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ABSTRACT

Most modern relational database systems use triggers to implement automatic tasks in response to
specific events happening inside or outside a system. A database trigger is a human readable block
code without any formal semantics. Frequently, people can check if a trigger is designed correctly
after it is executed or by manual checking. In this article, the authors introduce a new method to
model and verify database trigger systems using Event-B formal method at design phase. First, the
authors make use of similar mechanism between triggers and Event-B events to propose a set of rules
translating a database trigger system into Event-B constructs. Then, the authors show how to verify
data constraint preservation properties and detect infinite loops of trigger execution with RODIN/
Event-B. The authors also illustrate the proposed method with a case study. Finally, a tool named
Trigger2B which partly supports the automatic modeling process is presented.
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1. INTRODUCTION

Traditional database management systems (DBMS) are passive as they execute commands when
applications or users perform appropriate queries. The research community has rapidly realized the
requirement for database systems to react to data changes. Most modern relational databases include
these features as triggers (or active rules) that monitor and react to specific events happening inside
and outside of a system. They also use triggers to implement automatic tasks when a predefined
event occurs.

DBMS usually have two types of triggers: data manipulation language (DML) and system triggers.
The former is fired whenever the DML statements such as deleting, updating, and insert statements
are executed, the latter is performed in case that system events or data definition language (DDL) ones
occur. A trigger has the form of an Event-Condition-Action (ECA) rule informally written as “if a set
of events occur and a set of conditions hold, then perform actions”. It is made of a block of code and
has syntax, for example, an Oracle trigger is similar to a stored procedure containing blocks of PL/
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SQL code. Trigger codes are understanding semantic and do not have any formal semantic. Trigger
execution may lead to an infinite loop when triggers call each other or it may violate database system
constraints. We can only check these properties after executing triggers. In fact, it is valuable if we
can show that trigger execution is correct at design phase because it reduces development cost for
database design. Thus, a formal framework for modeling and verifying database triggers is desirable.

Many researchers have been working on analyzing triggers (or active rules). The research results of
Lee and Ling (1198, 1999), proposed in the early 1990s, transformed ECA rules to some types of graphs
and applied various static analysis techniques to check properties such as redundancy, inconsistency,
incompleteness, and termination. Baralis (1999) proposed a technique, based on relational algebra, to
check if active rules are terminated or confluent. Other results Choi et al (2006b); Chavarria-Baez and
Li (2007) addressed both fermination and confluence properties using model checking techniques.
One important property that has not received much attention is data constraint property of a system.
A terminated trigger still can cause critical problems if it violates data constraints. Furthermore, a
method or an approach with supporting tools, which is feasible to apply in database development to
check both data constraints and infinite loops, is also desirable.

Our previous work Le and Truong (2013) initially proposed to use Event-B to formalize and
verify a database triggers system at design phase. The main idea of the method comes from the
similar structure and working mechanism of Event-B events and database triggers. We presented
a set of translation rules to translate a database system including triggers to an Event-B model. In
this paper, we make the translation rules more precise when encoding the body of trigger. With the
proposed modeling method, we can formally check if a system preserves the data constraints and
find infinite loops by proving the proof obligations of the translated Event-B model. The advantage
of our method is that a database system including triggers and constraints can be modeled naturally
by Event-B constructs such as invariants and events. As far as we know, this paper reports the first
concrete result of analyzing a database system with DML triggers using formal method. We also
developed a tool called Trigger2B which partly supports automatic modeling process with the RODIN.
We introduce an algorithm to construct an Event-B model from a syntax tree of triggers written in
SQL. In the supporting tool RODIN, almost proofs are discharged automatically, hence it reduces
complexity in comparison with manual proving. The tool makes the proposed method feasible in
database development process.

