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ABSTRACT

Mutation testing is devised for measuring test suite adequacy by identifying the artificially induced 
faults in software. This paper presents a novel approach by considering multiobjectives-based 
optimization. Here, the optimal test suite generation is performed using the proposed water cycle 
water wave optimization (WCWWO). The best test suites are generated by satisfying the multi-
objective factors, such as time of execution, test suite size, mutant score, and mutant reduction rate. 
The WCWWO is devised by a combination of the water cycle algorithm (WCA) and water wave 
optimization (WWO). The hierarchical attention network (HAN) is used for classifying the equivalent 
mutants by utilizing the MutPy tool. Furthermore, the performance of the developed WCWWO+HAN 
is evaluated in terms of three metrics—mutant score (MS), mutant reduction rate (MRR), and fitness—
with the maximal MS of 0.585, higher MRR of 0.397, and maximum fitness of 0.652.
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1. INTRODUCTION

Evaluation of software quality is a fundamental research topic in software engineering areas. The 
exactness of the software application is analyzed using software testing theory (Jatana and Suri, 2020). 
Software testing acts as a major part of evaluating the software quality or the programs under test 
(Naeem, et al., 2019). Software testing includes product execution or software application execution 
along with the group of test cases with the objective of identifying the troubles. The debugging 
procedure is performed when the testing process shows output variations, which are detected as bugs 
(Jamil, et al., 2016; Kasurinen, 2010). The test cases are the input sets or the execution preconditions 
implemented to check whether the particular condition is catered or not (Jovanović, 2006). The 
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compilation of test cases accomplished in satisfying the testing conditions are named as the efficient 
test suite (Chen and Lau, 1998; Jatana and Suri, 2020). Software testers utilize test suites for finding 
faults in the software when unexpected activity is identified. Hence, the capability of the software 
testing for identifying the blunders is extremely corresponded to test suites standard. For measuring the 
quality of the test suites, mutation testing detects whether the test suite is appropriate for identifying 
the faults by creating syntactic variations in the source code (Jia and Harman, 2010; Naeem, et al., 
2019). On the other hand, the code average is also measured to be an efficient technique by analyzing 
the source code proportion executed by the inputs of the test suite. Nevertheless, the coverage of 
code alone failed to expose the efficiency in the test suites (Inozemtseva and Holmes, 2014; Naeem, 
et al., 2019; Kirmani and Wahid, 2015).

Mutation testing is a fault-enabled method that supports producing efficient test cases (Clegg, 
et al., 2017; Chen and Zhang, 2018; Mao, et al., 2019; Bashir and Nadeem, 2017). It is an efficient 
fault-driven approach for testing test suite quality by impulsing syntactic blunders. Besides, mutation 
testing finds whether the test suite is much enough to determine these syntactic faults or not (Jia and 
Harman, 2010; Singh, et al., 2013; Naeem, et al., 2020). In the process of mutation testing, a large 
amount of blunder programs, like mutants, which are produced from the real program through the 
mutant operators. The execution faulty programs are executed besides test suites. If any blunders are 
founded by the test suite, then the mutants are categorized as killed. Besides, if an outcome generated 
by the test suite is the same as the real programs, the mutants are regarded as alive. A capability of 
test suites is computed by the Mutation Score Indicator (MSI), which is a percent of the total number 
of the killed mutants to overall mutants. The scores produced by mutation testing can assist software 
testers in locating weaknesses in test suites and also in devising original test cases. With the exclusion 
of quality assessment of the test suites, mutation testing has also demonstrated its importance in 
simulating the practical faults (Lou, et al.,2015), faults localization (Moon, et al., 2014), and model 
transformation testing (Aranega, et al., 2010; Naeem, et al., 2019; Dineva and Atanasova, 2022; 
Kulkarni, 2022). Moreover, the mutant operators can be devised with respect to the defect model 
in such a way that the mutant operators generate instances of the recognized flaws or by mutating 
syntactic workings of the programming language (Wang, et al., 2019; Papadakis, et al., 2019). The 
latter produces an extremely huge amount of the mutants, thereby making the energy-aware mutation 
testing impossible as the energy testing should be done on the real devices for achieving appropriate 
measurements of battery discharge (Jabbarvand and Malek, 2017).

Mutation testing is considered as the most accepted technique in software engineering for verifying 
software quality beneath tests (Jia and Harman, 2010). In mutation testing, faults are subjected to real 
programs for generating mutants or the mutated code (Jatana and Suri, 2020). The mutants produced 
can be excessive in amount and many of these can be trivially killed or can be equivalent (Fraser and 
Arcuri, 2015; Jatana and Suri, 2020). The objective of the mutation testing enabled the creation of test 
data for finding test suites that are capable of killing numerous non-equivalent mutants. In general, the 
overall killed mutants are analyzed using mutation score, which provides a ratio of the killed mutants 
by test cases to overall mutants (Jia and Harman, 2010; Jatana and Suri, 2020). Mutation testing can 
be accomplished in the process of software testing at different levels, such as unit, specification level, 
and incorporation. Mutation testing can be used in several software languages, such as Java, C#, C, 
AspectJ, SQL, and Fortran (Rani, et al., 2019; Papadakis, et al., 2019; Jatana and Suri, 2020). The 
mutant operators for several programming languages have progressively evolved during mutation 
testing research (Jatana and Suri, 2020). The swarm intelligence based optimization algorithms, like 
Ant Colony Optimization (ACO) and Particle Swarm Optimization (PSO) are used in the generation 
of test data for mutation testing (Jatana and Suri, 2020; Tiwari, et al., 2012). Genetic algorithm is the 
popular technique employed in evolutionary testing which utilizes genetical evolution for generating 
test cases in order to satisfy the test coverage conditions. Furthermore, the Genetic algorithm tries 
to find the best solution from the input field, and the search is guided by its fundamental element 
called the fitness function (Bashir and Nadeem, 2017).
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The major objective of this paper is to devise a novel approach for the optimal test suite generation 
with mutation testing based on the proposed WCWWO. Here, the procedure of mutation testing 
is incorporated with test suites by considering the multi-objectives. In the initial phase, input the 
sample test programs, and then an optimum test suite is produced on basis of mutation testing using 
the proposed WCWWO, which is obtained by an amalgamation of WCA and WWO. A process of 
selecting the best test suite is carried out by considering the multi-objective factors, such as time of 
execution, test suite size, MRR, and MS. In the Mutation testing phase, HAN is employed to classify 
the mutants into killed and survived mutants for each test suites.

