
DOI: 10.4018/IJSSOE.20210701.oa1

International Journal of Systems and Service-Oriented Engineering
Volume 11 • Issue 2 • July-December 2021

This article published as an Open Access article distributed under the terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and production in any medium,

provided the author of the original work and original publication source are properly credited.

52

ServiceNet:
A Service Network for Peer to Peer
Ji Liu, University of Sydney, Australia

Shiping Chen, CSIRO Data61, Australia

 https://orcid.org/0000-0002-4603-0024

Hang Zhao, University of Sydney, Australia

Jiyuan Yang, University of Sydney, Australia

Yu Shi, University of Sydney, Australia

Ruiqiang Li, University of Sydney, Australia

Dong Yuan, University of Sydney, Australia

ABSTRACT

Despite the enormous number of online docking services available, consumers sometimes struggle 
to discover the services they require from time to time. On the other hand, when finding matching or 
recommendation platforms from an academic or industry perspective, most of the related work they 
can find is centralized systems. Unfortunately, the centralized systems often have shortages, such 
as adv-driven, lack of trust, non-transparency, and unfairness. The authors propose a peer-to-peer 
(P2P) service network for service discovery and recommendation. ServiceNet is a blockchain-based 
service ecosystem that promises to provide an open, transparent, self-growing, and self-managing 
service environment. The article will provide the basic concept, the proto-architecture type’s design, 
and the proto-initial type’s implementation and performance assessment.

KEywORdS
Blockchain, P2P, Service Discovery, Service Recommendation

1. INTROdUCTION

With the rapid development and evolution of social society and technology innovation, more detailed 
industry segments have been categorized, such as family wealth management, family health care, 
personal fitness instructors, etc. Besides, both the service demander and the provider tend to be 
personalized and individualized, instead of blindly pursuing the traditional unified form. Therefore, 
a flexible, diverse, and fair service docking platform that matches it is needed. This kind of docking 
platform is most suitable for service-related segments in current world. Furthermore, according to 
eMarketer Report 2019 for the global internet trading market (eMarketer, 2020), the order number 
of service-related segments will increase 20% each year, and the order number for 2019 is about 2 

https://orcid.org/0000-0002-4603-0024


International Journal of Systems and Service-Oriented Engineering
Volume 11 • Issue 2 • July-December 2021

53

billion total amount of those orders is around 200 billion dollars. There is a rigid demand for a flexible 
service docking platform with a huge market capacity and opportunity.

Traditional service docking platforms are mostly centralized internet platforms. The owners of 
these platforms are in charge of all communication and data of both the service requesters and the 
service providers, so it has asymmetric advantages and rights, which makes it challenging to guarantee: 
(1) fairness of docking; (2) protection of personal information; (3) and reasonable charges. This leads 
to mistrust among many parties and affects the efficiency of the entire ecosystem. Moreover, the 
personalized recommendation mechanism is not intelligent enough to service current personalized 
orders for both demanders and providers. Hence, a decentralized service docking platform with more 
intelligence recommendation mechanism features is urgent for service-related segments.

This paper proposes a peer-to-peer (P2P) service network for service discovery and service 
recommendation, called ServiceNet. ServiceNet is inspired by blockchain technology and has 
the characteristics of decentralization, security, justice, privacy protection, and uses peer-to-peer 
technology to construct a decentralized service docking network platform to ensure fair docking, 
privacy protection of data and entities. In addition, ServiceNet leverages some ordinary senses and 
existing service recommendation techniques to avoid unnecessary intermediate links and services for 
efficiency, saving bandwidth and minimizing interruption to service providers. Our goal is to create 
an open, fair, transparent, and intelligent P2P network that truly protects the individual’s privacy, and 
provides a reliable, efficient, and win-win service docking ecosystem.

The rest of the paper is organized as follows. Section II describes our design principles and the 
architecture design based on the principles. Section III talks about the implementation of the design 
as a proof of concept (PoC) prototype. Section IV conducts some performance tests and analyses. We 
present and discuss some related work in Section V. And we conclude in Section VI.

