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ABSTRACT

Particle swarm optimization (PSO) is one of the popular nature-inspired metaheuristic algorithms. It 
has been used in different applications. The convergence analysis is among the key theoretical studies 
in PSO. This paper discusses major contributions in the convergence analysis of PSO. A systematic 
classification will be used for the review purpose. Possible future works are also highlighted as to 
investigate the performance of PSO variants to deal with COPs through theoretical perspective and 
general discussions on experimental results on merits of the proposed approach.
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1 INTRODUCTION

Particle swarm optimization (PSO) algorithm is a stochastic optimization technique based on the 
behavior of swarm (Agrafiotis and Cedeno, 2002). Stochastic search algorithms are better suited 
for solving highly nonlinear problems as compared to deterministic algorithms. In fact, the main 
motive behind developing stochastic search algorithms is to solve larger problems at a faster rate 
while maintaining the robustness of the algorithms. The main design idea of the PSO algorithm is 
closely related to evolutionary algorithms and artificial life. Just like the evolutionary algorithm, 
PSO is also a population-based algorithm to simultaneously search large region in the solution space 
of the optimized objective function. It does not necessitate the use of optimized functions such as 
differential, derivative, and continuous; its convergence rate is fast; and the algorithm is simple and 
straightforward to implement through programming. Artificial life studies the artificial systems with 
life characteristics (Liu, 2015). It has been successfully applied to many problems such as artificial 
neural network training, function optimization, fuzzy control, and pattern classification (Gong et.al., 
2017 and Xue et.al., 2019), to name a few. Because of its ease of implementation and fast convergence 
to acceptable solutions, PSO has received broad attention (Gong et.al., 2017). Since 1995, different 
aspects of the original or basic version of PSO have been modified and many variants have been 



International Journal of Swarm Intelligence Research
Volume 14 • Issue 1

2

proposed. In PSO, particles can update their positions and velocities according to the environment 
change, namely it meets the requirements of proximity (the swarm should be able to carry out simple 
space and time computations) and quality (the swarm should be able to sense the quality change in the 
environment and the response). The convergence and stochastic stability study of a number of PSO 
variants, differing from the classical PSO in the statistical distribution of the three PSO parameters: 
inertia weight, local and global acceleration factors [30]. Besides the robust variant of cuckoo search 
(CS) algorithm, two additional optimization algorithms, i.e., GA and a modified PSO in the form of 
repulsive PSO with local search and chaotic perturbation (RPSOLC) are also employed for solving 
the considered optimization problem. The relative optimization performance of these three algorithms 
is also evaluated. After validating the numerical optimization procedures of the algorithms under 
consideration, numerous test problems available in the literature having different boundary conditions, 
skew angles, and aspect ratios are finally solved, and the derived solutions are reported (Kalita 
et.al., 2021). They presented an analytical presentation for the top limit of the particle trajectories’ 
second-order stability areas (the so-called USL curves), which is available for most PSO algorithms. 
Numerical experiments revealed that adjusting the PSO parameters near to the USL curve yielded 
the greatest algorithm performance. Although a few review articles on PSO and its convergence 
analysis (see section 2 for details) have been published already (Banks et.al., 2008 and Poli et.al., 
2007b) an important reason for an additional review paper is that the latest comprehensive review 
paper on convergence analysis of PSO have been published since then. As the latest comprehensive 
review paper solely on convergence analysis of PSO was published in 2013(Dong ping Tian, 2013). 
The need for a new review paper seems justified.

The main aim of this survey is to review the presented ideas, categorize and link most recent 
high-quality studies, and provide a vision for directions that might be valuable for future research. 
However, we briefly discuss some of these methods from theoretical perspectives: convergence to 
local optima, transformation invariance, and the time complexity of the methods.

The remainder of this review paper is organized as follows. Section 2 provides some information 
about the standard form of PSO as well as reviews on the existing literature of convergence analyses 
of PSO algorithm. Section 3 reviews articles that have identified limitations in convergence analyses 
of PSO. Section 4 reviews articles which have modified convergence analyses of PSO to have better 
performance in solving Unconstrained Optimization Problems (UOPs). Finally, the paper ends with 
some important conclusions in Section 5.

2. STANDARD PSO

In this review paper, we consider a minimization problem defined as follows: find

x S d*
���
∈ ⊆  such that ∀ ∈ ( ) ≤ ( )� ��� �

x S f x f x, * 	 (1)

where S  is the search space defined by 

x l x u i di i i: , , ,−∞< ≤ ≤ <∞ = …{ }1 , x i  is the ith  

dimension of the vector x , ui  and l i  are upper bound and lower bound of the ith  dimension, 
respectively, d is the number of dimensions, and f .( )  is the objective function. In (Bonyadi and 
Michalewicz, 2017) the endowed PSO is first established based on the behavior of bird flocks, referred 
to as swarm of size n � �>1 ; each particle in the basic PSO contains the main three vectors:

•	 Position 

x
t
i( ) –is the position of the ith  particle in the tth  iteration. The quality of the particle is 

determined by this vector, (that means the swarm should be able to sense the quality change in 
the environment and response it) (i.e. x R

t
i dÎ ) (Mubeen S and Dr. Dhananjay, 2022).
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•	 Velocity 


V
t
i( )–is the direction and length of movement of the ith  particle in the tth  iteration,

•	 Personal best 


P
t
i( )– is the best position that the ith  particle has visited in its life-time (up to the 

tth  iteration). This vector serves as a memory to store the location of highest quality solutions 
found so far.

All of these d-dimensional vectors 




x V p
t
i

t
i

t
i, ,( )  are updated at every run t  for each particle i  

(Bonyadi and Michalewicz, 2014a).







V x V N
t
i

t
i

t
i

t
i

+ = ( )1
m , , for all i 	 (2)

� , ,X x Vt

i

t
i

t
i

��� � �
= ( )+x

1
for all i 	 (3)



 





P
x for f x f P and x S

t
i t

i
t
i

t
i

t
i

+
+ + +=

( ) < ( ) ∈
1

1 1 1
             

PP otherwise
t
i ,








for all i  	 (4)

In 






V x V N
t
i

t
i

t
i

t
i

+ = ( )1
m , ,  for all i,  where N

t
i   known as the neighbor set of particle i , is a subset 

of personal best positions of the particles that contribute to the velocity update rule of particle i  at 
iteration t . i.e. N P k T n

t
i

t
k

t
i= ∈ ⊆ { }{ }{ }1 2 3, , ,..., , where T

t
i  is a set of indices of particles which 

contribute to the velocity update rule of particle i  at iteration t .
Clearly, the strategy to determine T

t
i  might be different for various types of PSO algorithms and 

it is usually referred to as the topology of the swarm. Many different topologies have been defined 
for PSO to date (Zou et.al., 2015), while, e.g.; global best topology, ring topology, wheel topology, 
and pyramid typology; each of these has some topological influence (Cleghorn and Engelbrecht, 
2014c, 2015). Topology in fact determines the set of particles from which a particle should learn 
(connect to). The function m .( )  calculates the new velocity vector for particle i  according to its 

current position, current velocity 


V
t
i , and neighbor set N

t
i . In 







X x V
t
i

t
i

t
i

+ += ( )1 1
, ,x  for all i , where 

x .( )  is a function which calculates the new position of particle i according to its previous position 

and its new velocity. Usually x 







x V x V
t
i

t
i

t
i

t
i, + +( ) = +

1 1
 is used for updating the position of particle i . 

In Eq.4, the new personal best position 


P
t
i
+( )1  for particle i is updated according to the objective 

value of its previous personal best position and the current position. In PSO, three update rules (Eq. 
2, 3, and 4) are applied to all particles iteratively until a predefined stopping criterion is met. 
Furthermore, x

o
i  and 



V
o
i  are generated randomly and p

o
i  is initialized to x

o
i  for all particles.

In the first version of PSO (Bonyadi and Michalewicz, 2017) called “Basic Particle Swarm 
Optimization”, BPSO, the set N

t
i  contained only two vectors that were the personal “best” position 

of the i-th particle p
t
i( )  and that of the “best” position in the whole swarm (known as g

t
), where 

“best” means the location where the particle had obtained the lowest objective function evaluation. 
i.e., � ,T i

t
i

t
= { }t  where �

, ,

t
t

l n
t
lF p= ( )( )

= …{ }
arg min

1 2

 .

This topology(or t
t
) is called global best topology for PSO. Moreover, the function µ .( )  in 

Eq.2 was defined as:

 

   

V V R p x R g x
t
i

t
i

t
i

t
i

t
i

t
i

t t
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+ = + −( )+ −( )1 1 1 2 2
j j� 	 (5)
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where j
1
 and j

2
 are two constant real numbers (j

1
0>  and j

2
0> ) called cognitive and social 

weights, respectively, also known as acceleration coefficients, and p
t
i  and g

t
 are the personal best 

(of particle i ) and the global best vectors, respectively, at iteration t . The role of vector factors CI 
= −( ) 

p x
t
i

t
i   (Cognitive Influence) and SI = −( ) 

g x
t t

i  (Social Influence) is to attract the particles 

to move towards known quality solutions, R
t
i
1

 and R
t
i
2

 are two random dxd  diagonal matrices 
(Cleghorn and Engelbrecht, 2015), where their elements are random numbers distributed uniformly 
in 0 1,


 , i.e., U 0 1,( ) . There is no initialization method for velocity that is superior to other methods 

in a general case, however, it has been recommended in (Engelbrecht, 2012) for the velocity to be 
initialized to zero.

In 2015, authors (Wang et.al., 2013) introduced a new coefficient w ∈ ( )0 1,  called inertia weight, 
to control the influence of the previous velocity value on the updated velocity equation.

 

   

V V R p x R g x
t
i

t
i

t
i

t
i

t
i

t
i

t t
i

+ = + −( )+ −( )1 1 1 2 2
ω ϕ ϕ 	 (6)

Thus, the coefficients ω ϕ,
1
 and j

2
 control influences of the previous velocity for the PSO’s 

convergence, CI, and SI on the particle movement, respectively. This variant of the PSO is called 
“Standard Particle Swarm Optimization”, SPSO. If the random numbers on the diagonal of matrices 
R
t
i
1

 and R
t
i
2

 are set to equal values then these matrices only scale the vectors CI and SI along their 
directions and was introduced as a common error in the implementation of convergence analysis of 
PSO (Cleghorn and Engelbrecht, 2015).

2.1 Earlier Review Papers
A number review of articles on PSO have been published to date, to name some (Bonyadi and 
Michalewicz, 2017). In 2002, seven years after first version PSO was introduced, the first review 
on convergence analysis of PSO papers was published (Dong ping Tian, 2013). The performance of 
several convergence analyses of PSO variants in locating global optimum, jumping out of local optima, 
dealing with noise and the guaranteed convergence modifications, solving multi-objective optimization 
problems, etc. were reviewed. In addition to the review part of that article, a convergence analysis 
of PSO variant was proposed that used a function stretching approach (Bonyadi and Michalewicz, 
2017) to jump out of local optima.