Contribution of the work:

•	 An effective WCWWO approach is devised for generating optimal test suites in order to perform 
the mutation testing. The WCWWO is obtained by an amalgamation of WCA and WWO.

•	 Here, the multiple objectives, like, time of execution, test suite size, MS, and MRR is considered. 
Moreover, HAN is employed for classifying the mutants effectively.

The paper is arranged as follows: In section 2, several mutation testing techniques are reviewed 
and in section 3, developed approaches for mutation testing are illustrated. In Section 4, results and 
discussions are portrayed and in section 5, the probe paper conclusion is described.

2. MOTIVATION

In this portion, several mutation testing techniques are described with their benefits and drawbacks 
which support the probers to devise a developed WCWWO+HAN technique for mutation testing.

2.1 Literature Survey
This section reviews and illustrates several mutation testing approaches. Naeem et al. (2020) devised 
a Machine learning approach for categorizing the mutants. This approach enhanced the mutant 
detection effectiveness, and also minimized the attempts needed for performing the mutant detection 
with minimum accuracy loss. However, this technique failed to resolve the issues of various mutation 
testing domains such as the dominant mutant problem, and the selective mutation problems. Dehmer 
et al. (2019) introduced Graph similarity measures for the directed and the undirected networks. This 
measure exhibited that the clustering ability was nearly perfect, but this approach failed to utilize 
additional properties in order to define effectual and useful graph similarity measures. Bashir and 
Nadeem (2017) developed an Improved Genetic Algorithm (GA) in order to minimize the cost of 
mutation testing. This algorithm detects the best test cases in a minimum number of efforts. However, 
this algorithm does not extend eMuJava v.2 tool for supporting multiple evolutionary techniques in 
order to perform numerous experiments and assessments. Naeem et al. (2019) developed a Deep 
learning model for mutation testing. The experimental outcomes are significant with respect to the 
effectiveness and scalable mutation testing with minimum accuracy loss. However, this technique 
failed to resolve the issues in numerous mutation testing domains, namely dominator mutant factor 
and mutant selection by means of machine intelligence.

Jabbarvand and Malek (2017) developed an Energy-Aware Mutation Testing Framework for 
evaluating the testing quality. For mutation analysis, this framework offers an automated oracle. However, 
this technique challenges the researchers to implement tests for revealing the defects in energy. Jatana 
and Suri (2020) introduced an Improved Crow Search Algorithm (ICSA) for the optimal test suite 
generation. This algorithm achieved maximum detection scores for the Program under Test, but this 
algorithm failed to improve the effectiveness of test cases. Ma et al. (2018) introduced a Deep Learning 
System for computing the quality of the test data. This approach effectively measured the test data quality. 
However, this technique failed to develop advanced mutation operators in order to envelop numerous 
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aspects of deep learning systems, and also this technique failed to examine the relationships of mutation 
operators and the operation of mutation operators in initiating the faults equivalent to human faults. 
Gómez-Abajo et al. (2020) developed a framework, named Wodel-Test model for mutation testing. It 
designs a generation of MT tools for arbitrary languages. This model failed to apply the technique to 
additional paradigms languages, such as data flow-enabled or functional.

2.2 Challenges
Several challenges confronted by traditional mutation testing methods are described beneath:

•	 The creation and execution of huge amount of mutants need of maximum resources and higher 
costs for computation, and hence the identification of the corresponding mutants becomes highly 
challenging (Naeem et al., 2020).

•	 The manual categorization of corresponding mutants consumes more time, and is very tedious. 
Therefore, the utilization of mutation testing techniques is very rare in the field of the software 
industry, because of the need of human attempts and running costs (Naeem et al., 2020).

•	 An improved Genetic algorithm was introduced for mutation testing. However, mutation testing 
is computationally high, as it needs to execute thousands of mutants (Bashir and Nadeem, 2017).

•	 In (Naeem et al., 2019), a Deep Learning model was developed for mutation testing, but the 
mutation testing cost is very high as it requires the generation and execution of individual mutants 
with the test suites.

•	 A vital challenge with the process of mutation testing is an oracle issue in evaluating, whether 
test case implementation kills the mutants or not. This is mainly a challenge with the process of 
energy testing, as the state-of-the-practice is typically a manual procedure where the engineer 
determines the power trace of running a test for finding the energy inefficiencies that might result 
in identifying the defects (Jabbarvand and Malek, 2017).

