
Ubiquitous Semantic Applications

Der Fakultät für Mathematik und Informatik
der Universität Leipzig

eingereichte

DISSERTATION

zur Erlangung des akademischen Grades

Doktor-Ingenieur

(Dr. Ing.)

im Fachgebiet Informatik

vorgelegt

von Dipl.-Ing. Timofey Ermilov

geboren am 1. Januar 1987 in Murmansk, Russland

Die Annahme der Dissertation wurde empfohlen von:
1. Prof. Dr. Klaus-Peter Fähnrich, Universität Leipzig

2. Prof. Dr. Amit Sheth, Wright State University

Die Verleihung des akademischen Grades erfolgt mit Bestehen der
Verteidigung am 18.12.2014 mit dem Gesamtprädikat

magna cum laude.

Bibliographic Data

Title: Ubiquitous Semantic Applications
Author: Timofey Ermilov
Institution: Universität Leipzig, Fakultät für Mathematik und Informatik
Statistical Information: 151 pages, 49 figures, 5 tables, 119 literature references

III

Thesis Summary

As Semantic Web technology evolves many open areas emerge, which attract
more research focus. In addition to quickly expanding Linked Open Data (LOD)
cloud, various embeddable metadata formats (e.g. RDFa, microdata) are becoming
more common. Corporations are already using existing Web of Data to create new
technologies that were not possible before. Watson by IBM an artificial intelligence
computer system capable of answering questions posed in natural language can
be a great example.
On the other hand, ubiquitous devices that have a large number of sensors and

integrated devices are becoming increasingly powerful and fully featured computing
platforms in our pockets and homes. For many people smartphones and tablet
computers have already replaced traditional computers as their window to the
Internet and to the Web. Hence, the management and presentation of information
that is useful to a user is a main requirement for today’s smartphones. And it
is becoming extremely important to provide access to the emerging Web of Data
from the ubiquitous devices.
In this thesis we investigate how ubiquitous devices can interact with the

Semantic Web. We discovered that there are five di↵erent approaches for bringing
the Semantic Web to ubiquitous devices. We have outlined and discussed in
detail existing challenges in implementing this approaches in section 1.2. We have
described a conceptual framework for ubiquitous semantic applications in chapter 4.
We distinguish three client approaches for accessing semantic data using ubiquitous
devices depending on how much of the semantic data processing is performed on
the device itself (thin, hybrid and fat clients). These are discussed in chapter 5
along with the solution to every related challenge. Two provider approaches (fat
and hybrid) can be distinguished for exposing data from ubiquitous devices on
the Semantic Web. These are discussed in chapter 6 along with the solution
to every related challenge. We conclude our work with a discussion on each of
the contributions of the thesis and propose future work for each of the discussed
approach in chapter 7.

IV

Publications

This thesis is based on the following publications and proceedings, in which I
have been author, editor or contributor. At the respective chapter and section, I
included the references to the appropriate publications.

Proceedings, (co)-edited

• Proceedings of the 8th extended semantic web conference on The seman-
tic web: research and applications (ESWC 2011). [Tramp et al., 2011a,
Ermilov et al., 2011b]

• Proceedings of the third Russian conference on Knowledge Engineering and
Semantic Web (KESW 2012). [Ermilov et al., 2012]

• Proceedings of the 15th International Conference on Information Integration
and Web-based Applications & Services
(iiWAS 2013). [Ermilov and Auer, 2013]

Journal Publications, peer-reviewed

• Ubiquitous Semantic Applications: A Systematic Literature
Review [Ermilov et al., 2014].

V

Acknowledgments

I would like to thank all the colleagues with whom we jointly edited the proceed-
ings and journal papers: Sebastian Tramp, Norman Heino, Ali Khalili, Michael
Martin, Philipp Frischmuth, Jens Lehmann, Saeedeh Shekarpour, Quan Nguyen,
Natanael Arndt, Daniel Gerber and Sören Auer.
I would like to thank our colleagues from the AKSW research group for their

helpful comments during the development of this thesis. This work was partially
supported by a grant from the European Union’s 7th Framework Programme
provided for the project LOD2 (GA no. 257943). Special thanks go to Amrapali
Zaveri, Michael Martin, Jörg Unbehauen and Ali Khalili as well as our amazing
post-docs of AKSW – Axel, Jens and Thomas.
I would like to thank Prof. Fähnrich for his scientific experience with the e�cient

organization of the process of a PhD thesis. Furthermore, I would like to thank
Dr. Sören Auer for his continuous help and support.

VI

Contents

1. Introduction 1
1.1. Introduction and motivation . 1
1.2. Challenges . 3

1.2.1. Data exchange challenges 3
1.2.2. Platform fragmentation . 4
1.2.3. Reconciliation and data ownership 5

1.3. Contributions . 6
1.4. Chapter Overview . 8

2. Semantic Web Technologies 11
2.1. The Definition of Semantic Web 11
2.2. Resource Description Framework (RDF) 12

2.2.1. Resource . 12
2.2.2. Property . 13
2.2.3. Statement . 13
2.2.4. RDF Serialization Formats 14
2.2.5. Ontology . 17
2.2.6. Ontology Languages . 18
2.2.7. SPARQL Query Language 19
2.2.8. Triplestore . 20

3. State of the art 22
3.1. Introduction . 22
3.2. Research Method . 24

3.2.1. Research Questions . 25
3.2.2. Search Strategy . 25
3.2.3. Study Selection . 26
3.2.4. Data Extraction and Analysis 27
3.2.5. Overview of Included Studies 29

3.3. Results . 29
3.3.1. Terminology . 30
3.3.2. Possible User Roles . 34
3.3.3. Ubiquitous Semantic Applications Development Approaches 35
3.3.4. Quality Attributes . 37
3.3.5. Quality Attributes Dependencies 43
3.3.6. Applications Evaluation 43

VII

Contents

3.4. Applications . 44
3.4.1. OntoWiki Mobile . 44
3.4.2. csxPOI . 46
3.4.3. mSpace Mobile . 48
3.4.4. myCampus . 50
3.4.5. MSSW . 51
3.4.6. Bottari . 53

3.5. Research and Technology Challenges 54
3.6. Conclusions . 57

4. A conceptual framework for ubiquitous semantic applications 61
4.1. Definition of the ubiquitous semantic applications 61

4.1.1. Definition . 62
4.2. Architecture . 63

4.2.1. Presentation layer . 64
4.2.2. Utility layer . 64
4.2.3. Business logic layer . 64
4.2.4. Data layer . 65

4.3. Classification of ubiquitous semantic applications 65
4.3.1. Device type . 66
4.3.2. Client-server workload balancing 66
4.3.3. Semantic technology depth 66
4.3.4. Information flow direction 67
4.3.5. Semantic richness . 67
4.3.6. Semantic integration . 68
4.3.7. User involvement . 68

5. Client Approaches 69
5.1. Thin client approach . 69

5.1.1. Introduction . 69
5.1.2. Architecture . 70
5.1.3. Replication . 72
5.1.4. User Interface . 75
5.1.5. Use Case and Evaluation 77
5.1.6. Conclusions . 80

5.2. Hybrid client approach . 81
5.2.1. Introduction . 81
5.2.2. Distributed Semantic Social Networking 82
5.2.3. A Mobile DSSN Client . 87
5.2.4. Evaluation . 93
5.2.5. Conclusion . 96

5.3. Fat client approach . 96
5.3.1. Introduction . 97
5.3.2. Mobile Use Cases and Requirements 98

VIII

Contents

5.3.3. Architecture of a Distributed Semantic Social Network . . 100
5.3.4. Implementation of a Mobile Interface 103
5.3.5. User perspective . 107
5.3.6. Conclusion . 108

6. Provider Approaches 109
6.1. Fat provider approach . 109

6.1.1. Introduction . 109
6.1.2. Approach: Embedded Linked Data Server 110
6.1.3. Implementation: Android Linked Data Server 114
6.1.4. Evaluation . 117
6.1.5. Conclusion . 121

6.2. Hybrid provider approach . 121
6.2.1. Introduction . 121
6.2.2. Approach: Hybrid Linked Data Server 122
6.2.3. Use cases . 124
6.2.4. Implementation . 125
6.2.5. Conclusion . 125

7. Conclusions and Future Work 126
7.1. Conclusions . 126

7.1.1. Thin client approach . 126
7.1.2. Hybrid client approach . 127
7.1.3. Fat client approach . 127
7.1.4. Fat provider approach . 128
7.1.5. Hybrid provider approach 128

7.2. Directions for Future Work . 129
7.2.1. Thin client approach . 129
7.2.2. Hybrid client approach . 129
7.2.3. Fat client approach . 129
7.2.4. Fat provider approach . 130
7.2.5. Hybrid provider approach 130

A. Curriculum Vitae 131

List of Tables 134

List of Figures 135

Selbständigkeitserklärung 151

IX

1. Introduction

1.1. Introduction and motivation

Tim Berners-Lee defines the Semantic Web as “an extension of the current Web
in which information is given well-defined meaning, better enabling computers
and people to work in cooperation” [Berners-Lee et al., 2001]. As Semantic Web
technology evolves many open areas emerge, which attract more research focus.
In addition to quickly expanding Linked Open Data (LOD) cloud (as shown
in Figure 1.11), various embeddable metadata formats (e.g. RDFa2, microdata3)
are becoming more common. Corporations are already using existing Web of Data
to create new technologies that were not possible before. Watson4 by IBM an
artificial intelligence computer system capable of answering questions posed in
natural language [Ferrucci et al., 2013] can be a great example.
On the other hand, ubiquitous devices (i.e. devices that are available to user

anywhere and at any time) that have a large number of sensors and integrated
devices are becoming increasingly powerful and fully featured computing platforms
in our pockets and homes. For many people smartphones and tablet comput-
ers have already replaced traditional computers as their window to the Internet
and to the Web. According to Cisco’s Global Mobile Data Tra�c Forecast Up-
date [Index, 2013] by the end of 2013, the number of mobile-connected devices will
exceed the number of people on earth. The report also predicts that the average
mobile connection speed will surpass 1 Mbps in 2014. In addition, monthly global
mobile data tra�c is expected surpass 10 exabytes in 2017. Hence, the management
and presentation of information that is useful to a user is a main requirement for
today’s smartphones. And it is becoming extremely important to provide access to
the emerging Web of Data from the ubiquitous devices. Today, ubiquitous devices
account for 21% of global Web usage5 and that number keeps growing. In parallel,
consumer grade ubiquitous devices are becoming more powerful and less expensive.
Currently 96% of the world is subscribed to mobile services6.
Furthermore, as a result of the computational power increase in ubiquitous

1Images taken from http://lod-cloud.net/
2http://www.w3.org/TR/rdfa-syntax/
3http://schema.org/
4http://www-03.ibm.com/innovation/us/watson/
5According to StatCounter statistics as of December 2013 http://gs.statcounter.com/
#mobile_vs_desktop-ww-monthly-201212-201312

6http://mobithinking.com/mobile-marketing-tools/latest-mobile-stats/a#
subscribers

1

http://lod-cloud.net/
http://www.w3.org/TR/rdfa-syntax/
http://schema.org/
http://gs.statcounter.com/#mobile_vs_desktop-ww-monthly-201212-201312
http://gs.statcounter.com/#mobile_vs_desktop-ww-monthly-201212-201312
http://mobithinking.com/mobile-marketing-tools/latest-mobile-stats/a#subscribers
http://mobithinking.com/mobile-marketing-tools/latest-mobile-stats/a#subscribers

1. Introduction

Figure 1.1.: Growth of the Linked Open Data (LOD) cloud from September 2008
(left) to September 2011 (right).

Figure 1.2.: Mobile tra�c growth from 2012 to 2017. [Index, 2013]

devices, the Internet of Things is becoming more important. The term Internet of
Things [Atzori et al., 2010] refers to the vision that all kinds of physical objects are
uniquely identifiable and have a virtual representation on the Internet. Increasingly,
some form of intelligence is either embedded into the object itself (e.g. by integrating
a system on a chip into a TV set or manufacturing equipment) or the object itself
is a smart device (e.g. a smartphone or tablet PC). As a result, these devices
can not only identify but also describe themselves by providing comprehensive
information. However, as the Web of Documents is meanwhile complemented by a
Web of Semantic Data, information provided on the Internet of Things should be
made available in standardized and semantically structured form as well.
In this thesis, we investigate how ubiquitous devices can interact with the Se-

mantic Web. We discovered that there are five di↵erent approaches for bringing

2

1.2. Challenges

the Semantic Web to ubiquitous devices. We distinguish three client approaches
for accessing semantic data using ubiquitous devices depending on how much of
the semantic data processing is performed on the device itself (thin, hybrid and
fat clients). These are discussed in chapter 5. Two provider approaches (fat and
hybrid) can be distinguished for exposing data from ubiquitous devices on the
Semantic Web.7 These are discussed in chapter 6.

1.2. Challenges

Ubiquitous devices are playing an increasingly important role for information
access. But there is a set of challenges that are required to be solved before the
Semantic web can be used on the ubiqtuious devices.

1.2.1. Data exchange challenges

There are two important aspects that are to be considered for ubiquitous semantic
applications: (a) fetching data from the Web of Data and displaying it to the end
user and (b) providing data from the ubiquitous device to other clients. In case of
fetching and displaying the data, there are currently three approaches for creating
clients:

• fat : all data storage and processing is performed on the client,

• hybrid : data is stored and processed partially on the client and on the Web
of Data,

• thin: data is only accessed and visualized by the client, but no actual data is
stored on the client.

In case of providing the data from the ubiquitous devices, there are currently two
approaches:

• fat : all data is stored and provided directly from the ubiquitous device,

• hybrid : data is stored and provided by the ubiquitous device as well as by
the online server containing the data replica.

Capabilities replication. In case of fat client approach, the ubiquitous application
stores all the retrieved data on the user’s device. This allows full access to the data
even in cases when there is no data connection available or when the original data
provider is o✏ine. The main problem of fat client approaches, in development of
ubiquitous semantic applications, is to provide the same capabilities as the original
data provider (e.g. SPARQL endpoint, di↵erent data serializations etc.).

7Note that there can not be a thin provider approach where no data is stored on the device.

3

1. Introduction

O✏ine functionality. In addition to the fat client approach, hybrid and thin
client approaches exist. Those two approaches are pretty close to each other in
terms of means of development. As (comparatively) powerful ubiquitous computing
devices are becoming more common, ubiquitous web applications have started
gaining popularity. Some of the existing web applications already use the Semantic
Web technologies and information in the form of Resource Description Framework8

(RDF) (e. g. TripIt9). An important feature of these applications is their ability
to provide o✏ine functionality with local updates for synchronization later with
a web server. In hybrid client applications this can be achieved in an easier way
than in thin client applications using the same approaches that work in fat client
applications with some adjustments.

Data conversion. In case of providing data from the ubiquitous device itself,
one of the challenges is converting existing structured data on on the device to
the RDF. It is important to provide a way to map existing structured data to the
vocabularies and ontologies, thus making it possible to expose this information as
dereferencable RDF.

Power consumption. A particular specific requirement when dealing with smart
and embedded devices are resource constraints. Due to progress in miniaturization,
memory and processing power is meanwhile not a constraining factor anymore for
most applications. Power consumption on the other hand is a key aspect, when
equipping devices with additional functionality.

1.2.2. Platform fragmentation

Another challenge application developers for ubiquitous devices face currently
is the plethora of development platforms as well as the incompatibilities between
them. Android (Google), iOS (Apple), Blackberry OS (RIM), WebOS (HP/Palm),
Symbian (Nokia) are popular and currently widely deployed platforms, with many
more proprietary (e.g. Sailfish OS) and open (e.g. Firefox OS) ones being available
or developed as well. As shown on Figure 1.3 the popularity of a platform can
change very quickly. For example, Android has overtaken the iOS as a dominant
system in just a bit more than two years. Because of that most of the developers
who were working on applications for the dominating platform (iOS in this case)
exclusively, at that point need to start learning a new programming language and
environment in order to bring their applications to the new most popular platform
(Android).

8http://www.w3.org/RDF/
9https://www.tripit.com/

4

http://www.w3.org/RDF/

1.2. Challenges

Figure 1.3.: World-Wide smartphone sales by operating system. [Gartner, 2013]

1.2.3. Reconciliation and data ownership

In addition, despite the success of applying the Semantic Web in development
of applications for ubiquitous devices several problems exist:

• The key problem in ubiquitous web applications is the reconciliation, i. e.
the problem of potentially conflicting updates from disconnected clients.

• As a consequence of the development platform fragmentation, realizing a
special purpose application, which works with many or all of these platforms
is extremely time consuming and ine�cient due to the large amount of
duplicate work required.

On other hand, there are provider applications and approaches for creating
such applications. Online social networking became one of the most popular
services on the Web. Making management and presentation of information about
contacts, social relationships and associated information are one of the few main
requirements and features of today’s smartphones.
The problem of managing and accessing user’s social information is currently

solved solely for centralized proprietary platforms (such as Google mail, contacts
& calendar) as well as data-silo-like social networks (e.g. Facebook). As a result of
this data centralization, users’ data is taken out of their hands; users are dependent
of the infrastructure of a single provider, they experience a lock-in e↵ect. Once
the data is published, users also lose control about the data they own, since it is
stored on a single server. Interoperability between platforms is rare and limited to
proprietary APIs and third-party applications that allow it. Since there are only a
few large players in social networking, the Web partly loses its distributed nature.

5

1. Introduction

Many people argue that social networks should allow users to keep a control
over their own data. The users should as well be able to host the data on an
infrastructure, which is under their direct control (e.g. their ubiquitous device). A
possibility to give the control over their data back to the users is the realization of
a truly distributed social network.
Within the Semantic Web there are already a number of standards and best-

practices for social, Semantic Web applications such as FOAF,WebID and Semantic
Pingback. However, there is no comprehensive strategy, how these technologies can
be combined in order to create an open and distributed social network; or how can
they be used e�ciently in a ubiquitous environment.
In this thesis, each of the aforementioned problems is discussed in detail, and

solution to each one is proposed and discussed.

1.3. Contributions

This thesis proposes approaches to tackle each of the five aforementioned chal-
lenges.
Regarding the first challenge mentione in section 1.2.1, i.e. the challenge of

making the information accessible on the device using fat client approach available
while providing same set of features as the original data provider, we developed
the Mobile Semantic Social Web client (MSSW). The main motivation behind this
is to create a ubiquitous Social Semantic Web framework, which could weave a
distributed social network based on semantic technologies.
Overall, we have accomplished the following contributions:

1. developed an architecture for making mobile devices endpoints for the Social
Semantic Web

2. implementation of the architecture for the Android platform

Apart from the fat client approach, we also devised a hybrid client approach that
allows creation of the platform independent Distributed Semantic Social Network
(DSSN) client. As an example implementation we created a Mobile DSSN Client.
The main motivation behind this is to provide access to the DSSN from as many
platforms as possible while maintaining the same set of features that is provided
by the fat client approach. With this approach we have tackled the challenges
mentioned in section 1.2.1 and subsection 1.2.3.
Overall, we have accomplished the following contributions:

1. developed an architecture for platform agnostic mobile client that fits into
the DSSN architecture

2. defined requirements in order to make the client part of the DSSN and make
it compatible with the widest variety of devices possible

6

1.3. Contributions

3. described the platform independent implementation of the client

4. discussed platform specific aspects that allow to enhance functionality of the
implementation when needed

With regard to the challenges of thin client approach (i.e. section 1.2.1 and subsec-
tion 1.2.3), we developed an OntoWiki Mobile approach realizing a mobile semantic
collaboration platform based on the OntoWiki framework [Heino et al., 2009]. The
main motivation behind this is to provide a generic, application domain agnostic
tool, which can be utilized in a wide range of very di↵erent usage scenarios ranging
from instance acquisition to browsing of semantic data on the go.
Basically, the OntoWiki Mobile has the following features:

1. comprises specifically adopted user interfaces for browsing, faceted navigation
as well as authoring of knowledge bases

2. allows users to collect instance data and refine the structured knowledge
bases on-the-go

3. implemented as an HTML5 web application, thus being a completely platform
independent ubiquitous device

4. allows o✏ine use in cases with restricted network coverage by using the novel
HTML5 local storage feature for replicating parts of the knowledge base on
the ubiquitous device

5. has the advanced conflict resolution strategy for RDF stores based on a
combination of the EvoPat [Rieß et al., 2010] method for data evolution and
ontology refactoring along with a versioning system inspired by distributed
version control systems like Git10

Regarding the challenge of exposing the information from the ubiquitous device
(as discussed in section 1.2.1), i.e. turning the device into a fat provider, we
developed an approach for equipping embedded and smart devices with a Linked
Data interface Embedded Linked Data Server. The main motivation behind this
is to enable any smart device (e.g. tablets, smart phones, TVs) to identify and
describe itself by providing comprehensive information in accordance with the
Linked Data principles.
Overall, we have accomplished the following contributions:

1. developed an approach for equipping embedded and smart devices with a
Linked Data interface

2. implemented the approach for Android devices with a particular focus on
the impact of power consumption

10http://git-scm.com/

7

http://git-scm.com/

1. Introduction

3. developed a performance vs. power benchmarking methodology

4. evaluated the approach using this methodology and shown, that the overhead
introduced by equipping a device with a Linked Data interface is neglectable
given modern software and hardware environments and moderate usage

Apart from the fat provider approach, we also devised a hybrid provider approach
for equipping embedded and smart devices with a Linked Data interface capable of
providing data even when the device itself is o✏ine. The main motivation behind
this is to enable any smart device (e.g. smart phones, robots) to identify and
describe itself by providing comprehensive information in accordance with the
Linked Data principles even during poor connectivity or absence of such.
Overall, we have accomplished the following contributions:

1. developed an approach for equipping embedded and smart devices with a
Linked Data interface capable of providing data even when the device itself
is o✏ine

2. developed a technical architecture for the approach

3. discussed possible implementation of the approach

1.4. Chapter Overview

As indicated in Figure 1.4, the chapters and sections of this thesis are arranged
as follows.
Chapter 2 introduces the concepts of the Semantic Web and its associated

technologies in context of ubiquitous devices, which constitutes the basic scientific
background required for the reader to understand the thesis. The chapter starts
by defining the Semantic Web followed by discussing the Resource Description
Framework (RDF), its components and why is it important for ubiquitous devices.
The chapter continues to explain the various RDF serialization formats (e.g. N-
Triples) and the di↵erences among them. Then, it moves to the crucial topic of
Semantic Web, specifically the ontology and the various languages that can be uses
to develop the ontologies. Thereafter, the SPARQL query language, triplestores
and how they support the SPARQL language is described.
Chapter 3 gives an overview of the State of the Art in the area of ubiquitous

semantic applications. First, the research method and the search strategy used to
find relevant studies is described. Then, the methodology of the extraction and
analysis of data is detailed. Furthermore, the chapter describes results of the search
by defining generally used terminology, outlining possible user roles, describing
common development approaches and defining quality attributes that help in
evaluation of ubiquitous semantic applications. Finally, six separate ubiquitous
semantic applications are discussed in-depth and concluded with an outline of
research and technology challenges.

8

1.4. Chapter Overview

Figure 1.4.: Overview of the thesis structure.

Chapter 4 describes a conceptual framework for ubiquitous semantic applica-
tions. First, a ubiquitous semantic application is defined as an entity. Then, the
generalized architecture of ubiquitous semantic applications is introduced. Finally,
the classification of ubiquitous semantic applications based on various factors is
described.
Chapter 5 provides an in-depth overview of existing client approaches for ubiqui-

9

1. Introduction

tous semantic applications. First, thin client approaches is introduced by detailing
an example application OntoWiki Mobile with real-world use cases. Then, the
hybrid client approach is outlined by describing the Mobile DSSN client. Finally,
the fat client approach is discussed by analysing the MSSW Android application.
Chapter 6 provides an in-depth overview of existing provider approaches for

ubiquitous semantic applications. First, commonly used fat provider approaches
are introduced by presenting Embedded Linked Data Server for ubiquitous de-
vices. Thereafter, hybrid provider approach and possible implementation of such
approaches is discussed.
Finally, Chapter 7 concludes with a discussion on each of the contributions of

the thesis and proposes future work for each of them.

10

2. Semantic Web Technologies

This chapter gives a general overview of the Semantic Web. It describes basic
concepts, the RDF serialization formats, the ontology and its languages in detail.
This chapter is mainly based on [Yu, 2007]1.

The rest of the chapter is organized as follows: In section 2.1, we define Semantic
Web. In section 2.2, we describe RDF and why it is important for ubiquitous
systems specifically. In subsection 2.2.1, subsection 2.2.2 and subsection 2.2.3 we
describe the basic elements of RDF in more detail. In subsection 2.2.4, we introduce
the RDF serialization formats. In subsection 2.2.5, we define the term Ontology.
In subsection 2.2.6, we describe the ontology languages. In subsection 2.2.7, we
describe the SPARQL query language. Finally, in subsection 2.2.8, we explain
triplestores.

2.1. The Definition of Semantic Web

There are many di↵erent definitions of the Semantic Web. Tim Berners-Lee, the
inventor of the World Wide Web, defined it as “not a separate Web but an extension
of the current one, in which information is given well-defined meaning, better
enabling computers and people to work in cooperation.” [Berners-Lee et al., 2001]
In other words, Semantic Web allows the machines not only to present data but
also to process it.
There is a dedicated team of people at the World Wide Web consortium (W3C)

working to improve, extend and standardize the Semantic Web, and many lan-
guages, publications, tools have already been developed (e.g. [Tramp et al., 2010b,
Heino et al., 2009]). W3C have defined Semantic Web as “the idea of having data
on the Web defined and linked in a way that it can be used by machines not just for
display purposes, but for automation, integration, and reuse of data across various
applications.” [W3C, 2009] In other words, Semantic Web is the machine-readable
Web. Semantic Web can be thought of as an e�cient way of representing the data
on the World Wide Web, or as a globally linked database.
Semantic Web depends on several technologies including Resource Description

Framework (RDF) and Uniform Resource Identifiers (URIs). In the following
sections we describe each of these technologies in details.

1Standard components of the Semantic Web and definitions for them were taken from the
book as they are following the defined standards and are widely used. Examples for each
component and descriptions of how those components fit into ubiquitous systems are provided
by the author.

11

2. Semantic Web Technologies

2.2. Resource Description Framework (RDF)

RDF is an XML-based language for describing information contained in a Web
resource. This Web resource can be anything, for example a Web page or a Web
site. RDF is the basic building block for supporting the Semantic Web, and is
same as HTML is for the conventional Web.
The properties of RDF are:

• RDF is a language recommended by W3C [W3C, 2004] and it is all about
metadata,

• RDF is capable of describing any fact (resource) independent of any domain,

• RDF provides a basis for coding, exchanging, and reusing structured meta-
data,

• RDF is structured; i.e. it is machine-understandable. Machines can do useful
operations with the knowledge expressed in RDF,

• RDF allows interoperability among applications exchanging machine under-
standable information on the Web.

RDF has several basic elements, namely Resource, Property and Statement,
which are discussed in the following subsections.
Utilizing RDF on ubiquitous devices is especially helpful since it allows the

devices to handle data for minimizing the cognitive load on the user. This can be
especially helpful for situations where user is interacting with the device when the
surroundings require full or most of the user attention (e.g. while driving).

2.2.1. Resource

A resource is any thing that is described by an RDF expressions. The resource
can be a Web site, a person, an ubiquitous device or anything else. Resource is
identified bya Uniform Resource Identifier (URI). The rationale of using URIs is
that the name of a resource must be globally unique.
In fact, URLs (Uniform Resource Locators), commonly used for accessing Web

sites, are simply a subset of URIs. URIs take the same format as URLs, e.g.
http://aksw.org/TimofeyErmilov. The main reason behind this is that the
domain name used in the URL is guaranteed to be unique, therefore the uniqueness
of the resource is ensured. In that case the domain name is used as a namespace.
Unlike URLs, URIs may or may not refer to an actual Web site or a Web page.
In the ubiquitous world, radio-frequency identification (RFID) tags are frequently

used to identify objects. One could say that a RFID tag in a specific network of a
ubiquitous devices is a URI.

12

http://aksw.org/TimofeyErmilov

2.2. Resource Description Framework (RDF)

2.2.2. Property

Property is a resource that has a name and can also be used to describe some
specific aspect, characteristic, attribute or relation of the given resource. For
instance, http://xmlns.com/foaf/0.1/name, denotes the name of some thing.
In other words, this property relates a resource representing a thing to its name.

http://aksw.org/TimofeyErmilov

http://aksw.org/Projects/OntoWiki

http://xmlns.com/foaf/0.1/currentProject http://xmlns.com/foaf/0.1/name
"Timofey Ermilov"@en

Figure 2.1.: RDF statement represented as a directed graph.

2.2.3. Statement

An RDF Statement is used to describe properties of resources. It is also called a
triple and has the following format

<resource (subject)> <property (predicate)> <property value (object)>.
The property value (object) can be a string, literal or another resource referenced
by the URI. For example:
<http://aksw.org/TimofeyErmilov>

<http://xmlns.com/foaf/0.1/currentProject>
<http://aksw.org/Projects/OntoWiki>.

This RDF statement simply states that “The subject identified by http://aksw.
org/TimofeyErmilov has a property identified by http://xmlns.com/foaf/0.1/
currentProject, whose value is equal to http://aksw.org/Projects/OntoWiki”.
This means that person “Timofey Ermilov” has a “currentProject” which is “On-
toWiki”.
Another example:

<http://aksw.org/TimofeyErmilov>
<http://xmlns.com/foaf/0.1/name>

“Timofey Ermilov”@en.

This RDF statement states that “The subject identified by http://aksw.org/
TimofeyErmilov has the property identified by http://xmlns.com/foaf/0.1/
name, whose value is equal to “Timofey Ermilov””. This means that person
“Timofey Ermilov” has a “name” whose value is “Timofey Ermilov” and the trailing
“@en” is the English language tag. In fact, RDF statements can also be expressed
as directed graphs, as shown in Figure 2.1.

13

http://xmlns.com/foaf/0.1/name
http://aksw.org/TimofeyErmilov
http://xmlns.com/foaf/0.1/currentProject
http://aksw.org/Projects/OntoWiki
http://aksw.org/TimofeyErmilov
http://aksw.org/TimofeyErmilov
http://xmlns.com/foaf/0.1/currentProject
http://xmlns.com/foaf/0.1/currentProject
http://aksw.org/Projects/OntoWiki
http://aksw.org/TimofeyErmilov
http://xmlns.com/foaf/0.1/name
http://aksw.org/TimofeyErmilov
http://aksw.org/TimofeyErmilov
http://xmlns.com/foaf/0.1/name
http://xmlns.com/foaf/0.1/name

2. Semantic Web Technologies

Subject Predicate Object

aksw:TimofeyErmilov rdf:type foaf:Person
aksw:TimofeyErmilov foaf:age "26"^^xsd:int
aksw:TimofeyErmilov foaf:skypeID "yamalight"
aksw:TimofeyErmilov foaf:birthday "1987-01-01"^^xsd:date
aksw:TimofeyErmilov foaf:name "Timofey Ermilov"@en
aksw:TimofeyErmilov foaf:currentProject akswProject:OntoWiki
akswProject:OntoWiki foaf:homepage <http://ontowiki.net>

Table 2.1.: Sample RDF statements.

It is worth pointing out here that the subject or the object or both can be
an anonymous resource, called a ”blank node”. Blank nodes are used basically
when the key purpose of a specific resource is to provide a context for some other
properties to appear. In order to distinguish a blank node from the others, the
RDF parser generates an internal unique identifier for each blank node. In other
words, this identifier given to the blank node helps in identifying the node in a
certain RDF document, whereas the URI given to a resource is guaranteed to be
globally unique.
Since URIs can be large, there is a short format for writing them i.e. by

using a prefix. For instance, if we use http://aksw.org/ as a prefix and give
it a label e.g. aksw, then resource http://aksw.org/TimofeyErmilov can be
written as aksw:TimofeyErmilov. Similarly, if http://xmlns.com/foaf/0.1/ is
used as a prefix with label foaf, then the properties http://xmlns.com/foaf/
0.1/name and http://xmlns.com/foaf/0.1/currentProject, can be written as
foaf:name and foaf:currentProject in short form. This format is very useful
in writing human-readable RDF statements.
Whenever more triples describing a specific resource are added, the machine gets

more knowledge about that resource. Table 2.1 shows more RDF statements about
Timofey Ermilov. This means that the resource of Timofey Ermilov is the subject
of other statements, which give more details about that resource. Note that the
object of a particular statement can be in turn the subject of other statement(s), e.g.
Timofey Ermilov has a current project identified by URI akswProject:OntoWiki
and the knowledge base contains more information about that project as well. Also,
note that the object of the second and fifth statement (a number and a date) has
a trailing datatype. This small knowledge base can also be viewed as a directed
graph as shown in Figure 2.2.
Using these simple RDF statements you can pose complex queries to the machine,

e.g. ”What is the homepage of Timofey Ermilov’s current project?”.

2.2.4. RDF Serialization Formats

Serializing RDF data is a very crucial issue since di↵erent platforms and environ-
ments work better with di↵erent data formats. It is especially true for ubiquitous
systems where a mobile phone could be interacting with a robot or a light switch.

14

http://aksw.org/
http://aksw.org/TimofeyErmilov
http://xmlns.com/foaf/0.1/
http://xmlns.com/foaf/0.1/name
http://xmlns.com/foaf/0.1/name
http://xmlns.com/foaf/0.1/currentProject

2.2. Resource Description Framework (RDF)

aksw:TimofeErmilov

foaf:skypeID

akswProject:OntoWiki
foaf:homepage

foaf:currentProject

foaf:Person

rdf:type

“yamalight”

"Timofey Ermilov"@en
foaf:name

http://ontowiki.net

Resource
String Literal

"1987-01-01"̂ x̂sd:date

foaf:birthday

Figure 2.2.: Small knowledge base about Timofey Ermilov represented as a graph.

1 <http:// aksw.org/TimofeyErmilov > <http :// www.w3.org /1999/02/22 - rdf -syntax -ns#type

> <http :// xmlns.com/foaf /0.1/ Person > .

2 <http:// aksw.org/TimofeyErmilov > <http :// xmlns.com/foaf /0.1/ age > "26"^^ < http ://

www.w3.org /2001/ XMLSchema #int > .

3 <http:// aksw.org/TimofeyErmilov > <http :// xmlns.com/foaf /0.1/ skypeID > "yamalight "

.

4 <http:// aksw.org/TimofeyErmilov > <http :// xmlns.com/foaf /0.1/ birthday >

"1987 -01 -01"^^ < http :// www.w3.org /2001/ XMLSchema #date > .

5 <http:// aksw.org/TimofeyErmilov > <http :// xmlns.com/foaf /0.1/ currentProject > <http

:// aksw.org/Projects/OntoWiki > .

6 <http:// aksw.org/TimofeyErmilov > <http :// xmlns.com/foaf /0.1/ name > "Timofey

Ermilov"@en .

7 <http:// aksw.org/Projects/OntoWiki > <http :// xmlns.com/foaf /0.1/ homepage > <http ://

ontowiki.net > .

Figure 2.3.: Sample N-Triples format.

There are several formats for serializing RDF data:

N-Triples

N-Triples is a simple line-based RDF serialization format. Each RDF triple is
written as a separate line and terminated by a period (.). Typically files with
N-Triples have the .nt extension [Grant and Beckett, 2004]. Figure 2.3 indicates
our sample triples encoded in N-Triples format.

RDF/XML

RDF/XML represents RDF triples in XML format [Beckett, 2004]. The RD-
F/XML format is more convenient for machines than N-Triples since the traditional
XML format is commonly adopted and there are a variety of libraries available
that simplify interaction with this format. Figure 2.4 shows our RDF example in
RDF/XML format. Files containing RDF/XML data have .rdf as the file extension.

15

2. Semantic Web Technologies

1 <rdf:RDF xmlns:log="http: //www.w3.org /2000/10/ swap/log#" xmlns:rdf="http: //www.w3
.org /1999/02/22 -rdf -syntax -ns#">

2 <rdf:Description rdf:about="http: //aksw.org/Projects/OntoWiki">
3 <homepage xmlns="http: // xmlns.com/foaf /0.1/" rdf:resource="http: // ontowiki.

net"/>
4 </rdf:Description >
5

6 <Person xmlns="http: // xmlns.com/foaf /0.1/" rdf:about="http://aksw.org/
TimofeyErmilov">

7 <currentProject rdf:resource="http: //aksw.org/Projects/OntoWiki"/>
8 <birthday rdf:datatype="http: //www.w3.org /2001/ XMLSchema#date">1987 -01 -01</

deathDate >
9 <age rdf:datatype="http://www.w3.org /2001/ XMLSchema#int">26</age>

10 <skypeID xmlns="http: // dbpedia.org/property/" xml:lang="en">yamalight </
skypeID >

11 <name xmlns="http: // dbpedia.org/property/" xml:lang="en">Timofey Ermilov </
name>

12 </Person >
13 </rdf:RDF >

Figure 2.4.: Sample RDF/XML format.

1 @prefix aksw: <http:// aksw.org/> .

2 @prefix akswProject: <http:// aksw.org/Projects/> .

3 @prefix foaf: <http:// xmlns.com/foaf /0.1/ > .

4 @prefix xsd: <http:// www.w3.org /2001/ XMLSchema#> .