In 2013, a review article (Dong ping Tian, 2013) on convergence analysis of PSO was published 
that consisted of two main parts: the standard PSO algorithm and convergence analyses of PSO 
algorithm with six subsections, including convergence analysis with constriction coefficient, limit, 
differential equation, matrix, difference equation and transformation. The first part contained different 
strategies for determining parameters of the velocity update rule (inertia, cognitive, and social weights) 
and moving principle of particles. In the second part, several PSO convergence analyses methods 
used to justify PSO convergence condition were summarized, and in the other convergence analyses 
part, some existing studies related to multiobjective (Mo) PSO variants were reviewed.

2.2 Convergence Analyses of PSO
The existing convergence analysis on the PSO algorithm focuses on the constant convergence analysis 
on the constant transfer matrix and the random convergence analysis on basis of the random transfer 
matrix. After PSO introduction in 1990s, it has become the focus in optimization community and 
has been widely applied in many fields. Much attention has been paid to the improvements of PSO 
itself, such as the improvement of its parameters, including the inertia weight and convergence 
factor, the improvement of the update formula based on the velocity position, the improvement 
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based on the topology of particle swarms, the improvement based on the evolutionary mechanism 
of the genetic algorithm, including selection, crossover and mutation, and the improvement based on 
the integration of other approaches, viz., the so-called hybrid soft computing (HSC) and extensive 
investigations to determine the optimal values of different GA parameters conducted in (Kalita et.al., 
2019). The global optima search capability of an advanced variant of PSO, Repulsive particle swarm 
optimization (RPSO) algorithm is enhanced by allowing each particle to perform a local search and 
having a chaotic perturbation that helps particles avoid getting trapped in the local optima (Ganesh 
et.al.(2021), Kalita and Chakraborty (2023) and Kalita et.al.(2021)). However, very few research on 
the PSO’s convergence has been studied so far, which plays a crucial role in establishing the solid 
theoretical foundation for PSO algorithm. So this paper, from another perspective, thoroughly reviews 
and analyzes the convergence of PSO in the existing literature, the goal is to provide references and 
suggestions for PSO researchers to establish a solid theoretical basis.

The convergence analysis of the standard PSO algorithm mainly plays a role on the convergence 
condition, the convergence speed, parameter selection and the trajectory of each particle. This paper 
mainly concentrates on the random convergence analysis of the PSO algorithm with time-varying 

attractor Q t
g t p t

( ) = ( )+ ( )
+

j j

j j
1 2

1 2

 and the convergence analysis on the PSO algorithm with the time-

varying attractor Q t Q t+( ) ≠ ( )1  and the parameter h =
+( )− ( )
( )

Q t Q t

v t

1
 in some cases, h  is not 

equal to 0. Main contributions on the random convergence analysis of the random PSO algorithm 
can be highlighted as follows (Liu et al., 2020).

•	 The convergence condition and the convergence speed are calculated by the spectral radius on 
the random/constant transfer matrix was less than 1 and the product of two transfer matrices of 
the PSO algorithm with time-varying attractor less than 1.

•	 The spectral radius of one transfer matrix cannot determine the convergence behavior and the 
divergence behavior, while the spectral radius of the product of several transfer matrices may not 
smaller than 1 can control the convergence behavior and the divergence behavior.

•	 The convergence condition is also computed from the perspective of mean and variance .

Finally, the convergence analysis of the random PSO algorithm on benchmark functions can 
demonstrate the effectiveness of the obtained results in the benchmark functions, while different 
optimization benchmark functions essentially make the different variable Q t Q t+( )− ( )1 , and the 
value of Q t Q t+( )− ( )1  is mainly viewed as hv t( ) , and the parameter h  is introduced in the 
transfer matrix M t( )  (Kalita and Chakraborty, 2023).

More recently, there have been some other review papers on specific applications of convergence 
of PSO method, e.g., applications of convergence of PSO with-in-host dengue infection treatment 
(Handayani et.al., 2016), application of convergence of PSO in Biostatistics (Kim and Li, 2014) to 
name some. However, they have not been included in this review paper because their focus was on 
a specific area.

3. IDENTIFIED LIMITATIONS OF CONVERGENCE ANALYSES OF PSO

Several limitations of SPSO have been identified so far. The term “limitation” refers to an issue that 
has been proven to prevent the algorithm from performing well in different aspects of operation such 
as locating high quality solutions or being stable. As studied by the work (Bonyadi et al., 2014a) 
limitations in SPSO, the two main areas related to the limitations of convergence analyses of PSO 
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are: convergence and transformation invariance. In the following two sub-sections, articles that have 
analyzed limitations related to these two topics in convergence analyses of PSO are reviewed.

3.1 Limitations Related to Convergence
We classify limitations related to convergence of PSO into four groups: convergence to a point, 
configurations of movements, convergence to a local optimum, and expected first hitting time (EFHT), 
these are defined in the following paragraphs.

One of the earliest convergence analyses of stochastic optimization algorithms was published in 
(Baba, 1981). An iterative stochastic optimization algorithm is said to converge to a point 



X  in a 
search space in probability if

∀ > −






 ≥ −

→∞
e e0 1, lim

t t
pr x X
�� �

	 (7)

where Pr  is the probability measure,  x
t

��
 is a generated solution by the optimization algorithm (a 

point in the search space) at iteration t , and e  is an arbitrary positive value. There are two possibilities 

for ∀ > −






 ≥ −

→∞
e e0 1, lim

t t
pr x X
�� �

 to “convergence to a point” and “convergence to a local 

optimum” for the point 


X  is any point and a local optimum of the objective function in the search 
space, respectively.

As studied by the work of (Bonyadi and Michalewicz, 2017), these two kinds of convergence 
have been investigated in detail in different optimization algorithms analyses.

Analysis of convergence to a point is usually conducted for an iterative stochastic optimization 
algorithm to understand whether the sequence of generated solutions produced by the algorithm 
is convergent. Such analysis sometimes leads to a set of parameters values for the algorithm that 
guarantee stability. During the convergence process to a point, however, the sequence of the solutions 
found by the algorithm might follow different configuration of movements:

•	 High or low frequency movements
•	 Larger or smaller jumps
•	 Faster or slower convergence.

These configurations can play important role on the success of the search process (locating higher 
quality solutions) as they are closely related to the exploration/exploitation ability of the algorithm 
(Bonyadi and Michalewicz, 2015a).

As it was presented in (Bonyadi and Michalewicz, 2017) analysis of convergence to a local 
optimum is conducted to understand whether the final solution found by the algorithm is at least 
a local optimum. Although finding a local optimum is an important (if not essential) property of 
the algorithm, it is also important to estimate how long it would take for the algorithm to locate 
that solution. Thus, the expected number of function evaluations to visit a point within an arbitrary 
vicinity of a local optimum (known as expected first hitting time, EFHT) is analyzed theoretically 
for optimization methods. This type of analysis, known as EFHT or run time analysis, has been 
conducted for evolutionary algorithms (Bonyadi and Michalewicz, 2017) where the convergence rate 
of evolutionary algorithms, as a related topic to EFHT, has been studied.

3.1.1 Convergence to a Point

The velocity of the particles was constrained by a maximum speed V
max ,which can be used as a 

constraint to control the global search ability of the particle swarm. In the original PSO algorithm, 
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w = = =1 2
1 2

,c c , particles’ speed often quickly increases to a very high value which will affect 
the performance of the PSO algorithm, so it is necessary to restrict particle velocity. The issue swarm 
explosion (Mubeen and Dr. Dhananjay, 2022) pointed out that the velocity vector of particles in SPSO 
grows to infinity for some values c c

1 2
, , and w  , which causes particles to leave the search space and 

move to infinity. As the search space is bounded (as defined in Section 2), moving outside of the 
boundaries is not desirable even if there is a better solution (in terms of the objective value) there.

One of the early solutions for this issue was to restrict the value of each dimension of the velocity 
to a particular interval −


V V

max max
,  (Helwig et.al., 2013).

Then, the movement equations become







 

V V V v R P x R g
t
i

max max t
i

t
i

t
i

t
i

t
i

t+ = − + −( )+ −
1 1 1 2 2

max min{ , , j j


x
t
i( ){ } 	







X x V
t
i

t
i

t
i

+ += +
1 1

	

However, this strategy does not prevent swarm explosion in the general case because it used 
to clamp the velocities of particles and not the position of particles. Some researchers fixed other 
parameters and only studied the influence of too large and the effect of both too small and large values 
of speed on the algorithm (Helwig et.al., 2013).

•	 A too small value of speed will cause the particles to get trapped in local optima.
•	 A too large value can cause the particles to oscillate around a position.

Hence, some researchers proposed to also restrict the position of the particles (Bonyadi and 
Michalewicz, 2017) However, even this strategy is not effective because it may restrict the particles 
to the boundaries of the search space and prevent effective search. A more fundamental solution to 
the swarm explosion issue can be achieved through analysis of particles’ behavior to find out why 
the sequence of generated solutions might not be convergent is known as stability analysis (Bonyadi 
and Michalewicz, 2014d, Bonyadi and Michalewicz, 2017, Cleghorn and Engelbrecht, (2014a) and 
Liu 2015). The aim of this analysis is to define boundaries for the constant parameters in

 

   

V V R p x R g x
t
i

t
i

t
i

t
i

t
i

t
i

t t
i

+ = + −( )+ −( )1 1 1 2 2
ω ϕ ϕ 	

in such a way that the positions of the particles converge to a point in the search space. The set of 
all boundaries for all coefficients of a PSO variant that guarantee convergence to a point is called 
convergence boundaries, determining such boundaries is very helpful for parameter setting purposes 
in SPSO or a variants of PSO. The reason is that coefficients that are outside of the convergence 
boundaries are usually not appropriate for optimization purposes as they cause particles to move 
unboundedly. Hence, looking for a combination of coefficients that results in a good performance of 
the algorithm is focused on a smaller boundary.

The update rules are some times simplified for stability analysis purposes.