2. SERVICENET ARCHITECTURE dESIGN

We envision a simple motivation example in the future to better present our basic idea and design 
principles for ServiceNet:

Alice and Bob use their spare time to provide proofreading services in Sydney and London, 
respectively. They register their services with ServiceNet as a service provider. Alex and Tom are 
both self-employed plumbers in Sydney and London, and registered their services with ServiceNet 
as a plumber service provider.
[Use Case 1] Merry is a PhD student in Sydney. She has completed her PhD thesis, and she would 
like to have her thesis checked before submitting it. She sends a thesis proofreading service request 
to ServiceNet. Since proofreading service can be conducted remotely, both Alice and Bob receive the 
request, and reply with their quotations. Since Bo’s price is a little bit cheaper with a lot of favorable 
comments, Merry picks up Bob to do the proofreading for her thesis.
[Use Case 2] Chen’s shower starts leaking. He sends the request to ServiceNet. Since the plumber needs 
to come to Chen’s house to fix the shower, ServiceNet only forwards the request to Tom (and maybe 
a few other plumbers near Chen’s home). Through a similar bidding process, Tom secures the deal.

2.1 design Principles
Based on the above visionary example, we derive our design principles as follows:

• ServiceNet is a P2P network with no centralized servers and business entity, which control 
ServiceNet.

• It is (almost) intelligent, because of no HR and operational cost.



International Journal of Systems and Service-Oriented Engineering
Volume 11 • Issue 2 • July-December 2021

54

• It should be smart and fair enough to routine a service request to the trimmer and suitable service 
providers, who is likely the best to deliver the service.

• It is able to grow and manage by itself like nature and human society.

2.2 ServiceNet Architecture
To follow the above design principle, we design the high-level architecture of ServiceNeT as shown 
in Fig. 1.

As shown in Fig. 1, ServiceNeT consists of a number of nodes (or called peers), which can be 
deployed onto different continentals and are fully connected via the Internet. Each peer has similar 
local data and the same functionality, i.e., routine the service requests to the other nodes if required. 
Clients, either service providers or requesters, can send and receive service-related messages using 
laptops, iPads, and smartphones via any peer nodes. We provide a detailed design for the serviceNet 
node in the following subsection.

2.3 ServiceNet Peer Architecture design
Each ServiceNet peer node contains at least three components to realize the system at our initial design: 
(a) peer management; (b) Pub/Sub messaging service; and (c) P2P connection service, i.e., the ICE 
server. While it is feasible to integrate these three components into a single server, we designed them 
separately for flexible configuration and deployment in the future. Fig. 2(a) shows the components 
of the ServiceNet Peer.

The ICE server is responsible for checking combinations of candidates and establishing a P2P 
connection between peers. On the other hand, the message transmitting server is a message broker 
in the Pub/Sub process. It should accept subscription requests from subscribers and route data 

Figure 1. Overall architecture of ServiceNet



International Journal of Systems and Service-Oriented Engineering
Volume 11 • Issue 2 • July-December 2021

55

according to the topic when the publishers publish messages. Since the ICE server and the message 
transmitting server can be complex to be designed and deployed from a fresh start, we should take 
advantage of matured technologies. Except for the three key attributes, the LTS (Long-Term Support) 
of technologies chosen should be considered.

The actual server is responsible for peer management and WebRTC intermediary signaling 
support. In terms of peer management, it should be in charge of peer registration and keep an instance 
of peer connection. Though the management of peers requires help from persistent data saved in the 
database, the information stored should be minimized. Thus, the concern of information asymmetry 
can be mitigated. Besides, it should cooperate with the ICE server to finish the candidate’s check 
between peers using the connections it keeps. The initial signaling phase can use the connection 
channel provided by the actual server to enable meta-data exchanging. The overall design of the 

Figure 2. Architectures of ServiceNet Node and Client Model App



International Journal of Systems and Service-Oriented Engineering
Volume 11 • Issue 2 • July-December 2021

56

application layers is following the MVP (Model-View-Presenter) pattern. Components are designed 
into modules to ensure high scalability and modularity, as shown in Fig. 2(b).

2.3.1 Design of Persistent Layer and Data Access Layer
Due to the decentralization nature of the system, the storage load is shifted from the server to 
peers. All peer are supposed to store their information and share with others when needed. Besides, 
synchronization is required for mutual data like chat messages between peers. In terms of the type of 
the database, we prefer the classical relational database to enable ORM (Object Relational Mapping). 
An ERD (Entity Relationship Diagram) in Fig. 3 is used to show the database design.

