
International Journal on Semantic Web and Information Systems, 10(2), 7-34, April-June 2014 7

Copyright © 2014, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

ABSTRACT
This paper presents two contributions to the field of Ontology Evaluation. First, a live catalogue of pitfalls
that extends previous works on modeling errors with new pitfalls resulting from an empirical analysis of over
693 ontologies. Such a catalogue classifies pitfalls according to the Structural, Functional and Usability-
Profiling dimensions. For each pitfall, we incorporate the value of its importance level (critical, important
and minor) and the number of ontologies where each pitfall has been detected. Second, OOPS! (OntOlogy
Pitfall Scanner!), a tool for detecting pitfalls in ontologies and targeted at newcomers and domain experts
unfamiliar with description logics and ontology implementation languages. The tool operates independently
of any ontology development platform and is available online. The evaluation of the system is provided both
through a survey of users’ satisfaction and worldwide usage statistics. In addition, the system is also compared
with existing ontology evaluation tools in terms of coverage of pitfalls detected.

OOPS! (OntOlogy
Pitfall Scanner!):

An On-line Tool for Ontology Evaluation
María Poveda-Villalón, Ontology Engineering Group, Universidad Politécnica de Madrid,

Madrid, Spain

Asunción Gómez-Pérez, Ontology Engineering Group, Universidad Politécnica de Madrid,
Madrid, Spain

Mari Carmen Suárez-Figueroa, Ontology Engineering Group, Universidad Politécnica de
Madrid, Madrid, Spain

Keywords: Ontology, Ontology Evaluation, Ontology Quality, Ontology Validation, Pitfalls

INTRODUCTION

The Linked Data (LD) effort has become a
catalyst for the realization of the vision of the
Semantic Web originally proposed by Berners-
Lee et al. (2001). In this scenario, a large amount
of data, annotated by means of ontologies, is
shared on the Web. Such ontologies enrich the
published data with semantics and help their
integration. In other cases, ontologies are used
to model data automatically extracted from

web sources, which can be noisy and contain
errors. Therefore, ontologies not only must be
published according to LD principles1, but they
also must be accurate and of high quality from
a knowledge representation perspective in order
to avoid inconsistencies or undesired inferences.

The correct application of ontology devel-
opment methodologies (e.g., METHONTOL-
OGY (Fernández-López et al., 1999), On-To-
Knowledge (Staab et al., 2001), DILIGENT
(Pinto, Tempich, & Staab, 2004), or the NeOn

DOI: 10.4018/ijswis.2014040102

Copyright © 2014, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

8 International Journal on Semantic Web and Information Systems, 10(2), 7-34, April-June 2014

Methodology (Suárez-Figueroa et al., 2012))
benefits the quality of the ontology being
built. However, such a quality is not totally
guaranteed because ontologists face a wide
range of difficulties and handicaps when mod-
eling ontologies (Aguado de Cea et al., 2008;
Blomqvist, Gangemi, & Presutti, 2009; Rector
et al., 2004), and this fact may cause the appear-
ance of anomalies in ontologies. Therefore, in
any ontology development project it is vital to
perform the ontology evaluation activity since
this activity checks the technical quality of an
ontology against a frame of reference.

In the last decades a huge amount of
research and work on ontology evaluation
has been conducted. Some of these attempts
define a generic quality evaluation framework
(Duque-Ramos et al., 2011; Gangemi et al.,
2006; Gómez-Pérez, 2004; Guarino, & Welty,
2009; Strasunskas, & Tomassen, 2008); oth-
ers propose evaluating an ontology depending
on its final (re)use (Suárez-Figueroa, 2010);
some others propose quality models based on
features, criteria, and metrics (Burton-Jones et
al, 2005); whereas others present methods for
pattern-based evaluation (Djedidi, & Aufaure,
2010; Presutti et al., 2008).

As a consequence of the emergence of
new methods and techniques, a few tools have
been proposed. These tools ease the ontology
diagnosis by reducing the human intervention.
This is the case of XD-Analyzer2, a plug-in for
NeOn Toolkit and Ontocheck3 (Schober et al.,
2012), a plug-in for Protégé. The former checks
some structural and architectural ontology fea-
tures, whereas the latter focuses on metadata
aspects. Moki4 (Pammer, 2010), a wiki-based
ontology editor, also provides some evaluation
features. Finally, Radon (Ji et al., 2009) is a
NeOn Toolkit plug-in that detects and handles
logical inconsistencies in ontologies.