  

V v R P x R g x
t
i

t
i

t
i

t
i

t
i

t
i

t t
i

+ = + −( )+ −( )1 1 1 2 2
ω ϕ ϕ 	







X x V
t
i

t
i

t
i

+ += +
1 1
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Velocity and position update rules are analyzed for an arbitrary particle i . We use the notations 
p and g, instead of p  and g , when we analyze p  and g  in a one-dimensional space. Additionally, 


p
t
i  and g

t
i  are assumed to be steady during the run. Furthermore, the topology of the swarm is 

ignored in the analysis.
One might argue that the convergence boundaries found under these simplifications are not valid 

as the simplified system might not exactly reflect the behavior of the original system. However, it 
should be noted that, in these analyses, the behavior of particles is investigated while they are searching 
for a new personal best. Considering the one-dimensional space for analysis of SPSO is reasonable 
because all calculations (including generation of the random values on the diagonal of R

t
i
1

) are done 
in each dimension independently, hence, all analyses in one-dimensional case are also generalizable 
to multi-dimensional cases as well (Mubeen and Dr. Dhananjay, 2022). In addition, validity of the 
convergence boundaries found when global and personal bests are steady and the topology is ignored 
were studied in (Bonyadi and Michalewicz,2015a, and Cleghorn and Engelbrecht, 2014b, 2014c, 
2015) experimentally. It was found that, although these conditions simplify the update rules, the 
calculated convergence boundaries under these conditions are in agreement with those of found under 
general conditions determined through experiments.

In addition, a recent theoretical study in (Liu, 2015) showed that the convergence boundaries for 
the global best particle found under this simplification does not change if 



P
t
i  is allowed to be updated 

(under some conditions) during the run.
Now there are many different kinds of researches about the convergence analyses of PSO algorithm 

based on stability analysis, and four different types of stability analysis can be found in literature:

•	 Deterministic model stability analysis
•	 First-order stability analysis
•	 Second-order stability analysis and
•	 Third-order stability analysis.

These types of stability analysis for convergence of particle swarm optimization have been 
differentiated as: (i) Deterministic model stability analysis excludes the stochastic component in 
particles and assumes that the particles are moved through a deterministic formulation . (ii) First-order 
stability analysis studies the expectation of the position of particles (Bonyadi and Michalewicz, 2017, 
Cleghorn and Engelbrecht, 2014a and Tong et. al., 2019) to ensure that this expectation converges. 
(iii) The second-order stability analysis studies the variance of the position of particles (Cleghorn 
and Engelbrecht, 2015 and Liu, 2015), to ensure this variance converges to zero (the convergence of 
the variance of the particle position is a necessary condition for second-order stability). (iv) Third-
order stability analysis studies a stochastic quantity on the sequence of particle positions could be the 
expected value, or variance, or even skewness and kurtosis (Dong and Zhang, 2019).

Perhaps the first study that considered theoretical analysis with no parameter analysis or 
convergence boundaries of the trajectory of particles in PSO were conducted in (Ozcan and Mohan, 
1999), and the findings formed a basis for further analysis. Based on a deterministic model for particles 
(the stochastic components were ignored), the trajectory and step size of movement for particles were 
analyzed. It was found that, for BPSO, the trajectory of a particle is of the form of a random sinus 
wave when j j

1 2
4+ < .

One of the earliest attempts to analyze the convergence behavior of SPSO to find convergence 
boundaries was done for PSO variant in (Bonyadi and Michalewicz, 2017 and Mubeen and Dr. 
Dhananjay, 2022), In that paper, in order to simplify the formulation of update rules, stochastic 
components (r

t
i
1

 and r
t
i
2

) were omitted from the system (deterministic model analysis). It was proven 
that, by using this simplified model, particles positions converge to a stable point if
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c =
− − −

2

2 42

k

c c c
	 (8)

where a coefficient known as constriction factor (or c ) is equal to w , c c c
1 2

4+ = > , c�
1

1=
ϕ

χ
 , 

c
2

2=
ϕ

χ
, and k  is a value in the interval 0 1,( 

  (usually set to 1). With these settings the value of  c  

is in the interval (0, 1]. The value of  k  controls the speed of convergence to a fixed point, i.e.; the 
larger the value of k  is, the slower the convergence to the fixed point will be. According to these 
coefficients, the velocity update rule is written as







  

V v R P x R g x
t
i

t
i

t
i

t
i

t
i

t
i

t t
i

+ = + −( )+ −( ){ }1 1 1 2 2
χ ϕ ϕ 	 (9)

where c  is set by Eq.8, c c
1 2

4+ > , and usually c c
1 2

2 05= = .  that results in c = 0 7298.  (Bonyadi 
and Michalewicz, 2017). By using these settings the value of each dimension of the velocity vector 
converges to zero and, consequently, velocity does not grow to infinity. The PSO variant that uses 
velocity update rule in Eq.9 is called “Constriction Coefficient Particle Swarm Optimization”, CCPSO. 

The stable point where each particle i converges to is a point between p and g (namely, 
c g c p

c c
1 2

1 2

+

+
).

The stability of particles in SPSO was also analyzed in (Bonyadi and Michalewicz, 2017). In 
that study, the random components were replaced by their expected values (r r

t
i

t
i

1 2
0 5= = . ), which 

enabled first-order stability analysis. The parameters of the velocity update rule were analyzed to 
find out how they should be set to guarantee particles settle to their equilibrium. Obviously, 
V x P g
t
i

t
i

t
i

t
= = =0,  and � 

x x
t
i

t
i

+ =1
 at the equilibrium point. It was proven that the expected value 

of the position of each particle settles to its equilibrium (that is 
j j

j j
1 2

1 2

g p+

+
) if and only if

ω ϕ1 0, , and 2 2 0ω ϕ− + > where .j
j j

=
+

1 2

2
	

According to (Bonyadi and Michalewicz, 2017), expectation of particle positions converge to 
its equilibrium if and only if the value of the parameters are set in such away that they lie inside the 
convergence boundaries to shows that the relationship between w  and j . (Trelea, 2003) introduced 
and showed that the parameter setting procedure results in a good performance of the algorithm for 
w = 0 6.  and j j

1 2
1 7= = . .

Another first-order stability analysis results reported in (Bonyadi and Michalewicz, 2017), 
including convergence boundaries and convergence to a point between p and g, were also confirmed 
in (Zou et.al., 2015). However, in the latter paper, the speed of convergence was investigated in more 
depth (see configuration section). Subsequently, another first-order stability analysis was conducted 
in (Campana et.al., 2010), where the findings in (Bonyadi and Michalewicz, 2017) were also confirmed. 
The analysis of convergence to a fixed point was conducted, from a different point of view .in (Bonyadi 
and Michalewicz, 2017). It was justified that the expectation of the position of each particle converges 

to a point (first-order stability analysis) between the personal and global best vector 
j j

j j
1 2

1 2

g p+

+
 if 
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and only if 0 1≤ <w  and 0 4 1< < +( )ϕ ω  where j j j= +
1 2

. However, it was pointed out that 
the first-order stability is not enough to guarantee convergence of particles and second-order stability 
should be also guaranteed. In fact, to guarantee stability, not only the expected position of particles 
should converge to a fixed value but also the variance of the position should converge to 0  (Bonyadi 
and Michalewicz, 2015b and Cleghorn and Engelbrecht, 2015). It was presented in (Bonyadi and 
Michalewicz, 2017) that, setting the coefficients to satisfy

5 25 336 576

24

5 25 336 576

24

2 2ϕ ϕ ϕ
ω

ϕ ϕ ϕ− −
< <

+ −
,	

where j j j= =
1 2

 guarantees the convergence of the variance of the position of particles to a fixed 
value (a necessary condition for variance of position to converge). Note that this inequality can be 

simplified to ϕ
ω

ω
<

−( )12 1

5

2

.

This analysis was slightly modified due to a small error and the corrected version was presented 
in (Jiang et al, 2007a). This study also recommended coefficients to be restricted w = 0 715.  and 
j j

1 2
1 7= = .  value for experimental purposes. The authors argued that these coefficient values 

result in a higher variance during the run that improves the exploration ability of particles. The 
expected value and the standard deviation of the sequence of generated positions by SPSO were also 
analyzed in (Cleghorn and Engelbrecht, 2015), and the results found in (Jiang et.al., 2007a) were 
confirmed. It was checked that convergence of variance to a fixed point (a necessary condition for 

second-order stability) requires ϕ
ω

ω
<

−( )
−

12 1

5 7

2

,where j j j= =
1 2

, that is, the same as what was 

found in (Jiang et al., 2007a). In addition, in (Cleghorn and Engelbrecht, 2015) proved that the variance 
of positions converges to h ϕ ϕ ω

1 2
, ,( ) |g - p|, where h .,.,.( )  is a function of inertia weight and 

acceleration coefficients. Hence, if h ϕ ϕ ω
1 1

0, ,( ) ≠  is guaranteed, then particles do not stop moving 
(non-zero variance) until p g= . Therefore, the algorithm is second-order stable only if p g= . 

More recently, in 2018, authors were able to obtain the region defined by ϕ
ω

ω
<

−( )
−

24 1

5 7

2

 using 

only the weak stagnation assumption. The work in (Cleghorn and Engelbrecht, 2015), also implies 

that the convergence region of ϕ
ω

ω
<

−( )
−

24 1

5 7

2

 for w −

1 1,  the same irrespective of the social 

network topology utilized by canonical PSO (CPSO).
The first and second-order stability were investigated in (Garcıa-Gonzalo and Fernandez-Martınez, 

2014), for SPSO when a generic distribution for w  and j j
1 2
,( )  was considered, i.e.; it was assumed 

that w  is a random variable from an arbitrary probability distribution with the expected value µω  
and the variance αω

2  and j
1
 and j

2
 (f

1
 replaces j

1 1
R
t
i . and f

2
 replaces j

2
R
t
i
2

 in Eq.6) are also 
random variables from an arbitrary probability distribution with the expected values �µφ1  and µφ2  

and the variances αφ1
2 and αφ2

2  respectively. It was proven that SPSO is first-order stable if and only 

if -1 < µω  < 1 and 0 2 1< < +( )�µ µϕ ω , where j j j= +
1 2

. Furthermore, a necessary condition 
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for the second-order stability is that − < <a aµω  and 0 < <µϕ b , where a
c

=
+

1

12
, 

b
c

d
d

�=
− +( )( )
+

−( )

2 1 1

1

2

2 12

µω
µω

, c  =
σ

µ
ω

ω

, and d   =
σ

µ
ϕ

ϕ

.

It was shown that the regions found to guarantee second-order stability are embedded within 
the regions that guarantee first-order stability, i.e.; if a SPSO is second-order stable, then it is also 
first-order stable (Bonyadi and Michalewicz, 2015b).

Recently, some studies have considered more general assumptions to find the convergence 
boundaries under more realistic conditions. For example, (Cleghorn and Engelbrecht, 2014a), assumed 
that the personal best of particles and the global best of the swarm are allowed to move and can 
occupy an arbitrarily large finite number of unique positions and it also showed that the topology 
does not affect the convergence boundaries, but it might affect the speed of convergence / divergence. 
The main finding of that study was that SPSO is first-order stable if and only if − < <1 1w  and 
0 4 1< < +( )ϕ ω  where �j j j= + <

1 2
4  under this more general assumption. This is indeed the 

same as what was found that in (Bonyadi and Michalewicz, 2017) and other previous studies through 
first-order stability analysis.