5

6 aksw:TimofeyErmilov a foaf:Person;
7 foaf:age "26"^^xsd:int;
8 foaf:currentProject akswProject:OntoWiki;
9 foaf:birthday "1987 -01 -01"^^xsd:date;

10 foaf:skypeID "yamalight";
11 foaf:name "Timofey Ermilov"@en .
12

13 akswProject:OntoWiki foaf:homepage <http:// ontowiki.net > .

Figure 2.5.: Sample N3 format.

N3

N3 stands for Notation3 and is a shorthand notation for representing RDF graphs.
N3 was designed to be easily read by humans and it is not an XML-compliant
language [Berners-Lee and Connolly, 2011]. Figure 2.5 shows our RDF example in
N3 format. Files containing RDF data in N3 format normally have a .n3 extension.

Turtle

Turtle is a subset of N3. Turtle stands for Terse RDF Triple Language. Turtle files
have a .ttl extension [Dave and Berners-Lee, 2011]. This particular serialization is
popular among developers of the Semantic Web.

16

2.2. Resource Description Framework (RDF)

2.2.5. Ontology

W3C defines an ontology as “the terms used to describe and represent an area
of knowledge.” [Heflin, 2004].
This definition has several aspects that should be discussed. First, the definition

states that an ontology is used to describe and represent an area of knowledge. In
other words, an ontology is domain specific; it does not represents all knowledge
areas, but one specific area of knowledge. A domain is simply a specific subject
area or sphere of knowledge, such as literature, medicine, education, etc.
Second, the ontology contains terms and relationships among those terms.

Terms are also called classes, or concepts; these words are interchangeable. The
relationships between these classes can be expressed by using a hierarchy, i.e.
superclasses represent higher-level concepts and subclasses represent finer concepts.
The finer concepts have all the attributes and features that the higher concepts
have.
Third, in addition to the aforementioned relationships among classes, there is

another level of relationship expressed by using a special group of terms called
properties. These property terms describe various features and attributes of the
concepts and they can also be used to associate di↵erent classes together. Thus,
the relationships among classes are not only superclass or subclass relationships,
but relationships expressed in terms of properties as well.
In other words, an ontology defines a set of classes (e.g. “Person”, “Book”,

“Writer”), and their hierarchy, i.e. which class is a subclass of another one (e.g.
“Writer” is a subclass of “Person”). The ontology also defines how these classes
interact with each other, i.e. how di↵erent classes are connected to each other via
properties (e.g. a “Book” has an author of type “Writer”).

Person

Athlete Artist...

SoccerPlayer ... TennisPlayer Actor Writer...

Work

MusicalWorkBook ...

author

Subclass Superclass
Property :

Figure 2.6.: Excerpt of the DBpedia ontology.

Figure 2.6 shows an excerpt of the ontology representing DBpedia2. This ontology
shows that there is a class called “Writer” which is a subclass of the class “Artist”,

2http://dbpedia.org/

17

2. Semantic Web Technologies

which in turn a subclass of “Person”. William Shakespeare, Johann Wolfgang von
Goethe, and Dan Brown are candidate instances of the class “Writer”. The same
applies to the class “Work” and its subclasses. Note that there is a property called
“author” relating an instance of class “Work” to an instance of the class “Person”
i.e. it relates a work to its author. For instance, the book titled “First Folio” is
an instance of classes “Work” and “Book”, and related via property “author” to
its author “William Shakespeare”, which is an instance of the classes “Person”,
“Artist” and “Writer”.

So, why do need ontologies? The main benefits of an ontology are:

• it provides a common and shared understanding/definition about certain key
concepts in the domain,

• it provides a way for reuse of domain knowledge,

• it makes the domain assumptions explicit,

• it provides a way to encode knowledge and semantics such that machines
can understand it.

2.2.6. Ontology Languages

The question now is “What are the languages used to create ontologies?”. There
are several languages which can be used to encode ontologies such as RDF Schema
(RDFS) and Web Ontology Language (OWL).

RDFS

RDFS is an ontology language, which can be used to create a vocabulary for
describing classes, subclasses and properties of RDF resources and it is a W3C
recommendation [Brickley and Guha, 2004]. The RDFS language also associates
the properties with the classes it defines. RDFS can add semantics to RDF
predicates and resources, i.e. it defines the meaning of a given term by specifying
its properties and what kinds of objects these properties can have. It is worth
noting here that RDFS is written in RDF, so any RDFS document is a legal RDF
document.

OWL

The Web Ontology Language (OWL) is used to create ontologies and is also a
W3C recommendation [Bechhofer et al., 2004]. It is built on RDFS. We can say
that OWL = RDFS + new constructs for expressiveness. All classes and
properties provided by RDFS can be used in OWL ontologies. OWL and RDFS
have the same purpose which is defining classes, properties and relations among
these classes. OWL has an advantage over RDFS which is its capability to express
more complex relationships.

18

2.2. Resource Description Framework (RDF)

1 <http:// dbpedia.org/ontology/Person > <http :// www.w3.org /1999/02/22 - rdf -syntax -ns#

type > <http :// www.w3.org /2002/07/ owl#Class > .

2 <http:// dbpedia.org/ontology/Artist > <http :// www.w3.org /1999/02/22 - rdf -syntax -ns#

type > <http :// www.w3.org /2002/07/ owl#Class > .

3 <http:// dbpedia.org/ontology/Artist > <http :// www.w3.org /2000/01/ rdf -schema#

subClassOf > <http :// dbpedia.org/ontology/Person > .

4 <http:// dbpedia.org/ontology/Writer > <http :// www.w3.org /1999/02/22 - rdf -syntax -ns#

type > <http :// www.w3.org /2002/07/ owl#Class > .

5 <http:// dbpedia.org/ontology/Writer > <http :// www.w3.org /2000/01/ rdf -schema#

subClassOf > <http :// dbpedia.org/ontology/Artist > .

6 <http:// dbpedia.org/ontology/Work > <http :// www.w3.org /1999/02/22 - rdf -syntax -ns#

type > <http :// www.w3.org /2002/07/ owl#Class > .

7 <http:// dbpedia.org/ontology/Book > <http :// www.w3.org /1999/02/22 - rdf -syntax -ns#

type > <http :// www.w3.org /2002/07/ owl#Class > .

8 <http:// dbpedia.org/ontology/Book > <http :// www.w3.org /2000/01/ rdf -schema#

subClassOf > <http :// dbpedia.org/ontology/Work > .

9 <http:// dbpedia.org/ontology/author > <http :// www.w3.org /1999/02/22 - rdf -syntax -ns#

type > <http :// www.w3.org /2002/07/ owl#ObjectProperty > .

10 <http:// dbpedia.org/ontology/author > <http :// www.w3.org /2000/01/ rdf -schema#domain

> <http :// dbpedia.org/ontology/Work > .

11 <http:// dbpedia.org/ontology/author > <http :// www.w3.org /2000/01/ rdf -schema#range >

<http :// dbpedia.org/ontology/Person > .

Figure 2.7.: OWL representation of a part our ontology in N-Triples format.

Due to its expressiveness power, most ontology developers use OWL to develop
their ontologies. For example, an ontology developer can create a new class as the
union or intersection of two or more classes using the expressive power of OWL.
With OWL one can also declare that two classes are representing the same thing.
For instance, consider the case that there are two separate ontologies created by
di↵erent developers. In the first ontology there is a class called “Poet” and in the
other ontology there is a class called “PoetryWriter”. In fact, these classes are
equivalent to each other and in RDFS one cannot declare that these classes are
equivalent, but with OWL one can.
OWL provides some powerful features for properties as well. For example, in

OWL one can declare that two properties are the inverse of each other, (e.g. author,
and isAuthorOf). Figure 2.7 indicates a part of our ontology expressed in OWL.
Note that for property author we have defined two properties domain, and range.

The domain property defines the class of instances which can be the subject of that
property (author property), while the range property defines the class of instances
which can be the object of that property.

OWL has many powerful features, interested reader can find more about those
feature in [Bechhofer et al., 2004].

2.2.7. SPARQL Query Language

“The SPARQL Protocol and RDF Query Language (SPARQL) is a query
language and protocol for RDF.” [Clark et al., 2008]. SPARQL is a W3C standard
and it is used to ask queries against RDF graphs. SPARQL allows the user to write
queries that consist of triple patterns, conjunctions (logical “and”), disjunctions

19

2. Semantic Web Technologies

1 PREFIX aksw: <http :// aksw.org/>
2 PREFIX foaf: <http :// xmlns.com/foaf /0.1/ >
3 SELECT ?homepage
4 WHERE {aksw:TimofeyErmilov foaf:currentProject ?project.
5 ?project foaf:homepage ?homepage. }

Figure 2.8.: SPARQL query to get the homepage of Timofey Ermilov’s current
project.

(logical “or”) and/or a set of optional patterns [Wikipedia, 2013]. Examples of
these optional patterns are: FILTER, REGEX and LANG.
The SPARQL query specifies the pattern(s) that the resulting data should

satisfy. The results of SPARQL queries can be result sets or RDF graphs.
SPARQL has four query forms, specifically SELECT, CONSTRUCT, ASK and DESCRIBE
[Prud’hommeaux and Seaborne, 2008].
Let us take an example to clarify the usage of SPARQL. Assume that we want

to ask the query “What is the homepage of Timofey Ermilov’s current project?” to
our small knowledge base. Figure 2.8 shows a SPARQL query to get information
about the homepage of Timofey Ermilov’s current project.
In Figure 2.8, lines 1 and 2 define prefixes in order to write URIs in their

short forms. Line 3 declares the variables that should be rendered to the out-
put of that query, which is only one variable ?homepage. Note that SPARQL
variables start either with a question mark “?”, or with a dollar sign “$”. Line
4 states that for the statement with subject aksw:TimofeyErmilov and prop-
erty foaf:currentProject, we want the value of its object to be assigned to a
variable called ?project. Upon execution, this variable will take the value of
akswProject:OntoWiki. In line 5, we want variable ?project which now has the
value akswProject:OntoWiki, to be the subject of the next statement. In other
words, the statement will be akswProject:OntoWiki foaf:homepage ?homepage.
Now, variable ?homepage is the only unknown variable of the statement, and it
will take the value http://ontowiki.net. Eventually, its value will be rendered
to the output.

2.2.8. Triplestore

The crucial question here is “How do we store RDF data for e�cient and
quick access?”. Basically, RDF data is stored in triplestores. A triplestore is a
software program capable of storing and indexing RDF data e�ciently, in order to
enable querying this data easily and e↵ectively. A triplestore for RDF data is like
Relational Database Management System (DBMS) for relational databases.
Most triplestores support SPARQL query language for querying RDF data. As

20

2.2. Resource Description Framework (RDF)

there are several DBMSs in the wild, such as Oracle3, MySQL4 and SQL Server5,
similarly there are several triplestores. Virtuoso [Erling and Mikhailov, 2007],
Sesame [Broekstra et al., 2002] and BigOWLIM [Bishop et al., 2011] are typical
examples of triplestores for desktop and server computers. DBpedia, for example,
uses Virtuoso as the underlying triplestore. Since ubiquitous devices usually have
less powerful CPU and smaller memory size, there are special version of triplestores
that are built to be used on such low-power devices. Androjena6, RDF On The
Go7, µJena8 and OpenSesame9 are examples of such triplestores.

3http://www.oracle.com/us/products/database/overview/index.html
4http://www.mysql.com
5http://www.microsoft.com/en-us/sqlserver/default.aspx
6http://code.google.com/p/androjena/
7http://code.google.com/p/rdfonthego/
8http://poseidon.ws.dei.polimi.it/ca/?page_id=59
9http://bluebill.tidalwave.it/mobile/

21

http://www.oracle.com/us/products/database/overview/index.html
http://www.mysql.com
http://www.microsoft.com/en-us/sqlserver/default.aspx
http://code.google.com/p/androjena/
http://code.google.com/p/rdfonthego/
http://poseidon.ws.dei.polimi.it/ca/?page_id=59
http://bluebill.tidalwave.it/mobile/

3. State of the art

This chapter covers the State of the Art for the area of ubiquitous semantic appli-
cations. It provides a comprehensive overview of the existing approaches, systems
and applications as well as integrates them into a common conceptual scheme. The
main goal of this chapter is analyzing existing semantic applications, approaches
and systems for ubiquitous devices and providing a set of quality attributes, which
can serve as guidelines for designing suitable and e↵ective semantic applications
for ubiquitous devices as well as provide a simple but comprehensive model for the
categorization of existing ones. This chapter is based on [Ermilov et al., 2014].
The rest of the chapter is organized as follows. In section 3.1, we introduce the

reader to ubiquitous semantic applications. In section 3.2, we describe the research
methodology and the review protocol used for conducting the systematic review.
In section 3.3, we first define the basic terminologies and then we elaborate on the
results of the review by surveying the extracted quality attributes. In section 3.4,
we discuss three existing UbiSA and describe them in the light of the quality
attributes. In section 3.5, we report on the gaps and open research issues revealed
from the results of our systematic literature review. Finally, in section 3.6 we
conclude and present some ideas for future work.

3.1. Introduction

Recently practical approaches for the development of UbiSA that allow access to
the Web of Data have made quite some progress. On the backend side, a variety of
triple stores were developed and their performance and maturity improved steadily.
With increasing power of ubiquitous devices it has become possible to use some of
the triple stores on devices to allow o✏ine access to the semantic data. Similarly
tools and algorithms for processing and presenting data on ubiquitous devices
are progressing and approaches are deployed for the use on the emerging Web of
Data. The quantity and quantity of semantic content being made available on the
Data Web is rapidly increasing, mainly due to the use of automated knowledge
extraction techniques or due to the semantic enrichment and transformation of
existing structured data. Despite many interesting showcases (e.g. Sindice1,
Parallax 2 or PowerAqua3), we still lack more user friendly and scalable approaches
for the exploration, browsing and search of semantic data. However, the currently

1http://sindice.com/
2http://www.freebase.com/labs/parallax/
3http://technologies.kmi.open.ac.uk/poweraqua/

22

http://sindice.com/
http://www.freebase.com/labs/parallax/
http://technologies.kmi.open.ac.uk/poweraqua/

3.1. Introduction

least developed aspect of access to the semantic data is, from our point of view, the
user-friendly ubiquitous applications that provide access to rich semantic content.
To define UbiSA, we must first specify what we mean by ubiquitous applications

and semantic documents.
A guiding principle of ubiquitous applications is to break away from desk-

top computing to provide computational services to a user when and where
required [Salber et al., 1998]. Ubiquitous applications are characterized by two
main attributes [Weiser, 1991]:

• ubiquity : interaction with the system is available wherever the user needs it;

• transparency : the system is non-intrusive and is integrated into the everyday
environment.

Semantic documents are documents that consist of semantic data and describe
specific entities or collections of entities. Semantic data on the other hand is
the data that is defined and linked in a way that it can be used by machines
not just for display purposes, but for automation, integration and reuse of data
across various applications. Semantic data should provide a basis for coding, ex-
changing and reusing structured metadata among applications exchanging machine
understandable information on the Web.

Taking all of the above into account, we define ubiquitous semantic application as
the computer software implemented specifically for ubiquitous devices and designed
to help the user to perform specific tasks that satisfy the following requirements:

• the application is designed and developed specifically for (or with respect to)
ubiquitous devices,

• the application utilizes semantic data during the work process in any way
(e.g. executing SPARQL queries, reading or writing RDF triples).

A ubiquitous semantic application provides a human accessible interface with
capabilities for reading, writing or modifying semantic documents. Semantic
documents facilitate a number of important aspects of information management:

• For search and retrieval, enriching documents with semantic representations
helps to create more e�cient and e↵ective search interfaces, such as faceted
search (e.g. in [Ermilov et al., 2011a]) or question answering. Ultimately,
users are empowered to fight the increasing information overload and gain
better access to relevant documents and answers related to their information
needs.

• For information presentation, semantically enriched documents can be used
to create more sophisticated ways of flexibly visualizing information, such
as geospatial maps as described in [Viana et al., 2007, Braun et al., 2010,
Wilson et al., 2005b].

23

3. State of the art

• For information integration, semantically enriched documents can be used to
provide unified views on heterogeneous data stored in di↵erent applications
by creating composite applications such as semantic mashups, like ones
presented in [Wilson et al., 2005b, Ermilov et al., 2011a].

• To realize personalization, semantic documents provide customized and
context-specific information which better fits user needs and will result in
delivering customized applications such as personalized semantic portals
(e.g. [Ruta et al., 2010a, WeiBenberg et al., 2006]).

• For reusability and interoperability, enriching documents with semantic repre-
sentations (e.g. using the SKOS4 and Dublin Core5 vocabularies) facilitates
exchanging content between disparate systems.

There are already many approaches, frameworks and tools available for ubiqui-
tous devices which address di↵erent aspects of this tasks. Due to the wealth of
di↵erent approaches emerging, it is crucial to obtain an overview on the advance-
ment in this emerging field. Furthermore, having a holistic view on approaches
and tools provides us with an exhaustive set of quality attributes, which are
important for conceiving guidelines for developing more e↵ective and intuitive
UbiSA. Since most of the current approaches and applications are developed for
smartphones (e.g. [Tramp et al., 2011a, Viana et al., 2007, Wilson et al., 2005b,
Bellini et al., 2012, Ostuni et al., 2013]), these quality attributes will be especially
important for new and upcoming ubiquitous devices such as application-enabled
smart TVs, gaming consoles, wearable computers, etc. UbiSA development for
tablet computers that are also gaining popularity and predicted to outnumber PCs
in the next few years can also benefit from defined quality attributes.
In this chapter, we summarize the findings of a systematic literature review

on UbiSA. We extract di↵erent types and properties of applications proposed for
ubiquitous use. The results reveal a set of quality attributes which can be used for
classification of UbiSA. Furthermore, we report on the suggested application types
and features proposed in the literature to realize these quality attributes.

3.2. Research Method

We followed a formal systematic literature review process for this study based on
the guidelines proposed in [Dyba et al., 2007, Kitchenham, 2004]. A systematic
literature review is an evidence-based approach to thoroughly search studies relevant
to some pre-defined research questions and critically select, appraise and synthesize
findings for answering the research questions at hand. Systematic reviews maximize
the chance to retrieve complete data sets and minimize the chance of bias. As

4http://www.w3.org/2004/02/skos/
5http://www.cs.umd.edu/projects/plus/SHOE/onts/dublin.html

24

http://www.w3.org/2004/02/skos/
http://www.cs.umd.edu/projects/plus/SHOE/onts/dublin.html

3.2. Research Method

part of the review process, we developed a protocol (described in the sequel) that
provides a plan for the review in terms of the method to be followed, including the
research questions and the data to be extracted.

3.2.1. Research Questions

The goal of our survey is analyzing existing semantic applications for ubiquitous
devices and thereby providing a set of quality attributes, which can serve as
guidelines for designing suitable and e↵ective semantic applications for ubiquitous
devices. To achieve this goal we aim to answer the following general research
question:
What are the existing approaches for development of ubiquitous semantic appli-

cations?
We can divide this general research question into the following more concrete

sub-questions:

• RQ1. How to classify existing approaches for development of ubiquitous
semantic applications?

• RQ2. What type of applications are developed in each approach?

• RQ3. What are the features supported by the proposed application?

• RQ4. How is the application evaluated?

After doing some pilot searches and consulting experts in the field, we obtained
a list of pilot studies which served as a basis for the systematic review.

3.2.2. Search Strategy

To cover all the relevant publications, we used the following electronic libraries:

• ACM Digital Library

• IEEE Xplore Digital Library

• ScienceDirect

• SpringerLink

• ISI Web of Sciences

Based on the research questions and pilot studies, we found the following basic
terms to be most appropriate for the systematic review:

1. ubiquitous OR mobile

25

3. State of the art

Figure 3.1.: Steps followed to scope the search results.

2. semantic OR linked data OR web of data OR data web

3. application OR software OR system

To construct the search string, all these search terms were combined using
Boolean “AND” as follows:

1 AND 2 AND 3

The next decision was to find the suitable field (i.e. title, abstract and full-text)
to apply the search string on. In our experience, searching in the “title” alone
does not always provide us with all relevant publications. Thus, “abstract” or
“full-text” of publications should potentially be included. On the other hand, since
the search on the full-text of studies results in many irrelevant publications, we
chose to apply the search query additionally on the “abstract” of the studies. This
means a study is selected as a candidate study if its title or abstract contains the
keywords defined in the search string. In addition, we limited our search to the
publications that are written in English and are published after 2002 (when the
first ISWC conference was held).

3.2.3. Study Selection

Some of the studies might contain the keywords used in the search string but
might still be irrelevant for our research questions. Therefore, a study selection
has to be performed to include only studies that contain useful information for
answering the research question.
Peer-reviewed articles that satisfy all the following inclusion criteria are selected

as primary studies:

• I1. A study that focuses on ubiquitous semantic applications

26

3.2. Research Method

• I2. A study that either proposes an approach or a set of specific features for
the purpose of accessing semantic content on ubiquitous devices.

Studies that met any of the following criteria were excluded from the review:

• E1. A study that does not focus on ubiquitous semantic applications but
only mentions the term e.g. as an example or use case.

• E2. A study that does not propose any approach or specific features used in
development of UbiSA.

• E3. A study that is not about semantic data (e.g. studies about semantics
as the study of meaning).

The conduction of our search commenced in early September 2013. As a
consequence, our review included studies that were published and/or indexed
before that date. As shown in Figure 3.1, we first applied the search query on each
data source separately. Subsequently, to remove duplicate studies, we merged the
results obtained from the di↵erent data sources. To remove irrelevant studies, we
scanned the articles by title and thereby reduced the number of studies to 172.
Then, we read the abstract of each publication carefully and further decreased the
number of studies to 92. Finally, we added a list of additional papers recommended
by experts and then scanned the full-text of the publications. Experts recommended
adding 3 papers that did not appear in the results during the search phase. We
checked the full-text of studies to see if they fit with our predefined selection
criteria. The result comprised 48 publications that represented our final set of
primary studies.

3.2.4. Data Extraction and Analysis

The bibliographic metadata about each primary study were recorded using
the bibliography management platform JabRef 6. In addition, we extracted the
following information from each paper:

• used approach for UbiSA development

• type of application

• features supported by the application

• domain and type of user

6http://jabref.sourceforge.net/

27

3. State of the art

• evaluation method used in the paper

To analyze the information appropriately, we required a suitable qualitative
data analysis method applicable to our dataset. We used coding as our qualitative
analysis method. A common method that is used for this purpose is the grounded
theory method because the theories (the UbiSA approaches and application features)
are “grounded” in the data [Glaser and Strauss, 1967].
Constant comparison method, one of the grounded theory techniques, has been

often used in analyzing data and generating categories of data. Although constant
comparison method can be used on any set of data, it is particularly suitable for
the data that are context sensitive [Seaman, 1999] (i.e. data can be interpreted
di↵erently in di↵erent contexts). To interpret UbiSA approaches and application
features correctly, one often needs to understand in which context the approach and
feature is proposed and how it is addressed. For instance, consider one study that
mentions “interoperability” as a feature for application. Without understanding the
context of this feature, we cannot conclude whether this feature is about designing
interoperable UIs or about supporting annotation/ontology interoperability.
Miles and Huberman [Miles and M., 1994] described coding as a procedure for

the constant comparison method. Codes are tags or labels for assigning units
of meaning to the descriptive or inferential information compiled during a study.
Codes are e�cient data-labelling and data-retrieval devices [Miles and M., 1994].
One method of creating codes (recommended in [Miles and M., 1994]) is that of
creating a provisional “start-list” of codes prior to fieldwork. We created this
list from our research questions and the pilot studies. To carry out the analysis
systematically, we used the following coding procedures proposed by Lincoln and
Guba [Miles and M., 1994]:

• Filling-in: we read each study carefully and added the codes for related
fragments and items. As new insights or new ways of looking at the data
emerged, we reconstructed our coherent coding schema.

• Extension: if needed, we returned to materials coded earlier and interrogated
them in a new way, with a new theme, construct, or relationship.

• Bridging : if new or previously not understood relationships within units of a
given category were found, we recorded that relationship.

• Surfacing : we identified new categories which contained the previously cre-
ated codes.

We used the Weft QDA software7 to record the codes. More detailed information
on coding and usage of the Weft QDA software can be found in [Fenton, 2006].

7http://www.pressure.to/qda/

28

http://www.pressure.to/qda/

3.3. Results

3.2.5. Overview of Included Studies

For quantitative analysis purposes, we performed some queries on the collected
database of primary studies. The distribution of studies per year as shown
in Figure 3.2 indicates an increasing intensity of research in the area of ubiquitous
semantic applications. The remarkable rise after 2009 can be explained with the
emergence and increasing adoption of new touch-enabled smartphones lead by
Apple’s iPhone. The low number of publications in 2013 can be attributed by
commencing our survey in September, when most conference proceedings were not
yet published or properly indexed.

Figure 3.2.: Publications per year.

The primary studies included 29 conference papers, 11 journal articles, 4 work-
shop papers and 2 book sections. Among them, the following studies are survey
papers [Sakkopoulos, 2009, Bellavista et al., 2012] which provide an overview of
the approaches that unify semantic Web technologies with a number of di↵erent
mobile operations.

3.3. Results

In this section we first define the basic concepts used in the chapter and then
elaborate on the results of our qualitative data analysis.

29

3. State of the art

3.3.1. Terminology

Ubiquitous Device

Fr
on

t
en

d
mTriplestore

Context-Awareness

Server

TriplestoreData Replication

mOntology mReasoning Ontology Reasoning

Human Computer
Interaction

Application LayerSensorsLogic

Thin Client

Fat Client

Figure 3.3.: Ubiquitous semantic applications architecture.

A generalized architecture of ubiquitous semantic applications is depicted in Fig-
ure 3.3. The presented generalized architecture was conceived on the basis of
reviewed approaches, systems and applications to reflect all possible variations of
UbiSA. In general, any existing UbiSA can be described using this generalized
architecture. The opposite is true as well – it is possible to create any UbiSA by
instantiating the presented generalized architecture. In the sequel we describe the
research context terminology as well as individual components and concepts in
more detail.

Human Computer Interaction (HCI) is crucial for the development of ubiqui-
tous semantic applications and represents a research field that aims at improving
the interactions between users and computers by making computers more usable
and receptive to the user’s needs. This field is particularly relevant for ubiquitous
semantic applications, since ubiquitous devices such as smartphones, tablet PCs
and smart TVs o↵er a wide range of novel interaction paradigms.

Frontend is an abstraction, which simplifies the usage of underlying components
by providing a user-friendly interface for HCI. This area is especially important
for UbiSA development since ubiquitous devices might have several di↵erent ways
to interact with the user (e.g. touch screen input, voice control, gestures control,
camera input, etc). There are currently several standard approaches used to
develop front-ends such as:

• Native. Natively developed frontends provide users with familiar experi-
ence since usually all of the control elements are generated by operating
system thus resulting in a consistent look-and-feel. Native frontend devel-
opment is performed using tools provided by the platform manufacturer
and is thus limited to a specific platform. Hence, portability and conse-
quently development e�ciency are a main disadvantage of native frontend
development [Charland and Leroux, 2011].

30

3.3. Results

• Web. Web frontends are gaining popularity with the increase of data connec-
tion speeds and improvements of web browsers for ubiquitous devices. Web
frontends are built using web technologies such as HTML, JavaScript and
CSS. This results in exceptional portability. However, there are still many
nuances (e.g. di↵erent screen sizes, connectivity issues, hardware limitations)
that need to be considered while developing a web frontend (cf. [Roto, 2006]
for an in-depth discussion of such issues). One of their main issues is the
look-and-feel of the frontend, since it is not possible to provide a native user
experience for all platforms from a single web frontend.

• Abstract. Abstract frontend development approaches, that are inspired by
the model-driven development paradigm gained recently popularity. These
approaches define an abstract frontend description and to transform the
abstract model into a (usually limited) number of platform-specific frontends
which provide a native look-and-feel for each supported platform. The Unified
Interface Markup Language (UIML) as described in [Farooq Ali et al., 2005]
is an example. While providing native UI support for several platforms,
abstract development approaches are usually very limited with regard to the
customization of the frontend elements.

Context-Awareness is a term coined to describe applications that can passively
or actively determine their context by utilizing on-board or peripheral device
sensors. Especially in mobile and ubiquitous usage scenarios context-awareness is a
crucial aspect, since the device is used in very specific and distinct situations (e.g.
while walking or sitting in a restaurant). Also, mobile and ubiquitous devices have
a variety of sensors not available in desktop computers, such as GPS, accelerometer,
gyroscope, compass, etc. (a detailed overview is provided in [Lane et al., 2010]).
Hence, for applications supporting ubiquitous usage scenarios, it is of paramount
importance to employ the additional sensing techniques for optimally supporting
the users’ experience. Context-awareness includes two dependent parts: sensors
and logic. Logic is processing data from sensors and facilitates decision mak-
ing about the current user’s context. [Hu et al., 2009, Van Woensel et al., 2011a,
Costabello et al., 2012, Yu et al., 2012] describe various approaches in that regard.
A survey on context data distribution for mobile ubiquitous devices is also described
in [Bellavista et al., 2012]. While sensors can only be located on the ubiquitous
device, the logic layer can as well be moved to the server application layer (e.g. in
thin client approach section 3.3.3).

Ontology is a formal, explicit specification of a shared conceptualisation that
represents knowledge as a set of concepts within a domain as well as relationships
between those concepts. Ontologies can be used in various scenarios in the context
of UbiSA:

• Ontology authoring the UbiSA is used for the creation of ontologies on the

31

3. State of the art

ubiquitous device. For example, OntoWiki mobile (as described in sub-
section 3.4.1) is a comprehensive ontology and knowledge base authoring
interface.

• Ontology use in UbiSA can happen at the server (e.g. [Villalonga et al., 2009])
or directly at the ubiquitous device (labeled as mOntology in Figure 3.3).
Examples for the use of ontologies directly at the device are presented
in [Korpipää and Mäntyjärvi, 2003], [Liao et al., 2005], [Cano et al., 2012],
[Zargayouna and Amara-Hachmi, 2006] and [Hu and Moore, 2007].

Reasoning is the act or process of deriving logical conclusions from premises
known or assumed to be true. Depending on the UbiSA development approach, rea-
soning can be performed on the ubiquitous device itself (mReasoning on Figure 3.3,
e.g. [Chen et al., 2010, Steller et al., 2009, Ruta et al., 2010b, Ruta et al., 2012,
Motik et al., 2012]) or on the server (e.g. [Dietze et al., 2009]). Reasoning ap-
proaches being deployed directly on the device have to cope with resource re-
strictions (e.g. available memory capacity and processing power). Hence, most
mobile reasoning engines currently provide only simple rule processing through for-
ward/backward chaining [Ruta et al., 2010b]. There is also an increasing number
of studies that aim to develop scalable semantic reasoning techniques that are useful
for both ubiquitous and standard service selection algorithms [Steller et al., 2009].

Data Replication is the process of exchanging information so as to ensure con-
sistency between di↵erent UbiSAs or a UbiSA’s client and server application layers.
Replication is crucial for any UbiSA since the data connection might be limited,
unstable or not available at all. Maintaining data consistency while replicating
data to the client and synchronizing changes to the server is especially important
in the area of Social Semantic Web. This is because social user interactions usually
involves much collaboration aiming at creating and changing data. Examples of
approaches include:

• Frameworks for selective replication of data sets on mobile devices. The
goal of such frameworks is to provide access to data sets in situations with-
out network connectivity when communication with remote data sources is
impossible. Most frequently used technique is adding intermediate compo-
nents that handle queries transparently, either by forwarding them to the
actual data store if connectivity is up, or by answering them from a locally
cached partial replica of the data set on the mobile device, if there is no
connectivity [Schandl and Zander, 2009].

• Conflict resolution approach based on a combination of distributed revi-
sion control strategies as well as the data evolution and ontology refactor-
ing [Ermilov et al., 2011a].

32

3.3. Results

• Domain-specific approaches that tries to combine two or more techniques.
For example, combination of multi-resolution spatial data structure and
semantic caching, aimed towards e�cient spatial query processing in mobile
environments as described in [Sun et al., 2005].

Triplestore is a specific database for the storage and retrieval of information ad-
hering to the RDF data model, i.e. triples composed of subject-predicate-object (e.g.
”Bob is 35” or ”Bob knows Fred”). Triplestores can also be implemented either on
the ubiquitous device itself (mTriplestore on Figure 3.3, e.g. [Tramp et al., 2011a])
or on the server.
[Braun et al., 2010, Wilson et al., 2005b] and [Van Woensel et al., 2011b] describe
UbiSAs accessing triples stores on the server side. With the emerging of Android
OS several triplestores (mostly developed in Java) were ported to the Android
system. List of the most popular triplestores for ubiquitous devices is provided
in Table 3.1.

Triplestore Description
Androjena

http://code.google.com/p/androjena/

Androjena is a porting of Hewlett-Packard’s Jena
semantic web framework to the Google Android
platform.

RDF On The Go

http://code.google.com/p/rdfonthego/
RDF On The Go is the project to build a persistent
RDF store and query processor on Android phone.

TriplePlace

https://github.com/white-gecko/TriplePlace

TriplePlace a light weight and flexible Triple Store
for Android. It uses a indexing structure similar to
the one in Hexastore. TriplePlace uses TokyoCabi-
net as persistent storage system.

OpenSesame

http://bluebill.tidalwave.it/mobile/
OpenSesame Core was ported to Android as part
of blueBill Mobile project.

µJena

http://poseidon.ws.dei.polimi.it/ca/?page_
id=59

µJena is a reduced, lightweight porting of the Jena
API for Android.

Table 3.1.: List of triplestores for ubiquitous platforms.

Server Application Layer (SAL) is an abstraction, describing the underlying
logic of the UbiSA server. SAL can be used in both thin and fat client approaches
(e.g. [Soriano et al., 2006, Gümüs et al., 2006]). However, SAL is more commonly
used in thin client approaches to execute most of the required operations on

33

http://code.google.com/p/androjena/
http://code.google.com/p/rdfonthego/
https://github.com/white-gecko/TriplePlace
http://bluebill.tidalwave.it/mobile/
http://poseidon.ws.dei.polimi.it/ca/?page_id=59
http://poseidon.ws.dei.polimi.it/ca/?page_id=59

3. State of the art

the server. A fat client approach might as well use SAL to outsource expensive
operations (e.g. reasoning) in order to decrease the usage of ubiquitous device
resources.

Social Semantic Web is a very general technology field triggered by the ad-
vent of Web 2.0. It aims at bringing a social novelty, rather than a technical
one by providing user-friendly tools to facilitate broad user participation in the
process of creating semantic content. Examples can be found in [Viana et al., 2007,
Ermilov et al., 2011a]. The Social Semantic Web vision comprises many of the
aforementioned domains and techniques. The Social Semantic Web is a crucial
application domain for UbiSA.

3.3.2. Possible User Roles

One more important aspect that needs to be considered in process of development
of the UbiSA is possible user roles. User roles describe main focus in user interaction
with the UbiSA.

Professional user is a user that has extensive knowledge of how ubiquitous
devices and semantic web applications work. Professional users usually have deep
understanding of the UbiSA they use. Main purpose of using UbiSA is usually
data gathering for research purposes (e.g. for the knowledge management project
Caucasian Spiders [Ermilov et al., 2011a]).

User seeking entertainment or social interactions is a user that has little or
no knowledge on semantic web applications and has only basic skills in using
ubiquitous devices. Gamification, research field that is currently gaining popularity,
can be used to engage such users into useful process that is also entertaining for
them.

User aiming to learn or access certain information is a user that has little or
no knowledge on semantic web applications and has basic or advanced skills in
using ubiquitous devices. Usual task of such user is to find information related
to his current environment (e.g. points of interest [Braun et al., 2010], semantic
calendar [Sheshagir et al., 2004]).

Engaged user is a user that has advanced knowledge in semantic web appli-
cations and advanced skills in using ubiquitous devices. Usual task of such
user is to contribute to crowdsourcing projects (e.g. create new points of inter-
est [Braun et al., 2010]).

34

3.3. Results

3.3.3. Ubiquitous Semantic Applications Development
Approaches

There are already a number of di↵erent approaches proposed for ubiquitous
applications development but for non-semantic content (see [Lee et al., 2004] and
[Niemelä and Latvakoski, 2004]) and a smaller number of approaches specifically
for semantic content (e.g. [Veijalainen et al., 2006]). These approaches aim at
user gratification in the form of useful visualizations and interesting data aggrega-
tion but do not focus on using shared vocabularies and formal ontologies which
ultimately facilitate customizability, portability and reuse. With regard to ubiq-
uitous applications development recent approaches can be roughly classified into
two categories: Fat Client and Thin Client. As demonstrated in Figure 3.3, the
classification is based on the provided functionality independent of the server-side.
Overview of the comparison between thin and fat client advantages with regard

to provided benefits is provided in Table 3.2.

Thin Client Fat Client
Fewer device requirements Fewer server requirements

Always latest data O✏ine working
Future proofing Better multimedia performance
More portability More flexibility

Single point of failure Using existing infrastructure
Lower device’s resource

consumption
Higher server capacity

Table 3.2.: Comparison of thin and fat client approaches for UbiSA development.

Fat Client Approaches

Fat client approaches, which are also called ”rich client approaches”, aim to
allow access to existing or create new semantically enriched data while using as
many required features as possible on the ubiquitous device itself. The basic parts
of a UbiSA are triple store, ontologies, reasoner, context-awareness service and
front end that provides the user access to underlying components. In case of fat
client approach, UbiSA can have all of the described components on the device
itself. A fat client still requires periodic connection to a network, but is often
characterised by the ability to perform many functions without that connection.
Fat client approach has the following advantages:

• Fewer server requirements.
A fat client server does not require high level of performance since the fat
client itself does the most of the application processing.