The remainder of this paper is organized as follows. Section 2 provides basic knowledge of
database triggers and Event-B. In Section 3, we present our proposed method to model and verify
database systems including triggers. Section 4 introduces a scenario of a human resource management
application to demonstrate the method in detail. We present the tool Trigger2B, which supports for
partly automatic translation in Section 5 and we summarize related work in section 6. We conclude
the paper and present the future work in Section 7.

2. PRELIMINARIES

In this section, we first briefly introduce database triggers and their SQL syntax. Then we give an
overview of Event-B formal method.

2.1. Database Triggers

A relational database system, based on the relational model, consists of collections of objects and
relations, operations for manipulation and data integrity for accuracy and consistency. Modern
relational database systems include active rules as database triggers which response to events occurring
inside or outside of database.

A database trigger is a block code that is automatically fired in response to a defined event in a
database. The defined event is related to a specific data manipulation of the database such as inserting,
deleting, or updating a row of a table. Triggers are commonly used in some cases: to audit the process,
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to automatically perform an action, and to implement complex business rules. The structure of a
trigger follows ECA structure, hence it takes the following form:

It means that whenever event e occurs and the condition is met then the database system performs
actions. Database triggers can be mainly classified by two kinds: Data Manipulation Language (DML)
and Data Definition Language (DDL) triggers. The former is executed when data is manipulated,
while in some database systems, the latter is fired in response to DDL events such as creating table
or events such as login, commit, and roll-back, etc. Users of some relational database systems such
as Oracle, MySQL, and SyBase are familiar with triggers which are represented in SQL:1999 format
Eisenberg and Melton (1999) (the former is SQL-3 standard). The definition of SQL:1999 trigger
has syntax as follows:

CREATE [OR REPLACE] TRIGGER <trigger name>

{BEFORE | AFTER} {INSERT | DELETE |UPDATE} ON <table name>
[REFERENCING [NEW AS<new row name>] [OLD AS<old row name>] ]
[FOR EACH ROW [WHEN (<trigger condition>)]]

<trigger body>

2.2. Event-B

Event-B Abrial (2010) is a formal method for system-level modeling and analysis. Key features of
Event-B are the use of set theory as a modeling notation, the use of refinement to represent systems
at different abstraction levels, and the use of mathematical proof to verify consistency in refinement
levels. A basic structure of an Event-B model consists of MACHINE and CONTEXT.

An Event-B CONTEXT describes a static part where all relevant properties and hypotheses are
defined. A CONTEXT consists of carrier sets, constants, and axioms. Carrier sets, denoted by s, are
represented by their names, and are non-empty. Different carrier sets are completely independent.
The constants ¢ are defined by a number of axioms P(s, c¢) also depending on the carrier sets s.

A MACHINE is defined by a set of clauses. A machine is composed of variables, invariants,
theorems and events. Variables v are representing states. Invariants /(v) yield laws that state variables
v must be always satisfied. These laws are formalized by means of predicates expressed within the
language of First Order Predicate Calculus with equality extended by Set Theory. Events E(v) present
transitions between states. Each event has the form “evt = any x where G(x,v) then A(x,v,v’) end”,
where x represents local variables of the event, G(x,v) is a guard condition, and A(x,v,v’) is an action.
An event is enabled when its guard condition is satisfied. The event action consists of one or more
assignments. We have three kinds of assignments for expressing actions associated with an event:
(1) a deterministic multiple assignment (x:= E(t,v)), (2) an empty assignment (skip), or (3) a non-
deterministic multiple assignment (x:| P(t,v,x’)).

To deal with complexity in modeling systems, Event-B provides a refinement mechanism
that allows us to build systems gradually by adding more details to construct a precise model. A
concrete Event-B machine can refine at most one abstract machine. A refined machine usually has
more variables than its abstraction as we have new variables to represent more details of models. In
superposition refinement, abstract variables are retained in a concrete machine, with possibly some
additional variables. In vertical refinement such as data refinement, the abstract variable v is replaced
by concrete ones w. Subsequently, connections between them are represented by a relationship between
v and w, i.e. gluing invariants J(v,w).