The second-order stability of SPSO was also investigated in (Liu, 2015). It was assumed that the 
personal best needs to remain unchanged at least for a limited number of iterations (3 in that study), 
that is, a weaker assumption comparing to what was assumed by previous studies (i.e., the personal 
best need to always remain constant). The theoretical analysis in that paper proved that the convergence 
boundaries found in (Gong et. al., 2017) are valid under this assumption for the global best particle. 
Moreover, in (Liu, 2015) assured that the found regions serve as a necessary and sufficient condition 
for second-order stability of the global best particle. This study recommended � .w = 0 42  and 
� .j j

1 2
1 55= =  based on experiments on an extensive set of benchmark functions.

Analysis of stability was also done for a variant of PSO called “ Standard PSO 2011”, SPSO2011, 
in . The velocity update rule for SPSO2011 is written as:





 

 

V v H G G x x
t
i

t
i

i t
i

t
i

t
i

t
i

+ = + −( )−1
w , 	 (10)

where H G G x
i t

i
t
i

t
i

 



, −( )  is a hyper-spherical distribution with the center 


G
t
i  and radius 





G x
t
i

t
i-  given that 



 

G
L p x

t
i t

i
t
i

t
i

=
+ +

3
, 








P x L x
t
i

t
i

t
i

t
i= + −( )j

1
 and 









L x l x
t
i

t
i

t
i

t
i= + −( )j

2
 

(


l
t
i  is the best personal best among the particles in 



T
t
i ) (Bonyadi and Michalewicz, 2014d). The 

analyses of convergence conducted for previous PSO variants are not applicable to SPSO2011. The 
reason is that updating velocities and positions in all previous PSO variants were done dimension by 
dimension which enabled researchers to study particles in a one-dimensional space. However, the 
calculation of 



V
t
i  in SPSO2011 involves generating random points using a hyperspherical distribution 

with a variance that is dependent on the distance between 


G
t
i  and x

t
i  . In order to repeat the dimension-

wise analysis in SPSO2011 one needs to decompose the random point generation procedure done by 
the hyperspherical distribution into dimension-wise calculations which might need further effort. 
Hence, the stability analysis for SPSO2011 was done experimentally in (Bonyadi and Michalewicz, 
2014d and 2015a) where it was shown that convergence boundaries for particles in SPSO2011 are 
dependent on the number of dimensions and these boundaries are different from that of other PSO 
variants (e.g., SPSO). Thus, good choices for coefficient values in previous PSO variants do not 
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necessarily lead to a good performance of SPSO2011. In (Bonyadi and Michalewicz,2015a), 
SPSO2011 also experimentally showed that the convergence boundaries that guarantee second-order 
stability are not affected even if the global best and personal bests are updated (through a uniform 
random distribution) during the runs for both SPSO and SPSO2011.

Stability of a stochastic recurrence relation that formulates the position update rule of particles 
in a wide range of PSO variants (including SPSO) was studied in (Bonyadi and Michalewicz, 2015b). 
In order to weaken the stagnation assumption, it was assumed that the global and personal bests in 
that relation are updated through an arbitrary random distribution. It was proven that the necessary 
and sufficient conditions to guarantee convergence of expectation and variance of generated positions 
by that relation are independent of the mean and variance of the random distribution by which the 
global and personal bests are updated.

3.1.2 Configurations of Movement

If the coefficients ω ϕ,
1
 and j

2
 of SPSO are selected in a way that they are inside the convergence 

boundaries, then the sequence of the positions of particles is not divergent. During the run, however, 
particles oscillate with different configurations around their equilibrium point until they converge 
(Bonyadi and Michalewicz,2015a, 2017). The difference between these configurations is a consequence 
of picking different values for coefficients that plays important role on the performance of the 
algorithm. For example, a particle that moves smoothly in the search space can potentially be more 
effective in exploitation phase than a particle that jumps all over the search space. Hence, investigation 
of these configurations and calculation of corresponding coefficients which exhibit different 
configurations can be helpful for practitioners. In addition, the speed of convergence, i.e.; how fast 
the particles positions approach the equilibrium point, can be of importance to determine appropriate 
coefficient values.

The roots of the characteristic equation of the expected position of particles for each dimension 
to categorize different oscillations particles positions might exhibit in Eq.11, which was mentioned 
in (Bonyadi and Michalewicz, 2017).

E x E x E x P
t t t+ −( )+ − −( ) ( )+ ( ) =1 1

1ϕ ω ω ϕ 	 (11)

where E .( )  is the expectation operator, j
j j

=
+

1 2

2
, P

g p
=

+

+

j j

j j
1 2

1 2

 . The configuration of 

generated points by this equation (i.e.; expectation of positions) are:

•	 Harmonic if the imaginary component of both roots of the characteristic equation are non-zero 
and the real component of the roots are positive,

•	 Zigzagging if the imaginary component of both roots of the characteristic equation are zero and 
the real component of at least one of the roots is negative,

•	 Harmonic–Zigzagging if the imaginary component of both roots of the characteristic equation 
are non-zero and the real component of both roots is negative,

•	 Non–oscillatory if the imaginary component of both roots of the characteristic equation are zero 
and the real component of both roots is positive,

Moreover, experiments in (Bonyadi and Michalewicz, 2017) showed that convergence is faster 
if the values of w  and j  are closer to the “center” (close to the point (0, 1)) of the convergence 
boundaries triangle . Thus, particles spend more iterations for exploitation with this setting. Similar 
analysis for the behavior of particles before convergence was conducted in (Campana et al., 2010) 
where the same oscillation configurations were observed.
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The speed of convergence of the expectation of positions was investigated in (Tong et.al., 2019), 

where it was proven that the speed of convergence is directly related to c = { }max g g
1 2

,  
where

γ
ω ϕ ϕ α

1
1 2

1

2
=
+ − − +

, γ
ω ϕ ϕ α

2
1 2

1

2
=
+ − − −

, and α ω ϕ ϕ ω= + − −( ) −1 4
1 2

2
	

i.e.; the larger the value of c is, the faster the expectation of the position of the particle converges to 
its equilibrium. It was also assured that the expected value of the particle’s positions converge to a 

fixed point (namely, P
g p

=
+

+

j j

j j
1 2

1 2

) if and only if c < 1 .

In (Bonyadi and Michalewicz, 2015a), they investigated the behavior of particles before 
convergence through an experimental approach. They considered the generated sequence of particles 
positions as a time series and they used frequency domain analysis to understand how particles 
oscillate during the run. They categorized the oscillation patterns into four groups based on the 
maximum frequency of oscillation (low, low-mid, mid-high, and high frequencies), corresponding to 
the patterns introduced in (Bonyadi and Michalewicz, 2017). They showed that the results found by 
their experimental approach is very similar to what has found in (Bonyadi and Michalewicz, 2017).

Hence, they used the same approach to analyze the oscillation of particles in SPSO2011. They 
found that the boundaries of coefficients corresponding to different patterns of oscillation for 
SPSO2011 are different from those of SPSO. Their experiments also showed that these boundaries 
are not sensitive to the number of dimensions.

3.1.3 Convergence to a Local Optimum
There has been a significant amount of research effort devoted to the theoretical study of PSO 
convergence (Harrison et al.,2017). Convergence to a point ensures that a particle settles to its 
equilibrium and does not move to infinity. If acceleration and inertia weight are in the convergence 
boundaries it was proven that all particles converge to   

x p g
t
i

t
= =  and �



V
t
i = 0 . (stagnation). 

However, for any value of coefficients, there is no guarantee that the point that the particles converged 
to is a local optimum. We can alternatively use the following two conditions for a particle is said to 
be locally convergent

∀ > −( ) ≥ −
→∞

e e0 1, lim
t
pr x X





	 (12)

we say that p
t
i  converges to 



X  with probability 1,

∀ > −( ) ≥ −
→∞

e e0 1, lim
t t
pr g X





	 (13)

where 


X  is a local optimum and Pr denotes the probability in (Bonyadi and Michalewicz, 2017 and, 
Fan and Yan, 2014). Local convergence for PSO variant was investigated in (Zou et.al., 2015) in 
particular for SPSO. In this paper, the swarm size issue is discussed because it was observed that 
SPSO does not perform well when the swarm size is too small. The explanation given in (Bonyadi 
and Michalewicz, 2017 and Mubeen and Dr. Dhananjay, 2022) was that particles in a SPSO with 
smaller swarm size (e.g., 2) have larger probability to stagnate. A variant of SPSO called “Guaranteed 
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Convergent Particle Swarm Optimization”, GCPSO (Zou et.al, 2015) was proposed in which the 
local convergence issue was addressed. In GCPSO, a new velocity update rule was introduced for 
the global best particle t

t
 (Bonyadi and Michalewicz, 2017 and Zou et .al., 2015)

� � � � �
V

x g V
t
i t

i
t t

i

+
=
− + + +

1

ω ρ                                      if i

V p x g x otherwi
t

t
i

t
i

t
i

t
i

t
i

t t
i

=

+ −( )+ −( )
τ

ω ϕ ϕ
� � � � �� �

1 1 2 2
, sse








	 (14)

where r j  (the value of the j th  dimension of r ) is a random value determined through an adaptive 
approach that applies a perturbation to the velocity vector with r � �>0 . At each iteration of GCPSO, 
a random location in a hyper-rectangle with the j th  side length equal to r j  is generated. This random 
location is moved from g

t
 by the vector w



V
t
i  to form the new position for the particle t

t
 (global 

best particle). In GCPSO, x
t
t

+1

t  is taken randomly from the gray area while all other particles follow 
the original position and velocity update rule (Bonyadi and Michalewicz, 2017). The velocity update 
rule for the particle τt in GCPSO forces that particle to always move (implying 



V
t
t

+ ≠1
0t  for any t ). 

It was proven that in (Zou et.al., 2015) SPSO is not locally convergent while GCPSO is locally 
convergent and it could provide acceptable results for the number of particles was set to 2. The local 
convergence issue for SPSO was also discussed widely in (Bonyadi and Michalewicz, 2017 and 
Schmitt and Wanka, 2013) where it was proven that SPSO is locally convergent for n � �=1  problems; 
however, it is not locally convergent when n � �>1 .

3.1.4 Expected First Hitting Time (EFHT)
To characterize optimization ability of algorithms, we suggest the expected first hitting time (EFHT), 
i.e.; the time until a search point in the vicinity of the optimum is visited. Witt (2009). argued that 
most convergence analyses for PSO and PSO variant and impacts of coefficients on movement patterns 
in the particle swarm optimization algorithm, SPSO including (Bonyadi and Michalewicz, 2017) 
have been limited to the concept of convergence to an attractor ( p

t
i  or g

t
) and not to a particular 

optimum. The EFHT (run time) analysis was conducted on the variant GCPSO because at the moment 
GCPSO was the only PSO variant that was assured to be locally convergent. Analyses showed that 
the EFHTof GCPSO on the sphere function is asymptotically the same as a simple (1+1) ES–see 
(Jagerskupper, J., 2008) for the analysis of the EFHT for randomized direct search methods with 
isotropic sampling, including (1+1) ES. However, performance GCPSO is substantially changed by 
rotating the search space, and GCPSO is not rotation invariant while (1+1) ES is.