This paper presents two main contribu-
tions. The first contribution consists of a live
and on-line catalogue of pitfalls5 that extends
previous works on modeling errors (Allemang,
& Hendler, 2011; Gómez-Pérez, 2004; Noy,
& McGuinness, 2001; Rector et al., 2004)
identified in the ontology engineering field

including some persistent problems of ac-
cessibility emerging in the Linked Data field
(Archer, Goedertier, & Loutas, 2012; Heath, &
Bizer, 2011; Hogan et al., 2010). The second
contribution, OOPS! (OntOlogy Pitfall Scan-
ner!) represents a tool for diagnosing (semi-)
automatically OWL6 ontologies. This system
aims to help ontology developers to evaluate
ontologies and is focused on newcomers and
those not familiar with description logics and
ontology implementation languages. OOPS!
operates independently of any ontology de-
velopment platform and is available online
at http://www.oeg-upm.net/oops. It should be
noted here that the repair of the ontology is out
of the scope of OOPS!.

In this paper we first present the catalogue
of pitfalls, including a compendium of pitfalls
extracted from the literature review and from
the manual analysis of ontologies. A classifica-
tion of such pitfalls according to the Structural,
Functional and Usability-Profiling dimensions
proposed in Gangemi et al. (2006) is also pro-
vided. Then, for each pitfall, we incorporate its
value of importance level (critical, important,
and minor) because not all the pitfalls are equally
relevant and important. Next, we explain the
internal architecture of OOPS! and describe
the pitfalls detection methods used within the
system. After that, an empirical analysis of the
proposed catalogue carried out on 693 ontolo-
gies is presented. Then, we present the evalu-
ation of the system based both on a survey of
users’ satisfaction and on evidence of the real
use of the tool worldwide. After that, we review
related works about ontology evaluation tools.
Finally we draw the conclusions and provide
future lines of work.

COMMON PITFALLS IN
ONTOLOGY DEVELOPMENT

One of the most common approaches for
evaluating ontologies is to have a checklist of
typical errors that other developers have made
before. Thus the developer checks the ontol-
ogy being built against such a list, detects the

Copyright © 2014, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

International Journal on Semantic Web and Information Systems, 10(2), 7-34, April-June 2014 9

pitfalls, and corrects them. Our approach does
not pretend to create another checklist but to
reuse existing works where modeling problems
have already been identified and to extend
them by incorporating new pitfalls obtained
through an empirical evaluation of ontologies
already existing.

Catalogue of Common Pitfalls

As our long-term goal is to create and maintain
a live and on-line pitfall catalogue, we have
followed the process sketched in Figure 1. We
started by manually analyzing ontologies and
reviewing literature about ontology evaluation
and Linked Data (LD).

Regarding works on ontology evaluation,
we reviewed, reused, and included in the pitfall
catalogue outcomes from (Rector et al., 2004),
in which Rector et al. describe a set of common
errors made by developers during the ontology
modeling activity; from Gómez-Pérez (2004),
in which Gómez-Pérez provides a classification
of errors identified during the evaluation of
consistency, completeness, and conciseness of
ontology taxonomies; and from Noy, and Mc-
Guinness (2001), where Noy and McGuinness
present a methodology for creating ontologies
and point out some common errors and how to

avoid them. We have also reused and adapted
to the ontology domain some research from the
LD area: the main guidelines for LD publication
and consumption (Heath, & Bizer, 2011); the
problems identified in Hogan et al. (2010) for
accessing RDF7 on the Web; and the guidelines
for creating persistent URIs included in Archer,
Goedertier, and Loutas (2012).

The catalogue does not pretend to be an
exhaustive, rigid and fixed checklist. Besides,
in order to keep such a catalogue in continuous
evolution we continue working with the manual
evaluation of ontologies and aim to discover
new pitfalls. We would welcome that OOPS!
users and ontology experts propose new pitfalls
to introduce them in the catalogue.