3. PROPOSED MULTI-OBJECTIVE BASED OPTIMIZATION 
MODEL FOR MUTATION TESTING

Mutation testing is generally employed for determining test suite quality for supporting software testers in 
order to enhance the quality. Mutation testing is considered as a fault-driven technique, and the concepts 
associated with it are illustrated as follows. The mutant is generated by varying the original program syntax. 
A rule used for performing the variations in syntax is known as the mutant operator. If the test datum can 
differentiate the output among the mutant and the real program, hence mutant is regarded as killed. On 
other hand, if the mutant is equivalent, then it is not killed by any kind of test datum. This paper presents 
a multi-objective-based optimization approach for mutation testing. Here, the generation of optimal best 
suites is carried out using the proposed WCWWO where the mutation testing is combined. The various 
steps involved in generating the optimal test suites with the process of mutation testing are, inputting 
the sample test programs, test suite generation by means of hybrid optimization, and mutation testing. 
In the initial phase, input the sample test programs and the optimal test suites are chosen based on the 
mutation testing using the newly designed optimization algorithm named WCWWO, which is derived by 
the integration of WCA (Eskandar, et al., 2012), and WWO (Zheng, 2015), respectively. The proposed 
WCWWO is utilized for developing and detecting the finest test suites which satisfy multi-objectives, 
such as time of execution, test suite size, MS, and MRR. In the mutation testing stage, the MutPy tool is 
employed for the generation of mutants such that the HAN (Li, et al., 2019) is utilized for categorizing 
the equivalent mutants based on the graph-based similarity metrics. Moreover, the mutant score, killed 
and survived mutants will be identified for every test suite based on the MutPy tool. Figure 1 presents the 
schematic representation of mutation testing with the proposed WCWWO.

Let us consider a program database, D with a set of input programs, and is represented as,
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Where, eth input program is signified by I
e

 and f represents the total input programs
Consider an input program under test denoted as I and the test suite specified asT . Here, the set 

of selected mutants is generated by the selection of the mutant operatorM , and N is a set of non-
equivalent mutants. Moreover, random test suites e are created with different sizes that are T T T

e1 2
, ,...,{ }  

and the group of mutants is killed by T
i
such that1£ £i e , and is represented asB T M

i
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3.1 Test Suite Generation Using Proposed WCWWO with Mutation Testing
In recent days, mutation testing has gained attraction towards correcting errors in the software. The major 
aim of the developed technique is to enhance the process based on the bio-inspired algorithmic techniques 
for finding the mutants from the codes. Here, the mutation testing concept is used in generating the 
optimal test suites in such a way that the faults are determined in the software below test. The process 
of generating the test suites is performed using the developed WCWWO, which is newly designed by 
incorporating WCA (Eskandar, et al., 2012), and WWO (Zheng, 2015). In addition, the fitness function, 
solution encoding, and algorithmic phases of the proposed WCWWO are illustrated below,

3.1.1 Solution Encoding
Solution encoding is used for identifying the solution of the developed WCWWO algorithm in a 
better way. The solution vector is computed randomly based on the test suite generation. Figure 2 
interprets the solution encoding of the proposed WCWWO.where, n represents the total input variables 
for test programs,T denotes the maximum test cases allowed, and n T• +( )1 indicates the overall 

Figure 1. 
Diagrammatic representation of mutation testing using developed WCWWO

Figure 2. 
Solution encoding of proposed WCWWO
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test cases. Here, the initial element indicates the total test cases to be chosen, such that 1£ £y T
and the second element to the final element represents the test cases.

3.1.2 Fitness Function
When the test suite obtains all the accessible feature settings, then the test suite is chosen, whereas 
it is discarded when the test suite failed to accomplish the full coverage. The fitness value can be 
computed by considering the maximal value of chosen test cases. The optimal acquisition of the 
new solution arises when there exists a violation. The equation of fitness measure is represented as,

max E S MR MS()
1

4
1 1−( )+ −( )+ +















	 (2)

where, MS signifies mutant score, MR represents the mutant reduction rate, S denotes the test suite 
size, and E indicates the execution time of the program in seconds. Here, the fitness value is termed 
as the maximization function.

(i) 	 Mutant score

The mutant score is a ratio of the percentage with the mutants killed to the overall mutants. If 
the mutation score achieved is 100%, then test cases are said to be mutation adequate. The equation 
for the mutation score is formulated as,

MS
G

T E
m

m m

=
−

	 (3)

where, G
m

denotes the dead mutant, T
m

denotes the total mutant, and E
m

specifies the equivalent 
mutant.

(ii) 	Mutant reduction rate

The mutant reduction rate helps in resolving the problems based on computational cost. During 
software testing, a higher number of mutants may increase the maximum mutation testing cost, and 
this can be efficiently solved by the mutation reduction rate parameter. The equation for MRR is 
formulated as,

MRR
M

T
g

h

= −
















1 	 (4)

where, M
g

represents the mutant generated, and T
h

denotes the threshold.

(iii) 	Test suite size

The test suite size is evaluated based on the overall test cases and function calls of non-library 
during the execution time. The test suite size is expressed as follows,
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where, z
i
represents the size of the test case i and n represents the total input variables for test programs.

3.1.3 Algorithmic Steps of Developed WCWWO Algorithm
The generation of the best test suite is carried out using the proposed WCWWO, which is designed 
by the integration of WCA (Eskandar, et al., 2012), and WWO (Zheng, 2015). WCA (Eskandar, et al., 
2012) is a nature-based algorithm for addressing optimization issues. WCA works on the basis of water 
cycle procedure and measured the flow of rivers and streams into the sea. This theory begins with the 
initial population named as raindrops, thus the finest raindrop is considered as sea. Subsequently, the 
total amount of the finest raindrops is selected as the river, whereas residual raindrops are selected as 
streams passing to rivers and sea. On the other hand, WWO (Zheng, 2015) is a meta-heuristic approach 
inspired by the shallow water wave process in order to resolve global optimization problems. The 
incorporation of WCA with the WWO minimized the computational issues, and achieved optimal 
test suites. The algorithmic steps of the developed WCWWO are portrayed below as,

Initialization: A population is initialized with H  number of raindrops and is denoted by, 

Q Q Q Q Q d H
d H

= { } ≤ ≤
1 2

1, , , , ;  	 (6)

Here, the total amount of raindrop solutions is signified by H  and Q
d

 represents the dth raindrop.

ii) 	 Compute fitness measure: A fitness measure is utilized for identifying an optimum solution by 
computing the best fitness value, and the fitness measure is illustrated in equation (2).