The analysis of EFHT for SPSO was also conducted in (Lehre and Witt, 2013), where the 
algorithm was applied to some function. It was proven that EFHT for SPSO is potentially infinite 
even when it is applied to a one-dimensional sphere. It was shown that, in some situations that occur 
with non-zero probability, the algorithm cannot locate the optimal solution even for a one-dimensional 
sphere. Note that the setting of the parameters in that paper was different from that of (Schmitt and 
Wanka, 2013), where it was proven that SPSO is locally convergent for one-dimensional problems.

�
 

   

V V R p x R g x
t
i

t
i

t
i

t
i

t
i

t
i

t t
i

t
i

+ = + −( )+ −( )+1 1 1 2 2
ω ϕ ϕ ∆ ,	

where the extra noise term D
t
i  has uniform distribution on the interval −













d d
2 2
, . A new variant of 

PSO was introduced in (Lehre and Witt, 2013), called “Noisy Particle Swarm Optimization”, NPSO, 
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in which a uniform randomly generated vector in a hyper-rectangle with the side length d� �>0  was 
added to the velocity vector of each particle. The authors proved that EFHT for NPSO to optimize a 
sphere function is finite, i.e.; NPSO converges to a local optimum of the sphere function in a finite 
number of function evaluations. (Ganesh et.al., 2021 and Mubeen and Dr. Dhananjay, 2022) presented 
an adaptive PSO algorithm that could automatically track changes in the dynamic system, and several 
environment detection and response strategies were tested on the parabolic benchmark function.It 
was concluded that more efforts are needed to study the EFHT of SPSO and understand how the 
algorithm works. A similar analysis was also done in (Bonyadi and Michalewicz., 2014d), for 
SPSO2011, where it was proven that, with specific setting of parameters, EFHT of the algorithm for 
any one-dimensional optimization function is infinite, e.g., SPSO2011 does not guarantee to converge 
to a local optimum under assumptions that take place with non-zero probability.

3.2 Limitations Related to Transformation Invariance

The algorithm   is invariant under the transformation T T d d, :  ® , if the performance of   
on any objective function F x F d( ) →, :   , is the same as the performance of   on F T x( )( ) , 
given that the initial state is “ properly ” set in both cases (Bonyadi and Michalewicz, 2017). For 
stochastic algorithms, this equality needs to maintain almost surely or in probability distribution. 
Formally, this definition means that the performance of the algorithm is independent of how the 
coordinate axes are placed on the search space.

In addition to invariance, it is also expected that the optimization algorithm is as independent as 
possible from the initial state (so called adaptivity). Therefore, in order to study the transformation 
invariance property of optimization algorithms, some researchers took the adaptivity for granted and 
assumed that the initial state is also transformed using the same transformation that the search space 
is transformed with (i.e.; T ), (Netjinda et.al., 2015 and Tong et. al., 2019).

Transformation invariance is an important characteristic of an optimization algorithm. If an 
algorithm is invariant of a transformation T , then, by definition, the performance of the algorithm 
on a problem P  can be generalized to the set of problems C P C∈( )  that are defined by P T;( ) . 
This enables researchers to make stronger statements, favorable or unfavorable, about the performance 
of an algorithm. Rotation, scaling, and translation are well-known transformations that are frequently 
used in different areas.

Hence, it is valuable to understand if an algorithm is invariant under these transformations (Bonya 
and Michalewicz, 2014a, 2015a). One can define the transformation T ( x ) by T x sMx b

 



( ) = +  to 
formulate these transformations (rotation, scaling, and translation) where s Î   is a scale factor and 
s ¹ 0 , M xd d∈ ( )   is a rotation matrix, and 



b dÎ   is a translation vector.
Transformation invariance has been investigated for many optimization algorithms (Bonyadi and 

Michalewicz, 2017). Among the transformation of rotation, scale, and translation, rotation has received 
most attention by researchers in the field of PSO for its invariance and variance properties. Probably 
the main reason for this special attention is that the rotation of the search space potentially makes an 
objective function non-separable (Tian and Shi, 2018 and Tong et.al., 2019). Moreover, dealing with 
non-separable optimization functions is of more interest as there are many optimization problems 
with this characteristic. However, a PSO algorithm is rotation variant if its performance is change 
by rotating the search space. Translation invariance is probably the most basic characteristic among 
these transformations that an optimization algorithm must have. The reason is that, if an algorithm 
is sensitive to translation, the algorithm in fact is “ making an assumption ” about the location of the 
optimal solution of the problem at hand. Hence, if the optimal solution is shifted, that assumption is 
not valid anymore and this, in turn, causes a change to the performance of the algorithm.

Transformation invariance of SPSO was first analyzed in 2007, where it was shown that in 
(Yang et. al, 2015) SPSO is scale and translation invariant but is rotation variant. The reason that 
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SPSO is rotation variant is that the effect of random diagonal matrices on the direction of movement 
is sensitive to the rotation of the coordinate system. In contrast, it was proven that “ Linear particle 
swarm optimization ”, LPSO (Bonyadi and Michalewicz, 2017) is rotation, scale, and translation 
invariant. However, LPSO suffers from a limitation called line search.

In LPSO, if particle i oscillates between its personal best and the global best and it is not able to 
search in other directions, then CI SI  and 



V CI
t
i  hold (Bonyadi and Michalewicz, 2015a 

and Bonyadi et.al,2014a). A new PSO variant which was rotation invariant while it did not have the 
line search limitation called “ Rotation invariant Particle Swarm Optimization ”, RPSO and used 
random rotation matrices rather than random diagonal matrices to perturb the direction of movement 
in each iteration. A method called exponential map was used to generate the rotation matrices. The 
idea of exponential map is that: the exponential of any skew-symmetric matrix Sq , where S  is a 

dxd  matrix and q  is a scale factor, is a rotation matrix if S S
T

q q( ) = ( )−1
 and det Sq( ) = 1  with 

the rotation angle q  (Liu, 2015).The exponential of a matrix Sq  is defined by:
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where S  is a dxd  skew-symmetric matrix, I  is the identity matrix, q  is a scalar, and maxC →∞ . 
In order to generate a random rotation matrix, one can generate a random S  as S P PT= −( ) , 
where P  is a dxd  matrix with elements generated randomly in the interval −


0 5 0 5. , . . Moreover, 

the angle of rotation in degrees is a  (a real scalar) where θ απ
=

180
 .

It is clear in, Eqn.14, that for a finite value for maxC , the matrix Q  becomes an “approximation” 
of a rotation matrix with the rotation angle a  (see (Mohammad Reza Bonyadi, 2014) for details on 
how the truncation error is calculated). (Witt, 2009) set the value of maxC to 1, limiting the 
approximation to one term of the summation only, i.e.; Q I S= + q , so that the time complexity of 
generating the rotation is reduced. Also, they claimed that, as the rotation is only considered for small 
values of a , thisapproximation does not impact the overall results. The time complexity for generating 
and multiplying the approximated rotation matrix (with maxC = 1 ) into a vector is in O d 2( ) , 

including the cost of generating the approximated matrix O d 2( )( )  plus vector matrix multiplication 

O d 2( )( ) . For larger values of maxC , the order of complexity of generating Q  become larger .
A method for generating accurate random rotation matrices was proposed and investigated in 

(Bonyadi et.al., 2014b) further by the concept of replacing random diagonal matrices by rotation 
matrices. The method was based on Euclidean rotation matrices that could be used to rotate vectors 
in any combination of hyper planes. The paper tried to include two techniques for rotation of the 
velocity vector were investigated: rotation within complexity in O d 2( )  and rotation within complexity 

in O d( ) . As empirical results in terms of the objective value showed that rotation in O d( )  is just 

slightly worse than rotation in O d 2( ) , however, it is much faster. The random diagonal matrices were 

replaced by rotation matrices in O d 2( )  in many PSO variants proposed in (Bonyadi et.al., 2014a 
and Zou et.al., 2015). Results based on tested benchmark functions showed that PSO variants usually 
benefit from random rotation matrices to solve tested functions that included separable and non-
separable test problems.



International Journal of Swarm Intelligence Research
Volume 14 • Issue 1

17

The PSO invariant (SPSO) was applied to several optimization problems when their search space 
were rotated (Bonyadi and Michalewicz,2014a, 2015a), to test if the performance of the algorithm 
changed. Results of applying SPSO to the existing problems were compared with other variants such 
as “Covariance Matrix Adaptation ES”, CMA–ES, and “ Differential Evolution”, DE in (Helwig 
et.al., 2013). In addition, the performance of the algorithm changes indealing with ill -conditioned 
functions when the search space of the problem is rotated which indicates that the algorithm is 
rotation variant. It was found that the performance of SPSO is almost independent of the condition 
number for ill-conditioned separable optimization functions and SPSO outperforms CMA-ES on 
such function. However, the performance of SPSO drops almost linearly with the condition number 
when it is applied to ill-conditioned non-separable functions with condition number larger than 
100. Experiments showed that CMA-ES outperforms SPSO in optimizing such functions. A similar 
comparison was also conducted in (Lu et.al., 2015a) where the findings presented in (Bonyadi and 
Michalewicz, 2017) related to the good performance of SPSO for separable optimization problems 
and its poor performance in non-separable optimization problems were confirmed. In addition, the 
authors argued that the main reason behind this poor performance is that all calculations in SPSO are 
performed for each dimension separately, which makes the algorithm rotationally variant (Bonyadi 
and Michalewicz, 2017). The researchers used eight numerical benchmarking functions that represent 
diverse aspects of typical issues, as well as a real-world application involving data clustering, to 
test the Starling PSO (Lu et.al, 2015a). The experimental results indicated that the Starling PSO 
outperformed the SPSO and produced the best solution in several numerical benchmarking functions 
and the majority of real-world problems in the clustering studies.

It was shown in (Bonyadi and Michalewicz, 2017) that not only SPSO is rotation variant, but also 
particles in SPSO are biased towards the lines parallel to the coordinate axes. In fact, by tracking the 
positions of particles in the search space during the optimization process, it was found that particles 
tend to sample more points along the lines parallel to coordinate axes than other points in the search 
space, i.e., particles positions are “biased” to the lines parallel to the coordinate axes. The authors 
used these two issues (rotation variant and bias) to design test problems that are hard or easy for 
SPSO to optimize.