PeerId value is used for peer queries in the actual server. This means the querying using such value 
can be carried on without an actual peer record in the local database. Thus, peerId is not considered 
as a foreign key in the database. This leads to the disperse of the two tables, Rating and Wanted. 
However, a potential relationship does exist among the Peer, the Rating and the Wanted tables.

On the other hand, a data access layer is designed to enable access to the database using OO 
(Object-Oriented) languages. ORM framework is used to map the relational database into OO objects, 
thus avoiding raw SQL queries. Proper and well-supported ORM framework should be selected to 
realize the layer. The ORM should also expose pre-defined interfaces to regulate operations to the 
database.

2.3.2 Service Layer
The service layer is consisting of the P2P connection component and the service routing component. 
The P2P connection component is mainly responsible for maintaining a connection with the actual 
server and assisting with establishing a P2P connection with others. There is a coupling between 
the actual server and the ICE server due to the signaling service. Thus, the design of client-side also 
integrates the functions. Meanwhile, publishing and subscribing messages are handled by the local 

Figure 3 Application Database ERD



International Journal of Systems and Service-Oriented Engineering
Volume 11 • Issue 2 • July-December 2021

57

service routing component. It is the endpoint in the service routing network. It should contain user-
defined filters as a local message gateway. Additionally, the two components are supposed to work 
together to act as the presenter. A response to the user request will be created by querying the local 
database and exchanging data with the server. The pattern seems similar to the traditional centralized 
business system, but the difference is that data storage and business logic are injected into the peers. 
That is to say: the server only transmits messages, the peers handle the actual work.

2.3.3 Presentation Layer
The single UI component can be simple to design but complex to implement. Key attributes considered 
at this stage should be extensibility because we are not focusing on UI design at this stage. The UI 
should be modulized thus can be easily extended to increase user acceptability in the future. Embedded 
Ui framework could be considered to fulfill the requirement.

Our system design partially addresses the scalability issue from the following two angles: (a) 
Each node/peer will recommend the local service providers first according to the nature of the services 
(e.g. face-to-face services). As a result, the kind of requests will not be broadcasted further to the rest 
of the network and thus can improve the performance and scalability; (b) our system has inherent 
better performance and scalability by using asynchronous messaging for communications between 
peers (i.e., non-blocking sending and receiving by notification).

Another issue is unfair/malicious user behavior that a service provider itself or its relatives/
friends provide fake comments/high scores. This is a common issue for all service ecosystems, and 
some current work addresses the issue (Lau et al., 2012). Due to space, we are not going to address 
the issue in this paper.

3. IMPLEMENTATION OF SERVICENET PROTOTyPE

3.1 ServiceNode Implementation
ICE, NATS Messaging and the actual server can be standalone though we integrated the three servers 
together. Thus, if such integration becomes a bottleneck, they can be separated into clusters to disperse 
the load. The former two functional servers are deployed using existing server library NATS Server 
and Coturn, respectively. These libraries expose simple set-up configurations, thus can provide high 
portability and maintainability. Such matured and well-developed applications also provide high 
availability and reliability.

The actual server is deployed using Node.js. The service layer exposes an API for peer management 
and signaling assistance. The peer management function involves peer registry, storage, and etc., and 
is mainly handled in the SocketHandler.js. When a new peer is trying to sign up, the application will 
generate a UUID (Universally Unique IDentifier) and submit it together with the peer’s email and 
name. The UUID is generated using complex data, including time and device identifiers etc., by 
Android provided API. This enables the binding of peer account and the device. The server will detect 
alternation of devices to protect the account. The server will then generate another two ids called 
PId (Permanent Id) and TId (Temporary Id) in the service layer. PIds are short, human-readable and 
unique ids that can identify a peer. They will be generated during peer registry only once. TIds are ids 
generated by Socket.io to distinguish clients in the session. They are generated each time when the 
peer comes online. Both ids will be returned to the client via socket. Registered peers can use email 
or PId to log in anywhere from now on. There is also a map containing peer PId and peer connection 
instances within the SocketHandler.js for peer management and querying. Peers exchange meta-data 
in the signaling process with these connection instances. The server can be considered as a yellow 
page system integrated with the signaling function. Peers can fetch connect information from it then 
establish a P2P connection with its assistance. In terms of storage, only basic information of peers is 



International Journal of Systems and Service-Oriented Engineering
Volume 11 • Issue 2 • July-December 2021

58

stored on the server. The information includes peer PId, nickname, email and UUID. The Constraints.
js is created to ease the management of constants like the database connection configuration.