35

3. State of the art

• O✏ine working.
Fat clients have advantages over thin clients in that a constant connection to
the server is often not required.

• Better multimedia performance.
Fat clients have advantages in multimedia-rich applications that would be
bandwidth intensive, if fully served.

• More flexibility.
On some operating systems software products are designed for ubiquitous
devices that have their own local resources.

• Using existing infrastructure.
As many people now have very fast ubiquitous devices, they already have
the infrastructure to run fat clients at no extra cost.

• Higher server capacity.
The more work that is carried out by the client, the less the server needs to
do, increasing the number of users each server can support.

The downsides of doing all the work on the ubiquitous device are high resource
consumption (and as result decrease in device’s battery life) and depending on
task demand for better hardware.

Thin Client Approaches

Thin client approaches aim to allow access to existing or create new semantically
enriched data on the remote servers while using ubiquitous device as an input-
output terminal for user interaction and sensors. In case of thin clients, application
on ubiquitous device can have only frontend for the user, context-awareness sensors
and means to exchange data with the server, thus being more independent from
device’s resources and hardware but more sensitive to data connection quality.
The exact roles assumed by the server may vary, from providing data persistence
(for example, for diskless nodes) to actual information processing on the client’s
behalf. Thin client approach has the following advantages:

• Fewer device requirements.
A thin client does not require high level of performance from the device since
the server does the most of the data processing.

• Future proofing.
Thin clients are likely to remain useful for longer times as the burden of
processing is completely on the server.

• Single point of failure.
The server forms a single point of failure for its clients. The security threat
model for the software becomes entirely confined to the servers: the clients
simply do not run the software.

36

3.3. Results

The downsides of doing all the work on the servers are high demand for server
hardware that grows with number of clients and possible issue with single point of
failure: any problems with the server will harm many clients.

3.3.4. Quality Attributes

In order to evaluate the strengths and weaknesses of di↵erent UbiSAs, we
assess the applications according to predefined criteria which we call Quality
Attributes in this chapter. Quality attributes are non-functional requirements used
to evaluate the performance of an application. They are widely used in architecture
development and assessment as high level characteristics which applications enclose.
In the context of this chapter, quality attributes represent the areas of concern
regarding the development of UbiSA from the viewpoint of its consumers.
Based on the qualitative analysis of our primary studies, we obtained 9 quality

attributes. For each quality attribute we extracted one or more feature(s). Features
describe a specific type or property that can be used to realize an intended quality
attribute. The realization features are directly (e.g. faceted browsing) or indirectly
(e.g. versioning and change tracking) addressing the required functionalities for
UbiSA. Table 3.3 surveys the quality attributes and various approaches for their
implementation. In the sequel we describe each of the 9 quality attributes in more
detail.

Mobility

Mobility is the ability of application to work on di↵erent ubiquitous platforms.
Instead of being developed for one platform, ubiquitous semantic application should
provide support for as many ubiquitous operating systems as possible.
The following features are proposed for improving the ubiquity of the applications:

• Cross-device Compatibility.
Application should be able to work on the device most relevant to the user,
dynamically adjusting to the device’s specific features.

• Device-dependent UIs.
Device-dependent UIs allow the generation of di↵erent views on the same
data and aggregations of the knowledge base based on the ubiquitous device
parameters, personal preferences and local policies of the intended users.
Such views can be either generic or domain specific. Generic views provide
visual representations of data according to certain property values (e.g. map
view or calendar view). Domain specific views address the requirements of a
particular domain user (e.g. chemists need specific views for visualizing the
atomic structure of chemical compounds).

37

3. State of the art

Usability

Usability is a measure of the quality of a user’s experience in interacting with an
application. In [Lauesen, 2005], usability is defined as consisting of the six factors:

(a) Fit for use (or functionality). The application can support the tasks that the
user has in real life.

(b) Ease of learning. How easy is the application to learn for various groups of
users?

(c) Task e�ciency. How e�cient is it for the frequent user?

(d) Ease of remembering. How easy is it to remember for the occasional user?

(e) Subjective satisfaction. How satisfied is the user with the application?

(f) Understandability. How easy is it to understand what the application does?
This factor is particularly important in unusual situations, for instance error
situations or system failures. Only an understanding of what the application
does can help the user out.

Ease of use (or user friendliness) is defined as the combination of factors (b) to (f).
Simplicity is the main prerequisite of usability. An UbiSA should, as a rule,

hide technical concepts and ontologies from the end users as well as provide (if
possible) native for the user’s device way of interaction with data. It is crucial to
provide end-users with easy to use interfaces that simplify the interaction process
and place it in the context of their everyday work. More attention needs to be
paid to decrease or blur the gap between the normal interaction process and the
interaction process with the semantic content. Ubiquitous semantic applications
should focus on users main task. Usually, a user wants to perform the task of
browsing or writing data with regard to current context.
The following features are proposed for improving the usability of UbiSAs:

• Single Point of Entry Interface.
It means the environment in which users interact with the semantic data
should be integrated (or adjusted to be as close as possible to) with the one
in which they usually interact with any other data. So, there is no added user
e↵ort involved in interacting with a semantic content versus a conventional
approach.

• Faceted Browsing.
Faceted browsing is a technique for accessing a collection of information
represented using a faceted classification, allowing users to explore by filtering
the available information. In the UI which implements this technique, all
property values (i.e. facets) of a set of selected instances are analyzed. If
for a certain property the instances have only a limited set of values, those

38

3.3. Results

values are o↵ered to further restrict the instance selection. Hence, this way of
navigation through data will never lead to empty results [Auer et al., 2006a].
This feature is useful when searching for available resources or vocabularies
especially for ubiquitous devices with limited screen sizes.

• Inline Resource Editing.
Inline editing allows editing items by clicking on them. Such behaviour allows
to minimize amount of information on screen which is extremely important
on ubiquitous devices.

Customizability

Customizability is the ability of an application to be configured according to users’
needs, preferences or context. Instead of being a static form strictly dependent on
a given schema, UbiSA should provide a mechanism to tailor its functionalities
based on the user’s needs or context.
The following features are proposed for improving the customizability of UbiSA:

• Living UIs.
A Living UI is a user interface that configures itself to automatically display
the information most relevant to the user, dynamically adjusts to changing
data and still allows single users to customize according to their preferences
and context [Sakkopoulos, 2009]. End-user development techniques like
personalized UIs allow inferring user intents as well as present context in real
interactions and according to that providing customized outputs.

• Providing Device-dependent UIs.
Device-dependent UIs allow the generation of di↵erent views on the same
data and aggregations of the knowledge base based on the ubiquitous device
parameters, personal preferences and local policies of the intended users.
Such views can be either generic or domain specific. Generic views provide
visual representations of data according to certain property values (e.g. map
view or calendar view). Domain specific views address the requirements of a
particular domain user (e.g. chemists need specific views for visualizing the
atomic structure of chemical compounds).

Heterogeneity

Heterogeneity is the ability of an application to adapt to di↵erent situations or
use cases. UbiSA may support a wide range of metadata schemata in a flexible way.
In fact, the more flexible and adaptable an application is, the more valuable it is
for di↵erent contexts and users. A generic UbiSA reduces the costs of supporting
new schemata considerably, by following the evolution of existing standards and
integrating heterogeneous resources. Adaptivity is an important capability of a
heterogeneous application. UbiSA could be adaptable to di↵erent data sets and use

39

3. State of the art

cases with di↵erent kinds of contents to be processed. Two possible ways to adapt
to ontology changes exist in UbiSA: runtime adoption or compile time adoption.
Runtime adoption assumes on the fly changes of underlying ontology, meaning user
or application can change ontology at any time during UbiSA execution. Compile
time adoption assumes changes of underlying ontology during the build process,
meaning only developer or distributor of the UbiSA can change the ontology prior
to distribution. In most of the cases Heterogeneity is in opposition to Usability of an
application. For instance, adding more and more editing possibilities counteracts
ease of use for UbiSA [Auer et al., 2006a].
The following features are proposed for improving the heterogeneity of UbiSA:

• Supporting Multiple Ontologies.
A domain is usually described by several ontologies. For example, in a medical
context there may be one ontology for general metadata about a patient and
other technical ontologies that deal with diagnosis and treatment. UbiSAs
need to be able to support multiple ontologies. In a heterogeneous UbiSA,
the user interface must be completely decoupled from the ontological models.
It should be possible to add models at runtime and become immediately
accessible to the users.

• Supporting Ontology Modification.
A heterogeneous UbiSA should provide users with user-friendly interfaces to
navigate or modify the structure (classes and properties) of ontologies. In
this case, the application also needs to deal with consistency issues which
might arise between ontologies and annotations with respect to ontology
changes (a.k.a. Ontology Maintenance).

Collaboration

Collaboration refers to the ability of a application to support cooperation between
di↵erent users of the system. UbiSA can support collaborative semantic authoring,
where the authoring process can be shared among di↵erent authors at di↵erent
locations. This is a key requirement of knowledge sharing between users from
di↵erent fields who are contributing to and reusing intelligent documents. Web
2.0 applications and related technologies provide incentives to their users for
collaboration and lead to rapidly growing amounts of content. Triggered by the
success of the Web 2.0 phenomenon, the Social Semantic Web idea has gained
momentum yielding tools that allow collaboration and participation incorporating
semantics by lay users (e.g. [Aranda-Corral et al., 2009]). As a result, many
collaborative and community-driven approaches to semantic content creation have
been proposed. Examples are Semantic Wikis and Semantic Tagging Systems (e.g.
OntoWiki Mobile8) which exploit Web 2.0 principles and technologies to facilitate
broad user participation and collaboration in the process of creating semantically
enriched or annotated content.
8http://m.ontowiki.net/

40

http://m.ontowiki.net/

3.3. Results

Access control and supporting standard formats are two additional independent
prerequisites of collaboration in a ubiquitous semantic applications. The ubiq-
uitous semantic application should allow to distinguish between writeable and
non-writeable content based on the users permission level. It also needs to support
standard formats which promote the collaboration and make it possible to share
and re-use the generated content.
To realize collaboration, UbiSA should provide appropriate UI elements for

meta-level interactions around di↵erent types of semantically created content such
as rating, tagging and discussing. Supporting social networking features such as
following other authors, watching the evolution of content as well as reusing and
re-purposing of content are also important to increase the collaboration in UbiSA.

Accessibility

Accessibility describes the degree to which an application is available to as many
people as possible. It can be viewed as the ability to access and benefit from some
application. Accessibility is often used to focus on people with disabilities or special
needs and their right of access the application. As mentioned in [Hachey, 2011],
papers discussing accessibility are clearly lacking in the context of Semantic Web
UIs. Accessibility is especially important in area of ubiquitous devices since they
can provide Multimodal User Interactions [Ringland and Scahill, 2003] (e.g. voice
recognition, text to speech, gestures) that might be suitable for di↵erent contexts
or people with disabilities.

Evolvability

Evolvability is defined as the capacity of a system for adaptive evolution. UbiSA
should support evolution of the used data. To achieve this goal, it should take into
account the following consistency constraints:

• Resource Consistency.
In cases where several users may edit the same resources, replication is-
sues may occur. It is especially important if the UbiSA allows o✏ine
work without synchronization in between client-server data exchange ses-
sions. To address this, UbiSA should use data replication techniques
(e.g. [Schandl and Zander, 2009, Ermilov et al., 2011a]) to safely merge data
from di↵erent users. Otherwise, data from some of the clients might be lost
in the process of synchronization.

• Document and Annotation Consistency.
One of the important issues for the design of a semantic authoring environment
is to determine how changes should be reflected in the knowledge base of
annotated documents and whether changes of ontologies create conflicts with
existing annotations [Ermilov et al., 2011a]. Ontologies change sometimes

41

3. State of the art

but some documents change many times. So, it is crucial for a ubiquitous
semantic application to track data evolution.

UbiSA should provide appropriate UIs and frameworks for versioning and change
tracking to deal with data evolution.

Interoperability

Interoperability is the ability of an application to work and interact with other
systems. A ubiquitous semantic application could provide mechanisms to interop-
erate together with other systems which generate or consume the semantic content
created. The following features are proposed for improving the interoperability of
ubiquitous semantic applications:

• Support of Standard Formats.
To minimize the problems of interoperability the ubiquitous semantic appli-
cation should be built on standards. There are already many standards for
semantic content serialization (e.g. typical RDF serializations and particular
JSON-RDF), representation (e.g. RDF/RDF-S/OWL/RIF and established
vocabularies such as SIOC, SKOS, FOAF, rNews, etc.) and exchange (e.g.
Linked Data, Web Services, REST). Supporting standard formats and avoid-
ing proprietary formats are essential for compatibility of data with other
systems [Ermilov et al., 2011a, Tramp et al., 2011a].

• Semantic Syndication.
Semantic syndication supports the distribution of information and their
integration into other applications by providing mechanisms such as Semantic
Atom [Patel and Khuba, 2009] and Semantic Pingback 9 [Auer et al., 2006a].

Scalability

Scalability refers to the capability of an application to maintain performance
under an increased work load. UbiSA should support scalability as, for example,
the number of users, data or annotations increase. Support of caching and
implementing a suitable storage strategy play an important role in achieving
a scalable UbiSA [Auer et al., 2006a, Ermilov et al., 2011a, Tramp et al., 2011a].
Most of the current UbiSA adopt a variety of replication frameworks. In this case,
replication framework handles replication of required data to the ubiquitous device
for later (e.g. o✏ine) use. A replication framework sometimes poses a redundancy
but allows information from heterogeneous resources to be queried centrally and,
if it is supported by the framework, even in o✏ine mode.

9http://aksw.org/Projects/SemanticPingBack

42

http://aksw.org/Projects/SemanticPingBack

3.3. Results

Mobility

Usability Customizability Heterogeneity

Collaboration

Accessibility

Evolvability

Interoperability Scalability

+ +-

+ + +

+

+

Figure 3.4.: Quality attributes dependencies (’+’: positive e↵ect, ’+-’: reciprocal
e↵ect).

3.3.5. Quality Attributes Dependencies

The aforementioned quality attributes are not completely isolated and indepen-
dent from each other but have overlaps and relations with each other. Figure 3.4
shows an overview of these quality attributes with their inter-relations. Cus-
tomizability will improve the usability of UbiSA. Customizable applications are
configured based on the user needs thereby increasing the overall usability of the
application.
Scalability will enhance the level of collaboration since scalable application will

support more users and data thereby more collaboration in the system. Interop-
erability will also enhance the collaboration support of an application, since an
interoperable application supports users of di↵erent devices. It can also support
importing user’s data from other devices or systems which will play a positive
role in enhancing the customizability. Mobility will also enhance the collaboration
support of an application, since an ubiquitous application supports users of di↵erent
devices.
Evolvability and heterogeneity are directly related. The more evolvable to change

an application is, the more heterogeneous it will be and vice versa. Customizability
and heterogeneity share a reciprocal relation. A heterogeneous application will
decrease its customization and a customizable application needs to focus on specific
user needs and thus lacks heterogeneity.

3.3.6. Applications Evaluation

In this section we briefly outline various methods for applications evaluation and
report about their usage in the surveyed papers. Table 3.4 lists existing methods
for application evaluation adopted from [Chen and Babar, 2011].
Among the primary studies, the majority of studies (24) were using an Example

43

3. State of the art

Application as their evaluation method. Discussion method was used by variety
of papers (13) mostly related to the ontology creation topic. Other papers (11)
were focused on algorithms development and thus used Experiment with Software
Subjects method. The following UbiSA were described in the primary studies:

• mSpace Mobile [Wilson et al., 2005b],

• BuddyAlert [Grimm et al., 2002],

• MSSW [Tramp et al., 2011a],

• OntoWiki Mobile [Ermilov et al., 2011a],

• csxPOI [Braun et al., 2010],

• PhotoMap [Viana et al., 2007],

• myCampus [Sheshagir et al., 2004].

These studies were selected to cover as many quality attributes and parts of the
generalized architecture as possible.

3.4. Applications

In this section we look at six available UbiSA and compare them according to
the quality attributes defined in subsection 3.3.4. Among the applications five
(i.e. Ontowiki Mobile, csxPOI, mSpace Mobile, myCampus and Bottari) follow the
thin client approach (cf. section 3.3.3) and one (i.e. MSSW) follows the fat client
approach (cf. section 3.3.3) for UbiSA. Figure 3.5 summarizes the assessment of
the applications according to the defined quality attributes.

3.4.1. OntoWiki Mobile

OntoWiki Mobile10 section 5.1 is an application that provides support for agile,
distributed knowledge engineering scenarios in ubiquitous environments. Ontowiki
Mobile facilitates the visual presentation of a knowledge base as an information
map, with di↵erent views on instance data. It is made for professional users that
want to have extensive control over the data.

OntoWiki Mobile architecture is shown in Figure 3.6. The application is imple-
mented as a HTML5 thin client aimed to run in web browser of a ubiquitous device.
The backend is developed in PHP using the Zend framework11. The backend
powered by the Erfurt12 framework provides support for MySQL database and

10http://m.ontowiki.net
11http://framework.zend.com/
12http://aksw.org/Projects/Erfurt

44

http://m.ontowiki.net
http://framework.zend.com/
http://aksw.org/Projects/Erfurt

3.4. Applications

OntoWiki Mobile csxPOI mSpace Mobile myCampus MSSW

Mobility
• Compatible with all web-

enabled devices
• One UI for all devices

• Compatible only with
Android device

• Native Android UI

• Compatible only with
Win Mobile devices

• Native Win Mobile UI

• Compatible with all
web-enabled devices

• One UI for all devices

• Compatible only with
Android devices

• Native Android UI

Usability!
• Single point of entry UI
• Faceted browsing
•  Inline resource editing

• Single point of entry
UI

•  Inline editing
• Single point of entry UI
• Faceted browsing

• Single point of entry
UI • Single point of entry UI

Customizability!
• Semantic views: domain

specific & generic (e.g.
map, calendar)

-
• Semantic views:

domain specific &
generic (e.g. map)

- - Supports different
WebID providers

Heterogeneity!
• Multiple ontology

support
• Ontology modification

support
- - - -

Collaboration!

• Access control
• Standard formats: RDF,

RDFa
• Social collaboration UIs:

rating and commenting
UIs

• Access control
• Social collaboration

UIs: rating UIs

• Access control
• Access control
• Standard formats:

RDF

Accessibility! - - - - -

Evolvability!
• Resource consistency
• Versioning & change

tracking

• Resource
consistency

• Versioning & change
tracking

• Resource consistency • Resource
consistency -

Interoperability!
• Standard formats: RDF,

RDFa
• Semantic syndication:

semantic pingback
- - - • Standard formats:

RDF

Scalability!
• Caching support
• Storage strategy:

backend independent
(Mysql, Virtuoso)

• Storage strategy:
using a server-side
triple store

• Storage strategy: using
a server-side triple
store

• Storage strategy:
using a server-side
triple store

• Storage strategy:
using a client-side
triple store

Main!user!role! • Professional user • Engaged user •  Information seeking
user

•  Information seeking
user

•  Information seeking
user

Figure 3.5.: Comparison of OntoWiki Mobile, csxPOI, mSpace Mobile, myCampus
and MSSW according to the quality attributes and user role.

the Virtuoso triple store13 as storage backends. The user interface is built using
jQuery Mobile14 framework.
Figure 3.7 shows screenshots of OntoWiki Mobile. As a use case OntoWiki

Mobile describes on-site data gathering for the bio-diversity knowledge management
project Caucasian Spiders15

The Ontowiki Mobile, as an application with a single point of entry UI, adopts
the thin client approach for UbiSA. It provides a semantic search feature with
support for faceted browsing. It also supports two complementary knowledge
base authoring strategies: a) Inline editing, which enables users to edit small
information chunks (i.e. statements). b) View editing, which enables users to
edit common combinations of information (such as an instance of a distinct
class) in one single step. In order to do so, OntoWiki Mobile uses the version
of RDFAuthor [Tramp et al., 2010b] specially adapted for ubiquitous devices to
make generated RDFa views editable. Regarding the customizability, OntoWiki

13http://virtuoso.openlinksw.com/
14http://jquerymobile.com/
15http://caucasus-spiders.info/

45

http://virtuoso.openlinksw.com/
http://jquerymobile.com/
http://caucasus-spiders.info/

3. State of the art

OntoWiki Framework

View

Desktop Layout

jQuery Mobile
Layout

Controller

Navigation

RDFauthor

Model List

Minimap

...

Model

Erfurt API

Local
Storage

SD

Figure 3.6.: OntoWiki Mobile Architecture (from [Ermilov et al., 2011a]).

Mobile supports di↵erent semantic views of the knowledge base which can be
generic or domain-specific. It also supports editing multiple ontologies including
both the instances and structures of the ontologies. As a Web-based application,
it provides cross-browser compatibility but does not provide adoption of UI for
di↵erent ubiquitous operating systems.
OntoWiki Mobile also provides versioning and evolution features to track, review

and selectively roll-back changes which is really important for collaborative ubiqui-
tous applications that might have problems while merging resource from di↵erent
users. It also supports semantic syndication (employing Semantic Pingback and
Linked Data interfaces) to interoperate with other systems. OntoWiki Mobile is
backend independent to some extent and supports two di↵erent types of storage
engines. It also provides a caching component to optimize the performance of the
system.
As a drawback, OntoWiki Mobile does not provide any UI elements to facilitate

accessibility and automation. It supports only the editing of structured content
thus lacking UIs for the annotation of unstructured or semi-structured content.

3.4.2. csxPOI

csxPOI 16 [Braun et al., 2010] (short for: collaborative, semantic and context-
aware points-of-interest) is an application that allows its users to collaboratively
create, share and modify semantic points of interest (POIs) in ubiquitous environ-
ments. It is made for engaged users who want to collaboratively create and share
location-based data.

16http://isweb.uni-koblenz.de/Research/systeme/csxPOI

46

http://isweb.uni-koblenz.de/Research/systeme/csxPOI

3.4. Applications

Figure 3.7.: Screenshot of the OntoWiki Mobile. (a) instance view, (b) inline
editing, (c) device camera access (from [Ermilov et al., 2011a]).

Figure 3.8.: Architecture of csxPOI (from [Braun et al., 2010]).

The architecture of csxPOI is shown in Figure 3.8. The application is imple-
mented as a native Android thin client aimed to deliver access to database of
collaboratively created POIs from the ubiquitous device. The backed of csxPOI is
organized in a two-tier server architecture. The server consists of an abstraction
layer for the collaborative ontology of POIs and provides user management. It also
provides a POI revision engine to improve the quality of collaboratively created
POIs. The server is implemented as an Apache Tomcat servlet handling the com-

47

3. State of the art

munication with the mobile clients and the triplestore over HTTP. The triplestore
is realized as a Sesame web application on top of the same Apache Tomcat web
server. Figure 3.9 shows a screenshots of csxPOI.
The csxPOI, as an application with a single point of entry UI, adopts the thin

client approach for UbiSA. It provides a way to collaboratively create, share and
modify semantic POIs. While working with the POIs, the users implicitly and
collaboratively modify and improve an ontology of POI categories underlying the
application.
Since collaboratively created semantic POIs inevitably introduce a significant

amount of inaccuracy, inconsistency and redundancy, the csxPOI application
provides a revision engine that clusters POIs with combinations of spatial, linguistic
and semantic similarity measures in order to identify and clean duplicate POIs.
As a drawback, csxPOI does not provide any compatibility with other devices

except Android-based ones and there is no support for customizability. csxPOI
does not provide any UI elements to facilitate accessibility and automation. It also
works only in one specific domain.

3.4.3. mSpace Mobile

mSpace Mobile [Wilson et al., 2005b] is a Semantic Web application that lets
people explore the world around them by leveraging contexts that are meaningful
to them in time, space and subject. Especially applicable to those unfamiliar with
their surroundings, the application provides information about topics of chosen
interest, based upon the location, as determined by an optional GPS receiver.
Architecture of mSpace Mobile is shown in Figure 3.10. The application is

implemented as native Windows Mobile thin client aimed to deliver access to
database of topics of interest from ubiquitous device. mSpace Mobile is organized
in a three-layer architecture: the mSpace Mobile application (MA) queries the
mSpace Query Service (MQ), which is connected to RDF triplestore knowledge
interfaces (MK). The architecture is designed to query multiple triplestores, as
well as support incorporation of resources, which may not yet be referenced
in triplestores. It also abstracts the internal concepts of query generation and
triplestore querying, taking load away from ubiquitous devices. Figure 3.11 shows
a screenshots of mSpace Mobile.
The mSpace Mobile, as an application with a single point of entry UI, adopts

the thin client approach for UbiSA. It provides a way to access the location-based
information while on the move. The mSpace Mobile interface is designed to let users
of ubiquitous devices run complex queries through direct manipulation without
typing.
The five key features of the mSpace Mobile interaction model are:

• A spatial browser, maintaining persistent display of domain dimensions, for
browsing information within a domain.

48

3.4. Applications

Figure 3.9.: Screenshots of csxPOI application showing its di↵erent features
(from [Braun et al., 2010]).

• User-determined organization of dimensions presented: they can be added,
removed and swapped.

• Information area, providing contextual information about selected items in
the column browser.

• Preview cues, which provide typical examples of information within a domain.

• Triage area, allowing the user to save items from the domain that are of
particular interest for further exploration in the future.

As a drawback, mSpace Mobile does not provide any compatibility with other
devices than Windows Mobile-powered ones as well as there is no customizability
support provided in any way. mSpace Mobile also works only in one specific domain
and does not allow any editing of the data (except for rating the results).

49

3. State of the art

Figure 3.10.: Architecture of mSpace Mobile (from [Wilson et al., 2005b]).

3.4.4. myCampus

myCampus [Sheshagir et al., 2004] is a context-aware semantic web environment
aimed at enhancing everyday campus life. In myCampus, users can, over time
acquire or subscribe to a variety of di↵erent sets of task-specific agents that assist
them in context of di↵erent tasks (e.g. scheduling meetings, sharing documents,
organizing evenings out, filtering and routing incoming messages, etc.). It is made
for users aiming to learn or access information depending on the context.
The architecture of myCampus is shown in Figure 3.12. In myCampus, sources of

contextual information are represented as Semantic Web Services. This means that
each source of contextual information is described by a profile that describes its
functional properties in relation to one or more ontologies. Service descriptions also
include details about how to invoke a service (e.g. input, output and preconditions).
myCampus, as an application with a single point of entry UI, adopts the thin

client approach for UbiSA. It provides an environment, where relevant sources of
contextual information about a user can automatically be discovered and accessed in
support of di↵erent queries. This approach makes it possible to accommodate users
that rely on di↵erent sets of contextual resources (e.g. di↵erent calendar systems,
di↵erent sources of location information, etc.) and to adapt to situations where
sources of contextual information for a user may change over time (e.g. di↵erent
location tracking services depending on where the user is). myCampus agents can
range from simple agents that rely on one or more sources of contextual information
about their users to more complex agents that are capable of dynamically building

50

3.4. Applications

Figure 3.11.: Screenshots of mSpace Mobile application. There are five features
within the user interface: A – the columnar mSpace browser; B – the
information box; C – a preview cup map; D – an mSpace selector
and E – a favourites list (from [Wilson et al., 2005b]).

plans in response to requests from their users.
As a drawback, myCampus does not provide any UI elements to facilitate

accessibility and automation as well as there is no customizability support provided
in any way. myCampus also works only in one specific domain and does not allows
any editing of the data.

3.4.5. MSSW

MSSW 17 section 5.3 is an Android-based Social Semantic Web client as well as a
contacts provider, which integrates the distributed FOAF/WebID social network18

into a ubiquitous device. It is made for users aiming to access information from
their social graph.
The application is implemented as a native Android fat client. The overall MSSW

architecture is depicted in Figure 3.14. It integrates a number of vocabularies,
protocols and technologies. The semantic representation of personal information

17http://aksw.org/Projects/MobileSocialSemanticWeb
18http://www.w3.org/wiki/WebID

51

http://aksw.org/Projects/MobileSocialSemanticWeb
http://www.w3.org/wiki/WebID

3. State of the art

Figure 3.12.: myCampus architecture: a user’s perspective [Sheshagir et al., 2004]

is facilitated by the WebID protocol and vocabulary. FOAF+SSL allows the use
of a WebID for authentication and access control purposes. Semantic Pingback
facilitates the first contact between users of the social network. The subscription
services based on PubSubHubbub allow obtaining specific information from people
in ones social network as near-instant notifications. The MSSW application itself
consists of two application frameworks, which are built on top of the Android
runtime and a number of libraries. In particular, androjena is one of those libraries,
which itself is a partial port of the popular Jena framework to the Android platform
(cf. Table 3.1). MSSW uses the included Jena rules19 engine to transform the
retrieved WebID statements into Android-specific data structures which are well
suited for a straightforward import into the Android contacts provider.
Figure 3.15 shows screenshots of MSSW. MSSW provides a way to traverse a

user’s FOAF network, synchronize the user’s contact with contact book on the
device, add/remove relations or search for profiles using the Sindice 20 search
engine. As a drawback, MSSW is not compatible with non-Android devices. Also,
there is no customizability support provided in any way. MSSW works only in one
specific application domain but it is possible to adjust the data with custom Jena
rules.

19http://jena.sourceforge.net/inference/#RULEsyntax
20http://sindice.com/

52

http://jena.sourceforge.net/inference/#RULEsyntax
http://sindice.com/

3.4. Applications

Figure 3.13.: Screenshot of myCampus (from [Sheshagir et al., 2004]).

3.4.6. Bottari

Bottari21 [Celino et al., 2011] is an Android-based application that exploits
social media and context to provide point of interest (POI) recommendations to
user in a specific geographic location. It is made for users aiming to discover nearby
points of interest on the basis of user’s tastes and influencing people’s opinion.
The application is implemented as a native Android thin client. The overall Bot-

tari architecture is depicted in Figure 3.16. It integrates a number of vocabularies,
protocols and technologies. Semantic information retrieval is used to get interesting
POIs close to user’s location. Sentiment analysis of posts from social media is used
to get nearby POIs that are popular among other people. Stream reasoning is
used to get emerging POIs that are getting a lot of traction. Finally, inductive
reasoning on social media is used to compute personalized recommendations. The
Bottari application itself consists of an application framework that is built on top
of the Android runtime and a number of libraries. In particular, androjena is one
of those libraries, which itself is a partial port of the popular Jena framework to
the Android platform (cf. Table 3.1).
Figure 3.17 shows screenshots of Bottari.
Bottari provides a way to get personalized POI recommendations on Android

tablets, to help users find their way when they are in a specific location. As a
drawback, Bottari is not compatible with non-Android devices. Also, there is no
customizability support provided in any way. As well Bottari works only in one
specific application domain.

21http://larkc.cefriel.it/lbsma/bottari/

53

http://larkc.cefriel.it/lbsma/bottari/

3. State of the art

foaf:knows

WebID B
(FOAF file)

WebID A
(OntoWiki)

WebID C
(OntoWiki)

WebID D
(ODS)

Data Web

PubSubHubbub
server

Semantic
Pingack server

Data Web Services

rel:worksWith

Sindice

1

2

3

5

6

Mobile Devices

8

4

7

Figure 3.14.: Architecture of a distributed, semantic social network: (1) A mobile
user may retrieve updates from his social network via his WebID
provider, e.g. from OntoWiki. (2) He may also fetch updates directly
from the sources of the connected WebIDs. (3) A WebID provider
can notify a subscription service, e.g. a PubSubHubbub server, about
changes. (4) The subscription service notifies all subscribers. (5)
As a result of a subscription notification, another node can update
its data. (6) A mobile user can search for a new WebID by using a
semantic search engine, e.g. Sindice. (7) To connect to a new WebID
he sends a Pingback request which (8) notifies of the resource owner
(from [Tramp et al., 2011a]).

3.5. Research and Technology Challenges

The results of our systematic review revealed several research and technology
gaps and corresponding challenges with regard to the development of UbiSA. To
the best of our knowledge, none of the challenges outlined in this section was so
far addressed in existing research in any way.

Accessibility. Addressing accessibility issues during the design of UbiSA UIs and
providing special UIs that utilize di↵erent input methods available on ubiquitous
devices are very important aspects of UbiSA development. Addressing these issues
can be beneficial not only for people with disabilities and special needs, but also
for people that access UbiSA in special contexts (e.g. using voice control while

54

3.5. Research and Technology Challenges

Figure 3.15.: Screenshots of the Mobile Social Semantic Web Client, the FOAF
Browser and the Android components which integrate the WebID
account: (A) The client as well as the triple store can be found
in the o�cial Google application market. (B) After installation,
users can add a WebID account the same way they add an LDAP
or Exchange account. (C) The account can be synchronized on
request or automatically. (D) A contacts profile page merges the
data from all given accounts. (E) By using the FOAF browser,
people can add contacts or browse the contacts of their friends
(from [Tramp et al., 2011a]).

driving).

Semantic disambiguation. Usage of Linked Data as background knowledge for
disambiguation can simplify user interactions with ubiquitous devices in several
ways. For example, search can be significantly improved and simplified by mapping
keywords (in text or voice input) to URIs and using them for creating formal
queries (e.g. in SPARQL).

55

3. State of the art

Figure 3.16.: Bottari architecture.

Facilitating entertainment. Serious games on ubiquitous devices can bring en-
tertainment to people seeking it while solving real problems. The challenge is to
define game templates, which are tailored to mobile devices, employ or producing
semantics and can be played in a casual way (e.g. while waiting for a bus). For
example, a paper chase game could use background knowledge about points-of-
interest such as LinkedGeoData, for generating verification tasks (e.g. location,
opening hours etc.).

Making complex algorithms accessible. Bridging between complex algorithms
and easily accessible functionality is one more important research field. The amount
of complex algorithms developed by various research communities to solve di↵erent
problems is increasing. But, there is only a small amount of research on how
to make those complex algorithms easy for users to interact with. One possible
approach for addressing this issue, could be a market place for algorithms and
UIs. The market place could provide clearly defined interfaces for interacting
with information in certain application scenarios. Di↵erent information object
recognition algorithms (e.g. specialized on faces, buildings etc.), for example, could
be dynamically plugged-into a UbiSA UI providing image annotation to a user.

Augmented reality. Augmented reality is one more gap in the research. With
advancements of ubiquitous device’s camera sensors and image recognition technolo-

56

3.6. Conclusions

Figure 3.17.: Screenshots of BOTTARI: (a) augmented reality display of recom-
mended POIs, (b) POI selection and (c) visualization of the selected
POI details, (d) trends in user sentiment about the POI.

gies it is becoming possible to detect the context and display information about the
surroundings in better way. Projects like Layar 22 or Google Goggles23 can benefit
from semantic datasets like LinkedGeoData [Auer et al., 2009] or Europeana24 for
augmenting reality on ubiquitous devices with semantic background information.

3.6. Conclusions

In this chapter, we reported the results of a systematic literature review on
ubiquitous semantic applications comprising initially of 172 papers. The review
aimed to answer the four research questions defined in Section subsection 3.2.1
by thorough analysis of the 48 most relevant papers. Before addressing the
defined research questions, we drew a terminology which defines the basic concepts
used in the literature as well our survey. To answer the RQ1, we classified
existing approaches for ubiquitous semantic applications into two categories namely
Fat Client and Thin Client approaches discussed in Section subsection 3.3.3.
Furthermore, our data analysis revealed a set of 9 quality attributes for ubiquitous
semantic applications together with the corresponding features suggested for their

22http://www.layar.com/
23http://www.google.com/mobile/goggles/
24http://europeana.eu/

57

http://www.layar.com/
http://www.google.com/mobile/goggles/
http://europeana.eu/

3. State of the art

realization. These quality attributes plus the features were used to answer the
RQ2 and RQ3. In order to answer RQ4, we extracted the main user roles as well
as evaluation methods discussed in the primary studies and reflected the results
in subsection 3.3.6. Additionally, to show the applicability of the results, we
performed an in-depth comparison of six existing ubiquitous semantic applications
according to the defined quality attributes and described their strengths as well
as their weaknesses. Essenthe foundational quality attributes for a ubiquitous
semantic applications are: mobility, usability, heterogeneity, customizability and
evolvability. A basic ubiquitous semantic application should fulfill a reasonable level
of user-friendliness and adopt to di↵erent situations or use case while providing
mechanisms to tailor its functionality based on specific user needs. It should
also take into account issues such as resource consistency over di↵erent clients as
well as cross-device compatibility. Support of collaboration, interoperability and
scalability are quality attributes required when UbiSA is employed in a community-
driven environment with large amount of users, systems and interactions. A
UbiSA should support standard formats and provide appropriate UI elements for
social networking including both human-to-human as well as system-to-system
interactions. Additionally, it should maintain performance under an increased
work load by supplying appropriate storage and caching mechanisms. Also, it
should take into account possible issues with data connection and hardware related
ubiquitous device limits. Accessibility is, as our survey indicates, not well addressed
by the literature so far. Furthermore, providing accessible UIs for people with
disabilities or special needs is another requirement which should be taken into
account when designing ubiquitous semantic applications.
While there are many benefits of systematic reviews, they also bear some

limitations and validity threats originating from human errors. The main threats
to validity of our systematic review are twofold: correct and thorough selection of
the studies to be included as well as accurate and exhaustive selection of quality
attributes together with their corresponding features. With the increasing number
of works in the area of ubiquitous semantic applications, we cannot guarantee to
have captured all the material in this area. The scope of our review is restricted
to the scientific domain. Therefore, some tools or approaches employed in the
industry might have not been included in our primary studies. Furthermore, since
the review process was mainly performed by one researcher, a bias is possible. In
order to mitigate a potential subjective bias, the review protocol and results were
checked and validated by a senior researcher and other colleagues experienced in the
context of Semantic Web. We see this e↵ort and in particular the identification of
a comprehensive set of quality attributes as a crucial step towards developing more
e↵ective and user-friendly ubiquitous application for accessing the Social Semantic
Web. New approaches and applications can be evaluated in the light of these
quality attributes, thus revealing additional aspects to be taken into consideration.
As a result, more user-friendly applications will enable more people to interact
with the Semantic Web thereby facilitating the realization of the intelligent Web
vision.