Compute cost function: The decisive variables Q Q Q
Hvar1 2

, ,..., ()( )  are indicated as values of floating 
point or these variables are denoted as prearranged set for continuous and discrete limitations. 
A raindrop cost is determined using a computation of the cost function, and is expressed as, 

A Cost k Q Q Q
l l

l l
H
l

popvar
= = ( )1 2

, ,..., () 	 (7)

Here, total number of raindrops is denoted byH
pop

 and an overall design value is signified by H
var

. At 
the initial phase, H

pop
 raindrops are produced. Overall H

sr
 from optimal minimum values are considered 

as the rivers and sea. Additionally, H
sr

 signifies a summation of total rivers and an individual sea. 

H
sr

sea

= +R 1


	 (8) 

where, R denotes the total number of rivers. On the other hand, the residual raindrops develop streams 
passing to sea or rivers, and an equation is expressed by, 
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H H H
Raindrops pop sr

= − 	 (9) 

Compute an intensity of flow: Raindrops can be allotted to sea and river with respect to flow intensity 
and hence an equation for computing the flow intensity is formulated as,

H round
Cost

Cost
H

t
t

l

H

l

Raindrops
sr

= ×








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






=∑ 1

tt H
sr

= 1 2, ,.... 	 (10)

Where, H
t
denotes the streams passing to the particular rivers or sea.

(v) 	 Evaluate a stream flow into sea or river: The streams are produced from every raindrop, afterward 
merged together to produce the novel rivers. Furthermore, streams straightly move into the sea 
and then all streams and the rivers merge in a sea.

The stream passes to rivers other than the fusion line amid them based on preferred distance 
irregularly, and an equation illustrated is,

Q A d A∈ ×( ) >0 1, , 	 (11)

Where, a valueA lies between range 1 and2 , and term d signifies a current distance among rivers 
and streams. The value of A  being larger than 1  facilitate streams to pass into the rivers in different 
directions. The rule can be employed in passing rivers to the sea. Thus, rivers and streams with the 
new position are expressed as,

Q Q rand A Q Q
stream
l

stream
l

river
l

stream
l+ = + × × −( )1 	 (12)

Q Q rand A Q Q
river
l

river
l

sea
l

river
l+ = + × × −( )1 	 (13)

Q Q randA randA Q
river
l

river
l

sea
l+ = −( )+ ×1 1 	 (14)

By combining WWO with WCA, optimization problems in WCA can be minimized, and the 
standard equation of WWO is represented in terms of WCA as,

Q Q rand Y
river
l

river
l

g
+ = + −( )1 1 1, l 	 (15)

Q Q rand Y
river
l

river
l

g
= − −( )+1 1 1, l 	 (16)

By substituting equation (16) in equation (14)

Q Q rand Y randA randAQ
river
l

river
l

g sea
l+ += − −( )( ) −( )×1 1 1 1 1, l 	 (17)

Q Q randA rand Y randA randAQ
river
l

river
l

g
+ += −( )− −( ) −( )+1 1 1 1 1 1, l

ssea
l 	 (18) 

Q Q randA randAQ rand Y ran
river
l

river
l

sea
l

g
+ +− −( ) = − −( ) −1 1 1 1 1 1, l ddA( ) 	 (19)
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Q randA randAQ rand Y randA
river
l

sea
l

g
+ − +( ) = − −( ) −( )1 1 1 1 1 1, l 	 (20) 

Q
randAQ rand Y randA

randAriver
l sea

l
g+ =

− −( ) −( )1
1 1 1, l

	 (21)

Q Q rand Y
randA

randAriver
l

sea
l

g
+ = − −( ) −







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1 1 1
1

, l 	 (22) 

Where, rand  signifies a random number uniformly distributed within the range between 0 and 1 , 
valueA lies between a range 1  and2 , Y

g
denotes the length of gth dimension search space, Q

sea
l

specifies optimal solution, and l has a value of 0 5.

Estimate the condition for evaporation: Evaporation is a significant factor that protects a technique from 
immature convergence. Evaporated water is absorbed by the atmosphere, thereby forming clouds 
afterward it gets concise in the colder part of the atmosphere. Hence, the evaporated water is released 
as rain to the earth. The rain produces newer streams passing to the rivers and thereafter to sea. 
Furthermore, d

max
signifies the lowest number nearer to 0 , and the d

max
 value reduces adaptively as, 

d
max

l max

l
dmax
l

+1 k

	 (23)

where, k signifies the maximum iterations. 

Raining process: At once the evaporation process gets finished, the raining process is initialized. 
Here, a neo raindrop generates streams in different areas, and an equation for representing the 
newer location of freshly produced streams is expressed by,

Q wx rand kx wx
stream
new = + × −( ) 	 (24)

Here, the lower bound is denoted by wx  and kx  represents the upper bounds.