Since we identify availability and scalability as key attributes for the whole system, we postpone 
error handling to the client instead of in the server. If an error emerges during a client request, the 
error will be reported back to the client for further action. Scalability is achieved by separating logic. 
Key logic is being coded into separated.js files and functions are exposed via export keyword. Thus, 
modules can be changed and rewrite without interfering with encapsulation. On the other hand, though 
the server is written with Node.js, all functions can be easily rewritten to other languages as there is 
no complex business logic within it and substitution of key libraries can be found in other languages.

3.2 Mobile App Implementation
We implemented the client mobile App on Android. Fig. 4 below illustrates the implementation of 
the Android Mobile App.

Conforming to the design, the data access layer is designed to assist with accessing the persistent 
storage of the Android SQLite database by adopting ORM. It is composed of entity classes, greenDAO 
generated codes and model managers. Entities are POJOs (Plain Old Java Objects) or Java beans that 
only contain getters and setters. Each of the classes is mapped to a table in the relational database by 
greenDAO. Additionally, to be able to be transformed into byte streams, they implement the Parcelable 
interface. By overwriting the abstract methods, instances of the object can be transformed into Parcels. 
Parcels can be further processed into byte streams. Thus, the instances can be transported through the 
Internet or Android Bundles. On the other hand, to store unsupported database objects, converters 
are created. The converter is classes that override specific generic methods defined in the Property 
Converter interface, thus translating objects into database-supported types. For example, Date objects 
are transformed into strings to enable storage into the database. The StringDateTransformer sample 
code is shown below Fig. 5 (a)

The greenDAO module consists of a Database instance, DaoMaster, DaoSession, and entity DAOs 
(Data Access Objects) generated by the greenDAO library. It serves as the ORM API that maps the 
entities into tables. Connection to Android SQLite database is initiated in the database instance and 
maintained in the DaoMaster for future access. Transactions and object identity scope are managed in 

Figure 4. Implementation of the Application Layers



International Journal of Systems and Service-Oriented Engineering
Volume 11 • Issue 2 • July-December 2021

59

DaoSession. In other words, DaoSession defines Daos and uses them to query the desired result from 
the database. The session can also define whether caches of results are used, that is to say, whether 
all queries return the reference to the same object. Model managers are encapsulations of entity DAO 
objects. They expose supported operations to the entities via interfaces. It is the API that the service 
layer uses to negotiate with the data access layer. All managers should implement a corresponding 
interface and are managed in the ModelManagerFactory. This fosters the modularity and scalability 
of the module. The factory is a singleton and keeps a map of managers’ name and their instances. 
The instances are created in the form of weak references. This will save RAM and avoid duplicate 
creation of instances in a short period. The pseudo-code is shown in Fig. 5 (b), and the client mobile 
App UI is shown in Fig. 6(a).

3.3 P2P Connection Implementation
The layer mainly consists of two network components and multiple internal service logic components. 
The WebRTCClient module is a daemon service running at the backend since the user logged in. It 
is used to establish and maintain the connection with the actual server and handle P2P connection-
related operations. It uses EventBus message bus to communicate with other components. In detail, 
when the user is trying to sign up or log in, the service will be started and try to connect with the 
server. Then after several message exchanging, it will keep a stable connection with the server. It also 
supports several query functions which can fetch data from the server. EventBus events are exposed 
as interfaces for these functions. The sequence diagram in Fig. 6(b) below can show the processes.