58

3.6. Conclusions

Quality
Attribute

Realization

Mobility

Cross-device Compatibility [Ermilov et al., 2011a,
Sheshagir et al., 2004, Soylu et al., 2012],
Device-dependent UIs [Tramp et al., 2011a,
Braun et al., 2010, Wilson et al., 2005b,
Viana et al., 2007, Celino et al., 2011]

Usability

Single Point of Entry Interface [Ermilov et al., 2011a,
Sheshagir et al., 2004, Tramp et al., 2011a,

Wilson et al., 2005b, Viana et al., 2007], Faceted
Browsing [Ermilov et al., 2011a, Braun et al., 2010],

Inline Resource
Editing [Ermilov et al., 2011a, Braun et al., 2010]

Customizability

Living UIs [Soriano et al., 2006], Providing
Device-dependent

UIs [Tramp et al., 2011a, Braun et al., 2010,
Wilson et al., 2005b, Viana et al., 2007,

Bellini et al., 2012, Ostuni et al., 2013], Supporting
Multiple Data Sources [Ermilov et al., 2011a,

Van Woensel et al., 2011b, Van Woensel et al., 2011a]

Heterogeneity

Supporting Multiple Ontologies [Ermilov et al., 2011a,
Sheshagir et al., 2004, Wilson et al., 2005b],

Supporting Ontology
Modification [Ermilov et al., 2011a, Braun et al., 2010]

Collaboration

Access Control [Tramp et al., 2011a, Braun et al., 2010,
Ermilov et al., 2011a, Sheshagir et al., 2004], Support

of Standard
Formats [Wilson et al., 2005b, Braun et al., 2010,
Ermilov et al., 2011a, Tramp et al., 2011a], UIs for

Social
Collaboration [Braun et al., 2010, Ermilov et al., 2011a]

Accessibility
Accessible UIs, Multimodal

UIs [Ringland and Scahill, 2003]

Evolvability

Resource Consistency [Tramp et al., 2011a,
Ermilov et al., 2011a, Braun et al., 2010], Versioning

and Change Tracking [Ermilov et al., 2011a,
Tramp et al., 2011a, Schandl and Zander, 2009,

Sun et al., 2005, Braun et al., 2010]

Interoperability

Support of Standard
Formats [Wilson et al., 2005b, Braun et al., 2010,

Ermilov et al., 2011a, Tramp et al., 2011a], Semantic
Syndication [Tramp et al., 2011a]

Scalability

Replication Support [Tramp et al., 2011a,
Sun et al., 2005, Schandl and Zander, 2009], Suitable

Storage
Strategies [Ermilov et al., 2011a, Tramp et al., 2011a,

Schandl and Zander, 2009, Sun et al., 2005]

Table 3.3.: List of quality attributes together with their corresponding features
suggested for UbiSA.

59

3. State of the art

Evaluation
Method

Definition

Rigorous
Analysis

Rigorous derivation and proof, suited for formal model.

Case Study

An empirical inquiry that investigates a contemporary
phenomenon within its real-life context; when the

boundaries between phenomenon and context are not
clearly evident; and in which multiple sources of

evidence are used.

Discussion
Provided some qualitative, textual, opinion-oriented
evaluation. e.g., compare and contrast, oral discussion

of advantages and disadvantages.

Example
Application

Authors Describe an application and provide an
example to assist in the description, but the example is
“used to validate” or “evaluate” as far as the authors

suggest.

Experience
The result has been used on real examples, but not in
the form of case studies or controlled experiments, the
evidence of its use is collected informally or formally.

Field
Experiment

Controlled experiment performed in industry settings.

Experiment with
Human Subjects

Identification of precise relationships between variables
in a designed controlled environment using human sub

jects and quantitative techniques.
Experiment with

Software
Subjects

A laboratory experiment to compare the performance of
newly proposed system with other existing systems.

Simulation
Execution of a system within artificial data, using a

model of the real word.

Table 3.4.: Application evaluation methods.

60

4. A conceptual framework for
ubiquitous semantic applications

This chapter describes the conceptual framework for ubiquitous semantic ap-
plications. This chapter also includes the meaning (definition) of a Ubiquitous
semantic application. Additionally, a generalized architecture of ubiquitous seman-
tic application is described along with how di↵erent approaches fit in it. Finally, a
number of factors that allow classification of UbiSA are discussed.

4.1. Definition of the ubiquitous semantic
applications

To define Ubiquitous Semantic Application as a term, we first have to define
each separate piece of the term. Ubiquitous Semantic Application term can be
split into three independent components (or sub-terms):

• Ubiquitous - referring to ubiquitous devices that are used by the end-user

• Semantic web - referring to semantically enriched data generated or received
by the end-user from the web

• Application - referring to the software application an end-user interacts with

In the following paragraphs we define each term in more detail.

Ubiquitous computing (or ubicomp) is a paradigm for interaction between people
and computers. According to [Salber et al., 1998], a guiding principle of ubicomp
is to break away from desktop computing to provide computational services to a
user when and where required. A ubiquitous computing system usually consists of:

• a (possibly heterogeneous) set of computing devices

• a set of supported tasks

• some optional infrastructure (e.g., network, GPS location service) the device
may rely on to carry out the supported tasks

Two main inherent features of a system that make it a ubiquitous computing
system, according to [Weiser, 1991] are:

61

4. A conceptual framework for ubiquitous semantic applications

• ubiquity - interaction with the system is available wherever the user needs it

• transparency - the system is non-intrusive and is integrated into the everyday
environment

The best examples of ubiquitous devices in modern world are smartphones or
tablet computers.

Semantic web is not a separate Web but an extension of the current one, in
which information is given well-defined meaning, better enabling computers and
people to work in cooperation (as was discussed in section 2.1). In other words,
Semantic Web allows the machines not only to present data but also to process it.
Semantic Web depends on several technologies including Resource Description

Framework (RDF) and Uniform Resource Identifiers (URIs). In-depth description
for each of these technologies was given in chapter 2.

Application is a collection of computer programs and related data. A computer
program is a sequence of instructions, written to perform a specified task with a
computer. [Stair and Reynolds, 2011] The program has an executable form that
the computer can use directly to execute the instructions. The same program in
its human-readable source code form, from which executable programs are derived
(e.g., compiled), enables a programmer to study and develop its algorithms.

4.1.1. Definition

Taking into account all the individual piece descriptions given above, we define
Ubiquitous Semantic Application as the computer software implemented specifically
for ubiquitous devices and designed to help the user to perform specific tasks that
satisfy the following requirements:

• application is designed and developed specifically for (or with respect to)
ubiquitous devices

• application utilizes semantic data during the work process in any way

A ubiquitous semantic application provides a human accessible interface with
capabilities for reading, writing or modifying semantic documents. Semantic
documents facilitate a number of important aspects of information management:

• For search and retrieval, enriching documents with semantic representa-
tions helps to create more e�cient and e↵ective search interfaces, such
as faceted search (e.g. in [Ermilov et al., 2011a]) or question answering
(e.g. [Shekarpour et al., 2013]). Ultimately, users are empowered to fight the
increasing information overload and gain better access to relevant documents
and answers related to their information needs.

62

4.2. Architecture

Figure 4.1.: Conceptual framework of a generic Ubiquitous Semantic Application.

• In information presentation, semantically enriched documents can be used
to create more sophisticated ways of flexibly visualizing information, such as
geospatial maps [Viana et al., 2007, Braun et al., 2010, Wilson et al., 2005b].

• For information integration, semantically enriched documents can be used to
provide unified views on heterogeneous data stored in di↵erent applications
by creating composite applications such as semantic mashups as discussed
in [Wilson et al., 2005b, Ermilov et al., 2011a].

• To realize personalization, semantic documents provide customized and
context-specific information which better fits the user needs and will result
in delivering customized applications such as personalized semantic portals
(e.g. [Ruta et al., 2010a, WeiBenberg et al., 2006]).

• For reusability and interoperability, enriching documents with semantic rep-
resentations (e.g. using SKOS1 or Dublin Core2 vocabularies) facilitates
exchanging content between disparate systems.

4.2. Architecture

A conceptual framework for ubiquitous semantic applications is depicted in Fig-
ure 4.1. In the sequel, we describe the conceptual framework terminology as well

1http://www.w3.org/2004/02/skos/
2http://www.cs.umd.edu/projects/plus/SHOE/onts/dublin.html

63

http://www.w3.org/2004/02/skos/
http://www.cs.umd.edu/projects/plus/SHOE/onts/dublin.html

4. A conceptual framework for ubiquitous semantic applications

as individual layers, components and concepts in more detail.

4.2.1. Presentation layer

Presentation layer contains components that directly interact with the end-user
of the UbiSA. The layer comprises of two tightly interacting components - Human
Computer Interaction (HCI) and User Interface (UI).

HCI (Human Computer Interaction) is crucial for the development of UbiSA
and represents a research field that aims at improving the interactions between
users and computers by making computers more usable and receptive to the user’s
needs. HCI involves the study, planning and design of the interaction between
end-users and the computers. This field is often regarded as the intersection of
computer science, behavioural sciences, design and several other fields of study.

UI (User Interface) is an abstraction, which simplifies the usage of underlying
components by providing a user-friendly interface for HCI. The user interface
includes hardware and software components. User interface provides a means of
input, allowing the users to manipulate a system and output, allowing the system
to indicate the e↵ects of the users’ manipulation. Generally, the goal of HCI
engineering is to produce a UI which gives a self exploratory, e�cient and user
friendly way to interact with a machine such that it produces the desired result.

4.2.2. Utility layer

Utility layer contains miscellaneous components that helps the UbiSA in carry
out its tasks. Those components can be Sensors, security measures, configurations,
etc.

Sensors are another important part of UbiSA. They allow converting measures
of a physical quantity into a signal which can be read by an UbiSA. Sensors
are already widely used in everyday ubiquitous devices such as touch sensors,
accelerometers and GPS.

4.2.3. Business logic layer

Business logic layer contains components that encode the rules that determine
how the data can be created, displayed, stored and changed.

Context-Awareness is a term coined to describe applications that can passively
or actively determine their context by utilizing on-board or peripheral device
sensors. Especially in mobile and ubiquitous usage scenarios, context-awareness is
a crucial aspect, since the device is used in very specific and distinct situations (e.g.

64

4.3. Classification of ubiquitous semantic applications

while walking or sitting in a restaurant). Also, mobile and ubiquitous devices have
a variety of sensors not available in desktop computers, such as GPS, accelerometer,
gyroscope, compass, etc. (a detailed overview is provided in [Lane et al., 2010]).

Logic is the application specific coordination of domain and infrastructure com-
ponents according to the requirements of the particular UbiSA. It handles most of
the interactions within the application itself as well as interaction with the external
components, be it software or hardware.

Reasoning is a component whose function is to generate conclusions from the
available knowledge using logical techniques of deduction, induction or other forms
of reasoning. Reasoning systems are a subset of a broader category of intelligent
systems. A reasoning system manipulates previously acquired knowledge in order
to generate new knowledge. Reasoning systems automate the process of inferring
or otherwise deriving new knowledge via the application of logic.

4.2.4. Data layer

Data layer contains components which provide simplified access to the data
stored in persistent storage.

Ontology is a formal, explicit specification of a shared conceptualisation that
represents knowledge as a set of concepts within a domain as well as relationships
between those concepts. Ontology is domain specific; it does not represents all
knowledge areas, but one specific area of knowledge. An ontology defines a set of
classes (e.g. “Person”, “Book”, “Writer”) and their hierarchy, i.e. which class is a
subclass of another one (e.g. “Writer” is a subclass of ”Person”). Additionally, the
relationship between the classes is defined, i.e. how di↵erent classes are connected
to each other via properties (e.g. a “Book” has an author of type “Writer”).

Triplestore is a specific database for the storage and retrieval of information
adhering to the RDF data model, i.e. triples composed of subject-predicate-object
(e.g. “Bob is 35” or “Bob knows Fred”). Most triplestores support SPARQL query
language for querying RDF data.

4.3. Classification of ubiquitous semantic
applications

In this section, we discuss a number of factors that allow us to classify UbiSAs.
The classification is mainly based on [Martin and Auer, 2010]. Below we give an
overview of the factors with a brief explanation for each of them.

65

4. A conceptual framework for ubiquitous semantic applications

4.3.1. Device type

The very basic classification of UbiSA can be done by the type of device that the
specific UbiSA was implemented for. Firstly, they can be simple Radio-frequency
identification (RFID) tags, or more complex Sensors or Sensors Systems. Secondly,
there are more complex Embedded systems and Mobile or Smart devices, that are
most commonly used for UbiSA development. And finally, they can be Desktop or
Server devices.

4.3.2. Client-server workload balancing

As mentioned earlier, UbiSA can be developed using three di↵erent approaches -
fat, thin or hybrid. Utilizing the conceptual framework that was described before
in section 4.2, we can strictly define each of these approaches. Considering that
UbiSA has a typical client-server architecture, we define each of these approaches
below.

Fat client approach means that all or most of the conceptual framework layers
are located and handled by the client application on the ubiquitous device.

Thin client approach means that all or most of the conceptual framework layers
are located and handled by the server, while the client application on the ubiquitous
device only deals with UI and HCI.

Hybrid client approach means that some of the conceptual framework layers are
located and handled by both - the client application on the ubiquitous device and
the server.

4.3.3. Semantic technology depth

This categorisation dimension aims to capture to which degree the architecture
of an UbiSA makes use of semantic technologies. Generally, UbiSA use semantic
technologies in two di↵erent ways – externally and/or internally:

Extrinsic UbiSA make use of semantic knowledge representation formalisms on
the surface of the application in order to facilitate the interaction and integration
with other UbiSA and technologies. Implementation-wise, extrinsic UbiSA are
easy to realise, since conventional mobile application development technologies
and design patterns can be used.

Intrinsic UbiSA make direct internal use of semantic representations for their
original application architecture. Here the situation is more complicated than with
solely extrinsic UbiSA, since conventional technologies have to be complemented

66

4.3. Classification of ubiquitous semantic applications

or replaced by their Semantic Web equivalents. On the persistence layer, relational
databases have to be replaced by triple stores. On the API layer, ObjectRelational-
Mapping (ORM) techniques have to be replaced by corresponding APIs, which
provide higher-level functions for handling RDF, RDF-Schema and OWL.

4.3.4. Information flow direction

The class of extrinsic UbiSA can be further refined into UbiSA, which produce,
consume or both produce and consume semantic representations.

Producing UbiSA: Based on either an intrinsic semantic information represen-
tation or on the mapping of other data models to RDF (as discussed in the
previous section 4.2), four di↵erent types of Semantic Web interfaces can be
distinguished:

• ETL-style dumping of information in RDF,

• provisioning of Linked Data, RDFa or GRDDL interfaces,

• declarative querying (e.g. by means of SPARQL endpoints),

• Semantic Web Services or REST-style APIs, which return structured infor-
mation adhering to the RDF data model.

The provisioning of semantically represented information in one of these forms
helps distribute and syndicate structured content. In particular, the re-usability
and repurposability of information is facilitated.

Consuming UbiSA: Information published as RDF is reusable by UbiSA. If an
UbiSA accesses information from the Data Web to enrich their own information
space, it is classified as a Consuming UbiSA. A Consuming UbiSA can obtain
information from either one or multiple of the methods used for publishing struc-
tured information used by producing UbiSA or other Semantic Applications. In
most cases, it will be su�cient for a consuming UbiSA to retrieve information via
the HTTP protocol and parse one or multiple of the resultant RDF serializations
formats, RDFa or SPARQL result formats.

4.3.5. Semantic richness

UbiSA can be further classified according to their use of rich knowledge repre-
sentation (KR) formalisms:

• Shallow KR UbiSA comprise UbiSAs which e.g., primarily use taxonomies,
simple hierarchies and relatively simple knowledge representation formalisms
such as RDF and RDF-Schema.

67

4. A conceptual framework for ubiquitous semantic applications

• Strong KR UbiSA comprise UbiSAs which use higher level knowledge repre-
sentation formalism such as di↵erent OWL variants, rules etc.

Already the declarative querying of knowledge bases, by means of SPARQL,
currently adds a substantial performance overhead to UbiSA compared to relational
database backed ubiquitous applications. That is without even considering implicit
information, which must be revealed by reasoning. This is why we do not expect
comprehensive description logic reasoning to be part of a standard UbiSA in the
short to medium term. Instead, there might be some light inferencing, which can
be performed (on demand or in certain intervals) by executing inference rules
directly within triple stores (e.g., for resolving co-references, inverse relationships
and computing transitive closures).

4.3.6. Semantic integration

This categorisation dimension measures how well an UbiSA is integrated within
the Semantic Web. The integration can be measured on the schema and instance
level. On the schema level, for example, the number of overall schema elements (i.e.
RDF/OWL classes and properties) can be put in relation to the number of reused
schema elements, which are either defined elsewhere or for which a owl:sameAs
relation with an external element is defined. Similarly, the semantic integration can
be measured on the instance level. Depending on the level of semantic integration,
we call representatives integrated (respectively isolated):

• Isolated UbiSA are categorized by a limited reuse of shared identifiers, vo-
cabularies and ontologies.

• Integrated UbiSA are categorized by a strong reuse of shared identifiers,
vocabularies and ontologies.

4.3.7. User involvement

Another important characteristic of UbiSA is the degree of end-user involvement.
End-users can be roughly classified into spontaneous contributors, advanced users
and knowledge engineering experts. Subsequently, an UbiSA can be categorized
according to the sizes and ratios in which these di↵erent end-user groups are
participating in the creation of semantic knowledge representations within an
UbiSA. Also, it can be distinguished which of these groups are restricted to
contributions on the instance level and which participate in refining the knowledge
schema. Other facets of the user involvement, which are not specific to UbiSA, are
for example: the degree of closed user group, free for all, edit functionality for all
information or just parts of the content.

68

5. Client Approaches

This chapter provides a general overview of existing client approaches for ubiq-
uitous semantic applications. As defined by subsection 3.3.3, there are currently
two existing client approaches: Fat Client and Thin Client. Additionally, there is
the third approach that uses methodologies from both of the defined approaches
Hybrid Client.

5.1. Thin client approach

In this section, we describe OntoWiki Mobile, which was developed using the
thin client approach. This section is based on [Ermilov et al., 2011b].
The section is structured as follows: We introduce OntoWiki Mobile in sub-

section 5.1.1. We outline the general architecture of OntoWiki Mobile in sub-
section 5.1.2. We describe our replication and reconciliation strategy in subsec-
tion 5.1.3. The OntoWiki Mobile user interface and the implementation of browsing
and authoring in restricted mobile environments is presented in subsection 5.1.4.
A description of a use case for OntoWiki mobile in the domain of field expeditions
in bio-diversity research is presented in subsection 5.1.5. Finally, we conclude
in subsection 5.1.6.

5.1.1. Introduction

One of most important features of ubiquitous applications is their ability to
provide o✏ine functionality with local updates for later synchronization with a web
server. The key problem here is the reconciliation, i. e. the problem of potentially
conflicting updates from disconnected clients.

Another problem current ubiquitous application developers face is the plethora
of ubiquitous application development platforms as well as the incompatibilities
between them. Android (Google), iOS (Apple), Blackberry OS (RIM), WebOS
(HP/Palm), Symbian (Nokia), Firefox OS (Mozilla) are popular and currently
widely deployed platforms, with many more proprietary ones being available as well.
As a consequence of this fragmentation, realizing a special purpose application,
which works with many or all of these platforms is extremely time consuming and
ine�cient due to the large amount of duplicate work required.
The W3C addressed this problem, by enriching HTML in its 5th revision with

access interfaces to local storage (beyond simple cookies) as well as a number of
devices and sensors commonly found on ubiquitous devices (e. g. GPS, camera,

69

5. Client Approaches

compass etc.). We argue, that in combination with semantic technologies these
features can be used to realize a general purpose ubiquitous collaboration platform,
which can support the long tail of ubiquitous special interest applications, for
which the development of individual tools would not be (economically) feasible.

In this section, we present the OntoWiki Mobile1 approach realizing a mobile se-
mantic collaboration platform based on the OntoWiki framework [Heino et al., 2009].
It comprises specifically adopted user interfaces for browsing, faceted navigation as
well as authoring of knowledge bases. It allows users to collect instance data and
refine the structured knowledge bases on-the-go. OntoWiki Mobile is implemented
as an HTML5 web application, thus being completely ubiquitous device platform
independent. In order to allow o✏ine use in cases with restricted network coverage
(or in order to avoid roaming charges), it uses the novel HTML5 local storage
feature for replicating parts of the knowledge base on the ubiquitous device. Hence,
a crucial part of OntoWiki Mobile is the advanced conflict resolution for RDF
stores. The approach is based on a combination of the EvoPat [Rieß et al., 2010]
method for data evolution and ontology refactoring along with a versioning system
inspired by distributed version control systems like Git.
There are already a number of ubiquitous semantic applications ranging from

semantic backend services [Sonntag et al., 2007] for ubiquitous devices to applica-
tions covering very specific use cases (e. g. DBpedia Mobile [Becker and Bizer, 2009]
or mSpace Mobile [Wilson et al., 2005a]). OntoWiki Mobile, however, is a generic
application domain agnostic tool, which can be utilized in a wide range of usage
scenarios ranging from instance acquisition to browsing of semantic data on the go.
Typical OntoWiki Mobile usage scenarios are settings where users need to author
and access semantically structured information on the go or in settings where users
are away from regular power supply and restricted to light-weight equipment (e. g.
scientific expeditions).

5.1.2. Architecture

OntoWiki was developed to address the need for a Web application for rapid
and simple knowledge acquisition in a collaborative way. OntoWiki can be used
for presenting, authoring and managing knowledge bases adhering to the RDF
data model. In order to render its functionality, OntoWiki relies on several APIs
that are also available to third-party developers. Usage of these programming
interfaces enables the users to extend, customize and tailor OntoWiki in several
ways. OntoWiki’s architecture consists of three separate layers: persistence layer,
application layer and user interface layer. These layers represent the standard
MVC2 architecture. The persistence layer consists of the Erfurt API which provides
an interface to di↵erent RDF stores (e. g. Virtuoso, MySQL). Content in OntoWiki
is rendered through the templates (user interface layer). The controller action

1A live demo is available at http://m.ontowiki.net/
2Model-View-Controller

70

http://m.ontowiki.net/

5.1. Thin client approach

OntoWiki Framework

View

Desktop Layout

jQuery Mobile
Layout

Controller

Navigation

RDFauthor

Model List

Minimap

...

Model

Erfurt API

Local
Storage

SD

Figure 5.1.: OntoWiki Mobile architecture.

serving the request renders its output in a template. OntoWiki as a Web application
is based on the Zend Framework3 which lays out the basic architecture and is
primarily responsible for request handling. Such architecture allows to easily extend
the functionality of OntoWiki and change the layout based on context parameters
of the user request. OntoWiki Mobile is based on the OntoWiki Framework. It
utilizes all of the described OntoWiki Framework architecture and tailors it to
better fit mobile usage scenarios by e. g. replacing with mobile-specific layout (see
Figure 5.1).
The mobile user interface was built using HTML5 and the jQuery Mobile4

framework which includes the core jQuery library in an improved version to ensure
compatibility across all of the major mobile platforms. Built on a jQuery and
jQuery UI foundation, it allowed us to create a unified user interface regardless of
the actual platform the user’s device runs on. The resulting source code presents
a thin JavaScript layer, built with Progressive Enhancement principles so as to
allow for a minimal footprint.
To access the device’s hardware (e. g. camera, GPS sensor), OntoWiki Mobile

uses the extended HTML5 API5. Geolocation API is used from JavaScript to get
the user’s current latitude and longitude. Local storage is a part of the HTML5
application caches and is a persistent data storage of key-value pair data in Web
clients. It is used to store replicated parts of knowledge bases on the client-side.
OntoWiki Mobile stores RDF data as JSON-encoded strings for o✏ine usage and
to increase page loading speed when online (e. g. in cases where the resource has

3http://framework.zend.com/
4http://jquerymobile.com/
5http://w3.org/TR/html5/offline.html#offline

71

http://framework.zend.com/
http://jquerymobile.com/
http://w3.org/TR/html5/offline.html#offline

5. Client Approaches

not been changed and does not require reloading). Attached photograph are stored
to local cache using HTML5 Canvas base64 encoding. Usage of local storage allows
to export and import user-gathered data, for example to do backups (snapshots) of
data to external SD card or to share data with other mobile devices via bluetooth.
Resource editing in OntoWiki is done using RDFauthor [Tramp et al., 2010c].

The system makes use of RDFa-annotations in web views in order to make RDF
model data available on the client. Embedded statements are used to reconstruct
the graph containing statements about the resource being edited. A set of editing
widgets, tailored to specific editing tasks and equipped with end-user supporting
functionalities (e. g. resource autocompletion from OntoWiki and Sindice) are
selected based on the statements contained in the graph. In OntoWiki Mobile,
RDFauthor has been adapted to better cope with mobile environments by adapting
the user interface and introducing lazy script loading.
Data replication and conflict resolution is the most complex part of the OntoWiki

Mobile. The process consists of three steps, handled by separate components
(explained in more detail in Section 5.1.3):

• a client-side replication component utilizing HTML5 local storage,

• a server-side replication component and

• a server-side conflict resolver.

The conflict resolver uses additional mechanisms to simplify merging concurrent
edits of the same resource. The first one is policy-based semi-automatic merging
tool that utilizes the EvoPat engine – an OntoWiki extension for dealing with
evolution of knowledge bases using patterns [Rieß et al., 2010]. Evolution patterns
in EvoPat consists of variables, a SPARQL query template and a SPARQL/Update
query with functional extensions. Results of the SPARQL query are bound to
variables which in turn are used in SPARQL/Update queries to perform knowledge
base transformations. OntoWiki Mobile uses specifically created patterns that
can be applied by the user. The second mechanism provides a user interface for
manual conflict resolution. This mechanism allows the user to select the specific
statements from di↵erent versions to include in a merged version of a resource.

5.1.3. Replication

One critical requirement for OntoWiki Mobile was the ability to work without an
internet connection. In cases where several users edit the same resources without
synchronization in between, replication issues may occur. At least one of the users
is likely to be working with an outdated version of a resource. When the user
attempts to synchronize data with the main OntoWiki server, several steps are
taken to minimize the need for human intervention. However, fully automatic
conflict resolving is not possible in all cases.

72

5.1. Thin client approach

Concepts The unit of editing and display in OntoWiki is a resource. Since
OntoWiki Mobile needs to identify the same resource at di↵erent points in time,
we define a resource rt as a set of triples contained in some graph that share the
same subject at a certain point in time, i. e. a description of r at timestamp t.
When an editing operation is carried out, all the changed triples are saved/deleted
at once for a given resource. Thus, a di↵ ds,t, s < t is the change applied to a
resource description from timestamp s to timestamp t. It is defined as a quadruple

ds,t := (s, t,Add,Del) = (s, t, rt \ rs, rs \ rt).

That is, it contains a set of added and a set of removed statements that led from rs
to rt. Two di↵s ds1,t1 = (s

1

, t
1

,Add
1

,Del
1

) and ds2,t2 = (s
2

, t
2

,Add
2

,Del
2

) are said
to be in conflict if both of the following conditions are met:

2 · |Add
1

[Add
2

| > |Add
1

|+ |Add
2

| (5.1)

Del
1

,Del
2

6= ;) Del
1

\ Del
2

6= ; (5.2)

In other words, both di↵s remove at least one identical and add at least one
di↵erent triple. The empty di↵ ds,t = (s, t, ;, ;) does not conflict with any other
di↵. This definition gives necessary, but not su�cient, conditions for conflicting
changesets, i. e. there are non-conflicting changesets that meet both conditions.
Let ds1,t1 = (s

1

, t
1

,Add
1

,Del
1

) and ds2,t2 = (s
2

, t
2

,Add
2

,Del
2

) be two di↵s at
timestamps t

1

and t
2

with si < ti, t1 < s
2

. The concatenation operation � :
D⇥ D �! D (D denoting the set of all di↵s) yields a new di↵ with the combined
additions and deletions from ds1,t1 and ds2,t2 :

ds1,t1 � ds2,t2 = (s
1

, t
2

,Add
1

[Add
2

,Del
1

[Del
2

).

Consecutive di↵s to the same resource rt are combined to changesets, that
are exchanged between mobile devices (OntoWiki Mobile) and OntoWiki on
synchonization.

Synchronization We are now in the position to specify what happens when users
synchronize data with OntoWiki.
Given a re-established data connection and the user’s consent, OntoWiki Mobile

sends all changesets back to the server’s synchronization component. Let c be
a changeset on resource r with di↵s (ds1,t1 , ds2,t2 , . . . , dsk,tk). OntoWiki Mobile
concatenates the di↵s contained in c into a single di↵ ds1,tk . A server di↵ is then
calculated as ds,t where s and t are the largest timestamps for changes on r smaller
than s

1

, tk respectively. Using conditions (5.1) and (5.2) conflicting di↵s are
determined. In case of a conflict, all di↵s ds,t in c are applied sequentially (w. r. t.
t) until the conflict occurs. At this point, two branches of r are created having as
last common version rtk�1

where tk is the conflicting patch.
For merging branches, two di↵erent ways exist: manually (using the OntoWiki’s

merging UI) or semi-automatically (using EvoPat). EvoPat allows the application
of policy-based merging patterns on conflicting branches. Patterns for the following
merging policies are provided with OntoWiki Mobile:

73

5. Client Approaches

• User privilege-based – changesets from users with higher priority have preva-
lence or

• time privilege-based, which can also be called “first-come, first-served” – the
latest changes are considered least prioritized.

Additional policies (in the form of EvoPat evolution patterns) can be created by
the user, if needed.
There are some situations that cannot be completely resolved without user

intervention or creation of additional rules for EvoPat. For example, in cases where
two users create a resource describing the same real world object by using di↵erent
identifiers.

Example Consider two users Alice and Bob who work on the same resource rt0
which has two statements, s

1

and s
2

, as of timestamp t
0

. The described scenario
is depicted in Figure 5.2.

Bob

Alice

OntoWiki rt0

rt0

rt0

rt3

rt2

rt1 rt4

rt5

rt6

rt5 rt6rt1 M

rt3

rt3

rt5 C

t0 t1 t2 t3 t4 t5 t6
time

Figure 5.2.: Data replication example with merge (M) and conflict detection (C).

At t
1

, Alice changes statement s
1

to s
3

; this is actually reflected as deleting s
1

and adding s
3

. In the same way, Bob removes s
2

and adds s
4

at t
2

. When both
synchronize with OntoWiki, their respective changesets contain only one patch
each

ct0,t1,Alice

= (t
0

, t
1

, {s
3

}, {s
1

}) and ct0,t2,Bob

= (t
0

, t
2

, {s
4

}, {s
2

}).

Since {s
1

}\ {s
2

} = ;, condition (5.2) does not hold and we have non-conflicting
changesets that can be merged into rt3 at t

3

. Alice then adds another statement
s
5

at t
4

and later discovers that she entered duplicate information and decides to
remove s

3

at t
5

. Meanwhile, Bob also notices the error on s
3

, removes it and adds
s
6

at t
4

. This time, when both synchronize their data with OntoWiki, we have
patches

ct3,t6,Alice

= (t
3

, t
6

, {s
5

}, {s
3

}) and ct3,t5,Bob

= (t
3

, t
5

, {s
6

}, {s
3

}).

74

5.1. Thin client approach

As can be easily verified, both conditions now hold and we deal with a conflicting
changeset. OntoWiki Mobile thus creates two versions, rt5 and rt6 , resulting from
applying ct3,t5,Bob

and ct3,t6,Alice

to rt3 , respectively.

5.1.4. User Interface

The OntoWiki Mobile user interface supports currently three di↵erent usage
patterns: standard browsing along the taxonomic structures (e. g. class hierarchies)
found in the knowledge base, faceted browsing for filtering instances based on
property values as well as authoring of new information on-the-go.

Standard Browsing. Figure 5.3 shows the OntoWiki Mobile standard navigation
user interface in di↵erent browsing states.

Figure 5.3.: OntoWiki Mobile standard browsing interface.

In accordance with popular touch-oriented mobile software platforms, the user
interface was based on lists so as to simplify navigating through interlinked resources.
The first screenshot (Figure 5.3a) shows the list of all knowledge bases. The login
button in the top-left corner allows to log in as a registered user (e. g. to write to
protected knowledge bases). After the user selects the knowledge base by tapping
on it (tapped areas show as red squares), the top level class structure is displayed,
as shown in second screenshot (Figure 5.3b). Once a particular class is chosen
the user has to select (Figure 5.3c) whether he wants to see the list of instances
for this class or navigate deeper in a class tree. Navigating through the class tree
simply changes the classes list entries and refreshes the view. If the user chooses
to view instances, a new list of instances from this class is presented (Figure 5.3d).

75

5. Client Approaches

After selecting a particular instance all properties are grouped by predicates and
rendered in a list.

Faceted browsing. Faceted browsing is a special way to navigate through in-
stances in a specific knowledge base. It allows for simple and e�cient filtering
of the displayed instances list by applying available instance properties as filters.
Faceted browsing can be used with any instance list in OntoWiki Mobile. As show
in Figure 5.3d instance list view has a menu button in the upper-right corner.

Figure 5.4.: OntoWiki Mobile faceted browsing interface.

Using this button the user can access the instance list menu (Figure 5.4a), where
he can execute a simple string search in current knowledge base or use the “Filters”
button to access the faceted browsing feature. As shown in Figure 5.4b, the active
filters list view displays all currently applied filters. By checking filters and pressing
the “Delete” button at the bottom of the screen, the user can remove filters he
does not like to apply to the list. To add a new filter, the “Add” button in the
upper-right corner of the screen can be used, which will display the list of all
available filters (Figure 5.4c). Selecting one of the displayed filters will open the
list of values for it (Figure 5.4d). Selecting values from the list shown will apply
the new filter value restriction on the previously displayed instances list.

Authoring. Data authoring in OntoWiki Mobile is done using the RDFauthor
[Tramp et al., 2010c] – a JavaScript-based system for RDF content authoring. As
mentioned earlier, instance properties are grouped by predicates and rendered as
lists (Figure 5.5a). The rendering of properties and their values is based on the data
type and ontology structure (see the display of a map for attached geo-coordinates).
Figure 5.5b shows how an instance can be created or edited using forms, which are
automatically created by RDFauthor based on the underlying ontology structure
in the knowledge base (note auto-detected geographical coordinates for current
location). Figure 5.5c shows an example of the interaction of OntoWiki mobile

76

5.1. Thin client approach

Figure 5.5.: OntoWiki Mobile authoring interface.

with the sensors of the mobile device in terms of accessing the integrated camera
for adding a picture to an ontology instance.

5.1.5. Use Case and Evaluation

The development of OntoWiki Mobile was triggered by users aiming to gather
data in field conditions. To simplify the data collection, we created a mobile
interface that allows users to enter data instances on mobile devices, such as
mobile phones and tablets. In particular, there is a community of scientists who
collect data about spiders in the Caucasus region [Otto and Dietzold, 2007] in a
web portal6. The project consists of two major software parts:

• The portal backend, which is based on the semantic data wiki OntoWiki. Each
arachnologist can login to this backend and use it for data entry, management
and queries. The backend itself is a standard OntoWiki installation with
some custom and some common vocabularies imported.

• The portal front-end, which itself is an extension of OntoWiki, generates a
more visitor-friendly representation of the databases resources. The main
focus for these visitors are species checklists, which give an overview of
verified species of a given region.

To calculate these species checklists for a specific area, data from original finding
spots (e. g. “I’ve found the species Pholcus phalangioides near Khashuri in Georgia

6http://db.caucasus-spiders.info

77

http://db.caucasus-spiders.info

5. Client Approaches

in a cave.”) as well as data from the literature (e. g. “Mkheidze (1964) published
he found this species in Lentekhi as well.”) is collected by the users. While the
literature research is done at home using the desktop browser-based version of
OntoWiki, the field data is gathered according to the following workflow:

1. A research team travels to the area and sets up traps at specific locations or
specifically catches interesting individuals.

2. The finding spots are documented and the individual animals are associated
with these finding spots (e. g. by signing a conservation container with the
location ID).

3. The individuals are carried to the laboratory where they have to be identified.
This is a challenging task and often individuals are sent to specialists for a
specific genus or family of spiders.

4. Finally, the individual is identified as a certain species. This event either
increases the finding spot counter for this species in a certain area or adds
another species entry to the species checklist for this area. In the latter case,
this (re-)discovery of the species in a certain area can be published.

