ensemble or waiting for weight decays.

In conventional Scale-free networks,
the probability of a given node establishing
a new connection is proportional to its
degree metric. Conversely, we adapt this
probability according to the problem at
hand, i.e., concept learning. Instead of a
node being more prominent accordingly to
its degree metric, it will be more prominent
inversely proportionally to its local RMSE
metric , i.e., more accurate experts have
higher probability of establishing
connections. Equation 3 presents the
computation of a node receiving a new
connection.

∑
 (∑ | |

) (3)

Equation 3 is based on error metrics
of each node in the network, where ∑
stands for the sum of all nodes errors of the
network, ∑ | | is the sum of the
absolute deviations between every node in
the network when compared to a node
and is the RMSE metric for this node.

Equation 4 presents the computation
of RMSE for a given node . The
variables presented in Equation 4 are: the
amount of instances predicted by the
inductor | |, where is a subset of the entire
stream ; the value obtained by the inductor

in the prediction of an instance , ; and the
expected value for ().

 √

| | ∑ | |

 (4)

SFNR assigns weights for experts in
the network accordingly to their centrality
metrics. The centrality metric is a user-
given parameter. Equation 5 shows the
prediction calculation where ∑

stands for the sum of each expert's
prediction for a given instance (
weighted by its centrality measure () and
∑

 is the sum of every expert's centrality

metrics.

∑

∑

 (5)

Each centrality metric directly
affects the accuracy results since each one
distributes weights for nodes in different
ways. In (Barddal & Enembreck, 2013;
Barddal, Gomes, & Enembreck, 2014)
authors observed that Eigenvector centrality
metric yielded the best average accuracy
results for evolving streams. The
Eigenvector centrality of an expert such
that is given by Equation 6, such that
if there is a connection between and ,
then , otherwise ; is the
set of all experts of the network; is a
normalization parameter; and controls
how neighbors of will influence its
eigenvector value. Intuitively, the
Eigenvector centrality yields higher values
for experts that are connected to experts who
have higher eigenvector values. In
opposition to geodesic-based centrality
metrics (such as Betweenness), Eigenvector
centrality metric achieved higher accuracy
since it does not rank non-central vertices
with zero, thus weights are more equally
distributed in the network.

 ∑

 (6)

The main hypothesis of SFNR is that
in order to obtain a set of experts that
maintain low error rates, we must enhance
the weight association methods, without
waiving diversity of experts. The adaptation
of the ensemble into a social network is due
the possibility of using graph theory,
statistics and algebraic models aiming on
providing theoretical robusticity to results,
as also providing relationships between
ensemble individuals.

We emphasize that SFNR is not
bounded to a single base expert. Thus, it is
possible to use any online regressor as a
base learner. SFNR was developed under
MOA framework (Bifet, Holmes, Kirkby, &
Pfahringer, 2010).

Algorithm 1 presents the pseudo
code for the SFNR algorithm. SFNR expects
as input a data stream , which makes
available an instance after each moments
of time, a maximum period error , a
centrality metric and the period size .

Firstly, SFNR initializes the network
with a single expert . While the stream is
not over, SFNR will split these instances in
evaluation periods of size . For every
period, instances are obtained from and
predictions are calculated with the aid of a
weighted mean based on each expert’s
prediction. The weights are computed based
on a user-given parameter , which
determines which centrality metric should
be used for polling. SFNR is able to use any
centrality metric, but so far the
implementation is capable of using: Degree,
Betweeness, Closeness, Eigenvector and
PageRank.

During a period, all instances are
kept in a set of instances, namely . This set
 is later used for training a new expert

which will be added to the network. In our
approach, after the prediction of a given
instance, all experts are trained with the
same instance. One could argue that since all
experts are trained with the same instance,
diversity would be diminished.
Nevertheless, since experts are added and
removed in different moments in time, their
concepts usually do not converge (Barddal,
Gomes, & Enembreck, 2014). At the end of
a period, error metrics are tested and
compared to the user-given threshold . If
the global error metric is above , then the
worst expert of the network is removed.
When an expert is removed, it is possible

Algorithm 1. SFNR pseudo code

Input: A data stream which makes available an instance
every moments, a period size , a maximum error threshold
 , a user given error metric and a centrality metric .