The current version of the catalogue8 con-
sists of a list of 40 pitfalls as well as their de-
scriptions. In each pitfall we include provenance
information if the pitfall being described was
proposed in a previous work. The list includes
the following pitfalls:

• P01. Creating Polysemous Elements: An
ontology element whose name has different
meanings is included in the ontology to
represent more than one conceptual idea.
For example, the class “Theatre” is used

Figure 1. Creation of the pitfall catalogue and maintenance process

Copyright © 2014, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

10 International Journal on Semantic Web and Information Systems, 10(2), 7-34, April-June 2014

to represent both the artistic discipline and
the place in which a play is performed.

• P02. Creating Synonyms as Classes: Sev-
eral classes whose identifiers are synonyms
are created and defined as equivalent.
For example, the classes “Waterfall” and
“Cascade” are defined as equivalents. This
pitfall is related to the guidelines presented
in Noy, and McGuinness (2001), which
explain that synonyms for the same concept
do not represent different classes.

• P03. Creating the Relationship “is”
Instead of Using “rdfs:subClassOf”,
“rdf:type” or “owl:sameAs”: The
“is” relationship is created in the ontol-
ogy instead of using OWL primitives for
representing the subclass relationship
(“subclassOf”), the membership to a class
(“instanceOf”), or the equality between
instances (“sameAs”). An example of this
pitfall is to define the class “Actor” in the
following way ‘Actor ≡ Person ⨅ ∃inter-
prets.Actuation ⨅ ∃is.Man’. This pitfall is
related to the guidelines for understanding
the “is-a” relation provided in Noy, and
McGuinness (2001).

• P04. Creating Unconnected Ontology
Elements: Ontology elements (classes,
relationships or attributes) are created with
no relation to the rest of the ontology. An
example of this type of pitfall is to create
the relationship “memberOfTeam” and to
miss the class representing teams; thus,
the relationship created is isolated in the
ontology.

• P05. Defining Wrong Inverse Relation-
ships: Two relationships are defined
as inverse relations when they are not
necessarily inverse. An example of this
type of pitfall is to define “isSoldIn” and
“isBoughtIn” as inverse relationships.

• P06. Including Cycles in the Hierarchy
(Gómez-Pérez, 2004; Noy, & McGuin-
ness, 2001): A cycle between two classes
in the hierarchy is included in the ontology
even though the ontology is not intended
to have such classes as equivalent. That
is, some class A has a subclass B, and at

the same time B is a superclass of A. An
example of this type of pitfall is represented
by the class “Professor” as subclass of
“Person”, and the class “Person” as subclass
of “Professor”.

• P07. Merging Different Concepts in the
Same Class: A class whose identifier refers
to two or more different concepts is cre-
ated. An example of this type of pitfall is
the creation of the class “StyleAndPeriod”.

• P08. Missing Annotations: Ontology
terms lack annotations properties such as
rdfs:label or rdfs:comment. An example of
this type of pitfall is to create a class and to
fail to provide human readable annotations
attached to such a class.

• P09. Missing Basic Information: Some
of the information needed is not included
in the ontology. This pitfall may be related
to the requirements in the ontology require-
ments specification document (ORSD) not
covered by the ontology, or to knowledge
that can be added to the ontology to make it
more complete. An example of this type of
pitfall is to create the relationship “startsIn”
in order to represent that the routes have a
starting point in a particular location and
to miss the relationship “endsIn” in order
to represent that a route has an end point.

• P10. Missing Disjointness (Gómez-
Pérez, 2004; Noy, & McGuinness,
2001; Rector et al., 2004): The ontology
lacks disjoint axioms between classes or
between properties that should be defined
as disjoint. For example, we can create the
classes “Odd” and “Even” (or the classes
“Prime” and “Composite”) without being
disjoint; such representation is incomplete
with regard to the definition of these types
of numbers.

• P11. Missing Domain or Range in Prop-
erties: Relationships and/or attributes with-
out domain or range (or none of them) are
included in the ontology. An example of this
type of pitfall is to create the relationship
“hasWritten”, with no domain nor range
specification, in an ontology about art in
which the relationship domain should be

Copyright © 2014, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

International Journal on Semantic Web and Information Systems, 10(2), 7-34, April-June 2014 11

“Writer” and the relationship range should
be “LiteraryWork”. This pitfall is related
to the common error that appears when
defining the ranges and domains described
in Rector et al. (2004).