In this workflow, only the second step is relevant for the evaluation of our work
since step 3 and 4 are done with the standard wiki and the portal front-end. The
goal of step 2 is to describe the finding spot where a specific animal was found
in order to proof assumption about the habitat and living of a specific species.
These finding spots are classified according to a nature-phenomenological system
(e. g. a cave, field, . . .) and are allocated to a nearby populated place. Populated
places are ordered and associated to a political and administrative system (e. g.
counties, administrative regions, country). The database currently consists of
1060 populated places and locations as well as 191 areas. A complete finding
spot documentation is then entered in the following steps (see N3 example in
Listing 5.1):

• Instantiate a specific type of location (e. g. a cave, example line 8).

• Add geo-coordinates to this resource (taken automatically from the GPS
subsystem, example line 13).

• Associate pictures with this resource (taken from the camera subsystem,
example line 12).

• Associate a nearby populated place or an area by searching the local store
for an existing one or by creating a new resource (example line 14).

• Add any other information either specific for the location type (e. g. height
for glaciers), specific for the researcher (e. g. comments and tags) or specific
for the research journey (e. g. internal location ID for the conservation
containers, refer example line 9–11).

78

5.1. Thin client approach

Listing 5.1: Example finding spot documentation in N3.

1 @prefix db: <http://db.caucasus -spiders.info/> .

2 @prefix faun: <http://purl.org/net/faunistics#> .

3 @prefix rdfs: <http://www.w3.org/2000/01/rdf -schema#> .

4 @prefix foaf: <http://xmlns.com/foaf/0.1/> .

5 @prefix geo: <http://www.w3.org/2003/01/geo/wgs84_pos#> .

6 @prefix dc: <http://purl.org/dc/elements/1.1/> .

7
8 <http://db.caucasus -spiders.info/Place/555> a faun:Cave ;

9 rdfs:label "Lower Mzymta Cave (Sochi)";
10 rdfs:comment "container 5";
11 dc:creator "Stefan Otto"; dc:date "2010 -07 -21";
12 foaf:depiction db:FotoXXX;
13 geo:long "39.99933"; geo:lat "43.57695" ;
14 faun:nearby db:Place19; faun:within db:Area439.

The result of a finding spot location documentation is shown in Listing 5.1.
The data in this listing correspond to the screenshots shown in Figure 5.6.
After using the prototype for a few weeks on an Android developer phone,

the following pro and con statements were obtained from the OntoWiki Mobile
evaluation participants during interviews:

• Even without doing extensive data entry, the feature of associating images
to existing resources was liked very much.

• There was a constant fear for data loss by breaking, misusing or loosing the
mobile device. The added feature to export and import file backups from
and to the application eased this. If there are more than one mobile device
in the field, these backups can be additionally used to approve and inspect
the data with a second pair of eyes.

• Obtaining GPS data from the mobile phone is nice but slightly inaccurate
since the internal GPS systems of mobile phones are not as good as dedicated
devices e. g. for hiking. Auto-completion of these values is a nice feature
but users need to be able to correct them or, even better, receive them from
another device and overwrite the existing values.

• The user experience strongly depends on the given CPU of the mobile device.
Users running a mobile device with 500Mhz (HTC Hero) complained about
the slowly responding user interface. In comparison to that, users with a
1000Mhz device (Samsung Galaxy S) reported a fast and reliable interface.
In addition to the CPU, the version of the hosting Android operating system
and esp. the used browser version strongly a↵ects the user experience since

79

5. Client Approaches

Figure 5.6.: Screenshots illustrating the workflow for creating a new finding spot
according to the listing in Figure 5.1. From left to right: (1.) Searching
or browsing for the class which needs to be instantiated. (2.) Initializa-
tion of a new resource from this class; all properties which are o↵ered,
are used in other instances of this class; GPS data is automatically
requested and pre-filled by the phone. (3.) Entering literal data as
well as linking to other resources. (4.) Assignment of existing images
from the phone’s image library.

newer Android versions also ship a new browser with a faster JavaScript
execution engine.

5.1.6. Conclusions

As the penetration of mobile devices that are able to access and interact with the
Web can be expected to dramatically increase within the next years, the Semantic
Web can ultimately only be successful if the use of semantic technologies on mobile
devices is fully supported. With OntoWiki Mobile, we tackled one particular but
crucial aspect – the provisioning of a comprehensive knowledge management tool for
mobile use. It employs the new HTML5 application cache functionality to support
o✏ine work and has advanced conflict resolution features built-in. OntoWiki Mobile
demonstrates that a comprehensive semantic collaboration platform is possible
to implement for mobile devices with minimal requirements based on recent Web
standards (in particular HTML5). Although OntoWiki Mobile was already used
in a specific use-case by a number of non-IT, domain expert users, more e↵ort is
required to evaluate the tool in a wider range of application scenarios. Due to its
general purpose architecture, OntoWiki Mobile is particularly suited to support
the long tail of domain-specific mobile applications, for which the development of
individual tools would not be (economically) feasible.

80

5.2. Hybrid client approach

5.2. Hybrid client approach

In this section, we describe Mobile DSSN Client that was developed using the
hybrid client approach. This section is based on [Ermilov et al., 2012].
The section is structured as follows: We introduce the idea of accessing the

Social Semantic Web using hybrid client in subsection 5.2.1. We outline the
general architecture of Mobile DSSN Client in subsection 5.2.2. We describe
our implementation of Mobile DSSN Client in subsection 5.2.3. The evaluation
of our implementation is explained in subsection 5.2.4. Finally, we conclude
in subsection 5.2.5.

5.2.1. Introduction

For many people smartphones already replace the computer as their window to
the Internet, to the Web as well as to social networks. Online social networking
meanwhile became one of the most popular service on the Web. Hence, the
management and presentation of information about contacts, social relationships
and associated information is one of the main requirements and features of today’s
smartphones.
The problem is currently solved solely for centralized proprietary platforms (such

as Google Mail, Contacts & Calendar) as well as data-silo-like social networks (e.g.
Facebook). As a result of this data centralization, users’ data is taken out of their
hands, they have to accept the predetermined privacy and data security regulations;
users are dependent of the infrastructure of a single provider, they experience a
lock-in e↵ect, since long-term collected profile and relationship information cannot
be easily transferred.
Especially Facebook with it’s 600M+ million users creates a web inside the Web.

Drawing the metaphor of islands, Facebook is becoming more like a continent.
Users are locked into a certain platform and hardly have a chance to get out again if
they want to keep their connections. Once published, users also lose control about
the data they own, since it is stored on a single companies servers. Migrating to
another platform is not possible or at least very di�cult. Interoperability between
platforms is rare and limited to proprietary APIs. In order to keep data up-to-date
on multiple platforms users have to update their information on each of their used
SNSs and thus information might diverge. Since there are only a few large players
the Web partly loses it’s distributed nature.
Increasingly, many people argue that social networks should be evolving. That

means, social networks should allow users to control what to enter and to keep a
control over their own data. Also, the users should be able to host the data on an
infrastructure, which is under their direct control, the same way as they host their
own website [Berners-Lee, 2010]. A possibility to give the control over their data
back to the users is the realization of a truly distributed social network. Initial
approaches for realizing a distributed social network appeared with GNU social
and more recently Diaspora. However, we argue that a distributed social network

81

5. Client Approaches

should be also based on semantic resource descriptions and de-referenceability so as
to ensure versatility, reusability and openness in order to accommodate unforeseen
usage scenarios.
Within the Semantic Web initiative already a number of standards and best-

practices for social, Semantic Web applications such as FOAF,WebID and Semantic
Pingback emerged. However, there is no comprehensive strategy, how these tech-
nologies can (a) be combined in order to weave a truly open and distributed social
network on the Web and (b) be used e�ciently in a ubiquitous environment. Also,
the use of a distributed, social semantic network should be as simple as the use of
the currently widely used centralized social networks (if not even simpler). In this
section, we present the general strategy for weaving a distributed social semantic
network based on the above mentioned standards and best-practices. In order
to foster its adoption we developed an implementation for the Android platform,
which seamlessly integrates into the commonly used interfaces for contact and
profile management on ubiquitous devices.
After briefly reviewing some use cases and requirements for a ubiquitous, semantic

social network application (in Section 5.2.3), we make in particular the following
contributions:

• We outline a strategy to combine current bits and pieces of the Semantic Web
technology realm in order to realize a distributed, semantic social network
(Subsection 5.2.2),

• We develop an architecture for making ubiquitous devices endpoints for the
Social Semantic Web (Subsection 5.2.2),

• A comprehensive implementation of the architecture is performed for the
Android platform (Subsection 5.2.3),

• We perform an evaluation of our implementation according to the W3C
Social Web Acid Test and interoperability tests with OntoWiki and Dydra
(Subsection 5.2.4),

Furthermore, the section concludes with a discussion in 5.2.5.

5.2.2. Distributed Semantic Social Networking

In this section, we describe an architecture for distributed semantic social
networking which guided the requirements definition as well as the implementation
of the mobile DSSN client. After introducing a few design principles on which the
architecture is based, we present its di↵erent layers, i.e. the data, protocol, service
and application layers. The overall architecture is depicted in Figure 5.7. Our
architecture is based on the following three design principles.

82

5.2. Hybrid client approach

announce

Application Layer

Profile
Manager

Bookmark
Collection BlogFoto

Sharing

Service Layer
Ping PushSearchUpdate

search5

delegeate
access to

announce

Data LayerResources Feeds

Data & Media
Artefacts

WebIDs

indexupdate

ping

...

create

updatecreate push subscribe

1 1

2
3

4

4

5

6

7

7

read access

announce

1

Activity
Streams

History
Feeds

Figure 5.7.: Architecture of a Distributed Semantic Social Network (without proto-
col layer): (1) Resources announce services and feeds, feeds announce
services – in particular a push service. (2) Applications initiate ping
requests to spin the Linked Data network. (3) Applications subscribe
to feeds on push services and receive instant notifications on updates.
(4) Update services are able to modify resources and feeds (e.g. on
request of an application). (5) Personal and global search services
index social network resources and are used by applications. (6) Access
to resources and services can be delegated to applications by a WebID,
i.e. the application can act in the name of the WebID owner. (7) The
majority of all access operations is executed through standard web
requests.

Linked Data. The main protocol for data publishing, retrieval and integration is
based on the Linked Data principles [Berners-Lee, 2011]. All of the information
contained and accessible in the Distributed Semantic Social Network is represented
according to the RDF paradigm, made de-referencable and interlinked with other
resources. This principle facilitates heterogeneity and enables the distribution of
data and services on the Web.

Service Decoupling. A second fundamental design principle is the decoupling of
user data from services as well as applications [Krohn et al., 2007]. It ensures that
users of the network are able to choose between di↵erent services and applications.
In addition, this principle helps users of the social network to distinguish between
their own data on one side, which they share with and license to other people
and services and foreign data on the other side, which they create by using these
services and which they do not own. This decoupling principle can only be achieved
by using di↵erent methods to allow an automatically discovery of connected and

83

5. Client Approaches

relevant services. In our architecture, we heavily depend on RDF properties which
relate resources to services, as well as HTTP header extensions which represent
the same link but allow faster fetching of the relevant information.

Protocol Minimalism. The main task for social networking protocols is to com-
municate RDF triples between nodes in the network, not to enforce a specific
work flow nor an exact interpretation of the data. This constraint ensures the
extensibility of the data model and keeps the overall architecture clean.
Based on these design principles, we reviewed the current technology stack for

the Social Semantic Web and developed a coherent architecture which uses existing
state-of-the-art technologies and allows for social networking activities comparable
to centralized social networks (cf. Section 5.2.4 for an evaluation of this claim).
We divided our architecture into four layers, namely data, protocol, service and

application layer. The data layer (depicted in the lower third of Figure 5.7) is
formed by a network of interlinked social network data objects. We distinguish
between two generic types of data objects: resources and feeds. While feeds
are used to represent temporally ordered information in a machine-readable way,
resources represent static artefacts. Feeds are widely used on the Web and play
a crucial role in allowing real-time communication between di↵erent services. In
the context of the DSSN architecture, two types of feeds are worth considering:
activity feeds and history feeds.
History feeds represent an ordered list of change sets which allow to re-create

the current and former states of the resource as well as to synchronize resources
on di↵erent services. Currently we use PubSubHubbub7 as the Social Network
wide publish/subscribe protocol, since it is widely supported and allows for custom
payloads if used in combination with Atom feeds. Activity feeds represent an
ordered timeline of social network activities. They can be used to visualize activity
streams which are either centered around an activity object (e.g. activities on an
image) or an activity subject (e.g. activities of a specific user).
Besides feeds which are used to communicate certain types of events, linked

resources spin the a network of Social Web artifacts. We distinguish between three
main categories of resources: WebIDs for persons as well as applications, data
artefacts and media artefacts.
WebID [Sporny et al., 2010]8 is a best practice recently conceived in order to

simplify the creation of a digital ID for end users. Since its focus lies on simplicity,
the requirements for a WebID profile are minimal. In essence, a WebID profile is a
de-referenceable RDF document (possibly even an RDFa-enriched HTML page)
describing its owner9. That is, a WebID profile contains RDF triples which have the
IRI identifying the owner as subject. The description of the owner can be performed

7http://code.google.com/p/pubsubhubbub/
8The latest spec is available at http://webid.info/spec/.
9The usage of an IRI with a fragment identifier allows the indirect identification of an owner by
reference to the (FOAF) profile document.

84

http://code.google.com/p/pubsubhubbub/
http://webid.info/spec/

5.2. Hybrid client approach

in any (mix of) suitable vocabulary (-ies), but FOAF [Brickley and Miller, 2004]
has emerged as the ‘industry standard’ for that purpose.
Data Artefacts are resources on the Web which are published according to

the Linked Data principles. Data artefacts includes posts, comments, taggings,
activities and other Social Web artefacts which have been created by services
and applications on the Web. Most of them are described using specific vocabu-
laries such as SIOC [Breslin et al., 2006], Common Tag10 or Activity Streams in
RDF [Minno and Palmisano, 2010].
Media Artefacts are also created by services and applications but consist of

two parts – a binary data part which needs to be decoded with a specific codec,
and a meta-data part which describes this artefact. Usually, such artefacts are
audio, video and image files, but o�ce document types are also frequently used on
the Social Web. Media artefacts can be easily integrated into the DSSN by using
the Semantic Pingback mechanism, which is described later in this section.
The protocol layer is kept very simple and consists of the WebID identity

protocol and two networking protocols which provide support for two completely
di↵erent communication schemes, namely resource linking (Semantic Pingback)
and push notification (PubSubHubbub). The basic idea of the WebID proto-
col [Sporny et al., 2010] (formerly known as a best practice [Story et al., 2009b])
is to connect an SSL client certificate with a WebID profile in a secure manner and
thus allowing owners of a WebID to authenticate against 3rd-party websites with
support for the WebID protocol. The WebID (i.e. a de-referencable URI) is, there-
fore, embedded into an X.509 certificate by using the Subject Alternative Name
(SAN) extension. The document, which is retrieved through the URI, contains
the corresponding public key. Given that information, a relying party can assert
that the accessing user owns a certain WebID. Furthermore, the WebID protocol
provides access control functionality for social networks shaped by WebIDs in order
to regulate access to certain information resources for di↵erent groups of contacts
(e.g. as presented with dgFOAF [Schwagereit et al., 2010]).

The purpose of Semantic Pingback [Tramp et al., 2010a] in the context of
DSSN architecture is twofold: (a) It is used to facilitate the first contact between
two WebIDs and establish a new connection (Friending). (b) It is used to ping the
owner of di↵erent social network artefacts if there are activities related to these
artefacts (e.g. commenting on a blog post, tagging an image, sharing a website
from the owner). The Semantic Pingback approach is based on an extension of the
well-known Pingback technology [Langridge and Hickson, 2002], which is one of
the technological cornerstones of the overwhelming success of the blogosphere in the
Social Web. The Semantic Pingback mechanism enables bi-directional links between
WebIDs, RDF resources as well as weblogs and websites in general. It facilitates
contact/author/user notifications in case a link has been newly established. It
also allows to publish backlinks automatically from the original WebID profile (or
other content, e.g. status message) to comments or references of the WebID (or

10http://commontag.org/Specification

85

http://commontag.org/Specification

5. Client Approaches

other content) elsewhere on the Web, thus facilitating timeliness and coherence
of the Social Web. As a result, the distributed network of WebID profiles, RDF
resources and social websites can be much tighter and timelier interlinked by using
the Semantic Pingback mechanism than conventional websites, thus rendering
a network e↵ect, which is one of the major success factors of the Social Web.
Semantic Pingback is completely downwards compatible with the conventional
Pingback implementations, thus allowing the seamless connection and interlinking
of resources on the Social Web with resources on the DSSN. As requested by our
third design paradigm (protocol minimalism), Semantic Pingback is a generic data
networking protocol which allows to spin relations between any two Social Web
resources. In the context of the DSSN Architecture, Semantic Pingback is used in
particular for friending, commenting and tagging.
PubSubHubbub is a web-hook-based publish/subscribe protocol, as an exten-

sion to Atom and RSS, which allows for near instance distribution of feed entries
from one publisher to many subscribers. Since feed entries are not described as
RDF resources, PubSubHubbub is not the best solution as a transport protocol for
a DSSN from our perspective. However, PubSubHubbub with atom feeds is widely
in use and has good support in the web developer community which is why we
decided to use it in our architecture. Similar to Semantic Pingback, it is agnostic
to its payload and can be used for all publish/subscribe communication connec-
tions. In the DSSN architecture, two specific feeds are important and linked to a
WebID allowing subscriptions to them: activity feeds which are used for activity
distribution11 and change set feeds which are used for resource synchronization.
Applications which are part of the service layer (depicted in the middle part of

Figure 5.7 provide crucial infrastructure as part of the architecture (in contrast to
applications which are build on top of the service layer such as the mobile client).
WebIDs can be equipped with di↵erent services in order to allow manipulation and
other actions on the user’s data by other applications. As depicted in Figure 5.7,
we have defined four essential services for the distributed semantic Social Network
architecture.
The ping service provides an endpoint for any incoming pingback request for

the resources of a user. First and foremost, it is used with the WebID for friending
but also for comment notification and discussions. One application instance can
provide its services for multiple resources. In a minimal setup, a ping service
provides only a notification service via email. In a more complex setup, the ping
service has access to the update service of a user (via access delegation) and can
do more than just notification. As we described in [Tramp et al., 2010a], pingback
services are announced in conjunction with resources using defined object property
or an HTTP header field.
The push service is a PubSubHubbub hub and is used for activity distribu-

11Activity Distribution is a fundamental communication channel for any social network. A
personal activity feed publishes the stream of all activities on social network resources
(artefacts and WebIDs) with a specific user as the actor.

86

5.2. Hybrid client approach

tion and resource synchronization. To equip social network resources with its
corresponding activity and change set feeds, we have defined two OWL object prop-
erties which are sub-properties of the more generic sioc:feed relation from the
SIOC vocabulary [Breslin et al., 2006]: dssn:activityFeed and dssn:syncFeed.
In addition to these RDF properties, DSSN agents should pay attention to the
corresponding HTTP header fields X-ActivityFeed and X-SyncFeed, which are
alternative representations of the OWL object properties to allow the simple
integration of media artefacts.
Search and index services are used in two di↵erent contexts in the Social Net-

work architecture: (1) They are used to search for public web resources, which are
not yet part of a user’s social network. These search services are well-known seman-
tic search engines as Swoogle [Ding et al., 2004] or Sindice [Tummarello et al., 2007].
(2) They are used to search and index private data as well as to cache resources
for faster access. A private search service is used for all users and application
queries from applications which act on behalf of the user. The underlying resource
index of a private search service is used as a callback for all push notifications
from feeds to which the user has subscribed. In our architecture we assume that
search services accept SPARQL queries. However, this assumption is not true for
all public Semantic Web search engines at the moment.
Finally, an update service provides an interface to modify and create user

resources by means of SPARQL update queries. In the same way as private search
services, update services are secured by means of the WebID protocol and accept
requests only by the user itself and by agents in access delegation mode12.

5.2.3. A Mobile DSSN Client

In this section, we outline how the Mobile DSSN Client was built13. First, we
describe how it fits into the DSSN architecture in section 5.2.3. In section 5.2.3
we define requirements in order to make the client part of the DSSN and make
it compatible with the widest variety of devices possible. Then we describe the
platform independent implementation of the client in section 5.2.3 and discuss
platform specific aspects in section 5.2.3.

Requirements and Integration into the Architecture

The mobile client described in this section is part of the application layer of
the DSSN architecture. The client should able to fetch and display Linked Data
resources as well as feeds, send pingback requests and use SPARQL to search
and update resources. The only protocol not usable by the mobile client is the

12We defined dssn:updateService as a relation between a WebID and an update service
13The Mobile DSSN Client project page is available at http://aksw.org/Projects/MobileDSSN.

It is an open source software and its source code can be found at https://github.com/
AKSW/MobileDSSN. It can be also directly tested by accessing the following URL on a mobile
device: http://m.ontowiki.net/dssn/

87

http://aksw.org/Projects/MobileDSSN
https://github.com/AKSW/MobileDSSN
https://github.com/AKSW/MobileDSSN
http://m.ontowiki.net/dssn/

5. Client Approaches

publish/subscribe push of PubSubHubbub since a push depends on a static callback
URL which is not easy to provide in mobile scenarios.
Independent from the technical and integration requirements below, the mobile

application has to comply to these functional requirements:
WebID profiles of the user as well as any other person should be displayable

with the application. The users WebID should be writeable, if a connected SPARQL
service allows SPARQL Update. The user should be able to traverse the social
network by following outgoing foaf:knows relations and she should be able to
make a new friend connection to a shown WebID. In order to find and display any
WebID on the Web easily, a suitable semantic search engine should be integrated.

Activity streams in form of feeds should be accessible in a timeline interface,
both for WebIDs and for other artefacts (e.g. images). In addition to consuming
activities, a user should be able to react and act in the Social Network by means
of creating new activities in a stream. The client should not only be able to create
new activities but also to notify and ping all relevant resources which have a
relation with this activity.
WebID profiles of a user’s contacts should not only be visible in the network

application but should be synchronized with the smartphone’s contact database in
order to integrate these data into the system for use by other applications.

Platform independent DSSN client

HTML5 and JavaScript were picked as main development languages to meet the
requirements defined before. Creating the client as a web application allows to run
the application on any modern mobile device. Supporting graceful degradation in
the design of the web application allows the application to work correctly but with
limitations on most devices released in the past few years. The usage of Model-
View-Controller14 (MVC) architectural pattern facilitates functionality extensions
as well as the adaptation of the user interface behaviour and the integration for
di↵erent platforms. The HTML5 API grants access to the device’s hardware (e. g.
camera, GPS) and persistent storage. Hardware access is used in the DSSN client
for posting status updates with attached geographic coordinates and user’s camera
shots.
HTML5’s local storage15 functionality was used for persistent data storage. Local

storage is a part of the HTML5 application caches and is a persistent data storage
of key-value pair data in Web client applications. It is used to replicate parts of
FOAF profiles at the client-side. The client stores RDF data as JSON-encoded
strings for o✏ine usage and to increase page loading speed while online (in cases
where the resource has not been changed and does not require reloading). Usage
of local storage allows to export and import user-gathered data, for example, to

14http://en.wikipedia.org/wiki/Model\OT1\textendashview\OT1\
textendashcontroller

15http://www.w3.org/TR/offline-webapps/#offline

88

http://www.w3.org/TR/offline-webapps/#offline

5.2. Hybrid client approach

do backups (i.e. snapshots) of data to an external SD card or to share data with
other mobile devices via Bluetooth.

Client architecture. As we mentioned before, the Mobile DSSN Client was built
according to the MVC architectural pattern. Since JavaScript is mostly used as
event-driven programming language, we decided to use the popular jQuery library16

for simplifying the handling events and document manipulations. jQuery is a fast
and concise JavaScript library that simplifies HTML document traversing, event
handling, animating, and Ajax interactions for rapid web development. Another
advantage of jQuery is its extensibility. There is a large number of extensions and
libraries based upon jQuery for almost any purpose.
To simplify the implementation and handling of the model part in our Javascript

MVC application, we selected the Backbone.js17 library. Backbone.js simplifies the
structure of complex JavaScript applications by providing a data model abstraction
with key-value binding and storage mapping as well as custom events, collections
with a rich set of enumerable functions, and views with declarative event handling.
Though Backbone.js supports two parts of the MVC architecture – model and
view, we have used only the model part, since the view is handled better by jQuery
Mobile (cf. section 5.2.3). The standard Backbone.js Model was extended to utilize
local storage and caching.
Since the Mobile DSSN Client will handle FOAF profiles directly we have used

rdfQuery18 to simplify this process. rdfQuery is an easy-to-use JavaScript library
for RDF-related processing. It can be used to parse RDFa embedded within a
page, query over the contained facts and perform some simple reasoning to infer
some implicit information. Together with a server-side triplestore, rdfQuery can
be used to easily create authoring interfaces for the semantic web. rdfQuery comes
in three components:

• Core rdfQuery – allows to create simple client-side triplestores and query
them with JavaScript

• rdfQuery with RDFa – supports parsing of RDFa and adding RDFa to web
pages.

• rdfQuery with rules – supports reasoning within triplestores using rules.

Since we do not use any client-side reasoning or RDFa parsing in the Mobile DSSN
Client, only the Core rdfQuery was included into project.
Since user feeds are presented in the Atom syndication format, the jFeed library19

was used for parsing feeds. Since our Mobile DSSN Client is a HTML5 Web

16http://jquery.com/
17http://documentcloud.github.com/backbone/
18http://code.google.com/p/rdfquery/
19jFeed is a lightweight JavaScript RSS/ATOM feed parser based on jQuery: http://plugins.

jquery.com/project/jFeed

89

http://jquery.com/
http://documentcloud.github.com/backbone/
http://code.google.com/p/rdfquery/
http://plugins.jquery.com/project/jFeed
http://plugins.jquery.com/project/jFeed

5. Client Approaches

application some security restrictions apply. For example, the client is only allowed
to perform AJAX requests to the same server where it was loaded from. In order to
make the Mobile DSSN Client more flexible, functionality to proxy AJAX requests
was added. If the server hosting the FOAF profile or a SPARQL endpoint does
not have the client in its access white list for cross-side scripting and the user does
not have the ability to change this configuration, the proxy needs to be used. The
AJAX proxy was implemented in PHP and can be deployed on same server where
the Mobile DSSN Client web application is hosted.

User Interface. The user interface was built using HTML5 and the jQuery
Mobile20 framework to ensure compatibility across all of the major mobile platforms.
Built on a jQuery and jQuery UI21 foundation, it allowed to create a unified user
interface regardless of the actual platform the user’s device runs on. The resulting
source code presents a thin JavaScript layer, built with Progressive Enhancement
principles so as to allow for a minimal footprint.
The Mobile DSSN Client user interface currently has two di↵erent usage patterns:

profile and stream browsing and network traversing; adding friends, user’s profile
data editing and posting to user’s feed.

Profile and Stream browsing. Figure 5.8 shows the Mobile DSSN Client user
interface in di↵erent browsing states.

Figure 5.8.: Mobile DSSN Client standard browsing interface.

In accordance with popular touch-oriented mobile software platforms, the user
interface was based on lists so as to simplify navigating through interlinked resources.

20http://jquerymobile.com/
21http://jqueryui.com/

90

http://jquerymobile.com/
http://jqueryui.com/

5.2. Hybrid client approach

The first screenshot (Figure 5.8.1) shows the settings screen invoked upon first run
of the application. This screen allows the user to input his WebID URI. All the
required data is gathered from the user’s WebID after submission. The second
screenshot shows how the user’s profile is displayed. Currently, the profile screen
is limited to several fixed fields, but with a bit of JavaScript knowledge a user can
easily adjust it to his likings. We plan to provide simple user interface for this in
future. The third screenshot shows the user’s network as a simple list with names
and depictions. Selecting any entry in this list will navigate to selected profile.
The last screenshot (Figure 5.8.4) shows the user’s activities stream which is also
represented as a simple list. Bottom bar with screen selection is common to all of
those views and aims to make the Mobile DSSN Client feel native even when using
it from web browser. The menu button on top of the screen invokes a menu for
data manipulation (e.g. profile editing, activity addition) that is described below.
Profile traversing can be accomplished in several ways:

• Simply selecting an interesting profile in network tab,

• Opening a WebID by its URI from the menu,

• Searching for a WebID using the Sindice search engine.

Selecting another WebID will open the same views as shown above for a user’s own
profile. Two additional buttons will appear when browsing through WebIDs: The
“Home” button will be added to the top bar to navigate back to the user’s profile,
an “Add to network” entry will be added to the menu to add current WebID to
the user’s network.

Profile and Stream editing. Figure 5.9 shows editing interfaces of the Mobile
DSSN Client.
The first screenshot (Figure 5.9.1) shows the profile editing interface. By using

predicates names as labels and objects as text in inputs, this interface allows editing
any field available in the user’s profile. The Mobile DSSN Client tracks changes of
every input and saves only the ones that actually have been changed. After data
is saved to the model, the synchronization algorithm immediately applies changes
to local storage and waits for an available data connection to send them to the
DSSN node where the user’s profile is hosted. At the moment the only supported
way of updating a profile on the server is via SPARQL update queries.

Screenshot 2 shows the management of the user’s network. After enabling this
mode a simple selection of a list entry representing a relation will remove this
relation from the user’s profile. Addition of a new relation is shown in Screenshot 3.
It is accomplished by entering the desired WebID URI. When the user browses
through other WebIDs and wants to add a relation with one, he also reaches that
screen, but with pre-filled input. It is also possible to use the Sindice search engine
to find and add people. A Sindice search result is shown in Screenshot 4. Selection
of a search result item will result in loading this item as WebID in browsing

91

5. Client Approaches

Figure 5.9.: Mobile DSSN Client editing interfaces.

interface. The last screenshot (Figure 5.9.5) shows the interface for the creation of
new activities. It consist of three fields: activity type, activity text and URI for
activity. It is also possible to post text-only activities without any URI included.
Also activity creation is, at the moment, only possible when using a SPARQL
endpoint.

Platform specific components

Since the Mobile DSSN Client was created in a platform-independent way, it is
possible to use variety of application frameworks to turn it into platform-specific
hybrid application. A hybrid application combines elements of both native and
web applications. Such a combination allows access to native features of the device
from within the web application. However, all the layout rendering is done using
the native HTML5 browser engine on the phone.
There are currently more than 15 mobile development frameworks22 available

each with di↵erent strengths and weaknesses. We selected PhoneGap to compile
and package the Mobile DSSN Client for di↵erent platforms. PhoneGap was chosen
because of its openness and large user community. PhoneGap being open source
allows us to change practically anything inside the framework, if required.
Using PhoneGap to package the Mobile DSSN Client for specific platforms allows

access to the default PhoneGap JavaScript APIs23 (e.g. accelerometer, compass,
media, etc.). Also, the powerful PhoneGap plugin system24 is available. It allows
to create platform-specific plugins using native platform SDKs and binding certain

22http://en.wikipedia.org/wiki/Multiple_phone_web_based_application_framework
23http://docs.phonegap.com/
24http://wiki.phonegap.com/w/page/36752779/PhoneGap-Plugins

92

http://en.wikipedia.org/wiki/Multiple_phone_web_based_application_framework
http://docs.phonegap.com/
http://wiki.phonegap.com/w/page/36752779/PhoneGap-Plugins

5.2. Hybrid client approach

functionality to respective JavaScript interfaces.
As an example for employing the plugin-based extension for the Mobile DSSN

Client we decided to write a contacts synchronization provider for the Android
platform. Android allows the creation of a custom contacts providers for synchro-
nization with the smartphones contact book. Our WebID provider now synchronizes
all foaf:knows and other relations from the WebID with the Android phone’s
contact book. PhoneGap plugins consist of two parts: native code and JavaScript
interfaces. In the case where Android native code is a Java class that class extends
the PhoneGap plugin system. The JavaScript interface is implemented using the
PhoneGap execute method that can call any native code (or the default Phone-
Gap API). Since this contact synchronization provider was already implemented
during the development of the Mobile Social Semantic Web client for Android
(MSSW [Tramp et al., 2011b]), all that was required is to convert the existing code
into a PhoneGap plugin.

5.2.4. Evaluation

The evaluation of our DSSN concept and implementation has been divided into
three parts:

1. Social Web Acid Test (SWAT),

2. OntoWiki-based interoperability evaluation,

3. Dydra-based interoperability evaluation.

SWAT was used as a general check for the completeness and integration of the
client into the DSSN architecture. The OntoWiki and Dydra based evaluations
access how the client behaves with di↵erent data providers.

Social Web Acid Test

The Social Web Acid Test (SWAT) is an integration use case test that was
conceived by the Federated Social Web Incubator Group of the W3C. Currently,
only the first and very basic level of the test (SWAT025) has been developed and
described completely. Nevertheless, the parts of the next level (SWAT1), which
are currently published, are discussed here as well.

SWAT0: The objectives of the first SWAT level are clearly described by the
following use case26:

25http://www.w3.org/2005/Incubator/federatedsocialweb/wiki/SWAT0
26For this use case the following assumptions are made: (1) Users employ at least two (ideally,

three) di↵erent services each of which is built with a di↵erent code base. (2) Users only need
to have one account on the specific service of their choice. (3) Ideally, participants A, B, and
C use their own sites (personal URLs).

93

http://www.w3.org/2005/Incubator/federatedsocialweb/wiki/SWAT0

5. Client Approaches

Listing 5.2: Social Web Acid Test - Level 0

User A takes a photo of user B from her phone and posts
it

User A explicitly tags the photo with user B
User B gets notified that she is in a photo
User C who follows user A gets the photo
User C leaves a comment on the photo
User A and user B get notified about the comment

Utilizing all technologies described before, the Mobile DSSN Client passes the
SWAT0 without any problems. The following enumeration describes the details:

1. User A takes a photo of user B and shares it (using the activity creation
interface): The web space returns a link to the user’s pingback server in the
HTTP header of the uploaded image.

2. User A explicitly tags a photo with user B: This is done by creating a tag
resource using the same activity creation interface which links both to the
image and to the WebID of user B. A pingback client sends a ping request
to all of these resources after publishing the tag on the Web.

3. User B is notified that she is on a photo: The notification is created by
the pingback service of User B who has received a request from the tagging
application which was used by User A.

4. User C, who follows user A, receives the photo: User C is instantly provided
with an update in her activity stream, informing her about the new image.

5. User C leaves a comment on the photo: This is done in the same way as
publishing the tag.

6. User A and user B are notified about the comment: User A will be notified
because her pingback service informs her about this ping. User B will be
notified only if she has subscribed to the activity feed of the photo provided
that it exists.

SWAT1 is currently not finally defined27, thus the evaluation is only preliminary
at the moment. The next SWAT level will require a few di↵erent use cases which
introduces some new Social Web concepts. However, most of the user stories are
already satisfied as a consequence of the fully distributed nature of the DSSN
architecture (e.g. data portability and social discovery). The more interesting user

27Available online at http://www.w3.org/2005/Incubator/federatedsocialweb/wiki/
SWAT1_use_cases (receive 29.07.2011).

94

http://www.w3.org/2005/Incubator/federatedsocialweb/wiki/SWAT1_use_cases
http://www.w3.org/2005/Incubator/federatedsocialweb/wiki/SWAT1_use_cases

5.2. Hybrid client approach

stories are: (1) The Private content and Groups use cases will require a distributed
ACL management. Some ideas for using WebIDs for group ACL management were
already published with dgFOAF [Schwagereit et al., 2010] and we deem this is a
good starting point for further research. (2) The Social News use case introduces
a new vote activity. Since our architecture applies schema agnostic social network
protocols, this new type of activity can be communicated as any other activity.
Since most of those use cases easily fit into the DSSN architecture, they could be
easily executed from the Mobile DSSN Client. The most problematic case at the
moment is authorization using the FOAF+SSL protocol. Using the FOAF+SSL
protocol is not yet fully supported even by the newest mobile platforms, so it is
currently not yet possible to authenticate and handle private content.

OntoWiki-based interoperability evaluation

OntoWiki was developed to address the need for a Web application for rapid
and simple knowledge acquisition in a collaborative way. OntoWiki can be used for
presenting, authoring and managing knowledge bases adhering to the RDF data
model. In order to render its functionality, OntoWiki relies on several APIs that
are also available to third-party developers. Usage of these programming interfaces
enables the users to extend, customize and tailor OntoWiki in several ways.
OntoWiki was selected because first DSSN architecture implementation was

done using OntoWiki framework. Since OntoWiki is Linked Data enabled applica-
tion, it can be used as WebID provider. Implemented during DSSN architecture
development, the OntoWiki activity stream extensions provides means to create
ATOM feed upon existing activities data. Also, the SPARQL endpoint provided
by OntoWiki is used to update data both for WebIDs and for activity streams.
SWAT0 was used as simplest available test case. Since there are two persons

in SWAT0 two OntoWiki instances were set up for Bob28 and Alice29. Bob was
picked as a user of the Mobile DSSN Client. The SWAT0 scenario was followed
step by step. During the test no errors or problems with client or server were
encountered. The Mobile DSSN Client showed that it can be used with OntoWiki
as a data and update provider without any problems.

Dydra-based interoperability evaluation

Dydra30 is a cloud-based graph database service which is free to use (currently
in a private beta) and allows read/write access to di↵erent graph models in a
user space. Importing and exporting of graph data is done using di↵erent APIs
including SPARQL and a Dydra REST API. For querying, Dydra o↵ers a SPARQL
endpoint for each saved graph. Unfortunately Dydra currently does not support
access to stored resources following the Linked Data best practices at the moment.