Local Variables: a network of experts
 { , where is the variable ensemble
size, an initial expert , an instance ⃗ , an error
accumulator error and a set of instances used for training
a new expert.

1: {

2:

3:

4:

5:

6:

7: {

8:

9:

10:

11:

12:

13:

14:

15:

16:

17:

18:

19:

20:

that the network becomes a disconnected
graph. Thus, a rewiring process (Albert &
Barabási, 2002) is used in order to let the
network in a connected state once again.
Basically, the rewiring process establishes
connections between the neighbors of the
removed node using the adapted preferential
attachment law. Since the network is in a
connected state, a new expert will be trained
with the instances stored in . Therefore this
new expert is added to the network with the
adapted preferential attachment law
presented earlier in this paper (see Equation
3).

Finally, since the network topology
has changed, the centrality metric is
updated for use in the next period.

ADVANCES ON THE SFNR
ALGORITHM

As seen in the previous section,
SFNR (Barddal & Enembreck, 2013) was
presented where concept drift was detected
by determining a period size , which
determined the amount of instances that
would be evaluated before a network update
took place and a user-given maximum error
threshold . Network updates occurred if an
error accumulator was greater or equal to
 . Therefore, the major limitations of SFNR
is its high dependency of the user-given
parameters and . Thus, we can not
assume the user is an expert of the stream
domain and also, optimal values of and
may vary during time.

In this paper we present an extension
to this work, where we detect drifts using
the Adaptive Window (ADWIN) algorithm
(Bifet & Gavaldà, 2007), thus, neither of
earlier presented parameters are needed.
ADWIN is a change detector and estimator
that solve the problem of tracking the
average of a stream of bits or real-valued
numbers. ADWIN keeps a variable-length
window () of recently seen data, based on

the property that the window has the
maximal length possible, yet, statistically
consistent with the given hypothesis: “there
has been no change in the average value
inside the window”. ADWIN's only user-
given parameter is a confidence bound ,
which indicates how confident we want to
be in the algorithm's output decisions.
Algorithm 2 presents the pseudo code for
ADWIN.

The key part in ADWIN is the
definition of and the statistical test
used. The value of is calculated after
Equation 7, where denotes the size of W,
 and represent the sizes of and
respectively, thus . Let ̂
and ̂ be the averages of the values
and .

 √

 (7)

Initially SFNR+ADWIN algorithm
instantiates a single expert for learning the
stream (Algorithm 3). While no drifts are
detected by ADWIN, instances are retrieved
from the stream and the procedure
getPrediction (Equation 5) calculates a
prediction for each instance weighted on a
user-given centrality metric .

Instead of weighting experts' votes
by its accuracy in early predictions, weights
are updated only when drifts occur.
Although experts with higher accuracy tend

Algorithm 2. ADWIN pseudo code.

Input: a data stream of examples and a confidence level .

Output: a window of examples .

1:

2:

3: {

4:

5:

6: | ̂ ̂|

to establish more connections, we observed
that these weights are not updated
correspondently to their accuracy since new
connections are probabilistic.

After each prediction, every expert in
the network is trained with the same
instance . Although there is no guarantee
that their concepts will not converge, the
preferential attachment process helps since
an expert with bad accuracy may still
establish new connections, increasing its
centrality metric.

When a drift is detected, the network
evolves. The evolution of the network is
divided into: expert removal, rewiring
process and expert addition. Firstly, the
expert removal process determines whether
and which expert in the network should be
removed. It is verified if the network size
is greater than a user-given maximum
network size . This parameter was
added in order to prevent the network from
growing indefinitely. When , the
expert with higher RMSE metric in the
network is removed and the rewiring process
is executed. Since both removal and
rewiring processes are completed, a new
expert is trained and added to the network
using the split window . ADWIN
determines the split window .