• P12. Missing Equivalent Properties:
When an ontology is imported into another,
classes duplicated in both ontologies are
normally defined as equivalent classes.
However, the ontology developer misses
the definition of equivalent properties in the
cases of duplicated relationships and attri-
butes. An example of this type of pitfalls is
to fail to define the relations “hasMember”
and “has-Member” as equivalent.

• P13. Missing Inverse Relationships: This
pitfall appears when any relationship (ex-
cept for the symmetric ones) does not have
an inverse relationship defined within the
ontology. For example, the case in which
the ontology developer omits the inverse
definition between the relations “hasLan-
guageCode” and “isCodeOf”.

• P14. Misusing “owl:allValuesFrom”
(Rector et al., 2004): This pitfall can ap-
pear in two different ways. Firstly, when
the universal restriction (“allValuesFrom”)
is used as the default qualifier instead of
the existential restriction (“someValues-
From”). Secondly, when “allValuesFrom”
is included to close off the possibility of
further additions for a given property. An
example of this type of pitfall is to define the
class “Book” in the following way ‘Book ≡
∃producedBy.Writer ⨅ ∀uses.Paper’ thus
closing the possibility of adding “Ink” as
an element used in the writing.

• P15. Misusing “not some” and “some
not” (Rector et al., 2004): The pitfall here
is to confuse the representation of “some
not” with “not some”. An example of this
type of pitfall is to define a vegetarian pizza
as any pizza which has both some topping
which is not meat and some topping which
is not fish. This example is explained in
more detail in Rector et al. (2004).

• P16. Misusing Primitive and Defined
Classes (Rector et al., 2004): This pitfall

implies failing to make the definition ‘com-
plete’ rather than ‘partial’ (or ‘necessary
and sufficient’ rather than just ‘necessary).
It is critical to understand that, in general,
nothing will be inferred to be subsumed
under a primitive class by the classifier
(Rector et al., 2004). This pitfall implies
that the developer does not understand the
open world assumption. An example of
this pitfall is to create the primitive class
‘CheesyPizza ⊏ Pizza ⨅ ∃hasTopping.
Cheese’ instead of creating it as a defined
class in the following way: ‘CheesyPizza
≡ Pizza ⨅ ∃hasTopping.Cheese’. This
example is explained in more detail in
Rector et al. (2004).

• P17. Specializing a Hierarchy Exceed-
ingly9: The hierarchy in the ontology is
specialized in such a way that the final
leaves cannot have instances since they
are actually instances and should have
been created as such instead of as classes.
Authors in Noy, and McGuinness (2001)
provide guidelines for distinguishing be-
tween a class and an instance when mod-
eling hierarchies. An example of this type
of pitfall is to create the classes “Madrid”,
“Barcelona” and “Sevilla”, among others,
as subclasses of “Place”.

• P18. Specifying the Domain or the Range
Exceedingly (Noy, & McGuinness, 2001;
Rector et al., 2004): This pitfall means
failing to find a domain or a range general
enough. An example of this type of pitfall
is to restrict the domain of the relationship
“isOfficialLanguage” to the class “City”,
instead of allowing the class “Country” or
a more general concept such as “Geopo-
liticalObject” to have an official language.

• P19. Swapping Intersection and Union:
The ranges and/or domains of the properties
(relationships and attributes) are defined
by intersecting several classes in cases in
which the ranges and/or domains should
be the union of those classes. This pitfall
is related both to the common error that
appears when defining ranges and domains
described in Rector et al. (2004) and to the

Copyright © 2014, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

12 International Journal on Semantic Web and Information Systems, 10(2), 7-34, April-June 2014

guidelines for defining these elements pro-
vided in Noy, and McGuinness (2001). An
example of this type of pitfall is to create
the relationship “takesPlaceIn” with one
range declaration for the class “City” and
other range declaration for the class “Na-
tion”, as this implementation represents
the intersection of both ranges instead of
the union.

• P20. Misusing Ontology Annotations:
The contents of some annotation proper-
ties are swapped or misused. An example
of this type of pitfall is to include in the
rdfs:label annotation of the class “Cross-
roads” the following sentence ’the place
of intersection of two or more roads’; and
to include in the rdfs:comment annotation
the word ‘Crossroads’.