In order to check if a machine satisfies a collection of specified properties, Event-B defines proof
obligations (POs) which must be proven. Two of the proof obligations mainly focused are invariant
preservation (INV), deadlock-freeness (DLF). INV PO means that proving invariants hold after
execution of events. The proof obligation is as follows: I(v), G(w,v),S(w,v,v’) |—I( v’) where I(v) denotes
the invariant, G(w,v) is the guard clause of the events, and S(w,v,v’) is assignment. Deadlock-freeness
for a machine ensures that there are always some enabled events during its execution. Assume that
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a machine contains a set of n events e, (z el n) of the following form: evt = any x where G(x,v)
then A(x,v,v’) end. The proof obligation rule for deadlock-freeness is as follows:
I(v) F _\4(3:171 ~G(xi,v))

i=

3. MODELING AND VERIFYING DATABASE TRIGGER SYSTEM

As stated above, it is important to check that if a database trigger system is designed correctly at
design phase. In this section, we introduce a new method to model and verify a database system
including triggers using Event-B. The method allows detecting infinite loops and gives a warranty
of data constraint preservation.

3.1. Modeling Database Systems

A database system is normally composed of several elements such as tables (or views) with integrity
constraints and triggers. Whenever users modify the database table contents, i.e., executing Insert,
Delete and Update statements, this data modification can fire the corresponding triggers and should
be conformed to data constraints. Before modeling a database system by Event-B, we introduce some
database definitions in set theory which are the basis for modeling process.

Definition 1: (Database system) - A database system is modeled by a 3-tuple db= < T,C,G>, where
T is a set of table, C states system constraints, and G indicates a collection of triggers.

Definition 2: (Table) - Foreach ¢ € T, denoted by a tuple ¢ = <r1 yoes T > , where m is the total number

of rows in the table ¢, and r is a set indicating the i-th row of the table (Z el m) . A row is stated

by atuple r = < fiseen > , where n is the total number of columns, ]i , represents data of column

jatrow i (jel_n)
Definition 3: <Trigger> - Each trigger g € G is denoted by a 3-tuple g = <e,c,a >, where e is a type
of the trigger’s event, c is a condition of the trigger, and a is an action of the trigger.

Based upon these definitions, we present a set of translation rules to translate a database model
to an Event-B model illustrated in Table 1. These rules are described in detail as shown in Table 1.

Rule 1: A database system is formalized by a pair of Event-B machine and context: DB,, DB,.
Rule 2: A table is presented by a Cartesian product of N sets 7' = T'YPE, x TYPE, x...x TYPE
where TYPE, denotes data type of column i. To manipulate table 7, we add a variable ¢ € p (T)

to the machine DB,
Rule 3: Each table T has a primary key constraint. We encode this kind of constraints as a bijective
function:

f € TYPE xTYPE, x...x TYPE, — (T'YPE,  xTYPE, , x..xTYPE )
we assume that the first i columns of the table form the primary key.

Rule 4: A data constraint C is formalized by an invariant /.
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Table 1. Translation rules between database and Event-B

Database Definitions Event-B Concepts
Rule 1 db=T,C,G DB,,DB,
= fpe
Rule 2 f T = TYPE, x TYPE, x..x TYPE,
=TT,
Rule 3 Primary key constraint fe TYPE'1 X... X TYPE'z — TYPE'erl X... X TYPEn
Rule 4 Constraint C Invariant 7
Rule 5 Trigger Event evt

Rule 5: A trigger E is translated to an event Evt.

Example: Let assume that a database system M consists of two tables 7/, 72 (both of them have
two columns), two triggers G, G, and one data constraints C. The Event-B specification of the system
is partially described in Figure 1.