Finally, once both experts’ removals
and additions are done, it is possible to
calculate the centrality metric for the next
period.

EXPERIMENTS

Synthetic Data

For synthetic data experiments, we
used a modified hyperplane generator where
the prediction function must determine the
Euclidian distance between each instance to
a random hyperplane (Shaker &
Hüllermeier, 2012).

Concept drifts are simulated by
mixing two streams with different
hyperplanes using the sigmoid function
(Equation 8) presented in (Bifet, Holmes,
Pfahringer, Kirkby, & Gavaldà, 2009) where
 stands for the drift window length, is the
amount of instances already evaluated and
 is the time of the drift.

 (8)

Equation 8 has a derivative at time
equal to and that
 , thus . Also,
 and as then ,
where stands for the length of the drift
window and is the phase angle.

Real-World Data

Algorithm 3. SFNR + ADWIN pseudo code.

Input: a data stream of examples , a maximum network size
 and a confidence level .

Local variables: a network of experts { ,
where is the variable ensemble size, an initial expert , an
instance ⃗ and a window of examples W.

1: {

2:

3:

4:

5:

6:

7:

8:

9: {

10:

11:

12:

13:

14:

15:

16:

17:

In order to compare algorithms in
real-world situations we present results for
three datasets presented at UCI Machine
Learning repository
(http://archive.ics.uci.edu/ml/).

Relative Location of CT Slices on Axial Axis
Dataset

This dataset contains 53,500 images
from 74 different patients. Each CT slice is
described by two histograms in polar space
coordinates. The first histogram describes
the location of bone structures in the image
while the second presents the location of air
inclusions inside of the body. Both
histograms are concatenated to form the
final feature vector.

Wine Quality Datasets

These two datasets are related to
both red and white variants of the
Portuguese “Vinho Verde” wine where the
objective is to determine the quality of the
wine based on its attributes (Cortez,
Cerdeira, Almeida, Matos, & Reis, 1998).

Stock Market Data

We developed a stock market data
parser under MOA (Bifet, Holmes, Kirkby,
& Pfahringer, 2010). This parser connects to
Yahoo! to gather data from a given stock in
a period of time and desired periodicity, i.e.
daily, weekly or monthly. Yahoo! supplies
data in a CSV (comma-separated values)
format file with the following attributes:
Date, Open, High, Low, Close, Volume and
Adj Close. Date is the date of that instance.
Open is the initial value of that stock in the
instance given period while High and Low
are the highest and lowest values,
respectively. Volume is the amount of
transfers in which that stock was involved.
The data obtained from Yahoo! for our
experiments represents all the instances in a
daily periodicity from January 1st 1996 to
January 31st of 2014.

Experimental Protocol

All experiments were performed in
Intel Xeon w3520 2.67GHz x4 with 12 GB
of RAM running Windows Server 2013.

We used the Prequential procedure
(Gama & Rodrigues, 2009) where every
instance is tested then trained only once. Our
option to the Prequential procedure is due to
its monitoring of the evolution of
performance of models over time, even
though it may be pessimistic in comparison
to the holdout estimative. Nevertheless,
authors in (Gama & Rodrigues, 2009)
observe that the Prequential error converges
to a periodic holdout estimative (Bifet et al.,
2010) when estimated over a sliding
window. Along these lines, we determined a
sliding window of 100,000 instances for all
experiments. Experiments where the number
of instances is minor than 100,000 were
evaluated with a single window. Table 1
presents the parameters for the Rotating
Hyperplane Regression experiments.