• P21. Using a Miscellaneous Class: This
means creating in a hierarchy a class con-
taining the instances that do not belong to
the sibling classes instead of classifying
such instances as instances of the class
in the upper level of the hierarchy. An
example of this type of pitfall is to create
the class “HydrographicalResource”, and
the subclasses “Stream” and “Waterfall”,
among others, and also the subclass
“OtherRiverElement”.

• P22. Using Different Naming Criteria
in the Ontology: Ontology elements are
not named following the same convention
within the whole ontology. Some notions
about naming conventions are provided in
Noy, and McGuinness (2001). For example,
this pitfall appears when a class identifier
starts with upper case, e.g. “Ingredient”,
whereas its subclass identifiers start with
lower case, e.g. “flour” and “milk”.

• P23. Using Incorrectly Ontology Ele-
ments: An ontology element (class, rela-
tionship or attribute) is used to model a part
of the ontology that should be modeled with
a different element. A particular case of this
pitfall regarding the misuse of classes and
property values is addressed in Noy, and
McGuinness (2001). An example of this
type of pitfall is to create the relationship

“isEcological” between an instance of
“Car” and the instances “Yes” or “No”,
instead of creating an attribute “isEcologi-
cal” whose range is Boolean.

• P24. Using Recursive Definition: An
ontology element is used in its own defini-
tion. An example of this type of pitfall is
to create the relationship “hasFork” and to
establish as its range the following: The set
of restaurants that have at least one value
for the relationship “hasFork”.

• P25. Defining a Relationship Inverse to
Itself: A relationship is defined as inverse of
itself. In this case, this property could have
been defined as “owl:SymmetricProperty”
instead. An example of this type of pitfall is
to create the relationship “hasBorderWith”
and to state that “hasBorderWith” is its
inverse relationship.

• P26. Defining Inverse Relationships for a
Symmetric One: A relationship is defined
as “owl:SymmetricProperty”, and such a
relationship is defined as inverse of another
relationship. For example, to create for
the symmetric relationship “farFrom” an
inverse relationship, e.g. itself, “farFrom”.

• P27. Defining Wrong Equivalent Rela-
tionships: Two relationships are defined
as equivalent relations when they are not
necessarily equivalent. An example of this
type of pitfalls is to mix up common rela-
tionships that could hold between several
types of entities, as “hasPart” defined in
one ontology between human body parts
and the relation “hasPart” defined in an-
other ontology between research plans and
research projects.

• P28. Defining Wrong Symmetric Re-
lationships: A relationship is defined as
symmetric when the relationship is not
necessarily symmetric. This situation can
appear because the domain and range are
too specific; for example, if we define the
symmetric relationship “hasSpouse” be-
tween the concepts “Man” and “Woman”
instead of using the concept “Person” both
as domain and range of such a relationship.

Copyright © 2014, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

International Journal on Semantic Web and Information Systems, 10(2), 7-34, April-June 2014 13

• P29. Defining Wrong Transitive Re-
lationships: A relationship is defined as
transitive when the relationship is not
necessarily transitive. An example of this
type of pitfall is to create the relationship
“participatesIn”, whose domain is the union
of the concepts “Team” and “Individual”
and whose range is the concept “Event”,
and defining the relationship as transitive.

• P30. Missing Equivalent Classes: When
an ontology is imported into another,
classes with the same conceptual mean-
ing that are duplicated in both ontologies
should be defined as equivalent classes
in order to benefit the interoperability
between both ontologies. However, the
ontology developer may miss the defini-
tion of equivalent classes in the cases of
duplicated concepts. An example of this
pitfall is to fail to define the classes ‘Trainer’
(class in an imported ontology) and ‘Coach’
(class in the ontology about sports being
developed) as equivalent classes.

• P31. Defining Wrong Equivalent Class-
es: Two classes are defined as equivalent
when they are not necessarily equivalent.
For example, defining “Car” as equivalent
to “Vehicle”.

• P32. Several Classes with the Same La-
bel: Two or more classes have the same
content in the rdfs:label annotation. For
example, to link the label “Theatre” both
with the building and the literary discipline,
adding no more labels to them.

• P33. Creating a Property Chain with
Just One Property: There is a property
chain that includes only one property in the
antecedent part. For example, to create the
following property chain: isInChargeOf
-> supervises.