3.2. Formalizing Triggers

In this Section, we show in detail how to formalize database triggers. Recall that, a trigger is denoted
by 3-tuple g = <e,c,a >, where e is a type of the trigger, c is a condition in which the trigger happens,

Figure 1. Partial Event-B specification of database system M

CONTEXT D3_C MACHINE D3_\/
CONSTANTS SEESDB_C
n VARIABLES
n I
AXIOMS 2
axm1:T1 = {TYPE1 x TYPE2} £f
axm2 : T2 = {TYPE3 x TYPE4} THYARIANITS

invl : e P(T1)
inv2: e P(12)
inv3 : fi e TYPE: = TYPE:

TYPE:~» TYPE:

END

EVENTS
EventG =

Event G:=

END
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and a is trigger’s actions. As illustrated in Table 2, a trigger is translated to an Event-B event where
conjunction of trigger’s type and its condition is the guard of the event. Actions of a trigger are
translated to the body part of an Event-B event.

In this paper, we focus on modeling DML triggers, i.e. trigger is fired when executing DML
statements such as delete, insert, update. We represent the type of such statements by an Event-B
variable type, for example: type={update} indicating that this trigger is fired when an update statement
on a specific table is executed.

Table 2. Formalizing a trigger by an Event-B Event

IF (¢) WHEN (e Ac)
ON ()
ACTION (a) THEN (a) END

A trigger action is a block code and its syntax depends on database management systems. This
block code also contains SQL statements. In order to show how our method works, we simplify the
case by considering that the Action part of a trigger contains a sequence of DML statements without
branch or loop statements. Hence, the action of a trigger consists of a sequence of Insert, Update or
Delete statement. The rules translating the Action part of a trigger is described as follows:

e Insert: This statement has the form “Insert into T values (val 1,..,valn)”, where val 1,..,valn are
column values of the new record of the table 7. We encode this new row as a parameter 7 € T'
of the event. More specifically, the translated event has the form Evi= Any r Where r € T Ae A c
Then ¢t =tUr;

e Delete: This statement is generally written in the form: “Delete from T where column =some_
value”. It will delete the record that has the first column’s value equal to some_value. We add a
parameter for the event representing the value some_value. The event is specified in detail as

follows Evt = Any v when v € TYPE Ae Then t =1 — f(v) ;

e Update: The general syntax of this statement is “Update T set column, = value,, column, =
value, where column =some_value”. This statement will update a record where the value of the
first column is equal to some_value. Similar to the case of delete statement, we encode the input
values as parameters of the event. The description of the translated event is as follows: Evt =

Anyv,v,when v € TYPE Av, € TYPE, Then t = {1 = 0,2 v2} Dt.

The translation is summarized in Table 3.

3.3. Verifying System Properties

After the transformation, taking advantages of Event-B method and its reasoning mechanism, we are
able to verify some properties of a database system model as follows:

o Infinite Loop: Since a trigger can fire other triggers, hence it probably leads to infinite
loop. This situation occurs when after a sequence of events, the state of the system does
not change. There are two ways to check this property of the system. The first one uses
deadlock-freeness (DLKF) proof obligation of Event-B which states that the disjunction
of the event guards always holds under the properties of the constant and the invariant.
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Table 3. Encoding trigger actions

INSERT INTO T ANY r

VALUES (val,,..,val ) WHEN (r €T Ae Ac)
THEN T:= T ur
END

DELETE FROM T ANY v

WHERE column, = some _value

WHEN (v €TYPE, Ae Ac)
THEN .=t — f(v)

END
UPDATE T ANY v, v,
SET column]=valuel, column2=value2 WHEN v, ETYPE, Av, ETYPE, Ae Ac

WHERE column, = some _value

THEN £:={1 — value ,2 — value,}®t
END

The deadlock freedom rule is stated as I,P (c) F Gl (v) V...V G" (v) , where v is variable,

I(v) denotes invariant, G (v) presents guard of the event. At the moment, the DLKF proof
obligation is not generated automatically by the RODIN tool yet. However, we can generate
it manually by adding a theorem saying the disjunction of guards. In some cases, DLKF
theorem cannot be deduced from a set of invariants /(v) and constant predicates. We will
prove that there is always at least one event executes at a time by showing that the
disjunction of the events’ guards is always true before and after event execution including
INITIALISATION event;