Based on (Barddal & Enembreck,
2013), the parameters for AddExp are:
Weakest First Pruning Method, a decreasing
multiplicative constant , a factor for
new expert weight , an expert
addition threshold and a maximum
ensemble size . The parameters for
IBLStreams are: Prediction strategy of local
linear regression, an internal evaluation
window , the adaptation strategy

Table 1. Experiments Configurations.

Experiment
Identifier

Stream Configuration

of

drifts

Length of
drift window(s)

 ()

Time of drift
 ()

RHPR-1 1 1 500,000

RHPR-2 1 1,000 500,000

RHPR-3 2 1 333,333
750,000

RHPR-4 2 1,000 333,333
750,000

as AdaptK where is the varying amount of
nearest neighbors to be taken in
consideration for prediction inside the
interval and distance weighting
where is the Euclidean distance. We also
present results for the original SFNR using a
period size , a maximum error
threshold , a maximum network
size and centrality metric
 igenve tor. Finally, the
SFNR+ADWIN parameters are: confidence
bound , a maximum network size
 and centrality metric
 igenve tor.

Whereas, for the stock market
experiments, we only evaluated the
Exponential Moving Average Algorithm,
with a window size and the
SFNR+ADWIN using the same Moving
Average Algorithm, yet, using a confidence
level , a maximum network size

 and centrality metric
 . Other algorithms were not
evaluated hence the dataset attributes
already bias the objective value since the
Close attribute is always between Low and
High.

Results

Table 2 presents the RMSE metrics
obtained in our experiments. Comparing the
results of algorithms for the Red Wine and
White Wine datasets we can observe that
both SFNR and SFNR+ADWIN improved
both FIMT-DD and AMRules RMSE
metrics, yet, at the CT Scans experiment,
IBLStreams outperformed all others with
substantial difference. The mean values for
the RHPR experiments were calculated
based on 50 executions varying the pseudo-
randomization seed.

With the aid of Lielliefors
(Liellierfors, 1967) normality test we
determined that the obtained RMSE
distributions do respect normality.
Therefore, we compared SFNR+ADWIN
with the other algorithms using conventional
paired testing (confidence of 95%). This
comparison was made in two steps. Firstly,
we compared the FIMT-DD, IBLStreams
and the ensemble methods using FIMT-DD
as a base learner (AddExp, SFNR and

Table 2. RMSE Metrics for Experiments

Dataset

Root Mean Squared Error (RMSE)

FIMT-DD AddExp
(FIMT-DD)

SFNR
(FIMT-DD)

SFNR+ADWIN
(FIMT-DD) AMRules AddExp

(AMRules)
SFNR

(AMRules)
SFNR+ADWIN

(AMRules) IBLStreams

Red Wine 0.8357 0.8305 0.8092 0.8183 0.9778 0.9756 0.7541 0.7666 4.2116

White Wine 0.9266 0.9154 0.8778 0.8871 1.0216 0.9875 0.8254 0.8129 2.3152

CT Scans 20.6363 20.5981 20.1116 20.4516 17.7981 15.9710 12.6784 13.1470 7.6797

RHPR-1 0.0107 0.0002 0.0115 0.0011 0.0101 0.0003 0.0102 0.0005 0.0821 0.0008 0.0821 0.0023 0.0337 0.0003 0.0339 0.0005 0.1116 0.0016

RHPR-2 0.0161 0.0003 0.0159 0.0002 0.0152 0.0002 0.0158 0.0002 0.0822 0.001 0.0947 0.0022 0.0339 0.0004 0.0342 0.0007 0.1117 0.0002

RHPR-3 0.0258 0.0002 0.0264 0.0002 0.0242 0.0001 0.0243 0.0001 0.1042 0.0003 0.1177 0.0003 0.0547 0.0004 0.0551 0.0003 0.1393 0.0002

RHPR-4 0.0258 0.0003 0.0262 0.0003 0.0247 0.0002 0.0247 0.0003 0.1042 0.0003 0.1206 0.0003 0.0527 0.0005 0.0532 0.0003 0.1393 0.0003

Table 3. RMSE Metrics for Stock Market
Experiments.