Socket.io is used for establishing a connection with the server. We referenced git repository 
from Naoyuki Kanezawa for Java support (Darrachequesne, 2020). The application can offer high 
scalability and portability in terms of client-server connection. WebRTCClient is also responsible for 
establishing a P2P connection with peers. It will use WebRTC’s RTCPeerConnection API for signaling 
and peer instance creation. A peer is abstracted as a Peer object containing the peer’s identification, 
a peer connection instance, and a data channel instance. A map with a peer’s permanent Id and a 
Peer instance is kept for querying.

NASTS utilities are responsible for connecting with the NATS server, subscribing to a specific 
channel, and receiving published messages from the channel. It serves as the backbone for the service 
routing process. Users are required to define filters when subscribing and publishing. The filters will 
block unqualified messages from users’ awareness. Thus, all messages the user attempts to publish or 
possibly views will be first piped into a filter. This triggers intelligent service matching for individuals. 
The service logic module contains utility classes for the system. The Eventbus module is designed 
for application internal message exchange from Greenrobot. The coupling of components can be 
decreased because direct method calls are transformed to message exchange by EventBus. It adopts 
the pattern of Pub/Sub to realize internal message exchanging. An object can register and subscribe to 
a specific kind of event. When another registered object publishes an instance of the event, subscribers 
can get the instance in order of priority and react to it. There is a concept of a “sticky event” that 
can be received by subscribers even the event is sent in advance. The use of EventBus decreases the 

Figure 5. Snapshot of the mobile App implementation



International Journal of Systems and Service-Oriented Engineering
Volume 11 • Issue 2 • July-December 2021

60

employment of listeners and overall composition, thus increase modularity since all components can 
work separately with communication only via messages.

GreenDaoHelper helps with the initialization of GreenDAO functions. It redefines database 
update behaviors and provide support for writing and reading encrypted database. The toolkits include 
multiple utility classes, which are mostly static. It integrates commonly used functions like GPS, 
string transformer, UUID generator, etc.

4. PERFORMANCE EVALUATION

We have used scenario analysis, failure analysis, server testing and result analysis, load test, stress 
test, soak test, etc., to evaluate the performance of our system. Some of the significant analysis will 
introduce below. The performance of the server is tested in terms of response time and throughput. 
Response time is measured under a variety of circumstances. On the other hand, throughput is used 
to measure how many requests the server can handle in the given unit of time (normally second).

4.1 Test Setting
In terms of the test scenario, the server will be tested against the three operations identified above. 
In detail, the registration, login, and fetching peer list operations are being tested under different 
workloads. The workload refers to the client arrival rate in a unit time (second). For example, a test 
under workload 300 in 10 seconds will result in a total of 3000 (300*10) client’s arrival. It should 
be clarified that there are overlaps between the operations. For instance, in the login operation, the 
virtual user will first sign up and then login. Such overlap will influence how we treat the statistics. 

Figure 6. The implementation of SericeNet



International Journal of Systems and Service-Oriented Engineering
Volume 11 • Issue 2 • July-December 2021

61

Then the response time and the throughput statistics will be collected and used to draw figures. The 
response time for login and fetch peers are the total time of accumulation to the previous operations, 
as explained above. That is to say, the response time of login operation is the sum of sign-up and the 
actual login operations. Tests were carried out five times under each load and the average result was 
calculated to gain better accuracy. Moreover, the tests were divided into load, stress and soak test 
types depending on the period and arrival rate. The throughput of the server is recorded during the 
soak test. The upper bound of server load is identified as 500, which is our ideal maximum client 
arrival rate in this early stage. The stress test will end at a rate of 1000 clients per second, which is 
enough to test the capability of the server. And the standard arrival rate is set to 300 clients per second.

On the other hand, we encountered issues when selecting test technologies. Though initially, we 
aimed to simulate the Android environment as real as possible, hardware capacity vastly limits the 
possibility. The cost of starting multiple Android emulators is extremely high thus is not considered. 
However, even simulating using Socket.io client with Java reveals infeasible after attempts. The high 
concurrent Socket.io clients will soon fully occupy the CPU. Thus, we decided to use Node.js based 
testing tool Artillery. It can simulate client operations by writing scripts and provides high performance 
even under high concurrency. Furthermore, for increasing the reality of the simulation, random realistic 
data is generated by faker.js. The p95 and p99 are selected as attributes in our system. Regarding the 
detailed test environment, it is listed together with the computer configuration in Table 1.