Constraint Preservation: Data constraints are rules that the system should always conform.
It means that before and after an execution of triggers, these properties hold. In Section 3,
data constraints are expressed by invariants (/) and triggers are formalized by events E(v).
Hence, we prove that a trigger does not break these rules by proving

I(v) A G(w, v) A A(w7 vm') - I(v'). This is exactly as same as INV proof obligations of
Event-B machine. Consequently, if these proof obligations are discharged then data constraint
properties are satisfied.

4. A CASE STUDY

In this Section, we illustrate our proposed method on an extracted scenario of a human resource
management application. We first describe the scenario where we use triggers, after that, we translate
the scenario into an Event-B model and verify its properties.

4.1. Scenario Description

Let’s assume that we have a database system of the human resource management application which
includes two tables EMPLOYEES and BONUS structured in Table 4.

As a business requirement, the application needs to assure a condition as follows: The bonus of

an employee with a level greater than 5 is at least 5. Hence, the database should always satisfy this
constraint. The database system uses two triggers to do the following automatic tasks:

Trigger 1: Whenever the level of employee is updated, his bonus is increased by 10.
Trigger 2: If the employee’s bonus is updated, then his level is increased by 1.
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Table 4. Two tables employees and bonus

Employees Bonus
EId Level Eld Amount
0911 2 0911
0912 2 0912
0913 4 0913

These two triggers are rewritten in the format of PL/SQL as follows:

CREATE TRIGGER Trigger 1 BEFORE UPDATE
OF level ON employees
FOR EACH ROW

BEGIN

UPDATE bonus SET Dbonus.amount = bonus.amount + 10
WHERE bonus.E id = employees.E id

END

4.2. Modeling the Scenario

We apply the method presented in Section 3 for modeling the system as follows:

e Applying Rule 1: The database system is formalized by a context Trigger_C and a machine
Trigger_M, where Trigger_C contains a set TYPE representing all kinds of trigger;

e Applying Rule 2: Two constant sets TBL_EMPL and TBL_BONUS representing on two table
employees and bonus respectively. Each table has two columns, hence each set is a Cartesian
product of two sets N (Figure 2). Variables bonus and empl are added into the machine Trigger M.

e Applying Rule 3: Two bijective functions f_bonus and f_empvi represent primary key relationship
of table bonus and employees respectively.

Applying Rule 4: The system constraint is formalized by invariant SYS_CTR.
e Applying Rule 5: Two triggers are translated to two events triggerl and trigger2.

Figure 2. A part of Event-B context

CONTEXT TRIGGER_C

SETS

ITPES

T4BLE NAMES
CONSTANITS

IBL EMPL

IBL BONUS
AXIOMS

axml : partition(TYPES , {insert} , {updats} , {deleta})

:TBLEMPL=NxN
TBL BONUS =N xN

axmd4 : partition(TABLE NAMES . {employ=es} , {bonus})

END
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The specification of the machine is illustrated partly in Figure 3.
Next, we formalize two triggers of the system following the method presented in Section 3.2. In
this case, two triggers are update triggers and are formally specified in Figure 4.

Figure 3. A part of Event-B machine

MACHINE TRIGGER_M

SEES TRIGGER_C

VARIABLES
Bonus
Empl
[ bonus
Sfempl
Dpe

INVARIANTS
inv1 : bonus € P (TBL_BONUS)
inv2 : empl € P(TB_EMPL)
inv3 : type € TYPES
invd: fbonuse N—= N
inwi:fempleN—=N
SYS CTR : v eid- eid € dom(empl) A f_empl(eid) > 5
=f_bonus(eid) > 10

INF LOOP: (type = update A table = BONUS) v (type =
update A table =EMPL)