The combination of local convergence and rotation invariance in PSO algorithm for the variant 
proposed in (Bonyadi and Michalewicz, 2017) abbreviated as LcRiPSO. It was marked that LcRiPSO 
is rotationally invariant and locally convergent if the operator m  is invariant under any rotation and 
it satisfies the condition formulated in ∀ ∈ ∃ ⊆y S Ay S, , such that ∀ ∈ ∀ > ( )− < >

  

z Ay P m y z, , ( )d d0 0 . 
It was proven that if the operator m generates a new point following the normal distribution then it 
satisfies conditions for local convergence and rotation invariance of the algorithm. The time complexity 
of LcRiPSO using the normal distribution for Q  is in O d( ) , that is faster than the variants proposed 
in (Bonyadi et.al., 2014b and Bonyadi and Michalewicz, 2017).

4. MODIFICATIONS OF CONVERGENCE PSO TO DEAL WITH 
UNCONSTRAINED OPTIMIZATION PROBLEMS

In view of the problems mentioned above, this section review an improved convergence particle 
swarm optimization algorithm with random sampling of control parameters (SC-PSO), and the main 
contribution of the present work is delineated as follows. Three different categories of approaches 
were considered for improving convergence PSO algorithm:

•	 Setting parameters: It refers to setting the topology, coefficients and population size.
•	 Modifying components of the algorithm: modifying components refers to changes of the velocity 

/ position update rule (including adding new components; modifying the way they are calculated).
•	 Fusing the algorithms: fusing the algorithms refers to hybridization of PSO with other methods.
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We review convergence of PSO variants which have improved the performance of SPSO through 
specific settings of its parameters, modification of the velocity/position update rules, and hybridization 
of the algorithm in the following subsection subsequently.

4.1 Parameters Setting
For basic PSO, parameters have great impact on the performance of algorithm. If they are assigned 
inappropriately, the trajectories of particles cannot converge and may even be unstable, which will 
cause that the optimal solution of optimization problems cannot be found. Hence parameter setting 
has been a problem in iterative optimization methods in the past years.Two different approaches for 
setting parameters of an evolutionary algorithm might be belonged to:

•	 Parameter tuning: it comes to setting parameters of an algorithm through experiments to some 
constant values.

•	 Parameter control: it, however, comes to design of a strategy which changes the value of parameters 
during the run.

At present, the control parameters are usually chosen according to the experience or experiments 
from engineers, so it is not flexible and the exploration ability of convergence of PSO has also been 
greatly restricted. Parameter control approaches are categorized further into the following main groups 
up to now: deterministic, adaptive, and self-adaptive.

•	 In deterministic parameter control approaches a rule (called time-varying rule) is designed to 
calculate the value of a parameter based on the iteration number.

•	 In the adaptive parameter control approaches, a function is designed that maps some feedback 
from the search into the value of the parameter.

•	 In a self-adaptive parameter control approach the parameters are encoded into individuals and 
are modified during the run by the optimization algorithm (Bonyadi and Michalewicz, 2017).

We reviewed articles that have studied different parameters for convergence PSO (i.e., topology, 
coefficients, and population size).

4.1.1 Topology
In the classical PSO, the particles share information via the global attractor, which is the best solution 
any particle has found so far and which is known to the whole swarm. That means that every particle 
interacts with every other member of the swarm. The network of individuals in a swarm suggests 
the same concept as the topology in PSO variants does. The idea was that, topology should affect 
the explorative and exploitative behavior of the swarm as different topologies impose different speed 
of propagation of information among particles. Five different topologies in PSO was conducted and 
were tested, all these topologies on a benchmark of four functions (Cleghorn and Engelbrecht, 2015).

1. 	 Circle (local best /ring) topology, in which every particle i is a neighbor of the particles 
i k i k− +,..., . Especially for small k , the local best topology delays the information distribution 
among the swarm considerably. This results in highest explorative behavior.

Symbolically: T i
t
i

i
= { },y where y

i
l i i i

t
lF p= ( )( )

= − +{ }
arg min

1 1, ,

 	
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2. 	 Wheels topology, in which one specific particle (n
o

) is adjacent to every other particle. Particle 
(n0) acts as a kind of guardian to slow down the distribution of information.

Symbolically: T i
t
i

i
= { },t where t

t
l n

t
lF p= ( )( )

= …{ }
arg min

1 2, ,

 and T
t
i≠ = { }1 1� 	

3. 	 Fully connected (Star/global best) topology, in which any two particles are neighbors.

This topology allows the fastest distribution of information. This results exhibit the highest 
exploitative behavior.

Symbolically: T i
t
i

i
� � ,�={ }t where t

i
l n

t
lF p= ( ){ }

= …{ }
argmin
� ,� , �1 2

 	

4. 	 Grid (von Neumann) topology, in which the particles are arranged on a 2-dimensional grid with 
wraparound edges, such that every particle has exactly 4 neighbors. This topology is seen as a 
compromise between the fully connected swarm and the ring topology (Cleghorn and Engelbrecht, 
2015).

5. 	 Random edge topology, instead of choosing one of the above fixed topologies, a random 
neighborhood graph is generated according to some distribution.

Symbolically: T i j
t
i � � ,�={ }where j is randomly selected among other individuals.	

In some PSO variants, the topologies occur not in the described pureforms but as a mixture. E.g., 
in (Lehre and Witt, 2013), the author uses a ring topology with additional randomly sampled shortcuts. 
There has been many research on comparing the effects of the different topologies on the quality of 
the optimization in (Cleghorn and Engelbrecht, 2015). While in all the variants mentioned until now 
only one member of the neighborhood was actually chosen for the velocity update equation, there 
have been some attempts to provide particles with knowledge not only from the best but from every 
neighbor. This idea leads to the “fully informed particle swarm”, FIPS (Cleghorn and Engelbrecht, 
2015). Instead of selecting one particular neighbor for the local guide, the mean of the local attractors 
of every neighbor is calculated for updating velocity. This finding was also investigated in(Cleghorn 
and Engelbrecht, 2015) later in (Liu et.al., 2016), and different topologies were tested under that 
formulation. All these studies, however, suffer from the lack of proper statistical analysis of the 
results or an adequate number test cases that affect the generality of the conclusions drawn (Bonyadi 
and Michalewicz, 2017).

4.1.2 Coefficients
A standard method for improving convergence of PSO performance is parameter adaptation. Instead 
of assigning fixed values to the coefficients (swarm parameters). The performance of SPSO is affected 
by tuning the values of its swarm parameters from Eqn.6. Thus, researchers in (Bonyadi et.al, 2014b 
and Tanweer et.al., 2016) were made several attempts to tune the values of these coefficients for a 
set of benchmark functions. The general idea of parameter adaptation mechanisms is that during the 
early iterations, the swarm should explore larger areas while in the end of the optimization process, 
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the particles are supposed to converge towards one common point. In order to support this behavior, 
several parameter adaptation mechanisms have been developed (Zhang et al., 2015).

The authors could experimentally show that the performance of PSO significantly depends on 
the best values for the ω lying in 0 4 0 9. , .



 , while the interval 1 5 3. ,



  holds the best value for j

1
 and 

j
2

. The standard swarm parameters for the experiments of most papers are w = 0 72984. , 
c c

1 2
1 496172= = . .

Figure 1 depicts the convergence curve of PSO with inertia weight decreased linearly from 0.9 
to 0.4 during the run. Main disadvantage, once the inertia weight is decreased, the swarm loses its 
ability to search new areas.

Figure 2 depicts the convergence of PSO with inertia weight increased linearly from 0.4 to 0.9 
during the run. From Figure 2, it is seen that, there is no improvement in its best value even after 
1000 iterations

We use this parameters for every experiment unless the ones in which different parameters are 
compared and the choices are explicitly stated. By adjusting the parameters, it is possible to influence 
the trade-off between exploration, the capability to search in areas that have not been visited before, 
and exploitation, the capability to refine already good search points, by a linear decreasing inertia 
weight (ω decreased linearly from 0.9 to 0.4 during the run) was tested on one test problem–this 
variant was called “Decreasing Inertia Particle Swarm Optimization”, DIPSO. The latter (based on 
the average of the objective value) tested an opposite approach, increasing the inertia weight during 
the run from 0.4 to 0.9, and they found that this idea actually works better than decreasing inertia 
weight on some test cases (Bonyadi and Michalewicz, 2017).

The concept of decreasing inertia weight was extended in (Cleghorn and Engelbrecht, 2014a) in 
a way that a non-linear function was used to decrease the value of the inertia weight:

Figure 1. PSO for w  runs 0 9 0 4. , .




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where w
s

 and w
e

 were starting and final inertia weights, and maxi  was the maximum allowed 
iterations. With n � �=1 , this formulation is exactly the same as that in DIPSO. After experimenting 
with the sphere function, the parameters of this variant were set to: w w

s e
n= = − =0 2 0 3 1 2. , . , . ,  

and � ,maxi = 2 000 . This method with the above settings was compared (based on the average of the 
quality of found solutions) with other optimization methods such as a genetic algorithm and a 
differential evolution on 17 benchmark problems.

Although inertia weight influences exploration and exploitation behavior of the algorithm, 
acceleration coefficients also play an important role in this regard. A time-varying approach was 
proposed in (Mubeen and Dr. Dhananjay, 2022) where the acceleration coefficients were changed 
during the run (the method was called “ Time Varying Acceleration Coefficient Particle Swarm 
Optimization”, PSO-TVAC). In that method, the value of j1  (cognitive weight) decreased while the 
value of j2  (social weight) increased during the run of the algorithm. Thus, particles tend to conduct 
exploration at the beginning and exploitation at the latter stages of the optimization process as 
experiments confirmed potential benefits of time-varying approaches on some test functions (Bonyadi 
and Michalewicz, 2017).

Figure 3 depicts the convergence curve of PSO with inertia weight. SPSO, on the other hand, 
shows stepwise improvement in its best solution over the iterations. It converges at the best optimal 
value found so far by all the algorithms.

Figure 4 depicts the comparison result of convergent of SPSO with constriction coefficient and 
have these main advantages

Figure 2. PSO for w  runs 0 4 0 9. , .




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•	 Higher efficiency and probability to find the global optima
•	 Fast convergence
•	 No overlapping or mutation
•	 Low computational time

Figure 3. PSO with Inertia weight

Figure 4. PSO with Constriction coefficient



International Journal of Swarm Intelligence Research
Volume 14 • Issue 1

23

4.1.3 Population Size
There are several important parameters in PSO algorithm, among that we concentrate on the influence 
of population size on the algorithm. Selection of population size is related to the problems to be 
solved, but it is not very sensitive to the problem. In most cases, most iterative search methods 
encourage exploration and exploitation during the early stages and the latter stage of the iterative 
process, respectively. It is also well-known that concentrating individuals only on the area of the 
highest potential during the exploitation phase is usually beneficial. Thus, as this area is small relative 
to the whole search space, a small swarm may perform almost as well as a large swarm. Hence, it 
might be better to reduce the population size at the latter stages of the optimization process to save 
on the number of function evaluations. Common selection is 20 50- . In some cases, larger population 
is used to meet the special needs (Wang et.al., 2018).