28http://bob.lod2.eu/
29http://alice.lod2.eu/
30http://dydra.com

95

http://bob.lod2.eu/
http://alice.lod2.eu/

5. Client Approaches

To overcome this limitation, we created and used a Dydra linked data proxy. This
proxy maps resource URLs in the namespace of the proxy installation onto SPARQL
ASK and CONSTRUCT queries, which are executed on the Dydra SPARQL endpoint31.
In order to interlink Dydra resources with DSSN services, the Linked Data proxy
adds most of the auto-discovery object properties and header fields to the HTTP
response. This is especially useful for WebIDs and data artefacts as comments and
notes. In addition to Dydra as a WebID provider, we used a standalone Semantic
Pingback service32 as well as an activity feed service (an OntoWiki instance).
As in the OntoWiki case, SWAT0 was used as a test case. Bob’s WebID

was moved from OntoWiki to the Dydra store and the user’s URI was changed
accordingly in the client. Again, the SWAT0 scenario was followed step by step.
During the test no errors or problems on client or server sides were encountered.
The Mobile DSSN Client showed that it can be used with Dydra as a data provider
as well as with OntoWiki as activity stream provider at the same time and stand
alone Semantic Pingback service.

5.2.5. Conclusion

We see the work described in this section to be a further crucial piece in the
medium-term agenda of realizing a truly distributed social network based on seman-
tic technologies. Since ubiquitous devices are playing an increasingly important role
as clients and platforms for social networks, our realization focused on providing
an extensible framework for social semantic networking on the Android platform.
With this work we aimed at showcasing how di↵erent (social) Semantic Web
standards, technologies and best practices can be integrated into a comprehensive
architecture for social networking (on ubiquitous devices).

5.3. Fat client approach

In this section, we describe Mobile Social Semantic Web Client that was devel-
oped using fat client approach. This section is based on [Tramp et al., 2011a] that
was written in collaboration with Sebastian Tramp, Philipp Frischmuth, Natanael
Arndt and Sören Auer33.

The section is structured as follows: We introduce the idea of Social Semantic Web
in subsection 5.3.1. We outline the requirements for the approach in subsection 5.3.2.
We describe the general architecture of the approach in subsection 5.3.3. We explain
our implementation in subsection 5.3.4. Finally, we conclude in subsection 5.3.6.

31In a similar way as described in Pubby [Cyganiak and Bizer, 2011], but more specific to the
Dydra user/graph URL scheme.

32This service is available at http://pingback.aksw.org and was described in detail in
[Tramp et al., 2010a].

33Author’s main contribution to the paper is development of the client architecture and implene-
tation of the client itself

96

http://pingback.aksw.org

5.3. Fat client approach

5.3.1. Introduction

Smartphones, which contain a large number of sensors and integrated devices,
are becoming increasingly powerful and fully featured computing platforms in our
pockets. For many people they already replace the computer as their window to
the Internet, to the Web as well as to social networks. Hence, the management
and presentation of information about contacts, social relationships and associated
information is one of the main requirements and features of today’s smartphones.
The problem is currently solved solely for centralized proprietary platforms (such

as Google mail, contacts & calendar) as well as data-silo-like social networks (e.g.
Facebook). As a result of this data centralization, users’ data is taken out of their
hands, they have to accept the predetermined privacy and data security regulations;
users are dependent of the infrastructure of a single provider, they experience a
lock-in e↵ect, since long-term collected profile and relationship information cannot
be easily transferred. Increasingly, many people argue that social networks should
be evolving. That is, they should allow users to control what to enter and to keep
a control over their own data. Also, the users should be able to host the data on
an infrastructure, which is under their direct control, the same way as they host
their own website [Berners-Lee, 2010].
A possibility to overcome these problems and to give the control over their data

back to the users is the realization of a truly distributed social network. Initial
approaches for realizing a distributed social network appeared with GNU social
and more recently Diaspora. However, we argue that a distributed social network
should be also based on semantic resource descriptions and de-referenceability so as
to ensure versatility, reusability and openness in order to accommodate unforeseen
usage scenarios.
Within the Semantic Web initiative already a number of standards and best-

practices for social, Semantic Web applications such as FOAF,WebID and Semantic
Pingback emerged. However, there is no comprehensive strategy, how these tech-
nologies can (a) be combined in order to weave a truly open and distributed social
network on the Web and (b) be used e�ciently in a mobile environment. Also,
the use of a distributed, social semantic network should be as simple as the use of
the currently widely used centralized social networks (if not even simpler). In this
section we present the general strategy for weaving a distributed social semantic
network based on the above mentioned standards and best-practices. In order
to foster its adoption we developed an implementation for the Android platform,
which seamlessly integrates into the commonly used interfaces for contact and
profile management on mobile devices.
After briefly reviewing some use cases and requirements for a mobile, semantic

social network application (in subsection 5.3.2), we make in particular the following
contributions:

• We outline a strategy to combine current bits and pieces of the Semantic Web
technology realm in order to realize a distributed, semantic social network
(subsection 5.3.3),

97

5. Client Approaches

• We develop an architecture for making mobile devices endpoints for the
Social Semantic Web (subsection 5.3.3),

• A comprehensive implementation of the architecture was performed for the
Android platform (subsection 5.3.4 and subsection 5.3.5).

Furthermore, this section concludes in subsection 5.3.6 with a discussion and
outlook on future work.

5.3.2. Mobile Use Cases and Requirements

Before describing the overall strategy, the technical architecture and our imple-
mentation we want to briefly outline in this section the key requirements, which
guided our work. These requirements are common sense in the context of social
networks and are not newly coined by us. Unfortunately most of them are not
achieved in the context of semantics enabled and distributed social networks, so
we describe them especially from this point of view.

Make new friends. Adding new contacts to our social network is the precondition
in order to gather useful information from this network. Maintaining our social
network directly from your mobile phones means that we are able to instantly
connect with new contacts (e.g. on conferences or parties). In the context of a
distributed social network, this use-case also includes the employment of semantic
search engines to acquire the WebID of a new contact based on parts of its
information (typically the contacts name). In order to shorten the overall e↵ort for
adding new contacts, functionality for scanning and decoding a contacts business
cards QR code34 are also included in this use-case.

Be in sync with your social network. Once our social network is woven and
social connections are established, we want to be able to gather information from
this network. For a distributed social network this means, that a combination
of push and pull communications is needed to be as timely updated as needed
and as fast synced as possible. Especially this use-case is bound to a bunch of
access control requirements35. where people want to permit and deny access to
specific information in fine grained shades and based on groups, live contexts and
individuals.

34QR codes are two-dimensional barcodes which can encode URIs as well as other information.
They are especially famous in Japan, but their popularity grows more and more worldwide
since mobile applications for decoding them with a standard camera can be used on a wide
range of devices.

35A typical requirement: Disallow access to my mobile number except for friends and family
members.

98

5.3. Fat client approach

foaf:knows

WebID B
(FOAF file)

WebID A
(OntoWiki)

WebID C
(OntoWiki)

WebID D
(ODS)

Data Web

PubSubHubbub
server

Semantic
Pingack server

Data Web Services

rel:worksWith

Sindice

1

2

3

5

6

Mobile Devices

8

4

7

Figure 5.10.: Architecture of a distributed, semantic social network: (1) A mobile
user may retrieve updates from his social network via his WebID
provider, e.g. from OntoWiki. (2) He may also fetch updates directly
from the sources of the connected WebIDs. (3) A WebID provider
can notify a subscription service, e.g. a PubSubHubbub server, about
changes. (4) The subscription service notifies all subscribers. (5) As
a result of a subscription notification, another node can update its
data. (6) A mobile user can search for a new WebID by using a
semantic search engine, e.g. Sindice. (7) To connect to a new WebID
he sends a Pingback request which (8) notifies of the resource owner.

Annotate contacts profiles. It should be possible to annotate profiles of contacts
freely, e.g. with updated information, contact group categorizations (e.g. friends,
family, co-workers). These annotations should be handled in the same way as the
original data from the friend’s WebID except that this data is not updated with
the WebID but persists as an annotation. One additional feature request in this
use-case is to share these annotations across ones personal devices on the web, e.g.
by pushing them to a triple store which is attached to ones WebID.

General requirements. The development of the Mobile Social Semantic Web
Client was driven by a few general requirements which derived from our own
experience with mobile phones and FOAF-based WebIDs:

• Be as decent as possible: Today’s FOAF-based social networks are mostly
driven by uploaded RDF files. In order to support such low end profiles,
there should be no other required feature on a WebID than the availability

99

5. Client Approaches

as Linked Data36. All other features (FOAF+SSL, Semantic Pingback,
subscription service) should be handled as optional and our client should
require as little infrastructure as possible.

• Be as transparent as possible: Mobile user interfaces are built for e�ciency
and daily use. People become accustomed with them and any changes in the
daily work flow of using information from the social network will annoy them.
The client we had in mind should work mostly invisible from the user, which
means it should be well integrated into the hosting mobile operating system.

• Be as flexible as possible: This is especially needed in an environment
where vocabularies are not yet standardized and are subject to changes and
extensions. Our solution should be flexible in the sense that we do not want
built-in rules on how to deal with specific attributes or relations.

Based on these preliminaries as well as based on the Social Semantic Web state
of the art, we describe an architecture of a distributed social semantic network in
the next section.

5.3.3. Architecture of a Distributed Semantic Social Network

In this section we describe the main ingredients for a distributed, semantic
social network as well as their interplay. The overall architecture is depicted in
Figure 5.10. The semantic representation of personal information is facilitated
by WebID. FOAF+SSL allow the use of a WebID for authentication and access
control purposes. Semantic Pingback facilitates the first contact between users of
the social network and subscription services allow obtaining specific information
from people in ones social network as near-instant notifications.

WebID. WebID [Sporny et al., 2010] is a best-practice recently conceived in
order to simplify the creation of a digital ID for end users. Since its focus lies on
simplicity, the requirements for a WebID are minimal. In essence, a WebID is an
de-referenceable RDF document (including RDFa) describing its owner37. That is,
a WebID contains RDF triples, which have the IRI identifying the owner as subject.
The description of the owner can be performed in any (mix of) suitable vocabularies,
but FOAF [Brickley and Miller, 2004] emerged as the ‘industry standard’ for that
purpose. An example WebID comprising some personal information (lines 8-12)
and two rel:worksWith38 links to co-workers (lines 6-7) is shown in Listing 5.3.

36In the meaning of Linked RDF Data defined at http://www.w3.org/DesignIssues/
LinkedData.

37The usage of an IRI with a fragment identifier allows the indirect identification of a WebID by
reference to the (FOAF) profile document.

38Taken from RELATIONSHIP: A vocabulary for describing relationships between people at
http://purl.org/vocab/relationship.

100

http://www.w3.org/DesignIssues/LinkedData
http://www.w3.org/DesignIssues/LinkedData
http://purl.org/vocab/relationship

5.3. Fat client approach

Listing 5.3: A minimal WebID with personal information and two worksWith
relations to other WebIDs.

@prefix rdfs: <http://www.w3.org/2000/01/rdf -schema#> .

@prefix foaf: <http://xmlns.com/foaf/0.1/> .

@prefix rel: <http://purl.org/vocab/relationship/> .

<http://philipp.frischmuth24.de/id/me> a foaf:Person;

rdfs:comment "This is my public profile only , more
information available with FOAF+SSL";

rel:worksWith <http://sebastian.tramp.name >,
<http://www.informatik.uni -leipzig.de/~auer/foaf.rdf

#me>;

foaf:depiction <http://img.frischmuth24.de/people/me.
jpg >;

foaf:firstName "Philipp"; foaf:surname "Frischmuth";
foaf:mbox <mailto:frischmuth@informatik.uni -leipzig.de

>;
foaf:phone <tel :+49 -341 -97 -32368 >;
foaf:workInfoHomepage <http://bis.informatik.uni -

leipzig.de/PhilippFrischmuth >.

FOAF+SSL. The more technical FOAF+SSL best-practice [Story et al., 2009b]
aims to incorporate authentication functionality into the WebID concept. The main
idea is to link an SSL client certificate to a WebID, thus allowing the owner of the
FOAF+SSL enabled WebID to authenticate herself at 3rd party websites. Another
goal of FOAF+SSL is to provide access control functionality for a social network
shaped by WebIDs in order to allow access to di↵erent kinds of information for di↵er-
ent groups of contacts (e.g. as presented with dgFOAF [Schwagereit et al., 2010]).
An example of a FOAF+SSL WebID extension is shown in Listing 5.4. This WebID
now contains a description of an RSA public key (line 15), which is associated to
the WebID by using the cert:identity property from the W3C certificates and
crypto ontology (line 19).

Semantic Pingback. The purpose of Semantic Pingback [Tramp et al., 2010a] in
the context of a distributed social network is to facilitate the first contact between
di↵erent people using the network. The approach is based on an extension of the
well-known Pingback technology [Langridge and Hickson, 2002], which is one of
the technological cornerstones of the overwhelming success of the blogosphere in the
Social Web. The Semantic Pingback mechanism enables bi-directional links between
WebIDs, RDF resources as well as weblogs and websites in general. It facilitates
contact/author/user notifications in case a link has been newly established. It
is based on the advertising of a lightweight RPC service, in the RDF document,
HTTP or HTML header of a certain Web resource, which should be called as soon

101

5. Client Approaches

Listing 5.4: Extension of the minimal WebID from Listing 5.3: Description of
an RSA public key, which is associated to the WebID by using
the cert:identity property from the W3C certificates and crypto
ontology.

@prefix rsa: <http://www.w3.org/ns/auth/rsa#> .

@prefix cert: <http://www.w3.org/ns/auth/cert#"> .

[] a rsa:RSAPublicKey;
rdfs:comment "used from my smartphone ...";
cert:identity <http://philipp.frischmuth24.de/id/me>;
rsa:modulus [cert:hex "C41199E ... 5AB5"];
rsa:public_exponent [cert:decimal "65537"] .

as a (typed RDF) link to that resource is established. The Semantic Pingback
mechanism enables people but also authors of RDF content, a weblog entry or
an article in general to obtain immediate feedback, when other people establish a
reference to them or their work, thus facilitating social interactions. It also allows
to automatically publish backlinks from the original WebID (or other content) to
comments or references of the WebID (or other content) elsewhere on the Web,
thus facilitating timeliness and coherence of the Social Web. As a result, the
distributed network of WebID profiles, RDF resources and social websites using the
Semantic Pingback mechanism can be much tighter and timelier interlinked than
conventional websites, thus rendering a network e↵ect, which is one of the major
success factors of the Social Web. Semantic Pingback is completely downwards
compatible with the conventional Pingback implementations, thus allowing the
seamless connection and interlinking of resources on the Social Web with resources
on the Data Web. An extension of our example profile with Semantic Pingback
functionality making use of an external Semantic Pingback service is shown in
Listing 5.5.

Listing 5.5: Extension of the minimal WebID from Listing 5.3: Assignment of an
external Semantic Pingback service which can be used to ping this
specific resource.

@prefix ping: <http://purl.org/net/pingback/> .

<http://philipp.frischmuth24.de/id/me> ping:to <http://

pingback.aksw.org >.

Subscription Service. The purpose of a WebID subscription service is to establish
a publish/subscribe communication model to provide near-instant notifications of
contact updates. The main idea here is to extend a WebID with a link to a PubSub-

102

5.3. Fat client approach

Hubbub service39 where any contact can subscribe to the WebIDs updates. Although
such a behavior is described for SPARQL results in [Passant and Mendes, 2010],
there is currently no standardized solution for publishing RDF change sets through
PubSubHubbub as well as for saving the incoming changes from all friends of
a user in some kind of cache or proxy while the mobile device (the subscriber)
is not online. As a consequence, our implementation (as described in the next
section) does not yet support a full-fledged update subscription. As a fallback,
updates are currently polled from the related WebIDs. This increases network
bandwidth usage and might lead in some cases to slower user interfaces due to
network latency. Please refer to Section 5.3.6 for a description of possible future
work in this direction.

5.3.4. Implementation of a Mobile Interface

After describing the architecture of a distributed, semantic social network we
now present our implementation of a mobile interface for this network.

Android System Integration

Figure 5.11 depicts the mobile social Semantic Web client consisting of two
application frameworks, which are built on top of the Android runtime and a
number of libraries. In particular, androjena40 is one of those libraries, which
itself is a partial port of the popular Jena framework41 to the Android platform.
Both frameworks provided by the client share the feature that they are accessible
through content providers. The Mobile Semantic Web middleware (MSW) is
responsible for importing Linked Data resources (in particular via FOAF+SSL)
and persisting that data. It operates on triple level and provides access to the
various triple stores through a content provider called TripleProvider. Each
resource is stored separately, since named graphs are currently not supported. The
Mobile Social Semantic Web middleware (MSSW) queries the triple data provided
by MSW and transforms that data into a format that is more appropriate for social
applications. It propagates two content providers, one that integrates well with
the layout of contact information on Android phones (ContactProvider) and one
that is suitable for FOAF based applications (FoafProvider).

Model Management

Since WebIDs are Linked Data enabled, they usually return data describing that
resource. This circumstance makes it feasible to store a graph (referred to as a
model here) for each WebID, since the redundancy between models is expected to

39PubSubHubbub is an open, server-to-server web-hook-based publish/subscribe protocol realized
as an extension to Atom: http://code.google.com/p/pubsubhubbub/

40http://code.google.com/p/androjena/
41http://jena.sourceforge.net/

103

http://code.google.com/p/pubsubhubbub/
http://code.google.com/p/androjena/
http://jena.sourceforge.net/

5. Client Approaches

ContactsTriple FOAF

FOAF BrowserNative Contacts ...

Core Libraries

Dalvik VM

SSL

androjena

...

WiFi Networking ...

Mobile Semantic Web
(MSW)

Mobile Social Semantic Web
(MSSW)

LOD

Applications

Content Provider

Application Frameworks

Libraries Android Runtime

Linux Kernel

query

fetch

Figure 5.11.: Android Integration Layer Cake

be marginal. In reality MSW keeps more than one model per WebID for di↵erent
purposes. On the mobile phones’ SD-card we keep these models in the following
subdirectories:

• web – This folder contains exact copies of the documents retrieved from the
Web.

• inf – Models stored in this folder contain all entailed triples (more on this
in Section 5.3.4).

• local – The user can annotate all WebIDs with personal information, which
will be stored in this folder.

We decided to store all data as RDF files on a swappable SD-card, since we expect
the following user benefits:

• Because SD-cards can be exchanged, the data is portable and can be reused
on another phone or device. This makes the whole system more fail-proof.

• Most modern computers can handle SD-cards and hence data can be easily
backed up.

• Other applications on the Android phone running the mobile Semantic Web
client can access and modify the data stored on the card. Thus they can
further annotate the information and the client can again take advantage of
such annotations.

104

5.3. Fat client approach

Rules and Data Processing

One of our initial requirements from Section 5.3.2 is flexibility in the sense that
specific vocabulary resources should not be encoded in the source code of the
WebID provider. In order to achieve this requirement, we decided to encode as
much data processing as possible in terms of user extensible rules. Since we employ
the androjena framework, we were able to use the included Jena rules engine as
well. All rules processed by this rule-based reasoner are defined as lists of body
terms (premises), lists of head terms (conclusions) and optional names42.

Listing 5.6: Example transformation rule: If a foaf:jabberID is present with a
WebID (line 7), then a new blank node of RDF type acontacts:Im is
created (line 7), which is of Android IM type HOME (line 11) and which
gets an IM protocol as well as the IM identifier (line 12 and 10).

@prefix foaf: <http://xmlns.com/foaf/0.1/>.
@prefix android: <http://ns.aksw.org/Android/>.
@prefix acontacts: <http://ns.aksw.org/Android/

ContactsContract.CommonDataKinds.>.

@prefix im: <http://ns.aksw.org/Android/ContactsContract
.CommonDataKinds.Im.>.

[jabber:
(?s foaf:jabberID ?o), makeTemp (?d) ->

(?s android:hasData ?d),
(?d rdf:type acontacts:Im),
(?d im:DATA ?o),
(?d im:TYPE im:TYPE_HOME),
(?d im:PROTOCOL im:PROTOCOL_JABBER)

]

Since we also did not want our implementation to depend on the FOAF vo-
cabulary (alternative solutions include RDF vCards [Iannella et al., 2010]), we
decided to create a native Android system vocabulary which represents the An-
droid contacts database defined by the Android API. This vocabulary is deeply
integrated into the Android system since it re-uses class and attribute names from
the Android API and represents them as OWL class and datatype properties43.
Based on this vocabulary, the given rules transform the downloaded WebID

statements into Android-specific structures which are well suited for a straight-

42http://jena.sourceforge.net/inference/#RULEsyntax
43An example class name is ContactsContract.CommonDataKinds.StructuredName, which is

represented in the vocabulary as an OWL class with the URI http://ns.aksw.org/Android/
ContactsContract.CommonDataKinds.StructuredName. We published the vocabulary at
http://ns.aksw.org/Android/. Please have a look at the Android API reference as well
(http://developer.android.com/).

105

http://jena.sourceforge.net/inference/#RULEsyntax
http://ns.aksw.org/Android/ContactsContract.CommonDataKinds.StructuredName
http://ns.aksw.org/Android/ContactsContract.CommonDataKinds.StructuredName
http://ns.aksw.org/Android/
http://developer.android.com/

5. Client Approaches

Figure 5.12.: Visualization of a WebID in OntoWiki: incoming backlinks (via
Semantic Pingback) are rendered in the “Instances Linking Here”
side box.

forward import into the contacts provider. These structures are very flat and
relate di↵erent Android data objects (e.g. email, photo, structured name etc.)
via a hasData property to a WebID. An example rule which creates an instant
messaging account for the contact is presented in Listing 5.6.
After applying the given set of rules, the application post-processes the generated

data in order to apply other constraints which we could not achieve with Jena
rules alone. At the moment all mailto: and tel: resources are transformed to
literal values, which is required for instantiating the corresponding Java class. In
addition we download, resize and base64-encode all linked images. After that, the
application goes through the generated data resources and imports them one by
one.

OntoWiki

The mobile Semantic Web client supports arbitrary WebIDs, even those backed
by plain RDF files. Nevertheless, some features require special support on the server-
side. For our semantic data wiki OntoWiki [Auer et al., 2006b] we implemented
all functionalities required for a complete distributed Social Web experience. Any
user can setup his own OntoWiki instance, which will then provide him with an
enhanced WebID.
If configured properly a user can create a self-signed certificate with very little

e↵ort. Such a certificate contains the generated WebID as a Subject Alternative
Name (SAN) and is directly imported into supported Web browsers44. From the

44A list of supported browsers is available at http://esw.w3.org/Foaf+ssl/Clients.

106

http://esw.w3.org/Foaf+ssl/Clients

5.3. Fat client approach

browser the certificate can be exported in PKCS12 format and stored on a SD-card
used by a mobile phone running the client. Since OntoWiki supports FOAF+SSL
authentication, a user can split his data in publicly visible information and such,
that is only accessible by people which have a certain relationship with the user
(e.g. a foaf:knows relation).

Semantic Pingback is another technology supported by OntoWiki. Thus an
arbitrary user can add a relationship to an OntoWiki backed WebID and as a
result the WebID owner will be notified, enabling the user to take further actions
(see Figure 5.12). In the use case of the mobile Semantic Web client this is especially
useful for a first contact between users. In typical social network applications
this step would be the “Add as a friend” step. In a distributed scenario, however,
if one states that she is a friend of someone else, she would allow that person
to view the data dedicated to be displayed by friends only. If both endpoints
add that relation on their respective side, they can see each other’s private data
and thus are considered friends (in the Social Web sense). The Social Web has a
very dynamic nature and information is changed frequently or new data is added.
Hence, editing functionality is another important aspect and OntoWiki supports
editing via SPARQL/Update.

5.3.5. User perspective

The Mobile Semantic Social Web client implementation consists of two software
packages - the Android Semantic Web Core library containing the triple store and
the WebID content provider for Android. Both are available on the Android Market
since August 2010 (cf. screenshot A in Figure 5.13). According to the market
statistics, they were downloaded overall more than 400 times and are currently
installed on more than 100 devices.
Once installed few initial configuration options have to be supplied. Screenshot

B in Figure 5.13 shows the accounts and sync settings configuration menu, which
allows a user to associate his WebID with his profile on the smartphone (the same
way as adding an LDAP or Exchange account) and to configure synchronization
intervals. Screenshot C shows an actual WebID with the last synchronization date
and the option to trigger the synchronization manually.
After the user associated his profile with his WebID, information from linked

WebIDs of the users contacts are synchronized regularly and the information
are made available via the Android content provider to all applications on the
device. During the import of the WebID contacts, they are merged based on the
assumption of unique names. Independent of this automatic merge, the user can
split and merge contacts manually in the edit view of these contacts. Screenshot
D shows the standard Android contact application, where our WebID content
provider seamlessly integrates information obtained from WebIDs. Information
obtained from WebIDs is not editable, since it is retrieved from the authoritative
sources, i.e. the WebIDs of the respective contacts.
Screenshot E shows the FOAF browser, allowing people to add contacts or to

107

5. Client Approaches

Figure 5.13.: Screenshots of the Mobile Social Semantic Web Client, the FOAF
Browser and the Android components which integrate the WebID
account: (A) The client as well as the triple store can be found in
the o�cial Google application market. (B) After installation, users
can add a WebID account the same way they add an LDAP or
Exchange account. (C) The account can be synchronized on request
or automatically. (D) A contacts profile page merges the data from
all given accounts. (E) By using the FOAF browser, people can add
contacts or browse the contacts of their friends.

browse the contacts of their friends. In order to facilitate the process of connecting
with new contacts the Android implementation also allows to scan QR-codes of
WebIDs (e.g. from business cards) and to search for WebIDs using Sindice.

5.3.6. Conclusion

We see the work described in this section to be a further crucial piece in the
medium-term agenda of realizing a truly distributed social network based on
semantic technologies. Since mobile devices are playing an increasingly important
role as clients and platforms for social networks, our realization focused on providing
a extensible framework for social semantic networking on the Android platform.
With this work we aimed at showcasing how di↵erent (social) Semantic Web
standards, technologies and best practices can be integrated into a comprehensive
architecture for social networking (on mobile devices).

108

6. Provider Approaches

This chapter provides a general overview of existing provider approaches. There
are two provider approaches: Fat Provider and Hybrid Provider.

6.1. Fat provider approach

In this section, we describe Embedded Linked Data Server approach that was
developed using fat provider approach.
This section is based on [Ermilov and Auer, 2013].
The section is structured as follows: We introduce the Internet of Things and

ELDS in subsection 6.1.1. We describe our approach for adding a linked data
interface to smart devices in subsection 6.1.2. We discuss our implementation
in subsection 6.1.3. The evaluation methodology along with the corresponding
results for our implementation is described in subsection 6.1.4. Finally, we conclude
in subsection 6.1.5 with an outlook on future work.

6.1.1. Introduction

The term Internet of Things [Atzori et al., 2010] refers to the vision, that all
kinds of physical objects are uniquely identifiable and have a virtual representa-
tion on the Internet. The unique identification can be realized using barcodes,
RFIDs [Wang et al., 2006] or embedded systems and smart internet-enabled de-
vices. In the former two cases the object itself can only identify itself and a virtual
representation has to be hosted elsewhere. However, increasingly often some form
of intelligence is embedded into the objects themselves (e.g. by integrating a
system on a chip into a TV set or manufacturing equipment) or the object itself
is a smart device (e.g. a smartphone or tablet PC). As a result, these devices
can not only identify but also describe themselves by providing comprehensive
information. There have been first attempts of integrating Web servers and hosting
Web-accessible information within such devices (e.g. [Guinard and Trifa, 2009]).
However, as we meanwhile complemented the Web of Documents with a Web of
Semantic Data, information provided on the Internet of Things should be made
available in standardized and semantically structured form as well.
In this section, we present an approach for equipping embedded and smart

devices with a Linked Data interface. The approach is based on mapping existing
structured data on on the device to vocabularies and ontologies and exposing this
information as dereferencable RDF directly from within the device. The technical

109

6. Provider Approaches

architecture comprises a Web server running on the device, which serves content
provided by a management service from a embedded triple store and device specific
data stores. We implemented our approach for Android, which is an increasingly
popular operating system not only for smartphones and tablet PCs, but also for
smart TVs, navigation systems, cash registers and many other smart devices. Also,
our implementation is easily adaptable for other Linux or Unix based embedded
OS, such as FritzOS, Firefox OS 1 or Sailfish OS 2. As a result, all smart devices can
easily provide standardized structured information and become first class citizens
on the Data Web.
Equipping smart devices with Linked Data interfaces has a number of advantages

including:

• Standardization. Other data syndication and integration techniques are
mostly proprietary and require integration at design time. With Linked Data
interfaces, smart devices can expose, exchange and integrate data in ways
unforeseen at design time.

• Timeliness. Since the data is directly exposed from the device where it origi-
nates, there are no delays related to data replication, caching etc. Persistence
proxy services (similar to purl.org) can be used to maintain access to the
data when devices are o✏ine.

• Privacy and data security. Users’ data is kept where it belongs (on their
devices) and does not have to be centrally stored in order to be exchanged.
Also, using FOAF+SSL and access control mechanisms data can be exposed
in a fine-grained way.

A particular specific requirement when dealing with smart and embedded devices
are resource constraints. Due to progress in miniaturization, memory and processing
power is meanwhile not a constraining factor anymore for most applications.
Power consumption on the other hand is a key aspect, when equipping devices
with additional functionality. Hence, a particular focus of our implementation is
limitation of the impact on power consumption and for this purpose and due to lack
of existing standards in the area we develop a performance vs. power benchmarking
methodology. The evaluation of our approach using this methodology shows, that
the overhead introduced by equipping a device with a Linked Data interface is
neglectable given modern software and hardware environments and moderate usage.

6.1.2. Approach: Embedded Linked Data Server

The main goal of our approach is to enable any smart device (e.g. tablets,
smart phones, TVs) to identify and describe itself by providing comprehensive

1http://www.mozilla.org/en-US/firefox/partners/#os
2http://sailfishos.org/

110

purl.org
http://www.mozilla.org/en-US/firefox/partners/#os
http://sailfishos.org/

6.1. Fat provider approach

Figure 6.1.: Overview of the Embedded Linked Data Server architecture.

information in accordance with the Linked Data principles. As a way to accomplish
this goal, we propose the concept of an Embedded Linked Data Server (ELDS) that
comprises a Web server, which hosts Web-accessible RDF information as Linked
Data directly from within the smart device. The ELDS concept is based on an
on-demand transformation of internal smart device data structures to RDF by
using user-provided mappings.

Architecture

The overall ELDS architecture is shown in Figure 6.1 and includes three layers:

1. User layer – comprises a user client,

2. ELDS layer – comprises ELDS internal components,

3. Third-party application layer – comprises third-party applications.

The separation in these three layers not only facilitates modularity and maintain-
ability, but also aims at minimizing the impact on power consumption. Components
of the user and third-party layer, for example, can easily be suspended thus mini-
mizing the main memory and power consumption requirements.
The User layer includes user client application that can process RDF data

and optionally a user WebID that is used for authentication and access control
to the data provided by ELDS. ELDS layer includes all of the solution internal
components. In particular, the Web Server component that receives requests from
and sends replies to the user client. It also handles authentication and access control
by utilizing FOAF+SSL protocol [Story et al., 2009a], if necessary. The Managing
Service acts as the main controller that directs all other internal components and
manages most of the ELDS workflow. It receives request parameters from the Web
Server, determines which data mapping configuration file should be applied, passes

111

6. Provider Approaches

Figure 6.2.: ELDS workflow during Linked Data access.

parameters to the Query Service and transforms structured data to RDF using
the Triplestore component. The Configuration Manager component is responsible
for loading and managing the data mapping configuration files provided by the
user. The Query Service is responsible for fetching the data from third-party
application data providers using a configuration object that is passed to it. The
Triplestore component is used by the Managing Service to transform structured
data that was received from the Query Service component into the requested RDF
serialization. Third-party application layer includes external applications that can
act as structured data providers inside of the smart device or object (e.g. Android
contacts data provider).
The basic ELDS workflow during Linked Data access is shown in Figure 6.2 and

consists of following steps:

1. The client requests a specific resource description from ELDS on the smart
device using an URI.

2. If ELDS requires authentication and enforces access control, the client must
complete a FOAF+SSL authentication procedure (optional).

3. The Web Server component receives the request and passes its parameters
to the Managing Component.

4. The Managing Component identifies configuration ID and fetches the required
configuration object from Configuration Manager.

5. The configuration object together with other request parameters is sent to
the Query Service.

6. The Query Service executes the query on third-party data providers applying
the given parameters and returns results to the Managing Component.

112

6.1. Fat provider approach

7. The Managing Component transforms the results it has received from the
Query Service into requested RDF serialization using the triple store compo-
nent in accordance to the current configuration object.

8. The Managing Component passes resulting RDF serialization back to Web
Server component.

9. The Web Server component returns the resulting RDF serialization back to
client.

Use cases

There are a vast number of potential use cases for ELDS. Examples include (a)
integrating data from an ELDS-based cash register into an Enterprise Resource
Planning (ERP) system, (b) autonomous weather stations directly publishing
measurements, (c) exposing contact data in a distributed social network, (d)
setting or publishing usage history and contexts from a smart TV or game console
for content recommendation. We briefly outline the latter two use cases in the
sequel.
The first use case where ELDS fits perfectly is using it as a part of Distributed

Semantic Social Network (DSSN) [Tramp et al., 2011c]. Including ELDS in the
DSSN architecture allows easy access to device internal data in a standardized
non-proprietary way, e.g. location information or address book. Enforcing WebID
authorization will help protect the data from unwanted access by third parties.
This would enable usage scenarios, where a user would not need to contact his
friend to ask for her location, but could just poll this information directly from
her friend’s smart device without the need for a central service. Similarly, when
knowing that a user’s friend has third-party contact data that the user is interested
in, she could obtain the required contact data directly from smart device without
bothering her friend (as long as she was granted access to this information).
A second use case is related to growing popularity of smart TVs and gaming

consoles. For example, devices such as the Android-based Google TV 3 or the
gaming console Ouya4 can be easily turned into linked data providers. By exposing
usage history from such devices (e.g. movies that user watched from Google TV, or
games that user played from Ouya) in Linked Data format, it is possible to enable
personalized recommendations in a non-intrusive way. After history information is
accessible as Linked Data, history entries can be interlinked with existing databases
like DBpedia or IMDB to enhance the performance of a recommendations system.
It is also possible to display extracted history information to user using some form
of user interface where she can specify whether she liked a specific entry or not
thus enhancing recommendations.

3http://www.google.com/tv/
4http://www.ouya.tv/

113

http://www.google.com/tv/
http://www.ouya.tv/

6. Provider Approaches

6.1.3. Implementation: Android Linked Data Server

We have implemented an Android specific version of ELDS – Android Linked Data
Server (ALDS)5. We used existing Android implementations of two components as
integral parts of ALDS. The Android version of Jetty6 was used as Web Server
and the Androjena library7 as a triple store. We developed and integrated a
Configuration Manager to dynamically load configuration files based upon JSON
formatted files. A Query Service was developed to query third-party Android
Content providers on demand.
Content providers manage access to structured (i.e. tabular) data on Android

platform. Content providers are the standard interface that connects data from one
process with code running in another process. Content providers can be addressed
using a URI. Querying is performed by specifying the content provider URI, query
conditions and columns that must be returned.
The best way to implement a long running service on the Android OS is to utilize

the Bound Service. Running ADLS as a service allows to work in background
without the need for any additional user interface or application running. This
will also allow to throttle resource usage in favor of foreground tasks more easily.
Another feature of the Android Bound Service is dynamic event handling. This can
be used to dynamically update and reload configuration files by a user interface
or third-party applications. The steps to add a new configuration file (or reload
update file) are:

• Generate (or update) a JSON description file for a specific content provider,

• Place the JSON description file into the application configurations folder,

• Trigger the ALDS Configuration Manager to reload (either via the UI or
Bound Service).

After receiving the configuration, the object ALDS will expose a Content Provider
that was described by the given configuration using Linked Data. The internal
Android structures are transformed into RDF using Androjena according to the
description it has received from a configuration file.

Data Access and Mapping Configuration

To simplify creation and implementation of the ALDS configurations, we decided
to use simple JSON formatted text files. As JSON is a text-based open standard
designed for human-readable data interchange such configuration files can be easily
generated by both users and third-party applications. As an example, ALDS
includes configuration file that transform basic contact information (i.e. name

5Available at: https://github.com/AKSW/ALDS
6http://www.eclipse.org/jetty/
7https://code.google.com/p/androjena/

114

https://github.com/AKSW/ALDS
http://www.eclipse.org/jetty/
https://code.google.com/p/androjena/

6.1. Fat provider approach

and phone number) using FOAF vocabulary to RDF. This example is shown on
Listing 6.1.
The first step to follow when creating a configuration for ALDS is to define a

URI of a content provider. This is done by specifying the provider uri string field.
Optionally, custom prefixes can be defined to simplify latter creation of the bindings
to the data. This is accomplished by specifying rdf prefixed key-value array,
where keys are prefixes and values are prefix URIs used during transformation.
The next step is to define a set of columns that should be fetched from the Content
provider as well as rules on how the column data should be transformed to RDF
representation. This is accomplished by specifying the columns array. It consists
of objects that describe content provider columns and their data bindings to RDF.
The objects that describe columns include three fields:

• id – column identifier in third-party Content provider,

• name – user-readable name (optional, can be blank),

• predicate – predicate used during data transformation to RDF, can use
prefixes defined earlier, if null the column will be skipped.