END

Figure 4. Encoding trigger

EVENT rriggerl=

ANY
eid
WHEN
grdl : type =update
grd2 : table = EMPL
grd3 : eid € dom(empl)
Then
actl : type ;= update
act : table = BONUS
act3 : bonus = {eid  (f boms(eid) + 10)} & bonus
actd : pk_bonus(eid) :=pk_bonus(eid) + 10
End
EVENT rrigger? =
ANY
eid
WHEN
grdl : type =updats
grd2 : table = BONUS
THEN
actl : type ;= update
act2 : table =EMPL
act3 : empl = {eid —(f_empl(eid) + 1)} @ empl
End
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4.3. Checking Properties

After having the translated Event-B model from the database system descriptions, it is possible to check
if two triggers execution violates the data constraint property or leads to an infinite loop as follows:

e  Constraint Preservation: Since the constraint property of the system is modeled by the invariant
SYS_CTR:

Veid - eid € dom (empl) A f_empl(ez'd) >5=f bonus (eid) > 10

We need to prove that the invariant is maintained before and after events execution. The proof
obligation of trigger] is illustrated in Table 5. Two proof obligations (“triggerl/SYS_CTR/INV™”
and “trigger2/SYS_CTR/INV’) are automatically generated for two events (triggerl and trigger2)
with the RODIN.

Table 5. INV PO of event trigger1 to verify data constraint property

Vnid.nid € dom(empl_rec) A f_empl(nid) > 5 = f_bonus(nid) > 10 emplid € dom(empl_rec) trigger1/

type = update SYS CTR/
table = EMPL INV
|_

Vnid.nid € dom(empl rec) A f_empl(nid) > 5
= (f_bonus @{emplid 7 — f_bonus(emplid) + 10})(nid) > 10

These proof obligations are also automatically discharged. Consequently, the data constraint
preserved by two triggers are translated to two events triggerl and trigger2.

o Infinite Loop: As we proposed in Section 3.3, an invariant INF_LOOP which is the disjunction
of the event’ guards added to the target machine. If we show that this invariant is preserved by
machine DB_MO0, then execution of two triggers leads to an infinite loop. The proof clause of
the event triggerl is presented in Table 6.

Two INV proof obligations are also generated and discharged automatically in the RODIN, i.e.
the invariant clause is proved to be preserved through events. Thus, execution of two triggers leads
to an infinite loop.

Table 6. INV PO of event trigger1 to check infinite loop

V nid.(nid € dom(empl_rec) A triggerl
type = update A table = BONUS v /INF_LOOP
(type = update A table = EMPL)) A /INV

emplid € dom(bonus_rec)

table = BONUS A f_bonus(emplid) > 10

'_

V nid.(nid € dom({emplid 7— f_empl(emplid) + 1} & empl rec) A
update = update A EMPL = BONUS A

(update = update A EMPL = EMPL)
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5. SUPPORT TOOL: TRIGGER2B

In this section, we present a tool named Trigger2B', which allows to translate automatically from
database triggers to an Event-B model. First, we present architecture of the tool. After that, we show
how main components of the tool are implemented.

5.1. Tool Architecture

Following the method presented in Section 3, we implement a tool called Trigger2B to support
designing and modeling a database system including triggers. This tool can generate multiples XML-
based format output which can be used later in verification phase with Event-B supporting tools such
as RODIN platform. The architecture of this tool is illustrated in Figure 5.

Figure 5. Architecture of Trigger2Btool

Trigger2B

- ; ’ Modeling : . XML-based
“ DBAdapter HTnggerBuuderH SQLParser }—;‘ Component ]Q_,[ Serialization tle

Main components of the tool work as follows:

e DBAdapter: Connects to a relational database system to get information about the database
which will be modeled such as existing tables and triggers;

o Trigger Builder: Allows users to create and design new triggers based on information of the
connected database;

e  SQLParser: Parses the content of all triggers designed within the connected database in order
to extract necessary elements, e.g., type and table names of SQL statements, and forms trigger
syntax tree;

e  Modeling Component: Performs some algorithms to construct the target Event-B model from
the trigger syntax tree;

e Serialization: Serialize the translated Event-B model to XML-based files such as RODIN/
Event-B project files.