There were researches which determined Probably the first attempt to design an adaptive 
population size in an evolutionary algorithm in 1994. The idea of adapting population size was 
adopted for convergence PSO via a variant called “Ladder Particle Swarm Optimization”, LDPSO. 
In LDPSO, it is true that the diversity of the swarm was evaluated and the swarm size was adjusted at 
every predefined period of time. The diversity measure was based on the average Manhattan distance 
between particles. Comparisons showed that the LDPSO algorithm outperforms some other PSO 
variants in terms of the average solution quality when it was applied to 5 standard benchmark problems.

In Bonyadi and Michalewicz (2017), it was proposed that the idea of population management, 
solution sharing technique and a search range sharing strategy for PSO variant was called “ Efficient 
Population Utilization Strategy PSO”, EPUS-PSO. The population manager in EPUS-PSO adjusted 
the population size by:

1. 	 Removing a particle from the swarm when global best vector was improved at least once in the 
previous k consecutive iterations.

2. 	 Adding a new particle to the swarm if the global best vector did not change in the previous k 
consecutive iterations.

3. 	 Replacing an existing one when adding is not permitted (the upper bound of the number of 
particles in the swarm has been reached).

As above mentioned, in EPUS-PSO, a solution sharing strategy was used a tournament selection 
approach for global best vector in the velocity update rule of each particle with the probability Pr  
and the personal best of another particle with probability q Pr= −1 . The aim of the solution sharing 
strategy was to give a chance to particles to learn from other particles rather than always using the 
global best vector in the velocity update rule. Furthermore, a solution sharing strategy was presented 
to prevent the particles from premature convergence. The algorithm was applied to 15 benchmark 
test functions, together with their rotated versions in 10 and 30 dimensions.

Results obtained based on the average and standard deviation showed that the proposed algorithm 
is capable of finding high quality solutions and it is comparable with other PSO variants on the tested 
problems.

Another essential strategy in PSO called “Incremental Social Learning”, ISL it was used to set 
the population size of SPSO during the run. ISL suggests an increasing population-size approach that 
in some cases facilitates the scalability of systems composed of multiple learning agents. Researchers 
were proposed two PSO variants based on the ISL idea:

1. 	 IPSO, whenever the algorithm could not find a satisfactory solution, a new particle was added 
to the population.

2. 	 IPSOLS (IPSO with a local search), a local search approach was run to gather local information 
around the current position.
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If the local search procedure was not successful, then it was concluded that the particle is already 
in a local optimum. In this stage, a new particle was added to the swarm that was placed in the 
search space through a simple social learning approach. The algorithm was applied to some standard 
optimization test functions and the mean and median of the results were compared with those of other 
PSO methods. Results showed that the proposed method is capable of finding high-quality solutions 
and it is comparable with other methods on the tested problems (Bonyadi and Michalewicz, 2017).

4.2 Modification of the Velocity-Position Update Rules
Mubeen and Dhananjay (2022), Shi and Eberhart (1998b), and Zhang et al. (2015) were the first 
individual to discuss the parameter inertia weight in basic PSO selection. They brought an inertia 
efficient w  into the PSO and promoted the convergence feature. Probably the first modification of 
the velocity in the basic algorithm introduced by the name called SPSO. Over the past decades, many 
attempts were made to improve the velocity and position update rule of SPSO further, by considering 
these:

1. 	 Two Steps Forward One Step Back
2. 	 Cooperative Particle Swarm Optimization

SPSO was identified an important issue called “ two steps for ward, one step back ” stated as 
all dimensions of the position of particles are updated at every iteration, there is a chance that some 
components in this vector move closer to a better solution, while others actually move away from that 
good solution. As long as the objective value of the new position vector is better than the objective 
value of the previous position, SPSO assumes that the solution has been improved, regardless if 
some dimension values have moved away from the good solution. To address this issue, Bonyadi 
and Michalewicz (2017) was proposed to divide the search space to d subproblems and different 
variables are updated by different subswarms, the variant is called “ Cooperative Particle Swarm 
Optimization”, CPSO . In addition, CPSO performed better than many other variants of PSO, it had 
two major issues as follows:

•	 It might converge to pseudominima,
•	 Its performance depends on the correlation of the subproblems.

As SPSO does not suffer from these issues, a hybrid method was also proposed in Bonyadi and 
Michalewicz (2017) that combined SPSO with CPSO.

The global best vector in SPSO is considered as an indicator of a potentially high–quality area in 
the search space. Thus, it would be worthwhile to use this location together with the current location 
of a particle to generate a new location with no velocity vector in it. This idea is called “extrapolation 
Particle Swarm Optimization”, ePSO (Bonyadi and Michalewicz, 2017), in which the position update 
rule was revised as follows:
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The term   
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in better exploitation around the global best vector at the later stages of the run. The last term 
k e g xk

t t
i
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2b  

−( )  determines the step size that the current position  


x
t
i( )  takes to go towards the global 

best vector. This step size is controlled by the objective value of the current location and the objective 
value of the global best vector.

According to the velocity update rule of SPSO, attraction towards the personal or global best 
vectors does not depend only on j1  and �j2  (the acceleration coefficients), but also depends on the 
average values of  

 

p x
t
i

t
i-  and  

g x
t t

i-  . It was observed that in SPSO the value of CI  is usually 
smaller than SI  for any particle i  and any iteration t  that results in larger attraction towards g

t
 

than p
t
i . Hence, particles tend to concentrate around g

t
 that reduces the diversity of the swarm. To 

overcome this issue, a variant of PSO called “ Comprehensive Learning Particle Swarm Optimization” 
CLPSO, was proposed (Ashok et.al., 2016 and Bonyadi and Michalewicz, 2017). In CLPSO, the 
velocity update rule was modified to the movement equation:
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where the value of the j th  dimension of 
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(index of a particle). In fact, each dimension of p
t
i  is potentially taken from the personal best of 

different particles (Bonyadi and Michalewicz, 2017).
It shows potential locations where p

t
i  might be selected from for a particle i  in a swarm of size 

5 as an example value of l j
i ( )  was set to i  with the probability Pr  while it was set through a 

tournament selection to select the value of l j
i ( )  with probability q Pr= −1 . Results on 16 

benchmark test functions showed that the algorithm outperforms several other PSO variants on 
multimodal functions, while it performs almost the same as the others on unimodal functions. The 
discussion over the results was supported by the mean and variance of the found solutions.

The good performance of CLPSO on multimodal optimization problems stems from its 
effectiveness in exploration. In addition, as mentioned, CLPSO does not perform as well on unimodal 
optimization problems, which reflects the weak exploitation ability of the algorithm. To improve 
the ability of the CLPSO algorithm for exploitation. In Bonyadi and Michalewicz (2017) we were 
introduced new variant of PSO called “ Example-based Learning Particle Swarm Optimizer ”, ELPSO, 
Eq.17 was revised as follows:
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where 


P
t
i  is defined similarly to the one in CLPSO,except the strategy of setting l j

i ( )  which was 

selected randomly from a uniform distribution over all particles and each dimension j  of 


G
t
  (shown 

by 


G
t
j  is randomly taken from a set of previously sampled positions by g

t
). It was shown that the 

searching interval of each dimension by each particle is larger than what it was in CCPSO and CLPSO, 
which indicates a better diversification in the swarm. Experiments were conducted in (Nasir et.al., 
2012) on 16 benchmark test functions and the t-test was used to compare the results. These experiments 
showed that ELPSO is more effective than CLPSO in multimodal and unimodal optimization problems.
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The velocity update rule of SPSO was revised in Bonyadi and Michalewicz (2017) and a new 
method called “ perturbed Particle Swarm Algorithm ”, pPSA, was proposed to prevent SPSO from 
premature convergence. In pPSA, the vector g

t
 in the velocity update rule of the standard PSO is 

substituted for N g I
t



,s2( ) , where N  is the normal distribution and s2  is the variance. The value 
of s  was set through a very simple time-varying strategy. The results of applying the algorithm to 
some standard either unimodal or multimodal benchmarks showed that the algorithm performs better 
than SPSO in terms of the quality of solutions and robustness. In comparison to GCPSO, the results 
showed that both methods perform almost the same on multimodal functions, while GCPSO performs 
better than pPSA in unimodal functions. Results were compared based on mean, median, and standard 
deviation, which appears sufficient to show the advantages. No theoretical analyses were included 
in that article, however, it seems the algorithm can escape stagnation and guarantees local convergence 
as it uses a mutated global best vector with non-zero variance.

In addition, the algorithm is the same as SPSO in terms of transformation invariance, i.e.; rotation 
variance with scale and translation invariance.

The behavior of the particles is especially related to the exploitative and explorative diversity of 
particles. An algorithm variant of PSO called “ Diversity enhanced Neighborhood Search Particle 
Swarm Optimization”, DNSPSO, in which the explorative behavior was controlled by enhancing the 
diversity of the particles in the swarm. At each iteration, the position and velocity of each particle is 
updated by the rules in SPSO. The new position x

t
i
+1

 is then combined with x
t
i  to generate a trial 

particle. This is done by taking either the value of x or x
t
i j

t
ij,  +1

 for each j d∈ { }1,...,  with probability 
Pr . The personal best of the particle i  is updated according to the trial particle. Furthermore, two 
local searches were used to search the neighborhood of the personal best and global best vectors, 
which actually improved the exploitation ability of the algorithm. The usage of these neighborhood 
search strategies is beneficial for accelerating the convergence rate. The algorithm was applied to 30 
benchmark functions, 10 of them with up to 50 dimensions and 20 of them with 1,000 dimensions, 
and the results were compared with other methods such as CLPSO, APSO, and CPSO using Friedman 
test. Comparisons showed that the algorithm is comparable with others for both groups of test functions 
(Bonyadi and Michalewicz, 2017).

4.3 Hybridization
Over the years, researches on performance improvement of PSO have focused on fusing with other 
optimization methods. The aim of a hybrid method is to combine different optimization methods to 
take advantage of the merits of each of them such as:

•	 To improve the local search ability of the PSO algorithm.
•	 To increase the diversity and avoid premature convergence of the PSO algorithm.

The improvement is based on the integration of other approaches, viz., the so-called hybrid soft 
computing (HSC). For instance, using one method to adjust the parameters, including the inertia 
weight and convergence factor used to set the coefficients of SPSO during the run using DE and 
chaotic map or running different methods iteratively to improve the outcome of one another (Bonyadi, 
et.al, 2013 and Kalita et.al., 2019) where a GA was combined with SPSO.

we presented a novel particles movement named as “oscillation” which introduced the bond of 
each particle attracted by personal best and global best vector and “two steps forward, one step back” 
were investigated in Zhan et al. (2011).