The final step is to define rules which facilitate the generation of external URLs.
This is done by specifying the uri generation object. It includes two fields:

• prefix – defines a prefix that is used for current configuration (should be
unique across all configurations),

• values – defines how the resource unique URI part is generated from specified
column data values.

Basic workflow example. Listing 6.1 is a configuration exposing phone contacts
as Linked Data. Imagine a scenario where a user client requests an URL for Angela
Merkel’s contact information using:

http://device/phones/1912__Angela+Merkel

Following the workflow, ALDS will determine the configuration ID from the given
URL, which is phones. The configuration object for phones along with a request
parameters string (i.e. ”1912 Angela+Merkel”) will then be passed to the Query
Service. The Query Service splits the parameters string into separate values
according to the configuration object. In this case the values 1912 and Angela
Merkel are matched to columns id and display name. The Query Service then
executes a query to the content provider that has the following URI:

content://com.android.contacts/data/phones

115

6. Provider Approaches

Listing 6.1: Example configuration which maps the contacts provider to the FOAF
vocabulary.

provider_uri: "content :// com.android.contacts/data/phones",
rdf_perifxes: {

"foaf": "http :// xmlns.com/foaf /0.1/"
},
columns: [

{
id: "_id",
name: "id",
predicate: null

},
{

id: "display_name",
name: "username",
predicate: "foaf:name"

},
{

id: "data1",
name: "number",
predicate: "foaf:phone"

}
],
uri_generation: {

prefix: "phones",
values: ["_id", "display_name"]

}

The query requests a specific contact with parameters that were extracted before
and set of columns defined in configuration object, i.e.: id, display name and
data1. After fetching the data the Query Service passes it to the Managing
Component. The Managing Component then applies the transformation rules
that are described in the configuration object. Specifically it binds data from all
columns with defined predicated to the current resource URI. The resulting output
can be seen in Listing 6.2.

Listing 6.2: Example output

@prefix foaf: <http://xmlns.com/foaf/0.1/> .

<http://device/phones/1912__Test+User >
foaf:name "Test User" ;
foaf:phone "+491761234567" .

116

6.1. Fat provider approach

6.1.4. Evaluation

One of the most important things to consider regarding mobile and embedded
device usage is power consumption. Thus, the ALDS impact on power consumption
of mobile devices is our main evaluation target. In addition, we measure the ALDS
response time that influences the user experience during interaction with the ALDS
service.

Evaluation methodology

Our evaluation methodology is inspired by existing power consumption research
(e.g. [Thiagarajan et al., 2012], [Balasubramanian et al., 2009]) and adopted to
our specific needs (i.e. measuring impact of just one application instead of multiple
and avoidance of low level voltage measurements). For a single evaluation run
we picked a 2 hours timespan in order to truly observe the power consumption
impact. During the evaluation period a 54 Mbit/s WLAN connection and a 3G
GSM network connection were enabled and permanently maintained. Over the
evaluation duration, the device was not touched, had its display turned o↵ in order
to increase the measurement precision of the ALDS impact on power consumption
(except for the heavy front end load case). Measures of power consumption were
taken using the Battery Log application8. A desktop computer running a simple
evaluation script was acting as a client. The script executed requests with a set
interval, verified response from ALDS and recorded the response time. In order
to exclude a possible influence on WLAN capacity and performance by other
devices, the only two devices connected to the WLAN were the mobile device
under evaluation and the desktop computer running the evaluation script.
Before beginning the evaluation, a warm-up phase was performed for the ALDS

and Android components by accessing RDF resources provided by ALDS three
times without logging the results. That was required to prevent distortion of the
evaluation results, since directly after the launch of the services it takes 3100 ms
on average to get response from ALDS.

Evaluation testbed

Two di↵erent Android devices were used for evaluation. The first device is the
mobile phone Samsung Galaxy i9003 SL running stock Android v2.3.6 (Ginger-
bread). It features the TI OMAP 3630 chipset, comprising a 1 GHz single core
Cortex-A8 CPU, 2 GB of internal storage complemented by 16 GB SD card, 478
MB RAM and a 1650 mAh Li-Ion battery. The device was in constant use since
June 2011, which means that battery was 23 month old at the time of evaluation.

The second device is the tablet Smartbook Surfer 360 MN10U running custom
Android 4.1.2 (JellyBean). It features the Nvidia Tegra 250 chipset, comprising a
1 GHz dual core Cortex-A9 CPU, 512 MB of internal storage complemented by 16

8https://play.google.com/store/apps/details?id=kr.hwangti.batterylog

117

https://play.google.com/store/apps/details?id=kr.hwangti.batterylog

6. Provider Approaches

Figure 6.3.: ALDS power consumption in terms of battery charge percentage (y-
axis) over time (x-axis).

GB SD card, 512 MB RAM and 3300 mAh Li-Ion battery. The device was not
used before performing evaluation, which means that battery was completely new
at the time of evaluation.
Power consumption and average response time were measured in the following

six scenarios:

• S1: Device without ALDS

• S2: Device with ALDS in stand-by mode

• S3: Device with ALDS with 1 request every 30 minutes

• S4: Device with ALDS with 1 request every 5 minutes

• S5: Device with ALDS with 1 request every 1 second

• S6: Device with ALDS with 5 concurrent requests per 1 second

For each scenario we performed all measurements 5 times in order to average
out power consumption variation (e.g. due to background OS processes or network
overhead activity).

Benchmarking results

The results of the power consumption evaluation are show in Figure 6.3. As it
can be seen, ALDS in idle state (S2) as well as periodic requests with 30 minute (S3)
and 5 minute (S4) frequency have no observable impact on battery consumption.

118

6.1. Fat provider approach

Figure 6.4.: Average ALDS response time per linked data access (in ms).

Periodic requests with 1 second frequency (S5) have a small impact. The di↵erence
to S1 (no ALDS installed) is in range of 3-7% points of the charge. Five concurrent
requests per 1 second (S6) have the worst impact on power consumption. The
di↵erence to S1 (no ADLS installed) is in range of 10-14% point of the charge.
Due to bugs encountered in the Androjena library, in the scenario with 5

concurrent requests per second (S6), ALDS has stopped sending proper responses
on average 2.3 times per evaluation duration. At that point, the service had to be
restarted and the evaluation started from the beginning. Because it was impossible
to go through the whole 2 hour evaluation cycle, we used two or more iterations to
go through the complete 2 hours timespan. Our observation shows that a possible
cause of such behavior could be due to Androjena not freeing resources properly
(or enough) after usage thus exceeding the limited Android VM heap size (32 MB
for devices used in evaluation) and causing the library to stop functioning.
Because measuring only power consumption by ALDS was not possible or the

di↵erence with already existing evaluation scenarios was insignificant, we measured
only the average response times in the following additional scenarios:

• S7: Device with ALDS with 1 request every 30 seconds

• S8: Device with ALDS with 1 request every 10 seconds

• S9: Device with heavy front end load and ALDS with 1 request every 1
second

The results of response time evaluation are shown in Figure 6.4. As can be
seen, ALDS response time di↵ers depending on request frequency. In the scenario
with one request per 30 minutes (S3) the average response time for the Samsung

119

6. Provider Approaches

Galaxy is 1,535 ms and for the Smartbook Surfer 1,474 ms. This long response
time is caused by Android suspending ALDS and the third-party content provider
to save power. Most of the response time can be attributed to waking up those
components from suspension mode.
In the scenario with one request per 5 minutes (S4) the average response time for

the Samsung Galaxy is 1,116 ms and for the Smartbook Surfer 1,078 ms. Also here,
the response time is high due to suspending ALDS and the third-party content
provider. However, since requests are performed more frequently, ALDS is not
suspended completely, but only partially (i.e. web server is still running, but the
query component is woken up upon requests).
In the scenarios with one request per 30 seconds (S7) and 10 seconds (S8) the

average response times for the Samsung Galaxy are 502 ms and 472 ms respectively,
for the Smartbook Surfer 473 ms and 442 ms respectively. In these cases, ADLS
is not suspended at all, while content providers can be suspended completely
or partially depending on their architecture. For example, if a content provider
stores parts of the data using di↵erent storage containers, one of the routes can be
suspended.
In the scenario with one request per 1 second (S5) the average response time for

the Samsung Galaxy is 205 ms and for the Smartbook Surfer 176 ms. This case is
optimal in terms of response time, since ALDS and third-party content providers
are not being suspended at all due to frequent requests.
In the scenario with one request per 1 second with heavy front end load (S9) the

average response time for the Samsung Galaxy is 478 ms and for the Smartbook
Surfer 245 ms. During the heavy front end load scenario, ALDS was running
in background, while the device itself was used to navigate through a series
of memory, CPU and bandwidth intensive applications. Applications include:
Instagram (browsing images), Pinterest (browsing images), Facebook (browsing
feeds, photos, using chat), Play Store (browsing and applying updates to installed
apps), YouTube (watching videos), Cut The Rope: Time Travel (playing game).
During the benchmark there was from a user perspective no noticeable impact
observable on active application performance, application switching, network speed
or other features. The response time increased in comparison to one request
per 1 second case by approximately a factor 2.5 for the Samsung Galaxy and
by approximately a factor 1.4 for the Smartbook Surfer. This is due to Android
prioritizing applications running in foreground compared to background services.
The di↵erence between response times between the Samsung Galaxy and the
Smartbook Surfer can be explained by the dualcore processor of the Smartbook
Surfer that allows better handling of multitasking.
In the scenario with five concurrent requests per 1 second (S6) the average

response time for the Samsung Galaxy is 952 ms and for the Smartbook Surfer 542
ms. The increase in response time in this case is caused by Androjena conversion
delay, meaning that Androjena cannot process transformation of structured data
into RDF fast enough. This might as well be related to the heap size issue
mentioned before. The di↵erence between response times of Samsung Galaxy

120

6.2. Hybrid provider approach

and Smartbook Surfer can again be explained by the dualcore processor of the
Smartbook Surfer that allows Androjena to perform the conversion slightly faster.
As our evaluation shows, the ALDS impact on device power consumption while

answering infrequent requests (requests every 30 and 5 min, DSSN use case) can
be considered insignificant. On other hand, if ALDS is going to be used intensively,
an external power source would be required after several hours of work.

6.1.5. Conclusion

In this section, we presented an approach for equipping embedded and smart
devices with Linked Data interfaces. Our approach is based on mapping structured
data hosted on the device to RDF and exposing this data as Linked Data using
an embedded webserver. Our implementation is currently implemented for Linux
and contains some Android-specifics (i.e. using content providers). However, it is
easily transferable to other embedded platforms. Android’s content provider, for
example, are simple tabular SQLite tables, which can be used in a similar fashion
on other systems.
We also showed with a newly developed benchmark methodology, that device

power consumption does not increase significantly until Linked Data is retrieved
frequently (<1 request per second). We argue that this resource demands can be
accommodated by most mobile use cases and power consumption is not an issue
for stationary smart devices (e.g. TVs). We expect Android and similar OS to
be deployed on more and more smart devices ranging from watches, smartphones,
routers, devices with displays (e.g. refrigerators), cash registers and many other
device categories currently not even yet available. As a result, the Web and Internet
being accessed from desktop computers will loose importance compared to these
novel usage scenarios. With ALDS, we made a first step towards extending the
Web of Data towards a Data Internet of Things, which comprises these scenarios.

6.2. Hybrid provider approach

In this section, we describe Hybrid Linked Data Server approach that was
developed using hybrid provider approach.
The section is structured as follows: We introduce the hybrid approach for

providing linked data for ubiquitous devices with limited data connection in
subsection 6.2.1. We describe the approach for adding a hybrid linked data interface
to smart devices in subsection 6.2.2. Finally, we conclude in subsection 6.2.5 with
an outlook on future work.

6.2.1. Introduction

As it was discussed in subsection 6.1.1, the unique identification can be realized
using barcodes, RFIDs [Wang et al., 2006] or embedded systems and smart internet-

121

6. Provider Approaches

enabled devices. In the former two cases the object itself can only identify itself and
a virtual representation has to be hosted elsewhere. Some of the existing devices
can not only identify but also describe themselves by providing comprehensive
information. However, there is a set of devices that might not have data connection
available at all times. Person driving into tunnel with his smartphone or an
autonomous robot digging deeper into the wreckage could be examples when
connection is unavailable.
In this section, we present an approach for equipping embedded and smart

devices with a Linked Data interface capable of providing data even when the
device itself is o✏ine. The approach is based on replicating existing semantic data
on the device to external server (or a group of servers) and exposing this data as
dereferencable RDF. The technical architecture comprises an ELDS running on
the device as presented earlier in subsection 6.1.2, dedicated online server that
serves as copy of the device and replication agent that ensures consistency of the
data provided by the server. As a result, all smart devices can easily provide
standardized structured information and become first class citizens on the Data
Web even in poor networking conditions or hazardous environments.

As always, specific requirement when dealing with smart and embedded devices
are resource constraints. In this case there are two constrainst:

• Power consumption is a key aspect, when equipping devices with additional
functionality.

• Size of the data during replication is important as well, since the device itself
might have poor or limite connection at any time.

Hence, a particular focus of our approach is limitation of the impact on power
consumption as well as minimization of data transfer.

6.2.2. Approach: Hybrid Linked Data Server

The main goal of our approach is to enable any smart device (e.g. smart phones,
robots) to identify and describe itself by providing comprehensive information,
in accordance with the Linked Data principles, even during poor connectivity or
absence of such. As a way to accomplish this goal, we propose the concept of
an Hybrid Linked Data Server (HLDS) that comprises of an ELDS, which hosts
Web-accessible RDF information as Linked Data directly from within the smart
device. The HLDS concept is partially based on ELDS presented in section 6.1
and partially on replication approach presented in section 5.1.

Architecture

The overall HLDS architecture is shown in Figure 6.5 and includes four layers:

1. User layer – comprises a user client,

122

6.2. Hybrid provider approach

Figure 6.5.: Overview of the Hybrid Linked Data Server architecture.

2. ELDS layer – comprises ELDS internal components,

3. Replication layer – comprises replication component,

4. Server layer – comprises third-party server.

The separation in these four layers not only facilitates modularity and main-
tainability, but also aims at minimizing the impact on power consumption and
data availability. Components of the replication layer, for example, can easily be
suspended thus minimizing the main memory and power consumption requirements,
while server layer is able to provide data even when ubiquitous device itself is not
available.
The User layer includes user client application that can process RDF data

and optionally a user WebID that is used for authentication and access control
to the data provided by ELDS. ELDS layer includes all of the ELDS internal
components as described in subsection 6.1.2. Replication layer includes data
managing component which ensures that third-party server has newest possible
replica of the data provided by the device. Server layer includes third-party server
capable of exposing data as dereferencable RDF.

123

6. Provider Approaches

Figure 6.6.: HLDS workflow during Linked Data access.

The basic HLDS workflow during Linked Data access is shown on Figure 6.6
and consists of the following steps:

1. The client requests a specific resource description from HLDS on the smart
device using an URI.

2. If HLDS on device is accessible through data connection, workflow follows
ELDS steps that was described in subsection 6.1.2.

3. If HLDS on device is not accessible through data connection, client will poll
the HLDS server with replicated data.

4. If HLDS server requires authentication and enforces access control, the client
must complete a FOAF+SSL authentication procedure (optional).

5. The Replication Manager on the server identifies configuration ID and fetches
the required RDF from Triple Store.

6. The Web Server component returns resulting the RDF serialization back to
client.

6.2.3. Use cases

There are a number of potential use cases for HLDS. Examples include (a)
retrieving data from an HLDS-based robotic unit that might not always have data
connection, (b) exposing contact data in a distributed social network without need
for provider to always have data connection. We briefly outline given use cases in
the sequel.
The first use case where HLDS fits perfectly is using it to provide access to the

data from robotic units that might be unavailable at times. For example, Mars
rover that has very limited data connection capabilities can use HLDS to push
new data to server once the connection is available. Replication managers on both
- client and server - would allow lossless synchronisation even on the slowest and
worst data connections.

124

6.2. Hybrid provider approach

The second use case is using HLDS as a part of Distributed Semantic Social
Network (DSSN) [Tramp et al., 2011c]. Including HLDS in the DSSN architecture
allows easy access to device internal data in a standardized non-proprietary way,
e.g. location information or address book. Enforcing WebID authorization will
help protect the data from unwanted access by third parties. This would enable
usage scenarios, where a user would not need to contact his friend to ask for her
location, but could just poll this information directly from her friend’s smart device
without the need for a central service. In addition to these features of ELDS,
HLDS server allows access to this information even when the client does not have
active data connection.

6.2.4. Implementation

Android specific version of HLDS could be used as an example of implementation –
Hybrid Android Linked Data Server (HALDS). It is possible to use existing Android
implementation of ELDS as a core for HALDS. Then the only thing that would be
required is adding a replication manager which can handle synchronisation of data
between Android device and the server.
The server side, however, would require implementation of all the components

since ELDS approach was used purely on the client side. That means that the
server needs to run a triple-store that can store and process triples. It is possible to
use existing ones, e.g. Virtuoso9. The replication manager will have to be created
from scratch the same way as was done for the client. It is also necessary to keep
in mind that both replication managers - on the server and on the client - should
be created in a way that would allow them to easily communicate with each other.
We suggest to use existing means for this (e.g. HTTP protocol for data transfer,
di↵ approach for merging data etc.).

6.2.5. Conclusion

In this section, we presented an approach for equipping embedded and smart
devices with a Linked Data interface capable of providing data even when the
device itself is o✏ine. Our approach is based on combining ELDS with data
managing component capable of replicating existing semantic data from the ELDS
to external server (or a group of servers). With HLDS we made a first step towards
extending the Web of Data towards a Data Internet of Things, which comprises
di↵erent scenarios with possible connectivity issues.

9http://virtuoso.openlinksw.com/

125

http://virtuoso.openlinksw.com/

7. Conclusions and Future Work

This chapter summarizes our research work, highlights our main contributions,
and gives the general conclusion over the work. It then pinpoints the future
directions in which we intend to move further to extend and broaden the research
conducted in these areas.

7.1. Conclusions

The aim of this thesis was to present and evaluate an approaches for bringing
the Semantic Web to ubiquitous devices. We have focused on two di↵erent areas
client and provider approaches. To see how di↵erent client approaches perform,
we have developed several ubiquitous applications. The provider approaches have
been evaluated in the same manner. Overall, we have shown that three di↵erent
client approaches can be used to bring the Semantic Web to the ubiquitous devices.
We have as well shown that two di↵erent provider approaches can be used to
expose the data from the ubiquitous devices into the Semantic Web. Each of the
approaches has it’s own set of advantages and downsides and works best in a
specific use cases. In each of the following subsections, we discuss the each of the
researched approaches in detail.

7.1.1. Thin client approach

To evaluate the thin client approach and address challenges discussed in sec-
tion 1.2.1 and subsection 1.2.3, we have developed an OntoWiki Mobile application.
With OntoWiki Mobile, we have undertaken one crucial aspect – the provisioning
of a comprehensive knowledge management tool for mobile use. We have used the
new HTML5 application cache functionality to support o✏ine work. Advanced
conflict resolution features was built in to improve o✏ine capabilities. We also
demonstrated that a comprehensive semantic collaboration platform is possible
to implement for mobile devices with minimal requirements based on recent Web
standards. Due to its general purpose architecture, OntoWiki Mobile is particularly
suited to support the long tail of domain-specific mobile applications, for which
the development of individual tools would not be (economically) feasible.
It should also be mentioned that due to the ubiquitous nature of OntoWiki

Mobile, it has a number of limitations. The biggest limitation is that the possi-
bility of adding new features almost completely depends on advances in HTML5
development and support of new HTML5 APIs on variety of devices. It should

126

7.1. Conclusions

also be noted that while OntoWiki Mobile can run on older device, some functions
might be limited or disabled due to the previously mentioned issue.

7.1.2. Hybrid client approach

To evaluate the hybrid client approach and address challenges discussed in sec-
tion 1.2.1 and subsection 1.2.3, we have developed a Mobile DSSN Client application.
Work done on Mobile DSSN Client is a crucial piece in the medium-term agenda
of realizing a truly distributed social network based on semantic technologies.
Our realization focused on providing an extensible framework for social seman-
tic networking with truly ubiquitous approach of implementing core features in
HTML5 and relying on platform specific APIs only when required. We have done
an example implementation for the Android platform demoing both - generic and
platform specific features. With this work we showcased how di↵erent (social)
Semantic Web standards, technologies and best practices can be integrated into a
comprehensive architecture for social networking and adopted to work on variety
of ubiquitous devices.
Even though hybrid client approach used for Mobile DSSN Client is more flexible

than aforementioned thin client approach, it has some limitations. One of the
biggest disadvantages is that even though this approach provides a way to access
platform specific APIs, it is required to build a platform specific version of the
application. That could require much longer periods of time for development in
comparison to thin client approach.

7.1.3. Fat client approach

To evaluate the fat client approach and address challenges discussed in sec-
tion 1.2.1, we have developed an MSSW application. Work done on MSSW is
a further crucial piece (in addition to Mobile DSS Client) in the medium-term
agenda of realizing a truly distributed social network based on semantic tech-
nologies. Our realization focused on providing a extensible framework for social
semantic networking for one specific platform (Android) while utilizing as many
platform specific APIs as possible to enhance the work of the application. With
MSSW, we showcased how di↵erent (social) Semantic Web standards, technologies
and best practices can be integrated into a comprehensive architecture for social
networking on mobile devices for one specific platform.
Even though fat client approach used for MSSW is the most flexible in comparison

to thin or hybrid client approaches, it has a greater number limitations than both
of aforementioned approaches. The biggest disadvantages is that while using this
approach, the developer creates a platform specific version of the application which
sometimes is nearly impossible to directly port to another platform because of the
di↵erences in SDKs or even programming languages (e.g. Objective C used on
iOS vs. Java used on Android). Additionally, it should be noted that using this

127

7. Conclusions and Future Work

approach requires much deeper understanding of the target platform, it’s APIs
and specifics (e.g. memory management on Android).

7.1.4. Fat provider approach

To evaluate the fat provider approach and address challenges discussed in sec-
tion 1.2.1, we have developed an ALDS application. Using ALDS we have presented
an approach for equipping embedded and smart devices with Linked Data interfaces.
The approach is based on exposing the structured data hosted on the device as
Linked Data using an embedded webserver by utilizing the data mappings to RDF.
We presented an implementation for Linux that contains some Android-specific
parts (i.e. using android content providers). We argue that this resource demands
can be accommodated by most mobile use cases and power consumption is not an
issue for stationary smart devices (e.g. TVs). With ELDS we made a first step
towards extending the Web of Data towards a Data Internet of Things.
Our evaluation has shown that this approach has a set of limitations. One of

the most important limitations is the fact that ubiquitous device equipped with
ELDS must be accessible from the client computer. That might not always be
the case because, for example, cell operators tend to put devices that use data
connection behind proxies to limit number of IPv4 addresses that are given out
to clients. That thought should change in time with migration to IPv6 addresses.
One more limitation is again related to data connection, this time to its quality
and stability. The ELDS should have a stable and persistent data connection to
be able to provide that data to client which might not always be the case for
ubiquitous devices.

7.1.5. Hybrid provider approach

We presented an approach for equipping embedded and smart devices with a
hybrid Linked Data interface capable of providing data even when the device itself
is o✏ine. The approach is based on combining aforementioned ELDS approach
with a data managing component capable of replicating existing semantic data
from the ELDS to external server (or a group of servers). That can provide this
data to clients even when the original data provider is o✏ine. With HLDS we
made a first step towards extending the Web of Data towards a Data Internet of
Things, which comprises di↵erent scenarios with possible connectivity issues.

Even though HLDS approach is devoid of the limitation related to data connection
presence mentioned in the ELDS approach, there are still some other limitations
present. First, the limitation related to connectivity (same network or IPv6 address)
is still present. In addition, to implement this approach it is required to have a
dedicated server (or a group of servers) which is installed, available online and
properly configured. Additionally, there is a fact that client must know the address
of the server with replica beforehand, otherwise the client will not be able to get
the data (or location of that server) when the ELDS provider is o✏ine.

128

7.2. Directions for Future Work

7.2. Directions for Future Work

Each research area has its own direction(s), in which we can move further and
expand the work.

7.2.1. Thin client approach

Future work for the thin client approach in general and OntoWiki Mobile
in particular will focus on representation of provenance and use of the mobile
device’s sensors for context-aware knowledge base exploration. With regard to the
replication, we plan to develop a rule-based approach for the selection of knowledge
base parts to replicate on the mobile device. The approach will take mobile context
information (such as the time, location) as well as usage patterns (e. g. browsing
history) and manually supplied user preferences into account.

7.2.2. Hybrid client approach

Future work for the hybrid client approach in general and Mobile DSSN Client
in particular will focus on further decreasing the entrance barrier for ordinary users.
A current obstacle is that users are required to have a WebID and - if they want to
use authentication and access control features - a FOAF+SSL enabled WebID. In
particular, creating a FOAF+SSL enabled WebID is, due to the certificate creation,
still a cumbersome process. A possible simplification of this process would be to
enable mobile phone users to create and upload the required profile and certificates
directly from their mobile device.
A further important aspect to be developed is the standardization and realization

of social networking applications, which seamlessly integrate with and run on top
of the distributed social semantic network. Such applications would comprise
everything we know from centralized social networks (e.g. games, travel, quizzes
etc.), but would make use of FOAF+SSL and the other distributed social networking
components for authentication, access control, subscription/notification etc.

7.2.3. Fat client approach

Future work for the fat client approach in general and MSSW in particular will
focus on further decreasing the entrance barrier for ordinary users. The reason is
very similar to the one mentioned in subsection 7.2.2 users are required to have a
WebID and a FOAF+SSL enabled WebID. A possible simplification of this process
would be to enable mobile phone users to create, upload and expose the required
profile and certificates directly from their mobile device.
We also plan to implement a more e�cient and user-friendly way for subscribing

to updates of contacts. These will include profile changes, status updates, (micro-
)blog posts as well as updates retrieved from social networking apps. This feature
would be facilitated by a proxy infrastructure, which caches updates until the

129

7. Conclusions and Future Work

device re-connects to the network after a period of absence (e.g. due to limited
network connection or switched-o↵ devices).
A further important aspect to be developed is the standardization and realization

of social networking applications, which seamlessly integrate with and run on top
of the distributed social semantic network. Such applications would comprise
everything we know from centralized social networks (e.g. games, travel, quizzes
etc.), but would make use of FOAF+SSL and the other distributed social networking
components for authentication, access control, subscription/notification etc.

7.2.4. Fat provider approach

Future work for the fat provider approach in general and ALDS in particular
will focus on extending our approach along several dimensions. First, we plan
to implement smart caching for data fetched from a content provider, so that
subsequent requests do not require re-retrieving and processing data from a content
provider. Then, we aim to support complex configurations for queries across several
content providers and allow the execution of SPARQL queries. In order to improve
availability we plan to realize a hybrid provider approach, where the server has
access to client data and responds if the client is not available.

7.2.5. Hybrid provider approach

Since this approach was not yet implemented and evaluated, the primary aim
for the future work is to actually do an example implementation and evaluate it
using same approach as for ELDS. It is also interesting to tackle the issue with
location of the replica server. Currently, the client must first request this location
from the ELDS otherwise the client will not be able to connect to it once ELDS is
not accessible. Finding a way to remove this requirement would be an additional
plan for future work.

130

A. Curriculum Vitae

Timofey Ermilov

Hallesche Str. 207
04159 Leipzig, Germany.

Phone: (+49) 17632092245
Email: ermilov@informatik.uni-leipzig.de

Personal Data

Birth date: January 1st, 1987
Birth place: Murmansk, Russia
Nationality: Russian
Marital status: Married

Education
2010 – Present
University of Leipzig (Leipzig, Germany)
Ph.D., Faculty of Mathematics and Computer Science, Department of Computer
Science.
Thesis title: Ubiquitous Semantic Applications.

2004 – 2009
Saint-Petersburg University of Telecommunications (Saint-Petersburg, Russia)
Dipl.-Ing., Faculty of Multichannel Telecommunications Systems.
Thesis title: Computer knowledge testing system.

131

A. Curriculum Vitae

2001 – 2004
Saint-Petersburg University of Telecommunications Lyceum (Saint-Petersburg,
Russia)
Secondary Education.

Research Interests

• Semantic Web.

• Ubiquitous devices.

• Human-Computer Interaction.

Publications

1. Timofey Ermilov, Ali Khalili, Sören Auer
”Ubiquitous Semantic Applications: A Systematic Literature Review”. In
International Journal On Semantic Web and Information Systems, 2014.

2. Timofey Ermilov, Sören Auer
”Enabling Linked Data access to the Internet of Things”. At International
Conference on Information Integration and Web-based Applications Services,
2013.

3. Jens Lehmann, Quan Nguyen, and Timofey Ermilov
”Can we Create Better Links by Playing Games?”. At 7th IEEE International
Conference on Semantic Computing, 2013.

4. Timofey Ermilov, Sebastian Tramp and Sören Auer ”A Mobile Client for
the Distributed Semantic Social Network”. At Knowledge Engineering and
Semantic Web Conference, 2012.

5. Sebastian Tramp (geb. Dietzold), Philipp Frischmuth, Timofey Ermilov,
Saeedeh Shekarpour, and Sören Auer.
”An Architecture of a Distributed Semantic Social Network ”. In Semantic
Web Journal, 2012.

6. Sebastian Tramp (geb. Dietzold), Timofey Ermilov, Philipp Frischmuth,
and Sören Auer.
”Architecture of a Distributed Semantic Social Network”. At the Federated
Social Web Europe 2011, Berlin June 3rd-5th 2011.

7. Michael Martin, Daniel Gerber, Norman Heino, Sören Auer, and Timofey
Ermilov.
”Managing Multimodal and Multilingual Semantic Content”. In Proceed-
ings of the 7th International Conference on Web Information Systems and
Technologies, 2011.

132

8. Timofey Ermilov, Norman Heino, Sebastian Tramp, and Sören Auer.
”OntoWiki Mobile — Knowledge Management in your Pocket”. In Proceed-
ings of the ESWC2011, 2011.

9. Amrapali Zaveri, Ricardo Pietrobon, Sören Auer, Jens Lehmann, Michael
Martin, and Timofey Ermilov.
”ReDD-Observatory: Using the Web of Data for Evaluating the Research-
Disease Disparity”, In Proc. of the IEEE/WIC/ACM International Confer-
ence on Web Intelligence, 2011.

10. Sebastian Tramp, Philipp Frischmuth, Natanael Arndt, Timofey Ermilov,
and Sören Auer.
”Weaving a Distributed, Semantic Social Network for Mobile Users”, In
Proceedings of the ESWC2011, 2011.

11. Andreas Thalhammer, Timofey Ermilov, Katariina Nyberg, Ario Santoso,
John Domingue.
”MovieGoer – Semantic Social Recommendations and Personalised Location-
Based O↵ers”, In Proceedings of ISWC2011, October 2011.

12. Sebastian Tramp, Philipp Frischmuth, Timofey Ermilov, and Sören Auer.
”Weaving a Social Data Web with Semantic Pingback”, In Proceedings of
the EKAW 2010, October 2010.

13. Amrapali Zaveri, Ricardo Pietrobon, Timofey Ermilov, Michael Martin,
Norman Heino, and Sören Auer.
”Evaluating the disparity between active areas of biomedical research and the
global burden of disease employing Linked Data and data-driven discovery”,
at OBML 2010 Workshop Proceedings, IMISE Report, Mannheim, IMISE,
September 2010.

Languages Skills

• Russian: Native proficiency.

• English: Full professional proficiency.

• German: Elementary proficiency.

Technical and Programming Skills

• Programming Languages Skills:

– PHP, 6 years of experience.

– Javascript, 6 years of experience.

– C# / Mono, 5 years of experience.

– Java, 5 years of experience.

133

A. Curriculum Vitae

– ActionScript 3, 4 years of experience.

– Python, 3 years of experience.

– Objective C, 3 years of experience.

– Ruby, 2 years of experience.

– C / C++, 2 years of experience.

• Database Systems:

– MySQL.

– MongoDB.

– Virtuoso.

Projects

• Mobile Social Semantic Web:
An Android-based social web client as well as a contacts provider, which inte-
grates your distributed FOAF/WebID social network into your mobile phone.
It is available at http://aksw.org/Projects/MobileSocialSemanticWeb.
html. Implemented in Java and Android SDK.

• OntoWiki Mobile:
OntoWiki Mobile was developed to address the need for a mobile web
application for rapid and simple knowledge acquisition in a collaborative way.
It allows users to collect instance data, refine the structure of knowledge
bases and browse data using hierarchical or faceted navigation on-the-go
even without a present data connection. It is available at http://aksw.
org/Projects/OntoWikiMobile.html. Implemented in PHP and OntoWiki
framework.

• Android Linked Data Server (ALDS):
Linked Data Server for Android used to expose the data from device in RDF
format. It is available at https://github.com/AKSW/ALDS. Implemented in
Java and Android SDK.

• Clerkd:
iOS location-based social network for music sharing and discovery. It is
available at http://clerkd.com/. Implemented in C (client) and Python
(server).

• Mielophone:
Simple music search engine that mashes up together services like MusicBrainz,
It is available at https://github.com/mielophone/. Implemented in AS3
and Flex SDK.

134

http://aksw.org/Projects/MobileSocialSemanticWeb.html
http://aksw.org/Projects/MobileSocialSemanticWeb.html
http://aksw.org/Projects/OntoWikiMobile.html
http://aksw.org/Projects/OntoWikiMobile.html
https://github.com/AKSW/ALDS
http://clerkd.com/
https://github.com/mielophone/

List of Tables

2.1. Sample RDF statements. 14

3.1. List of triplestores for ubiquitous platforms. 33
3.2. Comparison of thin and fat client approaches for UbiSA development. 35
3.3. List of quality attributes together with their corresponding features

suggested for UbiSA. 59
3.4. Application evaluation methods. 60

135

List of Figures

1.1. Growth of the Linked Open Data (LOD) cloud from September
2008 (left) to September 2011 (right). 2

1.2. Mobile tra�c growth from 2012 to 2017. [Index, 2013] 2
1.3. World-Wide smartphone sales by operating system. [Gartner, 2013] 5
1.4. Overview of the thesis structure. 9

2.1. RDF statement represented as a directed graph. 13
2.2. Small knowledge base about Timofey Ermilov represented as a graph. 15
2.3. Sample N-Triples format. 15
2.4. Sample RDF/XML format. 16
2.5. Sample N3 format. 16
2.6. Excerpt of the DBpedia ontology. 17
2.7. OWL representation of a part our ontology in N-Triples format. . 19
2.8. SPARQL query to get the homepage of Timofey Ermilov’s current

project. 20

3.1. Steps followed to scope the search results. 26
3.2. Publications per year. 29
3.3. Ubiquitous semantic applications architecture. 30
3.4. Quality attributes dependencies (’+’: positive e↵ect, ’+-’: reciprocal

e↵ect). 43
3.5. Comparison of OntoWiki Mobile, csxPOI, mSpace Mobile, my-

Campus and MSSW according to the quality attributes and user
role. 45

3.6. OntoWiki Mobile Architecture (from [Ermilov et al., 2011a]). . . . 46
3.7. Screenshot of the OntoWiki Mobile. (a) instance view, (b) inline

editing, (c) device camera access (from [Ermilov et al., 2011a]). . . 47
3.8. Architecture of csxPOI (from [Braun et al., 2010]). 47
3.9. Screenshots of csxPOI application showing its di↵erent features

(from [Braun et al., 2010]). 49
3.10. Architecture of mSpace Mobile (from [Wilson et al., 2005b]). . . . 50
3.11. Screenshots of mSpace Mobile application. There are five features

within the user interface: A – the columnar mSpace browser; B
– the information box; C – a preview cup map; D – an mSpace
selector and E – a favourites list (from [Wilson et al., 2005b]). . . 51

3.12. myCampus architecture: a user’s perspective [Sheshagir et al., 2004] 52
3.13. Screenshot of myCampus (from [Sheshagir et al., 2004]). 53

136

List of Figures

3.14. Architecture of a distributed, semantic social network: (1) A mobile
user may retrieve updates from his social network via his WebID
provider, e.g. from OntoWiki. (2) He may also fetch updates directly
from the sources of the connected WebIDs. (3) A WebID provider
can notify a subscription service, e.g. a PubSubHubbub server,
about changes. (4) The subscription service notifies all subscribers.
(5) As a result of a subscription notification, another node can
update its data. (6) A mobile user can search for a new WebID by
using a semantic search engine, e.g. Sindice. (7) To connect to a
new WebID he sends a Pingback request which (8) notifies of the
resource owner (from [Tramp et al., 2011a]). 54

3.15. Screenshots of the Mobile Social Semantic Web Client, the FOAF
Browser and the Android components which integrate the WebID
account: (A) The client as well as the triple store can be found
in the o�cial Google application market. (B) After installation,
users can add a WebID account the same way they add an LDAP
or Exchange account. (C) The account can be synchronized on
request or automatically. (D) A contacts profile page merges the
data from all given accounts. (E) By using the FOAF browser,
people can add contacts or browse the contacts of their friends
(from [Tramp et al., 2011a]). 55

3.16. Bottari architecture. 56
3.17. Screenshots of BOTTARI: (a) augmented reality display of recom-

mended POIs, (b) POI selection and (c) visualization of the selected
POI details, (d) trends in user sentiment about the POI. 57

4.1. Conceptual framework of a generic Ubiquitous Semantic Application. 63

5.1. OntoWiki Mobile architecture. 71
5.2. Data replication example with merge (M) and conflict detection (C). 74
5.3. OntoWiki Mobile standard browsing interface. 75
5.4. OntoWiki Mobile faceted browsing interface. 76
5.5. OntoWiki Mobile authoring interface. 77
5.6. Screenshots illustrating the workflow for creating a new finding

spot according to the listing in Figure 5.1. From left to right: (1.)
Searching or browsing for the class which needs to be instantiated.
(2.) Initialization of a new resource from this class; all properties
which are o↵ered, are used in other instances of this class; GPS data
is automatically requested and pre-filled by the phone. (3.) Entering
literal data as well as linking to other resources. (4.) Assignment of
existing images from the phone’s image library. 80

137

List of Figures

5.7. Architecture of a Distributed Semantic Social Network (without
protocol layer): (1) Resources announce services and feeds, feeds
announce services – in particular a push service. (2) Applications
initiate ping requests to spin the Linked Data network. (3) Ap-
plications subscribe to feeds on push services and receive instant
notifications on updates. (4) Update services are able to modify
resources and feeds (e.g. on request of an application). (5) Personal
and global search services index social network resources and are
used by applications. (6) Access to resources and services can be
delegated to applications by a WebID, i.e. the application can act
in the name of the WebID owner. (7) The majority of all access
operations is executed through standard web requests. 83

5.8. Mobile DSSN Client standard browsing interface. 90
5.9. Mobile DSSN Client editing interfaces. 92
5.10. Architecture of a distributed, semantic social network: (1) A mobile

user may retrieve updates from his social network via his WebID
provider, e.g. from OntoWiki. (2) He may also fetch updates directly
from the sources of the connected WebIDs. (3) A WebID provider
can notify a subscription service, e.g. a PubSubHubbub server,
about changes. (4) The subscription service notifies all subscribers.
(5) As a result of a subscription notification, another node can
update its data. (6) A mobile user can search for a new WebID by
using a semantic search engine, e.g. Sindice. (7) To connect to a
new WebID he sends a Pingback request which (8) notifies of the
resource owner. 99

5.11. Android Integration Layer Cake 104
5.12. Visualization of a WebID in OntoWiki: incoming backlinks (via

Semantic Pingback) are rendered in the “Instances Linking Here”
side box. 106

5.13. Screenshots of the Mobile Social Semantic Web Client, the FOAF
Browser and the Android components which integrate the WebID
account: (A) The client as well as the triple store can be found
in the o�cial Google application market. (B) After installation,
users can add a WebID account the same way they add an LDAP or
Exchange account. (C) The account can be synchronized on request
or automatically. (D) A contacts profile page merges the data from
all given accounts. (E) By using the FOAF browser, people can add
contacts or browse the contacts of their friends. 108

6.1. Overview of the Embedded Linked Data Server architecture. . . . 111
6.2. ELDS workflow during Linked Data access. 112
6.3. ALDS power consumption in terms of battery charge percentage

(y-axis) over time (x-axis). 118
6.4. Average ALDS response time per linked data access (in ms). . . . 119

138

List of Figures

6.5. Overview of the Hybrid Linked Data Server architecture. 123
6.6. HLDS workflow during Linked Data access. 124

139

Bibliography

[Aranda-Corral et al., 2009] Aranda-Corral, G. A., Borrego-Dı́az, J., and Gómez-
Maŕın, F. (2009). Toward semantic mobile web 2.0 through multiagent systems.
In Proceedings of the Third KES International Symposium on Agent and Multi-
Agent Systems: Technologies and Applications, KES-AMSTA ’09, pages 400–409,
Berlin, Heidelberg. Springer-Verlag.