5.2. Implementation

The heart of this tool is the modeling component which includes algorithms following the proposed
translation rules to translate database concepts to Event-B constructs. The input of this component
is the output of SQLParser component which currently uses ANTLR (2014) framework to parse sql
statements. A parsed tree of a general trigger is partially illustrated in Figure 6.

We propose an algorithm following our proposed translation rules to transform the parsed tree
to an Event-B model. The algorithm is illustrated in Algorithm 1.

We define a template based on form of StringTemplate, and then use the supporting RODIN
API to serialize to Event-B components of the RODIN platform. A snippet code for defining RODIN
project Event-B machines is defined as follows:

Figure 7(a) shows the RODIN output files which are generated automatically in the folder res by
the tool after modeling the scenario described in Section 4.1. The output contains a full description
of two triggers in Figure 7(b). An incomplete work is the invariant representing the data constraint
because we have not defined it in the input SQL file yet. Therefore, we need to add this invariant
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Figure 6. A partial parsed tree syntax of a general trigger

trgger_event trigger body

name {action) [ column _name ] l table _name ] (DMLStatement)

name name {action) Iqu.ﬂllicd_lnblc column_name | = expr

Algorithm 1. TriggerModeling(t) — An algorithm for translating a parsed tree t to an Event-B model

Input: Parsed syntax tree(t)
Output: Event-B model (M, C)

1 begin

2 node = root(t)

3 while (isVisited(node))

4 if node.type = create trigger then

5 e=createNewEvent(M)

6 if node.type = trigger name then

7 e.name = node.name

8 elseif node.type = trigger_event

9 for child in nodes.childs

10 if node.type = action then

11 addGuard(e,type=node.value)

12 if node.type = table_name then

13 addGuard(e,table=node.child.value)
14 elseif node.type = trigger_body

15 addAction(e,getExp(node.childs))
16 end

17 visit next(node)

18 end

clause and the theorem which is the disjunction of events’ guards manually to obtain the complete
model. After getting the complete model, proof obligations of infinite loops and data constraint
properties are discharged automatically.

6. RELATED WORK

Many researches have been proposed for checking active rules or triggers. From the beginning, most
of researchers have mainly focused on termination of triggers by using static analysis, e.g., checking
set of triggers is acyclic with triggering graph. In Lee and Ling (1998, 1999), Sin-Yeung Lee and
Tok-Wang introduced algorithms to detect correctness of updating triggers. However, this approach
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Figure 7. The modeling result of the scenario generated by Trigger2B

¥ 5 META-INF
&) MANIFEST MF
Yi2res
¥ S rodin
DEMO_CONTEXT.b<c
DEMO_CONTEXT.bpo
DEMO_CONTEXT bpr
DEMO_CONTEXT bps
DEMO_CONTEXT.buc
DEMO_MACHINE. bum
¥ > wemplates
formula.stg
string.stg
xmi.stg
¥ Stests
L' test0.sql

(a). RODIN project generated

= Uvemo table table = bonus

» @ DEMO_CONTEXT chanoe dat
o change_data bonus = {employees id » (pk_bonus(employee
v Q DEMO_MACHINE END {esploy " s
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¥ 4 lavariants

ttype trigger_2 -

table nld

employees_rec bonus_id

pk_employees WHERE

bonus_rec tiype ttype = update

pk_bonus table table = bonus

v & Events bonus_id bonus_id e don(bonus_rec)
33 THEN
¢ trigger_2 P

ttype ttype = update
table ~ employces
employees = {bonus_id » (pk_esployees(bonu

@ Proof Obligations
' Find®_Decomposition
= MathExtensions
W PCA

(b). Quiput project in RODIN platform

is not extended apparently for general triggers and it is presented as their future work. Moreover,
this approach also just can find the cycle of trigger execution but not proposed any formalization of
the system. More recently, R. Manicka Chezian (2011) introduced a new algorithm, which does not
pose any limitation on number of rules and only emphasizes algorithms detecting termination of the
system. Though these results are powerful in detecting termination or cyclic properties of complex
triggers, they lack formal representation.