Experiment
Identifier

Root Mean Squared Error (RMSE)

EMA SFNR
(EMA)

SFNR+ADWIN
(EMA)

SM-YHOO 10.1380 9.0282 9.0282

SM-GOOG 14.3101 10.3351 14.0331

SM-MSFT 3.9050 3.7506 3.7406

SM-XOM 2.4174 2.2408 2.2397

SNFR+ADWIN). Later, we compared
AMRules, IBLStreams and the ensemble
methods using AMRules as a base learner.

Table 2 also presents the results of
our comparison where bolded face indicates
statistical better results in comparison to
other algorithms. Where no conclusive
statistical difference was found, we bold-
face all similar algorithms.

First, we compared SFNR+ADWIN
(FIMT-DD) to a single FIMT-DD, AddExp
(FIMT-DD) and IBLStreams, where we
concluded that there is no statistical
differences between them. Then, in another
comparison between SFN, SFNR+ADWIN
(AMRules), AddExp (AMRules) and

AMRules one could see that both SFNR and
SFNR+ADWIN boosted AMRules
performance showing relevant statistical
differences, especially in experiments with
two concept drifts.

In the stock market experiments,
presented in Table 3, we can observe that
both SFNR and SFNR+ADWIN were able
to improve the base Exponential Moving
Average algorithm accuracy in all cases,
where SFNR and SFNR+ADWIN presented
equal RMSE metrics for SM-YHOO
experiment, SFNR had better result for the
SM-GOOG experiment and SFNR-ADWIN
showed better results for both SM-MSFT
and SM-XOM experiments.

Figure 3. RHPR-1 RMSE metric during the stream.

Figure 4. RHPR-2 RMSE metric during the stream.

In Table 4 we present the average
processing time for the experiments. One
could see that SFNR+ADWIN present
competitive processing time when compared
to AddExp and the original SFNR in all
configurations. Thus, one can see that the
usage of ADWIN as a drift detector does not
jeopardize the method in terms of processing
time. We also emphasize the

SFNR+ADWIN associated with AMRules,
where the ensemble outperformed a single
expert both in RMSE and processing time.
Since AMRules has a rule set that tends to
grow, this shows that an ensemble of
AMRules where experts are added and
removed tend to replace experts with larger
rules sets, thus diminishing processing time
for triggering prediction rules.

Table 4. Average Processing Time in Seconds.

Dataset

Average Processing Time ()

FIMT-DD AddExp
(FIMT-DD)

SFNR
(FIMT-DD)

SFNR+ADWIN
(FIMT-DD) AMRules AddExp

(AMRules)
SFNR

(AMRules)
SFNR+ADWIN

(AMRules) IBLStreams

Red Wine 0.2378 0.2862 0.2994 0.2943 0.3791 0.3987 0.2600 0.2593 0.7401

White Wine 0.4136 0.7678 0.5921 0.5879 1.2185 1.4578 0.5228 0.5211 3.8297

CT Scans 17.4554 52.3670 34.7577 34.7541 25.3513 50.2039 24.7102 24.7097 385.9726

RHPR-1 22.8104 72.5467 59.0566 59.0516 281.4294 440.7845 204.7866 204.7831 6381.8066

RHPR-2 22.6675 72.1395 59.1576 59.1540 277.7916 441.2579 204.8207 204.8191 6297.9164

RHPR-3 23.0172 72.9476 60.0165 60.0159 284.4652 445.0081 206.7701 206.7694 6394.9312

RHPR-4 23.0346 73.0056 60.0478 60.0450 284.7894 445.0089 206.1392 206.1375 6395.0164

Figure 5. RHPR-3 RMSE metric during the stream.

Figure 6. RHPR-4 RMSE metric during the stream.

Besides, another conclusive result obtained
is that the original SFNR in comparison with
SFNR+ADWIN are statistically equal, thus,
SFNR+ADWIN is a better choice due to its
diminished amount of parameters.