4.2 Baseline Load Test
The server was tested with 50, 100, 200 and 500 workloads for 10 seconds. Line charts are shown in 
Fig. 7 (1)-(3). Firstly, the figures are analyzed solely. We can see an obvious boost in response time 
for all three operations. This is caused by the limitation of the database. The maximum concurrent 
connection to the local MySQL database is limited to 500. Meanwhile, though there are only 200 
clients sending requests each second, the server commonly cannot finish all the requests during the 
one-second interval. Thus the accumulation of requests results in reaching the bound of the database 
connection. Thus, some of the following requests are required to queue for database access. On the 
other hand, the increase of response time reaches its peak at 300-500 clients/s load. This is where the 
server is saturated. This means all incoming requests are immediately queued until another request 
is finished and a database connection is available.

Then the figures are compared with each other crosswise. There is a notable increase in response 
time between the registration and the other two operations. This is due to the increased query to the 
database. Because login needs to firstly sign up and then verify the login information, which is in 
total 2 queries, thus, can lead to longer response time. The double of queries also leads to a quick 
boost of the times, as shown in the figures. Another interesting point is the increase in response time 
between login and fetching peers’ operations. It increases little when the arrival rate is low. However, 
when the rate is high, the distinction is visible. The storage pattern of peer information leads to the 
difference. Since the information of peers is attached to the connection instance then stored into a 
map that is in memory, the querying of the map can be finished in milliseconds when it is small. 
However, when more clients are online and the volume of the map keeps growing, the query is as 

Table 1. Test Environment

Processor Intel(R) Core (TM) i7-6700HQ @ 2.6GHz (8 CPUs)

RAM 16384MB

Database MySQL Community Server 5.7.27

Client Emulator Artillery 1.6.0

Data Generator Faker.js 4.10.0



International Journal of Systems and Service-Oriented Engineering
Volume 11 • Issue 2 • July-December 2021

62

efficient. Hence, more key-value pairs can drop into the same bucket in the map, thus increase the 
time of finding the desired data.

4.3 Stress Test
As 500 clients per second are identified as the ideal upper bound of arrival rate, 600, 700, 800, and 
1000 clients per second exceeding the limit were tested. Thus, we can analyze the performance of the 
server under high stress. The results are shown in Fig. 7 (4)-(6). As shown in the figure, though the 
stress doubles to 1000clients/s, the response time does not very much. It stays at a similar level as the 
peek we identified previously. Thus, we believe that the server will not reveal further sudden response 
time spike under high stress in the current stage. Moreover, the server never fails or produces faults 
during the stress test such the availability and reliability can be confirmed. One thing worth noting 
is the gap between p95 and p99 in the fetching operation. This is caused by the map issue identified 
above. Some key-value pairs fall in the same array in the map, thus leads to a longer response time.

4.4 Soak Test
The result of the soak test is shown in Fig. 7 (7)-(9). This result does not expose much concern as 
no failure nor a sudden vary in response time occurred. There is a slight decrease in time when 
the time scale is enlarged, this might occur due to the repetition rate of data generated by faker.
js. As time elapses, more comparable data can be generated, thus resulting in more rejection when 

Figure 7. Put the testing results all together



International Journal of Systems and Service-Oriented Engineering
Volume 11 • Issue 2 • July-December 2021

63

registration. This further leads to immediate failure when the virtual client tries to login or getting 
peers’ information. On the other hand, because the three operations have over-laps, throughput is 
subtracted to gain a clearer image. For example, the final throughput of login is the product of login 
throughput subtracts registration throughput. It remains around 200-270 requests/s which is acceptable 
to handle the request at the current stage.

In summary, the server does offer high availability and reliability both in low and high workloads. 
It is acceptable that the server can respond in 4 seconds even under high stress for all operations for 
respond time. Moreover, throughput is enough to handle the workload we expected in such an early 
stage. The current bottleneck is in the database access.

5. RELATEd wORK

Some researchers have contributed a lot to the field of services discovery. Kozlenkov et al. (2006) 
point that service discovery is regarded as one important aspect while developing service-centric 
systems. They propose a framework and build a prototype for helping architecture-driven service 
discovery. The design phase of development lifecycle can be reduced significantly by this framework, 
which can offer the system’s functionalities and satisfy properties and constraints.