Q Q randt H
stream
new

sea var
= + ( )m 1, () 	 (25)

where, m  specifies the coefficient which exhibits a limit of the searching area close to the sea, and 
a value is set to 0 1. , randt  signifies a random number usually distributed.

viii) 	 Feasibility evaluation: The feasibility of the solution is evaluated in order to discover the best 
value. If a freshly obtained solution has an optimal value than the existing value, then a solution 
is renewed with a newly achieved optimal value.

ix) 	 Termination: The above illustrated steps are carried out in an iterative manner till the finest 
solution is attained. A pseudo-code of the proposed WCWWO is described in algorithm 1.

A proposed optimization algorithm, named WCWWO with mutation testing is very effective in 
generating the optimal test suites.

3.2 Mutant classification using HAN
An equivalent mutant does not have any impact on program execution. The mutational impacts can 
be accessed by validating the program state at the end of the operation. In general, one can access 
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the mutation impacts even though the assessment is not complete. In the same way, one can calculate 
the variations of the program characteristics among the original and the mutant version. Moreover, 
control flow is the factor, which is particularly easy to compute. If the mutation varies the control 
flow performance, the different syntax is implemented in a different order, which may lead to non-

Algorithm 1. 
Pseudo code of proposed WCWWO

Pseudo code of proposed WCWWO

Start

 Initialize the parameters Hsr , dmax , Hpop

Generate the initial population using equation (6) randomly

Compute the cost of each raindrop by equation (7)

Compute flow intensity by equation (10)

Compute a flow of the stream to rivers by equation (11)

for

if A> 1

Satisfy evaporation condition

else

Replace the position of the river with sea

end if

if H H dsea
l

river
l

max− <

Replace a locale of the river with sea

else

Satisfy evaporation criteria

end if

Begin a process of raining by equation (24) and equation (25)

Minimalize dmax by equation (23)

Validate convergence criteria

Satisfy convergence criteria

Re-iterate a process

end for

end
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equivalence. Several steps are included in order to calculate whether the mutant program and the input 
program are equivalent or not. Initially, the mutant program, and the input program are considered as 
input in a simultaneous way. After that, the graph extraction is carried out based on the input program 
and the mutant program. Once the graph extraction is performed, entropy calculation is done for the 
extracted graphs of both the input program and output program. Thereafter, the similarity among the 
entropies is matched, and then the features are extracted. The features extracted are subjected to the 
HAN classifier (Li, et al., 2019), and finally the equivalent mutants are classified. Figure 3 illustrates 
the schematic representation of the equivalent mutant classification model using HAN.

3.2.1. Graph Construction
The initial phase in the mutant classification is graph construction. Here, the graphs are extracted based 
on the input program and the output program in such a way that the graphical program representations 
are obtained, which involves CFGs, PDGs, and ASTs using software source code. In constructing 
the graphs, the source code files are read and considered as the input. The input produces various 
graphical program representations and exports it to various file formats of graphs that include DOT, 
GML, and JSON. Furthermore, it focuses on extracting the graphical program representations, and 
then to perform the further analysis.

Figure 4 shows the graph instance. From the graph, it is illustrated that three different events, 

such as (a-b), (a-c), and (b-d) are obtained, and are mathematically expressed as, 2
4

1

4

1

4































, , .

Figure 3. 
Schematic representation of mutant classification using HAN
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3.2.2. Entropy Computation
Entropy (Naeem, et al., 2019) is a typical measure, which is used to compute the ambiguity in 
several data and is used for enhancing the mutual information from various operations. The higher 
accessibility of entropy changes encouraged appropriate preference for specific operations. Therefore, 
the data entropy is utilized for targeting the difference between the groups. The simpler utilization 
of mutant operators is used for overcoming the problem that mutant operators do not identify 
premature convergence. Here, the mutant features are defined on the basis of information entropy. 
Every variable is defined on the basis of mutant operators, and is manipulated as cluster of random 
variables comprising of specific information. When the mutant operator produces syntax error in the 
program, a portion of information becomes modified, whereas the remaining portion of the information 
becomes protected in such a way that more information is retained. Information entropy is used as a 
mutant operator feature, which utilizes the preserved mutation information.

Let us consider a discrete random variableb witha possible events, expressed asB b b b
a

= { }1 2
, ,..., , 

where the event probability b
1

occurrence is p b
1( ) , then the information of the event b

1
is represented 

as,

M b q b
h h( )− ( )log 	 (26)

where, M b
1( ) signifies the uncertainty reduction of a random variable B  with respect to the event 

occurrenceb
1

. The entropy measured for the above graph is expressed as, 

Entropy = −∑ + +












2

4

2

4

1

4

1

4

1

4

1

4
log log log 	 (27)

3.2.3. Feature Extraction using Similarity Measures
Here, the graph similarity (Dehmer, et al., 2019) and the distance measures are designed. These 
measures are designed based on the concept of network mapping with the positive real number and 
provide values, which can be compared. The similarity measures are used for calculating the graph 
similarity. This technique provides a basis for the efficient construction of the graph similarity 
measures. The generated values are used to compute the structural similarity of the different graph 
pairs. Moreover, the process is initialized by representing four different measures on the positive real 

Figure 4. Instance of graph
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numbers and poses the similarity measure conditions. Let us consider u v S, Î andβ α, > 1 , then 
the similarity measures are represented as, 

r u v
u v

1

1

1
,( ) =

+ −
b

	 (28)

r u v
u v

u v
2

1

1
,( ) =

− −

+ −

b

b
	 (29)

r u v
u v

u v
2

1

1
,( ) =

− −

+ −

α α
β

α α
β

	 (30)

r u v
u v u v

u v u v
2

1

1
,( ) =

− − − −

+ − −

β α α
β

β α α
β

	 (31)

Assumer u v
1
,( ) . Ifu v= , thenr u v

1
1,( ) = . Also, ifr u v

1
1,( ) = , thenu v= . In addition, the 

symmetry property is satisfied as u v v u− = −b b . Also assumer u v
1

0,( ) ≥ , then it results in 
inequality1 1+ − >u v b , which satisfiesu v S, Î . Thus, the similarity measure condition for r u v

1
,( )

is illustrated in the above-expressed equations. Finally, the extracted features are denoted asF .