Apart from average error rates, it is
important to observe the RMSE evolution
during the entire stream, therefore
examining the algorithms behavior before,
during and after drift happens, observing the
adaptability of the methods to the drifts.
Figures 3 through 6 present the evolution of
the stream Prequential errors for the RHPR
experiments. In these Figures we can see
that FIMT-DD, AddExp (FIMT-DD) and
SFNR+ADWIN (FIMT-DD) show similar
behaviors, enlightening the inherent
adaptability of the FIMT-DD algorithm to
concept drifts. Yet, when comparing
AMRules, AddExp (AMRules) and
SFNR+ADWIN (AMRules), one could see
that SFNR+ADWIN learner improves the
RMSE metrics during the whole streams,
especially after the concept drift, where
these metrics barely changes. In order to
preserve readability, Figures 3 through 6
ommit results for the original SFNR, since it
is similar to SFNR+ADWIN.

CONCLUSIONS AND FUTURE WORK
SFNR+ADWIN results present

accuracy improvements in comparison with
the state-of-the-art algorithms in a variety of
experiments, especially in concept drift
situations. Since the majority of algorithms
for handling concept drift aim on the
classification task, we believe our proposal
is feasible and demonstrates the power of
social ensemble methods in regression tasks.
Jutting the synthetic data streams, the usage
of a real stream, i.e. stock market data, CT
slices and Wine Quality; allowed us to
recognize the effectiveness SNFR+ADWIN
in real-world situations.

In future works we plan on widening
our research in time-series prediction, multi-
label stream classification and data stream
clustering. A detailed study of
SFNR+ADWIN in different stream
configurations with concept drift will be
developed in order to evidence the semantics
between each centrality metric and the
ensemble topology and votes. We also plan
to study the experts’ average lifetime, other
topology metrics and concept drift detection
methods in order to improve
SFNR+ADWIN.

REFERENCES
Albert, R., & Barabási, A. L. (2002, Jan.).
Statistical Mechanics of Complex Networks.
Reviews of Modern Physics (p. 139-148). doi:
10.1103/RevModPhys.74.47

Almeida, E., Ferreira, C. A., & Gama, J. (2013).
Adaptive Model Rules From Data Streams.
ECML/PKDD (1) (p. 480-492). doi:
10.1007/978-3-642-40988-2_31

Barddal, J. P., & Enembreck, F. (2013, Oct).
Detecção de Mudança de Conceito em
Problemas de Regressão Utilizando a Teoria de
Redes Sociais. ENIAC 2013. Fortaleza, CE.

Barddal, J. P., Gomes, H. M., & Enembreck, F.
(2014, March). SFNClassifier: A Scale-free
Social Network Method to Handle Concept
Drift. In Proceedings of the 29th Annual ACM
Symposium on Applied Computing (SAC).
ACM. doi: 10.1145/2554850.2554855

Bifet, A., & Gavaldà, R. (2007). Learning from
Time-changing Data with Adaptive Windowing.
SIAM International Conference on Data Mining.
doi:10.1137/1.9781611972771.42

Bifet, A., Holmes, G., Kirkby, R., & Pfahringer,
B. (2010). MOA: Massive Online Analysis. The
Journal of Machine Learning Research, 11,
1601-1604.

Bifet, A., Holmes, G., & Pfahringer, B. (2010,
Sep.). Leveraging Bagging for Evolving Data
Streams. Machine Learning and Knowledge
Discovery in Databases (p. 135-150).
doi:10.1007/978-3-642-15880-3_15

Bifet, A., Holmes, G., Pfahringer, B., Kirkby,
R., & Gavaldà, R. (2009, Jun.). New Ensemble
Methods for Evolving Data Streams. In Proc. of
the 15th ACM SIGKDD International
Conference on Knowledge Discovery and Data
Mining (p. 139-148).