In order to combine global and personal best vectors and use the combined vector in the velocity 
update rule, instead to study these cases the “Orthogonal Experimental Design”, OED, approach was 
applied to informed the new PSO variant was called “Orthogonal Learning Particle Swarm 
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Optimization”,OLPSO. The combined position was then used in the velocity update rule exactly as 
in CLPSO (see Eq.17) where p

t
i  was replaced by the vector generated by OED approach. This strategy 

was tested on SPSO and LPSO where results on some test cases showed significant improvement 
(based on the t-test) on the performance of these algorithms when OED is used. The optimal solution 
of most of the tested functions was at the center of the coordinate system (Bonyadi and Michalewicz, 
2017)].

Author’s presented different strategies to improve a better topology and adaptive coefficients of 
the PSO algorithm for updating each component were taken from previous studies and combined to 
generate a new PSO variant, called “Frankensteins Particle Swarm Optimization”, FPSO.

The main purpose of the method was to combine different PSO variants together and create a 
new method that enables them to overcome each other’s deficiencies. FPSO components for effective 
experimental results were:

•	 The inertia weight setting taken from DIPSO.
•	 The velocity was updated by FIPS formulation.
•	 Acceleration coefficients and setting of V

max
 were set by the method used in HPSO-TVAC.

•	 The topology was set by the method of adaptive variant.

Some experimental results showed that FPSO is effective and outperforms the methods it has 
been composed of. In addition, the same idea was tested in Tang et al. (2011) and a variant called “ 
Feedback Learning Particle Swarm Optimization”, FLSPO, was proposed. FLPSO used DIPSO for 
improve locally convergent

•	 Inertia weight
•	 An adaptive approach for j

1
 and j

2

•	 An adaptive strategy to use personal best or global best vector in the velocity update rule
•	 A mutation operator applied to a randomly selected dimension of the global best vector.

As such a mutation operator prevents stagnation, it is very likely that FLPSO is locally convergent. 
Although PSO performance has improved over the past decades, how to select suitable velocity 
updating strategy and parameters remains an important research domain. In Andizzon et al. (2015) 
we proposed a novel example of the basic particle swarm concept, with two types of agents in the 
swarm, “explorers” and “settlers”, that could dynamically exchange their role during the search 
procedure. This approach can dynamically update the particle velocities at each time step according 
to the current distance of each particle from the best position found so far by the swarm. With good 
exploration capabilities, uniform distribution random numbers in the velocity updating strategy may 
also affect the particle moving. Thus, (Fan andYan, 2014) put forward a “Self-Adaptive PSO with 
Multiple Velocity Strategies”, SAPSO-MVS to enhance PSO performance. SAPSO-MVS could 
generate self-adaptive control parameters in the total evolution procedure and adopted a novel velocity 
updating scheme to improve the balance between the exploration and exploitation capabilities of the 
PSO algorithm, and it was proposed to avoid to tune the PSO parameters manually.

As there are many different position/velocity update rules and each of them contain their good 
point and bad point in different situations, it would be beneficial to investigate which update rule is 
more beneficial at the current situation (iteration) and use that strategy for further iterations. For 
example, a self-adaptive method was proposed in which the most effective PSO variant was selected 
during the run (iteration) for the problem with different position/velocity update rules (Wang et al, 
2013). This new learning algorithm variant was called “Self-Adaptive Learning Particle Swarm 
Optimization”, SALPSO. As each velocity update rule had its own capabilities in exploration or 
exploitation situations, it was expected that the overall activities of the algorithm are improved. To 
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explain this situation, for each particle and every k  iterations (a constant experimentally set to 10), 
the probability of using each update rule was updated based on the improvement it produced during 
the last k iterations.

To update the particles, the velocity update rules were selected for each particle at each iteration 
according to their probabilities. Results showed that SLPSO is effective in dealing with both unimodal 
and multimodal optimization problems by observing results found based on mean and standard 
deviation, which proved the effectiveness of the objective function for convergence analysis. In (Ivo 
and Duarte, 2017) presented a very similar concept by the method was called “Self-Learning Particle 
Swarm Optimization”, SLPSO. The only difference between idea of Self Learning and Self Adaptive 
Learning is in the implementation of PSO algorithm, such as how to update probabilities and which 
velocity update rules are used in details. In (Mubeen and Dr. Dhananjay, 2022) proposed Crazy 
PSO in which particle velocity was randomized within predefined limits. Its aim was to randomize 
the velocity of some particles, named as “crazy particles” through using a predefined probability of 
craziness to keep the diversity for global search and better convergence.

The ideas used in SALPSO and SLPSO triggered the emergence of another PSO variant called 
“ Multiple Adaptive Methods for Particle Swarm Optimization”, MAM-PSO. In MAM-PSO, all 
particles were updated by the update rules in SPSO except the global best particle. A mutation operator 
was proposed in Zou et al. (2015) that generated a random point (according to some distribution) 
around current and moved the global best particle (the particle which its personal best is g

t
) to that 

random point rather than a moving the particle according to its velocity. To update the global best 
particle, two operator approaches, a mutation and a gradient descent operator approach, were designed 
and one of them was selected randomly at each iteration.

An extensive experiment was conducted that showed MAM-PSO is comparable with other PSO 
variants such as CPSO and CLPSO, which proved the effectiveness of the objective function for 
convergence analysis. We conjecture that the algorithm is locally convergent as it uses a mutation 
operator based on a Cauchy distribution with the center of the current position and a non-zero scale 
parameter. Furthermore, Meng et al. (2015) and Mubeen and Dhananjay (2022) introduced crisscross 
search particle swarm optimization (CSPSO), a new hybrid optimization technique and expanded the 
convergence of PSO algorithm through introducing the possibility of c-means and probability theory, 
and put forward probabilistic PSO algorithm analysis. There are some other high-quality articles 
related to the hybridization of PSO, where SPSO was combined with CMA-ES and self-adaptive 
particle swarm optimization conducted in Harrison et al. (2018) and the following most recent studies 
focused on in an improved convergence particle swarm optimization algorithm with random sampling 
of control parameters (SC-PSO), the main contribution and comparison in different aspects such as 
the convergence performance of SC-PSO, the convergence curves of the PSO variants algorithms are 
on the some selected functions and the findings represent SC-PSO’s convergence speed is faster than 
of any of the comparison algorithms and its advantages are prominent were discussed in Lijun et al. 
(2019) and Tong et al. (2019). All population-based metaheuristic optimization algorithms have two 
main parts—exploration and exploitation. Some optimization techniques are very good at exploration, 
and some are very good at exploitation. So, an optimizer with good exploration and bad exploitation 
is often combined with an optimizer with bad exploration and good exploitation to form a hybrid 
optimizer. Thus, the hybrid optimizers are very good at both exploration and exploitation. Some 
hybrid metaheuristic techniques are genetic algorithm (GA-PSO), Whale Optimization Algorithm 
with simulated annealing (WOA-SA), cuckoo search and differential evolution (CS-DE), Particle 
Swarm Optimization and Cuckoo Search (PSO-CS), Particle Swarm Optimization and Gravitational 
Search Algorithm (PSO-GSA) etc, well stated in Shankar et al. (2022).

There are several unsolved problems in PSO algorithm research, including but not limited to look 
for PSO applications. Because most PSO applications are currently limited to continuous, single-
objective, unconstrained, deterministic optimization issues, we should focus on (i). potential future 
directions to investigate the performance of PSO variants to deal with UOPs through theoretical 
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perspective and general discussions on experimental results on merits of the proposed approach, 
e.g.; first hitting time, convergence, stability and fixed point and constraint handling method for 
constraint optimization problems (COPs). (ii). discrete/stochastic, multi-objective, constrained, un-
deterministic, dynamic optimization problems. PSO’s application areas should be increased at the 
same time. This path of research started in Bonyadi and Michalewicz (2017) but to the best of our 
knowledge, remained untouched for optimization algorithms in the field of evolutionary computation.

5. CONCLUSION

From the convergence analyses of PSO related to its convergence properties, transformation invariance, 
modification of components, coefficients adaptation, population sizing, topology, hybridization 
reviewed above, we can draw the following important conclusions.

•	 In Section 3, the first part of this article concentrates on the limitations of PSO that have been 
theoretically investigated in the past years. These limitations were categorized into two main 
groups: convergence and transformation invariance.

•	 In subsection 3.1, the convergence properties of PSO it was pointed out that analyzing different 
behaviors of particles before convergence and convergence analysis includs convergence to a 
fixed point, local convergence, and stagnation of other PSO variants and there are not many 
studies on the first hitting time analysis of PSO variants, constitute potential research directions.

•	 In subsection 3.2, an important area of study in convergence analyses of PSO is the transformation 
invariance property of the algorithm. Indeed, there are not many PSO variants that are 
transformation invariant, which makes this topic an open area for new ideas and analyses presented 
in some articles (Bonyadi and Michalewicz, 2017), these properties are important for an algorithm 
since without these properties it is impossible to scale its good performance achieved on a test 
set to a wide variety of problems.

•	 In subsection 4.1, apart from theoretical studies, the algorithm parameters in PSO are usually 
determined depending on the specific problems, application experience, and numerous experiment 
tests related to modifications of components and parameters of PSO. Topology of the swarm, 
setting coefficients, and population size are parameters of PSO that were investigated in this 
paper, so it has no versatility. Hence, how to determine the algorithm parameters conveniently 
and effectively is another urgent problem to be studied.

•	 In subsection 4.2, more attention should be emphasized on the highly efficient PSO algorithm 
and put forward suitable core update formula and effective strategy to balance the global 
exploration and local exploitation. In addition, articles that modified the velocity update rule 
of PSO were analyzed.

•	 In subsection 4.3, some other studies that hybridized the algorithm with other optimization 
methods to improve the overall performance of the designed optimizer were reviewed. We also 
reported the computational complexity of some of the methods included in the experimental 
part of this survey.

•	 The majority of the research articles in this paper deal with continuous variables. Limited study 
evidences that the PSO algorithm had some issues dealing with discrete variables.

In the light of the analyses given above, it is clear that the convergence analyses of PSO studied 
by many researchers are all under certain rigid assumptions. Although these assumptions can simplify 
the problem models and then implies the concise advantages/ benefits of models can be summarized 
as follows:

•	 It has excellent robustness and can be used in different application areas with a little modification.
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•	 It has strong distributed ability, because the algorithm is essentially the swarm evolutionary 
algorithm, so it is easy to realize parallel computation.

•	 It can converge to the optimization value quickly.
•	 It is easy to combine with other algorithms to improve its performance.
•	 It can be easily studied and analyzed by researchers to identify the path of future work problems 

and how they can be translated into real-world benefits.
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