Baralis (1999) improved existing techniques and proposed propagation algorithms to statically
check if active rules are terminated or confluent. This approach, based on relational algebra, can be
applied widely for active database rule languages and for trigger language (SQL:1999). However, the
paper did not consider the constraint preservation properties and the approach seems too complex
to be brought to practice.

Some work applied model checking techniques for active database rule analysis. Ghazi and
Huth (1998) presented an abstract modeling framework for active database management systems and
implemented a prototype of a Promela code generator. However, they did not describe how to model
data and data actions for evaluation.

Choi et al. (2006a) proposed a general framework for modeling active database systems and rules.
The authors address both termination and safety properties of active rules. Their work just focused
on general active rules but not on exploring database triggers syntax in detail. The framework is
feasible by using a model checking tool, e.g., SPIN, however, constructing a model in order to verify
termination and safety properties is not a simple step.

Zang et al. (2008) proposed an approach to checking structural errors such as inconsistency,
circularity, and redundancy of ECA rule-based systems. Their method classifies three different
levels of verification and builds an EA tree to check each level. However, this approach cannot check
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at some properties on the third level. Furthermore, they have not provided any supporting tool for
building EA tree.

Recently, Ksystra et al. (2014) proposed a method to express and verify safety properties of reactive
rules which also are ECA rules. It provides verification mechanism of termination, confluence and
safety properties using CafeOBJ method.

Recently, Cacciagrano et al. (2018, 2020) proposed a set of techniques and tools for verifying
redundancy, consistency, and usability of ECA rules based on a domain specific language for intelligent
environment. But their work did not consider the correctness property of the rule.

Hamada Ibrhim et al (2020) proposed a framework for detecting and resolving conflicts of ECA
rules based on SMT solvers. They also implemented a prototype tool using Java and web Service to
evaluate their proposal.

In comparison with the prior work, our method is different and has some advantages. It recognizes
the benefit of Event-B formal method when modeling database triggers because of the similarity
between an ECA rule and Event-B event. Our translation rules handle triggers written in SQL.
These rules also preserve data constraint preservation properties and infinite loops of the database
system. The proposed method does not require any intermediate step to verify such properties. The
tool Trigger2B supporting for partly automatic modeling makes our method feasible in practical
software development.

7. CONCLUSION AND FUTURE WORK

Modeling and verification of database active rules or triggers are interesting topics for many research
groups. Researchers have proposed many approaches with various techniques. Most of the existing
work, however, focused on checking termination property, while the data constraint preservation has
not been received much attention.

In this paper, we propose a new method to formalize and verify a database system including
triggers with Event-B. We present a set of translation rules to encode the system in Event-B
notations. Using Event-B for modeling the system is well-suited because ECA rules, which are used
for describing behaviors of trigger systems, are matched to Event-B events. Therefore, modeling
can be performed naturally. With the translation rules, the target model preserves data constraint
properties. The proposed method can detect infinite loops of trigger execution by means of Event-B
proof obligations at design phase. As far as we know, this paper reports the first concrete result of
analyzing database triggers system.

Besides the advantages, this method still needs to be improved to model and verify more complex
database systems with more complicated triggers. The current implementation is also limited to
SQLite trigger syntax. Due to the limitation of the current RODIN/Event-B, we only can design each
column of tables by the integer number type.

In the future, we will overcome the limitation of types in RODIN by incorporating Theory
plugins Maamria (2013). We also intend to extend the tool to handle with more database systems,
e.g., MySQL. In the theoretical perspective, we plan to extend the method by making use of Event-B
composition to handle more complicated and nested triggers.
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