3.2.4. Equivalent Mutant Classification using HAN Classifier
The equivalent mutant classification is performed by verifying the program state at the end of the 
operation as the tests perform. Here, extracted feature outputF is represented as input for equivalent 
mutant classification, which is performed using the HAN classifier. The individuals can be able to 
calculate the variation in the program characteristics among the mutant and the original version. 
HAN classifier (Li, et al., 2019) is utilized for calculating whether the input program and mutant 
program are equivalent or not. The benefit of employing the HAN classifier is, it attains optimal 
solutions with lesser computational time and cost, and therefore HAN classifier is accomplished for 
effectual equivalent mutant classification. The architectural steps of HAN are explained beneath, 

i) 	 Architecture of HAN

An architectural illustration of HAN is portrayed in figure 5. The overall structure of HAN 
consists of numerous units, namely the attention module, softmax, long short-term memory (LSTM), 
and self-attention module. A model employs an extracted feature output F wherein the HAN classifier 
is utilized to perform the mutation testing. 

ii) 	 Attention model

The attention module includes three different modules, namely CNN, LSTM, and attention layer
CNN: In the CNN module, feature layers of VGGNet are used for the extraction of feature maps. 

An initial procedure is done for image rescaling in 448 × 448 pixels. Thus, an outcome attained 
from feature layer VGGNet is in the size of 512 × 14 × 14 . In addition, the 512×196 dimension 
vector is stationed in a fully connected layer with respect to tanh function that transmutes it to 
dimension vector having size1024 × 196 .
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J h OJ s
ji i i i
= +tan ( ) 	 (32)

where, J
i
signifies the feature vector of the overall region, J

ji
signifies every region. An extension 

of dimension makes an incorporation procedure in-depth. 
LSTM: LSTM includes different memory cells, therefore consists of four various stages in 

renewing cell states. A starting stage creates a decision for evaluating information to be discarded 
from the cell state, whereas other stages create the decision based on the novel information which 
needs to be saved in the cell state, and hence equation is formulated by.

y O a w s
m y m m y
= 



 +( )−s

1
, 	 (33)

i O a w s
m i m m i
= 



 +( )−s

1
, 	 (34)

U h L a w s
j U m m U
= 



 +( )−tan . ,

1
	 (35)

where, U
j
signifies a memory to be known, w

m
denotes an input vector, a

m
represents hidden state, 

forget gate is signified by y
m

, i
m

denotes an input gate.
An updation of the older state U

m-1  to neo stateU
m

is specified by,

Figure 5. 
Structure of HAN
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U y U i U
m m m m i
= +−* *

1
	 (36)

R O a w s
m R m m R
= ( )+( )−s . ,

1
	 (37)

a R h U
m m m
= * tan ( ) 	 (38)

where, R
m

signifies the output gate.
Attention layer: Initially,Or  as well as Ok are subjected to fully connected layer and then 

incorporated with tanh function. An attention distribution map is obtained with respect to the softmax 
function, 

a h O J s O s
att att ji ji att att
= +( )⊕ +( )tan ( . )

, , ,κ ρ ρ 	 (39)

C Soft O a s
q att qx = +max( . ) 	 (40)

Here, Ok is 196 1024´  represents the dimension matrix, Or indicates 1024  dimension matrix, 
O

attk, andO
attr, signify the1024 512´  dimension matrix, O

q
indicates 512 dimension vector and C x

specifies a shape as well as addition vector is represented byÅ . A weighted sum is computed on 
basis of attention distribution map and formulated by, 

J q J
i i ji
' ,= ∑ 	 (41)

iii) 	 Self-Attention model

A self-attention model is employed for collecting global information. It is expressed by,

ε
δi i p

N i i

u p
w

c g n
O gq= +

( )( )
=∑ 1

,
, 	 (42)

where, c .( ) represents the function between i and p , linear transform is signified by O
u

 and d denotes 
the normalization factor.

Therefore, an output developed from HAN is indicated by Rt which signifies the classified output 
is equivalent mutant or not.

3.3. Mutant Score Computation Model
The major objective in mutation testing is to validate whether an available test suite discovers mutant. 
For this reason, the test suites are executed on these mutated versions of the input program. If one 
test run fails, then it is indicated that the mutant remains killed or detected, else mutant is alive. If 
test suites have the capability to discover numerous mutants, then the test suite is said to be more 
efficient than the other test suites. This is computed by the term, named mutation score, and the 
various processes involved in mutation score computation are illustrated below as follows,

i) 	 Test suite and input program as input
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Initially, the input is considered, wherein the data is presented to the program. Here, the input 
considered is the sample program, which can offer a set of built-in-functions in order to output the 
data on the screen, and save it in binary or test files.

ii) 	 Mutant generation

In the process of mutant generation, numerous program variants are formed by the set of rules 
also called as the mutant operators, which creates only one syntax variation at a particular time, 
thereby generating only one mutant. As a result, the overall produced mutants are executed in the 
test suites under computation.

iii) 	 Equivalent mutant classification

If the real program and mutant program are equivalent, then the mutant is considered to be 
identical and no test case can kill it. Equivalent mutants are considered as an issue in the process of 
mutation testing as the equivalence is not decidable, and hence it is very difficult to identify if the 
un-killed mutant is killable. Furthermore, the mutant is said to be equivalent when no such test case 
differentiates the original program output and the mutant output.

iv) 	 Computation of mutant score

The mutant score is indicated as a ratio of the percentage of killed mutants to overall mutants. 
If the mutation score is 100%, then test cases are said to be mutation adequate.