• P34. Untyped Class (Hogan et al., 2010):
A resource is used as a class without having
been declared as a Class. An example of
this type of pitfall is to create individu-
als of the class “Person” and to omit that
“Person” is a class.

• P35. Untyped Property (Hogan et al.,
2010): A resource is used as a property with-
out having been declared as a rdf:Property

or as some subclass of it. An example of
this type of pitfall is to link individual by
the relation “hasPart” and to omit that
“hasPart” is an object property.

• P36. URI Contains File Extension
(Archer, Goedertier, & Loutas, 2012):
This involves including file extensions as
“.owl”, “.rdf”, “.ttl”, “.n3” and “.rdfxml” in
an ontology URI. An example of this pitfall
is to define an ontology uri as “http://www.
biopax.org/release/biopax-level3.owl”
containing the extension “.owl” related to
the technology used.

• P37. Ontology Not Available: This in-
volves omitting to provide online descrip-
tion or documentation of the ontology when
looking up its URI. An example of this
pitfall could be the following case: “Ontol-
ogy Security (ontosec)” (URI: http://www.
semanticweb.org/ontologies/2008/11/On-
tologySecurity.owl) which is not available
online as RDF nor as HTML (at the moment
of carrying out this work).

• P38. No OWL Ontology Declaration: This
means failing to declare the owl:Ontology
tag where the ontology metadata should
be provided. An example of this pitfall
could be found at the “Creative Commons
Rights Expression Language (cc)” ontol-
ogy (URI: http://creativecommons.org/
ns) that does not have any owl:Ontology
declaration in its RDF file even though
it has other OWL elements used as, for
example, owl:equivalentProperty (at the
moment of carrying out this work).

• P39. Ambiguous Namespace: This means
failing to define both the ontology URI
and the xml:base namespace. An example
of this pitfall could be found at “Basic
Access Control ontology (acl)” (URI:
http://www.w3.org/ns/auth/acl) that has no
owl:Ontology tag nor xml:base definition.

• P40. Namespace Hijacking (Heath, & Bi-
zer, 2011): This means reusing or referring
to terms from other namespaces not actually
defined in such namespace. This pitfall is
related to the Linked Data publishing guide-
lines provided in Heath, and Bizer (2011):
“Only define new terms in a namespace

Copyright © 2014, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

14 International Journal on Semantic Web and Information Systems, 10(2), 7-34, April-June 2014

that you control.” An example of this pit-
fall is to use “http://www.w3.org/2000/01/
rdf-schema#Property” that is not de-
fined in the rdf namespace (http://www.
w3.org/2000/01/rdf-schema#) instead of
using “http://www.w3.org/1999/02/22-
rdf-syntax-ns#Property”, that is actually
defined in the rdfs namespace (http://www.
w3.org/1999/02/22-rdf-syntax-ns#).

Pitfalls Classification

Since the list of pitfalls presented refers to
different ontology perspectives, it is advisable
to classify them according to some evaluation
criteria. Users with an interest in a given aspect
of ontology evaluation could easily identify
the group of pitfalls in which they might be
interested. For this reason, we have classified
pitfalls according to the dimensions defined
in Gangemi et al. (2006), namely: structural,
functional and usability-profiling. Even though
these dimensions are enough to classify all the
pitfalls in the catalogue, a more fine-grained
classification is provided to deal with specific
aspects that following and extend the approach
described in Poveda-Villalón, Suárez-Figueroa,
and Gómez-Pérez (2010). Such classification
is as follows:

• Structural Dimension (Gangemi et al.,
2006): It is focused on syntax and formal
semantics. For this dimension we consider
the following aspects:
 ◦ Modeling Decisions (Poveda-Villalón,

Suárez-Figueroa, & Gómez-Pérez,
2010): This aspect involves evaluating
whether developers use the primitives
provided by ontology implementation
languages in a correct way, and if there
are modeling decisions that could be
improved.

 ◦ Real World Modeling or Common
Sense (Poveda-Villalón, Suárez-
Figueroa, & Gómez-Pérez, 2010):
This aspect deals with the knowledge
that domain experts expect to appear
in the ontology, but is not represented.