Hu, Guan, and Zhong (2006) introduced a decentralized service discovery algorithm, 
named DSDA, to make service discovery algorithm can be suitable for grid environment. 
Val, Vasirani, Rebollo, and Fernández (2012) believe that the efficient of service discovery is 
depending on agents’ collaboration and the structure among the parties in a distributed system. 
They proposed a self-organization mechanism, which can improve the efficient. Yang, Wu, 
and Chen (2011) illustrate that web service is a new generation of web-based applications. 
Meanwhile, they also point that with the increasing of quality and quantity of services, it is 
an urgent question to provide appropriate services for personalized demand. For solving the 
above question, they introduce an ontology-based approach of service recommendation with 
dynamic programming theory, which is tested to be relatively accurate. Li, Wang, Sun, and 
Zhou (2017) also believe that it is very important to recommend personalized web services to 
users. They think that the temporal influence is an important key factor of Quality of Service. 
However, the existed papers all ignored it. Thus, they try to add the temporal influences as a 
factor to predict Quality of Service value, and the result shows that their method outperforms 
other existed methods.

Several scholars and authors have formerly presented reviews on several use cases of adopting 
P2P platforms in practice. Kellerer et al. (2007) built a P2P service platform for mobiles for 
new ways of service provisioning. The system they built has a relative lower cost and higher 
data privacy. In the field of social web services, Pantazoglou and Tsalgatidou (2008) built a 
P2P based platform for publication and discovery in order to solve the problem they found. 
The platform combines the features of decentralization of P2P and maintenance of Web service 
descriptions, introduces social networking idea of interactions between service demanders and 
service providers via collective intelligence emerging. Graffi et al. (2011) introduce a life social 
network platform based on P2P. Liu et al. (2015) propose an improvement of JXTA-Ovarlay with 
the idea of P2P. Kim and Chung (2018) adopt a hybrid P2P network in health field, and they use 
it to mine health-risk factors with PHR similarity. There are many papers about adopting P2P 
platforms in practice, some have been proved to be successful, and only limited applications of 
applying P2P platform for service-related segments.

Our platform absorbs the advantages of past scholars and removes their disadvantages in p2p 
respect. At the same time, the characteristics of automatic service discovery are added, which improves 
performance the docking platform a lot.



International Journal of Systems and Service-Oriented Engineering
Volume 11 • Issue 2 • July-December 2021

64

6. CONCLUSION

This paper explored the idea of building a P2P decentralized service docking network. The 
decentralized service docking platform is designed and implemented by integrating several techniques, 
including publish/subscribe system (NATS), peer-to-peer communication (WebRTC), to support users 
with flexibility, diversity, and equivalent fairness. This application is implemented on the Android 
mobile platform utilizing Android Studio for code development. Initial performance tests are also 
conducted, and the testing results are provided and discussed.

Although there is an initial proof of concept of ServiceNet idea, we foresee this is an interesting 
topic for research community and industry to further explore its research issues and potential 
applications along this direction. For example, two immediate future work for us are: (a) to provide 
interlining service recommendation/routing capability using machine learning technology; (b) to 
build on-line service booking and payment components with security in mind.



International Journal of Systems and Service-Oriented Engineering
Volume 11 • Issue 2 • July-December 2021

65

REFERENCES

Darrachequesne. (2020). EVENT_CONNECT_TIMEOUT in the migration guide. Retrieved March 2020, from 
https://github.com/socketio/socket.io-client-java

eMarketer. (2020). eMarketer Report 2019 for global internet trading market. Retrieved from http://www.
eMarketer.com

Graffi, K., Gross, C., Stingl, D., Hartung, D., Kovacevic, A., & Steinmetz, R. (2011, January). LifeSocial. KOM: 
A secure and P2P-based solution for online social networks. In 2011 IEEE Consumer Communications and 
Networking Conference (CCNC) (pp. 554-558). IEEE.

Hu, J., Guan, H., & Zhong, H. (2006, November). A decentralized service discovery algorithm for grid 
environment. In Proceedings of the 4th international workshop on Middleware for grid computing (p. 19). 
Academic Press.