Brockwell, P. J., & Davis, R. A. (2002).
Introduction to Time Series and Forecasting (2nd
edition). Springer. Hardcover.

Correa, C. D., Crnovrsanin, T., & Ma, K.-L.
(2012). Visual Reasoning About Social Networks
Using Centrality Sensitivity. IEEE Trans. on
Visualization and Computer Graphics, 18(1),
106-120. doi: 10.1109/TVCG.2010.260.

Cortez, P., Cerdeira, A., Almeida, F., Matos, T.,
& Reis, J. (1998). Modeling Wine Preferences
by Data Mining from Physicochemical
Properties. Decision Support Systems, 47(4),
547-553. doi: 10.1016/j.dss.2009.05.016

Erdos, P., & Rényi, A. (1960). On the Evolution
of Random Graphs. Publication of the
Mathematical Institute of the Hungarian
Academy of Sciences (p. 17-61).

Gama, J., & Rodrigues, P. (2009, Jun.). Issues in
Evaluation of Stream Learning Algorithms.
Proceedings of the 15th ACM SIGKDD
International Conference on Knowledge
Discovery and Data Mining (p. 329-338). Doi:
10.1145/1557019.1557060

Gomes, H. M., & Enembreck, F. (2014, March).
SAE2: Advances on the Social Adaptive
Ensemble Classifier for Data Streams. In
Proceedings of the 29th Annual ACM
Symposium on Applied Computing (SAC).
ACM. doi: 10.1145/2554850.2554905

Ikonomovska, E., Gama, J., & Džeroski, S.
(2011, July). Learning Model Trees From
Evolving Data Streams. Data Min. Knowl.
Discov., 23(1), 128–168. doi:10.1007/s10618-
010-0201-y

Kolter, J. Z., & Maloof, M. A. (2005, Jun.).
Using Additive Expert Ensembles to Cope with
Concept Drift. In ECML ’05 Proc. of the 22nd
International Conference on Machine Learning
(p. 449-456). doi: 10.1145/1102351.1102408

Kuncheva, L. I. (2004). Combining Pattern
Classifiers: Methods and Algorithms. New
Jersey: John Wiley and Sons. doi:
10.1109/TNN.2007.897478

Liellierfors, H. W. (1967, Jun.). On the
Kolmogorov-Smirnov test for Normality with
Mean and Variance Unknown. Journal of the
American Statistical Association, 62(318), 399-
402. doi: 10.1080/01621459.1967.10482916

Milgram, S. (1967, May). The Small World
Problem. Psychology Today, 1(1), 61-67.

Mouss, H., Mouss, D., Mouss, N., & Sefouhi, L.
(2004). Test of Page-Hinckley, an Approach for
Fault Detection in an Agro-alimentary
Production System. In Control Conference,
2004. 5th Asian (Vol. 2, p. 815-818 Vol.2). doi:
10.1007/s10618-010-0201-y

Newman, M. E. J. (2010). Networks: An
Introduction. Oxford: Oxford University Press.

Oza, N. C., & Russell, S. (2001, Jan.). Online
Bagging and Boosting. Artificial Intelligence
and Statistics (p. 105-112). doi:
10.1109/ICSMC.2005.1571498

Shaker, A., & Hüllermeier, E. (2012).
IBLStreams: a System for Instance-based
Classification and Regression on Data Streams.
Evolving Systems, 3(4), 235-249. doi:
10.1007/s12530-012-9059-0.

Watts, D. J., & Strogatz, S. H. (1998, Jun.).
Collective Dynamics of Small-world Networks.
Nature, 393(6684), 440-442. doi:10.1038/30918

Widmer, G., & Kubate, M. (1996, Apr.).
Learning in the Presence of Concept Drift and
Hidden Contexts. Machine Learning, 23(1), 69-
101. doi: 10.1023/A:1018046501280

View publication statsView publication stats

https://www.researchgate.net/publication/274389732