[Atzori et al., 2010] Atzori, L., Iera, A., and Morabito, G. (2010). The internet of
things: A survey. Computer Networks, 54(15):2787–2805.

[Auer et al., 2006a] Auer, S., Dietzold, S., and Riechert, T. (2006a). Ontowiki –
a tool for social, semantic collaboration. In Cruz, I., Decker, S., Allemang, D.,
Preist, C., Schwabe, D., Mika, P., Uschold, M., and Aroyo, L., editors, The
Semantic Web - ISWC 2006, volume 4273 of Lecture Notes in Computer Science,
pages 736–749. Springer Berlin / Heidelberg.

[Auer et al., 2006b] Auer, S., Dietzold, S., and Riechert, T. (2006b). OntoWiki -
A Tool for Social, Semantic Collaboration. In Cruz, I. F., Decker, S., Allemang,
D., Preist, C., Schwabe, D., Mika, P., Uschold, M., and Aroyo, L., editors,
The Semantic Web - ISWC 2006, 5th International Semantic Web Conference,
ISWC 2006, Athens, GA, USA, November 5-9, 2006, Proceedings, volume 4273
of Lecture Notes in Computer Science, pages 736–749. Springer.

[Auer et al., 2009] Auer, S., Lehmann, J., and Hellmann, S. (2009). Linkedgeodata:
Adding a spatial dimension to the web of data. In Bernstein, A., Karger, D.,
Heath, T., Feigenbaum, L., Maynard, D., Motta, E., and Thirunarayan, K.,
editors, The Semantic Web - ISWC 2009, volume 5823 of Lecture Notes in
Computer Science, pages 731–746. Springer Berlin / Heidelberg.

[Balasubramanian et al., 2009] Balasubramanian, N., Balasubramanian, A., and
Venkataramani, A. (2009). Energy consumption in mobile phones: a measure-
ment study and implications for network applications. In Proceedings of the
9th ACM SIGCOMM conference on Internet measurement conference, pages
280–293. ACM.

[Bechhofer et al., 2004] Bechhofer, S., van Harmelen, F., Hendler, J., Horrocks, I.,
McGuinness, D. L., Patel-Schneider, P. F., and Stein, L. A. (2004). OWLWeb On-
tology Language Reference. Technical report, W3C, http://www.w3.org/TR/owl-
ref/.

140

Bibliography

[Becker and Bizer, 2009] Becker, C. and Bizer, C. (2009). Exploring the Geospatial
Semantic Web with DBpedia Mobile. J. Web Sem., 7(4):278–286.

[Beckett, 2004] Beckett, D. (2004). RDF/XML syntax specification (revised).
W3C recommendation, W3C.

[Bellavista et al., 2012] Bellavista, P., Corradi, A., Fanelli, M., and Foschini, L.
(2012). A survey of context data distribution for mobile ubiquitous systems.
ACM Computing Surveys (CSUR), 44(4):24.

[Bellini et al., 2012] Bellini, P., Bruno, I., Cenni, D., Fuzier, A., Nesi, P., and
Paolucci, M. (2012). Mobile medicine: semantic computing management for
health care applications on desktop and mobile devices. Multimedia Tools and
Applications, 58(1):41–79.

[Berners-Lee, 2010] Berners-Lee, T. (2010). Long Live the Web. Scientific Ameri-
can.

[Berners-Lee, 2011] Berners-Lee, T. (2011). Linked Data - Design Issues. website.
last change: 2009/06/18; retrieved: 2011/07/25.

[Berners-Lee and Connolly, 2011] Berners-Lee, T. and Connolly, D. (2011). Nota-
tion3 (N3): A readable RDF syntax. Technical report, W3C.

[Berners-Lee et al., 2001] Berners-Lee, T., Hendler, J., and Lassila, O. (2001). The
semantic web. Scientific American, 284(5):34–43.

[Bishop et al., 2011] Bishop, B., Kiryakov, A., Ognyano↵, D., Peikov, I., Tashev,
Z., and Velkov, R. (2011). OWLIM: A family of scalable semantic repositories.
Semantic Web, 2(1):1–10.

[Braun et al., 2010] Braun, M., Scherp, A., and Staab, S. (2010). Collaborative
creation of semantic points of interest as linked data on the mobile phone.
Arbeitsberichte aus dem Fachbereich Informatik. Inst. WeST.

[Breslin et al., 2006] Breslin, J. G., Decker, S., Harth, A., and Bojars, U. (2006).
SIOC: an approach to connect web-based communities. International Journal
of Web Based Communities, 2(2):133–142.

[Brickley and Guha, 2004] Brickley, D. and Guha, R. V. (2004). RDF Vocabulary
Description Language 1.0: RDF Schema. Technical report, W3C.

[Brickley and Miller, 2004] Brickley, D. and Miller, L. (2004). FOAF Vocab-
ulary Specification. Namespace Document 2 Sept 2004, FOAF Project.
http://xmlns.com/foaf/0.1/.

[Broekstra et al., 2002] Broekstra, J., Kampman, A., and van Harmelen, F. (2002).
Sesame: A generic architecture for storing and querying RDF and RDF schema.
In ISWC, number 2342 in LNCS, pages 54–68. Springer.

141

Bibliography

[Cano et al., 2012] Cano, A.-E., Dadzie, A.-S., Uren, V., and Ciravegna, F. (2012).
Sensing presence (presense) ontology: User modelling in the semantic sensor
web. In The Semantic Web: ESWC 2011 Workshops, pages 253–268. Springer.

[Celino et al., 2011] Celino, I., Dell’Aglio, D., Valle, E., Balduini, M., Huang, Y.,
Lee, T., Kim, S.-H., and Tresp, V. (2011). Bottari: Location based social media
analysis with semantic web. ISWC.

[Charland and Leroux, 2011] Charland, A. and Leroux, B. (2011). Mobile appli-
cation development: web vs. native. Commun. ACM, 54(5):49–53.

[Chen and Babar, 2011] Chen, L. and Babar, M. A. (2011). A systematic review
of evaluation of variability management approaches in software product lines.
Information & Software Technology, 53(4):344–362.

[Chen et al., 2010] Chen, Y.-S., Chang, W.-H., Fang, H.-M., Yeh, Y.-M., and
Cheng, R.-S. (2010). A context-aware reasoning framework with owl for mobile
web information acquisition. Journal Of Internet Technology, 11(2):203–213.

[Clark et al., 2008] Clark, K. G., Feigenbaum, L., and Torres, E. (2008). SPARQL
Protocol for RDF. World Wide Web Consortium, Recommendation REC-rdf-
sparql-protocol-20080115.

[Costabello et al., 2012] Costabello, L., Villata, S., Delaforge, N., Gandon, F.,
et al. (2012). Linked data access goes mobile: Context-aware authorization for
graph stores. In LDOW-5th WWW Workshop on Linked Data on the Web-2012.

[Cyganiak and Bizer, 2011] Cyganiak, R. and Bizer, C. (2011). Pubby-a linked
data frontend for sparql endpoints. Retrieved September 20, 2011.

[Dave and Berners-Lee, 2011] Dave, D. and Berners-Lee, T. (2011). Turtle - Terse
RDF Triple Language. Technical report, W3C.

[Dietze et al., 2009] Dietze, S., Gugliotta, A., and Domingue, J. (2009). Bridging
the gap between mobile application contexts and semantic web resources. In
Stojanovic, D., editor, Context-Aware Mobile and Ubiquitous Computing for
Enhanced Usability: Adaptive Technologies and Applications, Premier Reference
Source, pages 217–234. Information Science Reference.

[Ding et al., 2004] Ding, L., Finin, T. W., Joshi, A., Pan, R., Cost, R. S., Peng, Y.,
Reddivari, P., Doshi, V., and Sachs, J. (2004). Swoogle: a search and metadata
engine for the semantic web. In Grossman, D. A., Gravano, L., Zhai, C., Herzog,
O., and Evans, D. A., editors, Proceedings of the 2004 ACM CIKM International
Conference on Information and Knowledge Management, Washington, DC, USA,
November 8-13, 2004, pages 652–659. ACM.

142

Bibliography

[Dyba et al., 2007] Dyba, T., Dingsoyr, T., and Hanssen, G. K. (2007). Applying
systematic reviews to diverse study types: An experience report. In Proceedings
of the First International Symposium on Empirical Software Engineering and
Measurement, ESEM ’07, pages 225–234, Washington, DC, USA. IEEE Computer
Society.

[Erling and Mikhailov, 2007] Erling, O. and Mikhailov, I. (2007). RDF support
in the virtuoso DBMS. In Auer, S., Bizer, C., Müller, C., and Zhdanova, A. V.,
editors, CSSW, volume 113 of LNI, pages 59–68. GI.

[Ermilov and Auer, 2013] Ermilov, T. and Auer, S. (2013). Enabling linked data
access to the internet of things.

[Ermilov et al., 2011a] Ermilov, T., Heino, N., and Auer, S. (2011a). Ontowiki
mobile: knowledge management in your pocket. In Proceedings of the 20th
international conference companion on World wide web, WWW ’11, pages 33–34,
New York, NY, USA. ACM.

[Ermilov et al., 2011b] Ermilov, T., Heino, N., Tramp, S., and Auer, S. (2011b).
OntoWiki Mobile — Knowledge Management in your Pocket. In Proceedings of
the ESWC2011.

[Ermilov et al., 2014] Ermilov, T., Khalili, A., and Auer, S. (2014). Ubiquitous
semantic applications: A systematic literature review. International Journal On
Semantic Web and Information Systems, 10.

[Ermilov et al., 2012] Ermilov, T., Tramp, S., and Auer, S. (2012). A mobile client
for the distributed semantic social network.

[Farooq Ali et al., 2005] Farooq Ali, M., Pérez-quiñones, M. A., and Abrams, M.
(2005). Building Multi-Platform User Interfaces with UIML, chapter 22, pages 93–118. John Wiley
and Sons, Ltd.

[Fenton, 2006] Fenton, A. (2006). Weft qda user’s manual. http://www. pressure.
to/qda/doc/. Acesso em, 18(03):2009.

[Ferrucci et al., 2013] Ferrucci, D., Levas, A., Bagchi, S., Gondek, D., and Mueller,
E. T. (2013). Watson: Beyond jeopardy! Artificial Intelligence, 199–200(0):93 –
105.

[Gartner, 2013] Gartner (2013). Worldwide mobile phone sales. website.

[Glaser and Strauss, 1967] Glaser, B. G. and Strauss, A. L. (1967). The Discovery
of Grounded Theory: Strategies for Qualitative Research. Aldine de Gruyter,
New York, NY.

[Grant and Beckett, 2004] Grant, J. and Beckett, D. (2004). RDF test cases. W3C
recommendation, World Wide Web Consortium.

143

Bibliography

[Grimm et al., 2002] Grimm, M., Tazari, M.-R., and Balfanz, D. (2002). Towards
a framework for mobile knowledge management. In Proceedings of the 4th
International Conference on Practical Aspects of Knowledge Management, PAKM
’02, pages 326–338, London, UK, UK. Springer-Verlag.

[Guinard and Trifa, 2009] Guinard, D. and Trifa, V. (2009). Towards the web
of things: Web mashups for embedded devices. In Workshop on Mashups,
Enterprise Mashups and Lightweight Composition on the Web (MEM 2009), in
proceedings of WWW (International World Wide Web Conferences), Madrid,
Spain.

[Gümüs et al., 2006] Gümüs, O., Kardas, G., Dikenelli, O., Erdur, R., and Önal,
A. (2006). Smop: A semantic web and service driven information gathering
environment for mobile platforms. In Meersman, R. and Tari, Z., editors, On
the Move to Meaningful Internet Systems 2006: CoopIS, DOA, GADA, and
ODBASE, volume 4275 of Lecture Notes in Computer Science, pages 927–940.
Springer Berlin / Heidelberg.

[Hachey, 2011] Hachey, G. (2011). Semantic web user interface: A systematic
survey. Master’s thesis, Athabasca University.

[Heflin, 2004] Heflin, J. (2004). OWL Web Ontology Language Use Cases and
Requirements. Technical report, W3C.

[Heino et al., 2009] Heino, N., Dietzold, S., Martin, M., and Auer, S. (2009). De-
veloping Semantic Web Applications with the Ontowiki Framework. In Pellegrini,
T., Auer, S., Tochtermann, K., and Scha↵ert, S., editors, Networked Knowledge
– Networked Media, volume 221 of Studies in Computational Intelligence, pages
61–77. Springer, Berlin/Heidelberg.

[Hu and Moore, 2007] Hu, B. and Moore, P. (2007). “smartcontext”: An ontology
based context model for cooperative mobile learning. In Shen, W., Luo, J., Lin,
Z., Barthès, J.-P., and Hao, Q., editors, Computer Supported Cooperative Work
in Design III, volume 4402 of Lecture Notes in Computer Science, pages 717–726.
Springer Berlin / Heidelberg.

[Hu et al., 2009] Hu, D. H., Dong, F., and Wang, C.-L. (2009). A semantic
context management framework on mobile device. In Proceedings of the 2009
International Conference on Embedded Software and Systems, ICESS ’09, pages
331–338, Washington, DC, USA. IEEE Computer Society.

[Iannella et al., 2010] Iannella, R., Halpin, H., Suda, B., and Walsh, N. (2010).
Representing vCard Objects in RDF. W3c Member Submission, W3C.

[Index, 2013] Index, C. V. N. (2013). Global mobile data tra�c fore-
cast update, 2012–2017 http://www. cisco. com/en. US/solutions/collater-
al/ns341/ns525/ns537/ns705/ns827/white paper c11-520862. html (Son erişim:
5 Mayıs 2013).

144

Bibliography

[Kitchenham, 2004] Kitchenham, B. (2004). Procedures for performing systematic
reviews. Technical report, Keele University and NICTA.

[Korpipää and Mäntyjärvi, 2003] Korpipää, P. and Mäntyjärvi, J. (2003). An
ontology for mobile device sensor-based context awareness. In Proceedings of
the 4th international and interdisciplinary conference on Modeling and using
context, CONTEXT’03, pages 451–458, Berlin, Heidelberg. Springer-Verlag.

[Krohn et al., 2007] Krohn, M., Yip, A., Brodsky, M., Morris, R., and Walfish, M.
(2007). A World Wide Web Without Walls. In 6th ACM Workshop on Hot
Topics in Networking (Hotnets), Atlanta, GA.

[Lane et al., 2010] Lane, N. D., Miluzzo, E., Lu, H., Peebles, D., Choudhury, T.,
and Campbell, A. T. (2010). A survey of mobile phone sensing. Comm. Mag.,
48(9):140–150.

[Langridge and Hickson, 2002] Langridge, S. and Hickson, I. (2002). Pingback 1.0.
Technical report, http://hixie.ch/specs/pingback/pingback.

[Lauesen, 2005] Lauesen, S. (2005). User Interface Design: A Software Engineering
Perspective. Addison Wesley.

[Lee et al., 2004] Lee, V., Schneider, H., and Schell, R. (2004). Mobile Applications:
Architecture, Design, and Development. Prentice Hall PTR, Upper Saddle River,
NJ, USA.

[Liao et al., 2005] Liao, L., Xu, K., and Liao, S. S. (2005). Constructing intelligent
and open mobile commerce using a semantic web approach. J. Inf. Sci., 31(5):407–
419.

[Martin and Auer, 2010] Martin, M. and Auer, S. (2010). Categorisation of se-
mantic web applications. In proceedings of the 4th International Conference on
Advances in Semantic Processing (SEMAPRO2010) 25 October – 30 October,
Florence, Italy.

[Miles and M., 1994] Miles, M. B. and M., H. (1994). Qualitative Data Analysis:
An Expanded Sourcebook(2nd Edition). Sage Publications, Inc, 2nd edition.

[Minno and Palmisano, 2010] Minno, M. and Palmisano, D. (2010). Atom Activity
Streams RDF mapping. NoTube Project. http://xmlns.notu.be/aair/.

[Motik et al., 2012] Motik, B., Horrocks, I., and Kim, S. M. (2012). Delta-reasoner:
a semantic web reasoner for an intelligent mobile platform. In Proceedings of
the 21st international conference companion on World Wide Web, pages 63–72.
ACM.

145

http://hixie.ch/specs/pingback/pingback
http://xmlns.notu.be/aair/

Bibliography

[Niemelä and Latvakoski, 2004] Niemelä, E. and Latvakoski, J. (2004). Survey of
requirements and solutions for ubiquitous software. In Proceedings of the 3rd
international conference on Mobile and ubiquitous multimedia, MUM ’04, pages
71–78, New York, NY, USA. ACM.

[Ostuni et al., 2013] Ostuni, V. C., Gentile, G., Di Noia, T., Mirizzi, R., Romito,
D., and Di Sciascio, E. (2013). Mobile movie recommendations with linked data.
In Availability, Reliability, and Security in Information Systems and HCI, pages
400–415. Springer.

[Otto and Dietzold, 2007] Otto, S. and Dietzold, S. (2007). Caucasian Spiders – A
faunistic Database on the spiders of the Caucasus – http://caucasus-spiders.info.
Newsl. Brit. Arachn. Soc., 108:14.

[Passant and Mendes, 2010] Passant, A. and Mendes, P. (2010). sparqlPuSH:
Proactive notification of data updates in RDF stores using PubSubHubbub. In
SFSW2010.

[Patel and Khuba, 2009] Patel, D. R. and Khuba, S. A. (2009). Realization of
semantic atom blog. CoRR, abs/0912.3957.

[Prud’hommeaux and Seaborne, 2008] Prud’hommeaux, E. and Seaborne, A.
(2008). SPARQL query language for RDF. W3C recommendation, W3C.

[Rieß et al., 2010] Rieß, C., Heino, N., Tramp, S., and Auer, S. (2010). EvoPat –
Pattern-Based Evolution and Refactoring of RDF Knowledge Bases. In Proceed-
ings of the 9th International Semantic Web Conference (ISWC2010), Lecture
Notes in Computer Science (LNCS), Berlin/Heidelberg. Springer.

[Ringland and Scahill, 2003] Ringland, S. and Scahill, F. (2003). Multimodality —
the future of the wireless user interface. BT Technology Journal, 21:181–191.

[Roto, 2006] Roto, V. (2006). Web browsing on mobile phones – characteristics of
user experience. Helsinki University of Technology.

[Ruta et al., 2010a] Ruta, M., Scioscia, F., Di Sciascio, E., and Piscitelli, G.
(2010a). Semantic-based geographical matchmaking in ubiquitous computing.
In The Fourth International Conference on Advances in Semantic Processing
(SEMAPRO2010), pages 166–172. IARIA.

[Ruta et al., 2012] Ruta, M., Scioscia, F., Di Sciascio, E., and Piscitelli, G. (2012).
Semantic matchmaking for location-aware ubiquitous resource discovery. Inter-
national Journal On Advances in Intelligent Systems, 4(3 and 4):113–127.

[Ruta et al., 2010b] Ruta, M., Scioscia, F., and Sciascio, E. D. (2010b). Mobile
semantic-based matchmaking: A fuzzy dl approach. In ESWC (1)’10, pages
16–30.

146

Bibliography

[Sakkopoulos, 2009] Sakkopoulos, E. (2009). Semantic technologies for mobile web
and personalized ranking of mobile web search results. In Sicilia, M.-A. and
Lytras, M. D., editors, Metadata and Semantics, pages 299–308. Springer US.

[Salber et al., 1998] Salber, D., Dey, A. K., and Abowd, G. D. (1998). Ubiqui-
tous computing: Defining an hci research agenda for an emerging interaction
paradigm.

[Schandl and Zander, 2009] Schandl, B. and Zander, S. (2009). A framework for
adaptive rdf graph replication for mobile semantic web applications. In Joint
Workshop on Advanced Technologies and Techniques for Enterprise Informa-
tion Systems (Session on Managing Data with Mobile Devices), pages 154–163.
INSTICC Press.

[Schwagereit et al., 2010] Schwagereit, F., Scherp, A., and Staab, S. (2010). Rep-
resenting Distributed Groups with dgFOAF. In ESWC2010, pages 181–195.

[Seaman, 1999] Seaman, C. B. (1999). Qualitative methods in empirical studies of
software engineering. IEEE Trans. Software Eng., 25(4):557–572.

[Shekarpour et al., 2013] Shekarpour, S., Marx, E., Ngomo, A.-C. N., and Auer,
S. (2013). Sina: Semantic interpretation of user queries for question answering
on interlinked data. Submitted to Journal of Web Semantics.

[Sheshagir et al., 2004] Sheshagir, M., Sade, N., and Gandon, F. (2004). Using
Semantic Web Services for Context-Aware Mobile Applications. In Proceedings
of MobiSys2004 Workshop on Context Awareness.

[Sonntag et al., 2007] Sonntag, D., Engel, R., Herzog, G., Pfalzgraf, A., Pfleger, N.,
Romanelli, M., and Reithinger, N. (2007). SmartWeb Handheld – Multimodal
Interaction with Ontological Knowledge Bases and Semantic Web Services.
In Huang, T. S., Nijholt, A., Pantic, M., and Pentland, A., editors, Artifical
Intelligence for Human Computing, volume 4451 of Lecture Notes in Computer
Science, pages 272–295. Springer.

[Soriano et al., 2006] Soriano, J., Lopez, G., Jimenez, M., Fernandez, R., and
Hierro, J. J. (2006). Semanticweb content adaptation and services delivery on
morfeo’s semantic mobility channel. In Proceedings of the 7th International
Conference on Mobile Data Management, MDM ’06, pages 78–, Washington,
DC, USA. IEEE Computer Society.

[Soylu et al., 2012] Soylu, A., Mödritscher, F., and De Causmaecker, P. (2012).
Ubiquitous web navigation through harvesting embedded semantic data: a
mobile scenario. Integrated Computer-Aided Engineering, 19(1):93–109.

[Sporny et al., 2010] Sporny, M., Corlosquet, S., Inkster, T., Story, H., Harbulot,
B., and Bachmann-Gmür, R. (2010). WebID 1.0: Web identification and
Discovery. Uno�cial draft. http://payswarm.com/webid/.

147

http://payswarm.com/webid/

Bibliography

[Stair and Reynolds, 2011] Stair, R. M. and Reynolds, G. W. (2011). Principles
of information systems. CengageBrain. com.

[Steller et al., 2009] Steller, L., Krishnaswamy, S., and Gaber, M. (2009). En-
abling scalable semantic reasoning for mobile services. International Journal on
Semantic Web & Information Systems, 5(2):91–116.

[Story et al., 2009a] Story, H., Harbulot, B., Jacobi, I., and Jones, M. (2009a).
Foaf+ ssl: Restful authentication for the social web. In Proceedings of the First
Workshop on Trust and Privacy on the Social and Semantic Web (SPOT2009).

[Story et al., 2009b] Story, H., Harbulot, B., Jacobi, I., and Jones, M. (2009b).
FOAF+SSL: RESTful Authentication for the Social W. In SPOT2009.

[Sun et al., 2005] Sun, S., Zhou, X., and Shen, H. T. (2005). Semantic caching for
multiresolution spatial query processing in mobile environments. In Proceed-
ings of the 9th international conference on Advances in Spatial and Temporal
Databases, SSTD’05, pages 382–399, Berlin, Heidelberg. Springer-Verlag.

[Thiagarajan et al., 2012] Thiagarajan, N., Aggarwal, G., Nicoara, A., Boneh, D.,
and Singh, J. P. (2012). Who killed my battery?: analyzing mobile browser
energy consumption. In Proceedings of the 21st international conference on
World Wide Web, pages 41–50. ACM.

[Tramp et al., 2011a] Tramp, S., Frischmuth, P., Arndt, N., Ermilov, T., and Auer,
S. (2011a). Weaving a distributed, semantic social network for mobile users. In
Proceedings of the 8th extended semantic web conference on The semantic web:
research and applications - Volume Part I, ESWC’11, pages 200–214, Berlin,
Heidelberg. Springer-Verlag.

[Tramp et al., 2011b] Tramp, S., Frischmuth, P., Arndt, N., Ermilov, T., and
Auer, S. (2011b). Weaving a Distributed, Semantic Social Network for Mobile
Users. In Proceedings of the ESWC2011.

[Tramp et al., 2010a] Tramp, S., Frischmuth, P., Ermilov, T., and Auer, S. (2010a).
Weaving a Social Data Web with Semantic Pingback. In Cimiano, P. and
Pinto, H., editors, Proceedings of the EKAW 2010 - Knowledge Engineering
and Knowledge Management by the Masses; 11th October-15th October 2010 -
Lisbon, Portugal, volume 6317 of Lecture Notes in Artificial Intelligence (LNAI),
pages 135–149, Berlin / Heidelberg. Springer.

[Tramp et al., 2011c] Tramp, S., Frischmuth, P., Ermilov, T., Shekarpour, S., and
Auer, S. (2011c). An architecture of a distributed semantic social network.
Semantic Web.

[Tramp et al., 2010b] Tramp, S., Heino, N., Auer, S., and Frischmuth, P. (2010b).
Rdfauthor: Employing rdfa for collaborative knowledge engineering. In Cimiano,

148

Bibliography

P. and Pinto, H., editors, Knowledge Engineering and Management by the Masses,
volume 6317 of Lecture Notes in Computer Science, pages 90–104. Springer Berlin
/ Heidelberg.

[Tramp et al., 2010c] Tramp, S., Heino, N., Auer, S., and Frischmuth, P. (2010c).
RDFauthor: Employing RDFa for collaborative Knowledge Engineering. In
Cimiano, P. and Pinto, H., editors, Proceedings of the EKAW 2010 – Knowledge
Engineering and Knowledge Management by the Masses; 11th October–15th
October 2010 – Lisbon, Portugal, volume 6317 of Lecture Notes in Artificial
Intelligence (LNAI), pages 90–104, Berlin/Heidelberg. Springer.

[Tummarello et al., 2007] Tummarello, G., Delbru, R., and Oren, E. (2007).
Sindice.com: Weaving the Open Linked Data. In Aberer, K., Choi, K.-S.,
Noy, N. F., Allemang, D., Lee, K.-I., Nixon, L. J. B., Golbeck, J., Mika, P.,
Maynard, D., Mizoguchi, R., Schreiber, G., and Cudré-Mauroux, P., editors,
The Semantic Web, 6th International Semantic Web Conference, 2nd Asian
Semantic Web Conference, ISWC 2007 + ASWC 2007, Busan, Korea, November
11-15, 2007, volume 4825 of Lecture Notes in Computer Science, pages 552–565.
Springer.

[Van Woensel et al., 2011a] Van Woensel, W., Casteleyn, S., Paret, E., and
De Troyer, O. (2011a). Mobile querying of online semantic web data for context-
aware applications. IEEE Internet Computing, 15(6):32–39.

[Van Woensel et al., 2011b] Van Woensel, W., Casteleyn, S., Paret, E., and
De Troyer, O. (2011b). Transparent mobile querying of online rdf sources
using semantic indexing and caching. In Proceedings of the 12th international
conference on Web information system engineering, WISE’11, pages 185–198,
Berlin, Heidelberg. Springer-Verlag.

[Veijalainen et al., 2006] Veijalainen, J., Nikitin, S., and Tormala, V. (2006).
Ontology-based semantic web service platform in mobile environments. In
Proceedings of the 7th International Conference on Mobile Data Management,
MDM ’06, pages 83–, Washington, DC, USA. IEEE Computer Society.

[Viana et al., 2007] Viana, W., Filho, J. B., Gensel, J., Oliver, M. V., and Mar-
tin, H. (2007). Photomap - automatic spatiotemporal annotation for mobile
photos. In Proceedings of the 7th international conference on Web and wireless
geographical information systems, W2GIS’07, pages 187–201, Berlin, Heidelberg.
Springer-Verlag.

[Villalonga et al., 2009] Villalonga, C., Strohbach, M., Snoeck, N., Sutterer, M.,
Belaunde, M., Kovacs, E., Zhdanova, A. V., and Goix, L. W. (2009). Mobile
ontology: Towards a standardized semantic model for the mobile domain. In
In Proc. of the 1st International Workshop on Telecom Service Oriented Archi-
tectures (TSOA 2007) at the 5th International Conference on Service-Oriented
Computing, 17 September 2007.

149

Bibliography

[W3C, 2004] W3C (2004). Resource description framework (rdf). http://www.w3.
org/RDF/.

[W3C, 2009] W3C (2009). W3C semantic web activity. Última visita 8/6/2010.

[Wang et al., 2006] Wang, F., Liu, S., Liu, P., and Bai, Y. (2006). Bridging
physical and virtual worlds: complex event processing for rfid data streams. In
Advances in Database Technology-EDBT 2006, pages 588–607. Springer.

[WeiBenberg et al., 2006] WeiBenberg, N., Gartmann, R., and Voisard, A. (2006).
An ontology-based approach to personalized situation-aware mobile service
supply. Geoinformatica, 10(1):55–90.

[Weiser, 1991] Weiser, M. (1991). The computer for the 21st century. Scientific
american, 265(3):94–104.

[Wikipedia, 2013] Wikipedia (2013). SPARQL — Wikipedia, The Free Encyclo-
pedia. [Online; accessed 31-March-2013].

[Wilson et al., 2005a] Wilson, M., Russell, A., Smith, D. A., Owens, A., and
Schraefel, M. C. (2005a). mSpace Mobile: A Mobile Application for the Semantic
Web. In Proc. of the ISWC 2005 Workshop on End User Semantic Web
Interaction, Galway, Ireland, November 7, 2005, volume 172 of CEUR Workshop
Proceedings. CEUR-WS.org.

[Wilson et al., 2005b] Wilson, M. L., Russell, A., Smith, D. A., Owens, A., and
m.c. schraefel (2005b). mspace mobile: A mobile application for the semantic
web. In End User Semantic Web Workshop, ISWC2005.

[Yu et al., 2012] Yu, H. Q., Zhao, X., Rei↵-Marganiec, S., and Domingue, J. (2012).
Linked context: A linked data approach to personalised service provisioning.
In Web Services (ICWS), 2012 IEEE 19th International Conference on, pages
376–383. IEEE.

[Yu, 2007] Yu, L. (2007). Introduction to Semantic Web and Semantic Web services.
Chapman & Hall/CRC, Boca Raton, FL.

[Zargayouna and Amara-Hachmi, 2006] Zargayouna, H. and Amara-Hachmi, N.
(2006). Litemap: An ontology mapping approach for mobile agents’ context-
awareness. In OTM Workshops (2)’06, pages 1934–1943.

150

http://www.w3.org/RDF/
http://www.w3.org/RDF/

Selbständigkeitserklärung

Hiermit erkläre ich, die vorliegende Dissertation selbständig und ohne unzulässige
fremde Hilfe angefertigt zu haben. Ich habe keine anderen als die angeführten
Quellen und Hilfsmittel benutzt und sämtliche Textstellen, die wörtlich oder sin-
ngemäß aus verö↵entlichten oder unverö↵entlichten Schriften entnommen wurden,
und alle Angaben, die auf mündlichen Auskünften beruhen, als solche kenntlich
gemacht. Ebenfalls sind alle von anderen Personen bereitgestellten Materialien
oder erbrachten Dienstleistungen als solche gekennzeichnet.

Leipzig, den 3.2.2014

Timofey Ermilov

151

	Introduction
	Introduction and motivation
	Challenges
	Data exchange challenges
	Platform fragmentation
	Reconciliation and data ownership

	Contributions
	Chapter Overview

	Semantic Web Technologies
	The Definition of Semantic Web
	Resource Description Framework (RDF)
	Resource
	Property
	Statement
	RDF Serialization Formats
	Ontology
	Ontology Languages
	SPARQL Query Language
	Triplestore

	State of the art
	Introduction
	Research Method
	Research Questions
	Search Strategy
	Study Selection
	Data Extraction and Analysis
	Overview of Included Studies

	Results
	Terminology
	Possible User Roles
	Ubiquitous Semantic Applications Development Approaches
	Quality Attributes
	Quality Attributes Dependencies
	Applications Evaluation

	Applications
	OntoWiki Mobile
	csxPOI
	mSpace Mobile
	myCampus
	MSSW
	Bottari

	Research and Technology Challenges
	Conclusions

	A conceptual framework for ubiquitous semantic applications
	Definition of the ubiquitous semantic applications
	Definition

	Architecture
	Presentation layer
	Utility layer
	Business logic layer
	Data layer

	Classification of ubiquitous semantic applications
	Device type
	Client-server workload balancing
	Semantic technology depth
	Information flow direction
	Semantic richness
	Semantic integration
	User involvement

	Client Approaches
	Thin client approach
	Introduction
	Architecture
	Replication
	User Interface
	Use Case and Evaluation
	Conclusions

	Hybrid client approach
	Introduction
	Distributed Semantic Social Networking
	A Mobile DSSN Client
	Evaluation
	Conclusion

	Fat client approach
	Introduction
	Mobile Use Cases and Requirements
	Architecture of a Distributed Semantic Social Network
	Implementation of a Mobile Interface
	User perspective
	Conclusion

	Provider Approaches
	Fat provider approach
	Introduction
	Approach: Embedded Linked Data Server
	Implementation: Android Linked Data Server
	Evaluation
	Conclusion

	Hybrid provider approach
	Introduction
	Approach: Hybrid Linked Data Server
	Use cases
	Implementation
	Conclusion

	Conclusions and Future Work
	Conclusions
	Thin client approach
	Hybrid client approach
	Fat client approach
	Fat provider approach
	Hybrid provider approach

	Directions for Future Work
	Thin client approach
	Hybrid client approach
	Fat client approach
	Fat provider approach
	Hybrid provider approach

	Curriculum Vitae
	List of Tables
	List of Figures
	Selbständigkeitserklärung