Kellerer, W., Despotovic, Z., Michel, M., Hofstatter, Q., & Zols, S. (2007, January). Towards a mobile peer-to-peer 
service platform. In 2007 International Symposium on Applications and the Internet Workshops (pp. 2-2). IEEE.

Kim, J. C., & Chung, K. (2018). Mining health-risk factors using PHR similarity in a hybrid P2P network. Peer-
to-Peer Networking and Applications, 11(6), 1278–1287.

Kozlenkov, A., Fasoulas, V., Sanchez, F., Spanoudakis, G., & Zisman, A. (2006, May). A framework for 
architecture-driven service discovery. In Proceedings of the 2006 international workshop on Service-oriented 
software engineering (pp. 67-73). Academic Press.

Lau, R. Y., Liao, S. Y., Kwok, R. C. W., Xu, K., Xia, Y., & Li, Y. (2012). Text mining and probabilistic language 
modeling for online review spam detection. ACM Transactions on Management Information Systems, 2(4), 1–30.

Li, J., Wang, J., Sun, Q., & Zhou, A. (2017, June). Temporal influences-aware collaborative filtering for QoS-
based service recommendation. In 2017 IEEE International Conference on Services Computing (SCC) (pp. 
471-474). IEEE.

Liu, Y., Sakamoto, S., Matsuo, K., Ikeda, M., Barolli, L., & Xhafa, F. (2015). Improvement of JXTA-overlay 
P2P platform: Evaluation for medical application and reliability. International Journal of Distributed Systems 
and Technologies, 6(2), 45–62.

Pantazoglou, M., & Tsalgatidou, A. (2008, July). A P2P platform for socially intelligent web service publication 
and discovery. In 2008 The Third International Multi-Conference on Computing in the Global Information 
Technology (iccgi 2008) (pp. 271-276). IEEE.

Val, del E., Vasirani, M., Rebollo, M., & Fernández, A. (2012, June). Enhancing decentralized service discovery 
through structural self-organization. In Proceedings of the 11th International Conference on Autonomous Agents 
and Multiagent Systems-Volume 3 (pp. 1429-1430). Academic Press.

Yang, Z., Wu, B., & Chen, J. (2011, July). A Measure standard for ontology-based service recommendation. In 
2011 IEEE World Congress on Services (pp. 137-144). IEEE.

https://github.com/socketio/socket.io-client-java
http://www.eMarketer.com
http://www.eMarketer.com


International Journal of Systems and Service-Oriented Engineering
Volume 11 • Issue 2 • July-December 2021

66

Ji Liu obtained his master’s degree from the University of Sydney in 2015. He is taking his doctor degree in 
School of Electrical & Information Engineering, University of Sydney currently. His research interests include 
blockchain, tokenization, fintech, data science management and analysis, and some combinations of finance and 
IT technologies.

Shiping Chen is an IT professional with over 20 years research experiences and combined R&D skills. From 1990 
to 1999, he worked on real-time control, parallel computing and CORBA-based Internet gaming systems in research 
institutes and the IT industry. Since joining in CSIRO in 1999, he has worked on a number of middleware-related 
research and consultant projects, including software architecture, software testing, software performance modelling 
and trust computing. He has published extensively in these areas, ranging from academic research papers to 
in-depth industry reports. In the past several years, he has been working closely with the University of Sydney 
by teaching and co-supervising PhD/Master students. He is actively involved in research community services on 
web and service computing areas including WWW, ICSOC, ICWS, SCC. His current research interests include 
service computing (esp. Web Service Management Systems) and cloud computing (esp. Trusted Cloud Storage 
and Cloud-based Secure Collaboration Systems).

Dong Yuan was born in Jinan, China. He received the B. Eng. degree and M. Eng. degree from Shandong University, 
Jinan, China, in 2005 and 2008, the PhD degree from Swinburne University of Technology, Melbourne, Australia, 
in 2012, all in computer science. He is currently a Senior Lecturer in the School of Electrical and Information 
Engineering at the University of Sydney, Australia. His research interests include cloud and edge computing, 
data management in parallel and distributed systems, scheduling and resource management, business process 
management and workflow systems.