3.4. Detailed Flow Chart of the Process
The major aim of the research is to design an approach for mutation testing by considering multi-
objective driven optimization model. Here, the optimal test suite generation is carried out with the 
developed WCWWO where the mutation testing is incorporated. The various phases involved in 
generating optimal test suites with mutation testing are described. Initially, the input test suite solution 
and the input programs are fed as an input at the equivalent time. Based on the test suite solution and 
input programs, the mutant generation is performed to generate the mutants. Once the mutants are 
generated, it is presented to the equivalent mutant classification, which is carried out using HAN (Li, 
et al., 2019). In addition, the test suites with the fitness measures, such as execution time, size of the 
test suite, MS, and MRR are considered. Thereafter, killed, and the survived mutants are classified 
for every test suite. Furthermore, the proposed optimization algorithm, named WCWWO is employed 
for generating the finest test suites. Once the test suites are generated, the process gets repeated from 
the mutant generation step in order to find the optimal test suites. Figure 6 presents the detailed flow 
chart of the proposed WCWWO technique for mutant testing.

4. RESULTS AND DISCUSSION

This portion illustrates the efficiency of the proposed WCWWO+HAN using performance metrics, 
such as MS, MRR, and fitness. The analysis of the method is carried out by varying the test case sizes.

4.1. Experimental Set-Up
The experimentation of the developed WCWWO+HAN technique is performed in Python tool by 
Python Interpreters Benchmarks dataset (https://pybenchmarks.org/) having PC with Windows 10 
OS, 2GB RAM, and Intel i3 core processor. Here, the experimentation is done with epochs=40 and 
batch size=50.
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4.2. Dataset Description
The dataset employed for the analysis is Python Interpreters Benchmarks for improving the test 
programs (https://pybenchmarks.org/). Here, the three interpreters taken for the analysis from the 
Python Interpreters Benchmarks are Fibonacci code (https://pybenchmarks.org/u64q/benchmark.
php?accessedtest=fibonacci&lang=python3&id=3&data=u64q), Fankuch redux code (https://
pybenchmarks.org/u64q/benchmark.php?test=fannkuchredux&lang=python3&id=3&data=u64q), 
Spectral norm code (https://pybenchmarks.org/u64q/benchmark.php?test=spectralnorm&lang=pyt
hon3&id=3&data=u64q), and meteor-contest benchmark (Kulkarni, 2022).

4.3. Evaluation Measures
The performance assessment is carried out by the evaluation metrics, such as MS, MRR, and fitness, 
and is illustrated in section 3.1.2.

4.4. Comparative Methods
The various comparative techniques used for the assessment are Machine Learning (Naeem, et al., 
2020), Improved GA (Bashir and Nadeem, 2017), and Deep Learning (Naeem, et al., 2019).

4.5. Comparative Analysis
An assessment of approaches with MS, MRR as well as fitness is performed by differing test case 
sizes from 100 to 400 and the analysis is carried out using three interpreters, namely Fibonacci code, 
Fankuch-redux code, and Spectral norm code.

Figure 6. 
Flow chart of the proposed WCWWO+HAN method for mutant testing
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4.5.1 Analysis Based on Fibonacci Code
Figure 7 represents an analysis on basis of Fibonacci code with respect to MS, MRR, and fitness by 
varying the test case sizes. Figure 7a) portrays the analysis based on MS. For the test case size 100, the 
MS value obtained by Machine learning, Improved GA, Deep learning, and proposed WCWWO+HAN 
are 0.478, 0.508, 0.546, and 0.571. The assessment of MRR is presented in figure 7b). Considering test 
case size 300, the proposed WCWWO+HAN achieved MRR value of 0.366, where the MRR value 
obtained by current approaches, like Machine learning is 0.310, Improved GA is 0.344, and Deep 
learning is 0.359. Figure 7c) presents the analysis based on fitness. The developed WCWWO+HAN 
obtained a fitness value of 0.627, while current methods, like Machine learning, Improved GA, and 
Deep learning achieved a fitness value of 0.361, 0.580, and 0.622 for the test case size 200.

4.5.2 Analysis using Fankuch-Redux Code
The analysis based on Fankuch-redux code by varying the test case sizes with regarding to performance 
metrics, namely MS, MRR, and fitness is portrayed in figure 8. Figure 8a) represents an analysis based 
upon MS. The MS value achieved by the Machine learning technique is 0.518, Improved GA is 0.534, 
Deep Learning is 0.552, and the proposed WCWWO+HAN is 0.572 for the test case size 300. The 
assessment based on MRR is depicted in figure 8b). When test case size is 200, MRR value obtained 
by the proposed WCWWO+HAN is 0.381, while current approaches, like machine learning, Improved 
GA, and Deep learning achieved an MRR value of 0.194, 0.340, and 0.357. The fitness analysis is shown 
in figure 8c). For the test case size 100, the fitness value measured by the machine learning, Improved 
GA, Deep learning, and proposed WCWWO+HAN is 0.424, 0.559, 0.585, and 0.619.