 ◦ No Inference (Poveda-Villalón,
Suárez-Figueroa, & Gómez-Pérez,
2010): This aspect refers to checking
whether desirable or expected knowl-
edge could actually be inferred from
the given ontology.

 ◦ Wrong Inference (Poveda-Villalón,
Suárez-Figueroa, & Gómez-Pérez,
2010): This aspect refers to the evalu-
ation of the inference of erroneous or
invalid knowledge.

 ◦ Ontology Language: This aspect
refers to checking whether the ontol-
ogy is compliant both with the ontol-
ogy language specification and with
the syntax in which the ontology is
formalized.

• Functional Dimension (Gangemi et al.,
2006): This is related to the intended use of
a given ontology; thus the focus is on the
ontology conceptualization. The following
aspects are taken into account within this
dimension:
 ◦ Requirement Completeness (Poveda-

Villalón, Suárez-Figueroa, & Gómez-
Pérez, 2010): This aspect deals with the
coverage of the requirements specified
in the ORSD by the ontology.

 ◦ Application Context: This aspect refers
to the adequacy of the ontology for a
given application or use case.

• Usability-Profiling Dimension (Gangemi
et al., 2006): It refers to the communication
context of an ontology. For this dimension
we contemplate the following aspects:
 ◦ Ontology Understanding (Poveda-

Villalón, Suárez-Figueroa, & Gómez-
Pérez, 2010): This aspect involves
evaluating any kind of information
that can help the user to understand
the ontology.

 ◦ Ontology Clarity (Poveda-Villalón,
Suárez-Figueroa, & Gómez-Pérez,
2010): This aspect refers to the prop-
erties of ontology elements of being
easily recognizable and understood
by the user.

Copyright © 2014, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

International Journal on Semantic Web and Information Systems, 10(2), 7-34, April-June 2014 15

Figure 2 represents such classification
where each pitfall is classified according to at
least one of the abovementioned aspects. Figure
2 also shows the importance level of each pitfall
both by attaching a number between brackets to
each pitfall title and by using different colors;
thus “critical” pitfalls are written in black fol-
lowed by “(1)”, “important” pitfalls are in blue
followed by “(2)” and “minor” pitfalls are in
brown followed by “(3)”.

Extension with Pitfalls
Importance Levels

It is obvious that not all the pitfalls are equally
important; their impact in the ontology will
depend on multiple factors. For this reason,
the pitfall catalogue has been extended with
information about how critical the pitfalls are.
We have identified three levels:

• Critical (1): It is crucial to correct the pit-
fall. Otherwise, it could affect the ontology
consistency, reasoning and applicability,
among others. For example, the conse-
quences of “P19. Swapping intersection
and union” could lead to logical inconsis-
tences in the ontology, which represents

a critical error when reasoning over the
populated ontology.

• Important (2): Though not critical for
ontology function, it is important to cor-
rect this type of pitfall. For example, the
logical consequences of “P25. Defining
a relationship inverse to itself” are the
same as if such relationship were defined
as symmetric. However, the latter option,
that is, using the ontology implementation
language constructors for the purpose they
were conceived, is a sign of good model-
ing and understanding of the underlying
semantics.

• Minor (3): It does not represent a problem.
However, correcting it makes the ontol-
ogy better organized and user friendly.
For example, the pitfall “P22. Using dif-
ferent naming criteria in the ontology” is
about the appearance of the ontology and
does not compromise the proper ontology
functioning.

These levels do not have clear boundaries
in the sense that a particular pitfall in a level
could be debatable depending on the modeling
styles, ontology requirements, and context of
use by an ontology application. For example, in

Figure 2. Pitfall classification

Copyright © 2014, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

16 International Journal on Semantic Web and Information Systems, 10(2), 7-34, April-June 2014

this work we consider an important pitfall not
to define domains and ranges for the properties,
which is arguable, of course. In some develop-
ments, it could be considered a pitfall exactly
the opposite (that is, specifying domains and
ranges), as developers might be interested in
increasing the interoperability of the model
obtained instead of its explicit semantics or
expressivity. In such a case, it would be enough
if the evaluators define the fact of defining do-
mains and ranges as a pitfall instead of doing it
as we propose here. In this way, we provide a
starting point for ontology evaluation that could
be adapted to users’ particular requirements.