4.5.3 Analysis Based on Spectral Norm Code
Figure 9 represents an estimation utilizing spectral norm code by considering metrics, such as MS, 
MRR, and Fitness. Figure 9a) shows the assessment based on MS. The MS value computed by 
developed WCWWO+HAN is 0.563, while MS value computed by current approaches, like machine 

Figure 7. 
Analysis of proposed WCWWO+HAN utilizing Fibonacci code a) MS, b) MRR, and c) Fitness
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learning is 0.446, Improved GA is 0.499, and Deep learning is 0.530 for the test case size 100. The 
assessment of MRR metric is depicted in figure 9b). When test case size is 300, MRR value calibrated 
by the machine learning approach is 0.281, Improved GA is 0.328, Deep Learning is 0.353, and 
proposed WCWWO+HAN is 0.368. The analysis using fitness is depicted in figure 9c). For the test 
case size 200, the fitness value obtained by the Machine learning, Improved GA, Deep learning, and 
proposed WCWWO+HAN are 0.376, 0.588, 0.604, and 0.612.

4.5.4 Analysis Based on Meteor-Contest Benchmark
Figure 10 represents an estimation utilizing meteor-contest benchmark by considering metrics, such 
as MS, MRR, and Fitness. Figure 10a) shows the assessment based on MS. The MS value computed 
by developed WCWWO+HAN is 0.522, while MS value computed by current approaches, like 
machine learning is 0.446, Improved GA is 0.476, and Deep learning is 0.496 for the test case size 
100. The assessment of MRR metric is depicted in figure 10b). When test case size is 300, MRR 
value calibrated by machine learning approach is 0.216, Improved GA is 0.293, Deep Learning is 
0.306, and proposed WCWWO+HAN is 0.354. The analysis using fitness is depicted in figure 10c). 
For the test case size 200, the fitness value obtained by the Machine learning, Improved GA, Deep 
learning, and proposed WCWWO+HAN are 0.368, 0.436, 0.468, and 0.483.

4.6 Comparative Discussion
This portion portrays the comparable discussion of various techniques using the interpreters, such 
as Fibonacci code, Fankuch-redux code, and spectral norm code. Table 1 presents a comparable 
discussion of developed WCWWO+HAN in correlating with current approaches, like Machine 
learning, Improved GA, and Deep learning by varying the test case size as 400. Considering test 
case as 400, MS value obtained by machine learning, Improved GA, Deep learning, and proposed 
WCWWO+HAN is 0.523, 0.551, 0.575, and 0.585. When the test case size is 400, MRR value 
obtained by developed WCWWO+HAN is 0.397, where MRR value obtained by current approaches, 
like machine learning is 0.283, Improved GA is 0.342, and Deep learning is 0.386. The fitness value 

Figure 8. 
Analysis of the proposed WCWWO+HAN using Fankuch-redux code a) MS, b) MRR, and c) Fitness
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achieved by the machine learning approach is 0.520, Improved GA is 0.614, Deep learning is 0.626, 
and the proposed WCWWO+HAN is 0.652 for the test case size 400. From a table, it is distinctly 
displayed that the proposed WCWWO+HAN attained a maximum MS of 0.585, maximal fitness of 
0.652 using Fibonacci code, and higher MRR 0.397 using the Fankuch-redux code. By considering 
the meteor-contest benchmark, the proposed WCWWO+HAN has the MS of 0.576, MRR of 0.360, 
and Fitness of 0.573.

Figure 9. Analysis of the proposed WCWWO+HAN using Spectral norm code a) MS, b) MRR, and c) Fitness

Figure 10. Analysis of the proposed WCWWO+HAN using meteor-contest benchmark a) MS, b) MRR, and c) Fitness
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5. CONCLUSION

This paper presents a robust approach for mutation testing employing multi-objective enabled 
optimization technique. Here, a generation of optimal suites is carried out using the proposed WCWWO 
where the mutation testing is integrated. The phases involved in the optimal test suite generation 
based on mutation testing are sample test program input, test suite generation, and optimization 
with mutation testing. The best test suite selection is decided using mutation testing where the test 
programs and the test suite to be optimized are presented to the HAN in order to find the MS. Besides, 
the mutant generator generates the mutant programs in such a way that the equivalent mutants are 
classified by HAN. Moreover, WCWWO is applied to generate and detect the finest test suite set, 
which satisfies multi-objectives, namely execution time, test suite size, MRR, and MS. The proposed 
WCWWO+HAN achieved enhanced performance with the maximal MS of 0.585, higher MRR of 
0.397, and maximal fitness of 0.652, respectively. The proposed method is to classify the mutants 
into killed and survived mutants for each test suite. Also, it is useful to evaluate software quality. The 
future work would be the concern of developing advanced tools for handling the mutant generation 
and execution and also for enhancing the performance based on mutation testing.

Table 1. 
Comparative Discussion

Interpreters Metrics Machine Learning Improved GA Deep learning Proposed WCWWO+HAN

Fibonacci 
code

MS 0.523 0.551 0.575 0.585

MRR 0.342 0.348 0.366 0.375

Fitness 0.520 0.614 0.626 0.652

Fankuch-
redux code

MS 0.530 0.555 0.561 0.577

MRR 0.283 0.342 0.386 0.397

Fitness 0.445 0.600 0.639 0.641

Spectral 
norm code

MS 0.518 0.543 0.548 0.581

MRR 0.282 0.337 0.365 0.379

Fitness 0.453 0.604 0.617 0.648

meteor-
contest 

benchmark

MS 0.497 0.509 0.522 0.576

MRR 0.272 0.309 0.345 0.360

Fitness 0.450 0.509 0.543 0.573
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