In other cases, how critical a pitfall is
depends on the context of use; for example,
in a LD development project (Heath, & Bizer,
2011), an ontology should be published accord-
ing to the Linked Data rules and principles.
In this scenario, the pitfalls “P37. Ontology
not available on the Web”, “P39. Ambiguous
namespace”, and “P40. Namespace hijacking”
are crucial while they might not be important
in the context of an isolated application where
the ontology is not designed for sharing. An-
other pitfall related to LD context is “P36. URI
contains file extension”. In this case, it may be
consider a minor pitfall as it does not affect the
correct functioning of the ontology.

At the moment of including the importance
levels in the catalogue, 35 out of the 40 pitfalls
were already defined and published. In order
to attach importance levels to the pitfalls, a
study was carried out in which the users had to
fill in a questionnaire providing the following
information:

• Level of Confidence: How confident (s)he
felt in the ontology evaluation or ontology
modeling domains.

• Importance Level of Each Pitfall: There
was one question per pitfall (from P01
to P35) where the user had to select the
importance level of the given pitfall. The
possible values were “Critical”, “Impor-
tant” and “Minor” (see above).

• Which Pitfalls are Not Important: A list
with all the pitfalls was provided and the

users were asked to indicate which pitfall
would never represent a problem (not pit-
falls that could be a problem only in some
cases) for them.

• Other Comments: A free text box for
providing any comment or suggestions.

Researchers, mainly experts on ontology
modeling or evaluation, within the semantic
web community10 and OOPS! users were in-
vited to fill in the questionnaire. We received
55 responses. We have made the questionnaire
available on-line at http://goo.gl/SEddMN in
order to allow the community to continue with
the assessment of the level of importance of the
pitfalls. On the other hand, to assign importance
levels to pitfalls according to the data gathered
through the survey, we have first assigned
weight to each response (3 for critical11, 2 for
important, and 1 for minor) and to each expertise
level (3 for experts, 2 for medium confidence,
and 1 for low confidence). For those pitfalls
selected as “not important”, we have assigned
the weight 0 in the corresponding response.
The data generated from the survey responses
and the ranking calculations are available at the
URL: http://goo.gl/0IkbS2

Then we have ranked the pitfalls according
to the well-known “weighted sum” technique
and obtained the ranking shown in the first
column from the left in Table 1.

Once the pitfalls are ranked, an interval
should be defined in order to split the given
ranking into 3 parts, one for each importance
level. To do this, we have used a method
based on the range of the weight values. More
precisely, the range (highest weight – lowest
weight) is divided into 3. Concretely, the range
of the weighted sum ranking is 0.0193 (0.0379
– 0.0186). The division of the range among 3
gives us an interval of 0.0064.

Finally, the range of the ranking is split into
3, resulting in the following intervals:

• Minor: From 0.0186 to 0.0250 (0.0186
+ 0.0064)

• Important: From 0.0250 to 0.0314 (0.0250
+0.0064)

Copyright © 2014, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

International Journal on Semantic Web and Information Systems, 10(2), 7-34, April-June 2014 17

Table 1. Pitfalls (from P01 to P35) ranked according to the (a) weighted sum, (b) lexicographic
order and (c) centroid function techniques

(a) Weighted
sum

(b) Lexicographic order (c) Centroid
function

Order Weight Order Order Weight

Critical
(1)

P06. Including cycles in the
hierarchy 0.0379 P06 P06 0.0366

Critical
(1)

P19. Swapping intersection and
union 0.0375 P19 P19 0.0359

P01. Creating polysemous elements 0.0367 P03 P29 0.0351

P03. Creating the relationship
“is” instead of using

‘’rdfs:subClassOf’’, ‘’rdf:type’’ or
‘’owl:sameAs’’

0.0364 P01 P01 0.0346

P29. Defining wrong transitive
relationships 0.0348 P29 P03 0.0346

P28. Defining wrong symmetric
relationships 0.0344 P14 P31 0.0343

P31. Defining wrong equivalent
classes 0.0343 P31 P15 0.0336

P05. Defining wrong inverse
relationships 0.0342 P16 P14 0.0336

P14. Misusing
‘’owl:allValuesFrom’’ 0.0341 P15 P28 0.0335

P27. Defining wrong equivalent
relationships 0.0340 P27 P16 0.0333

P15. Misusing “not some” and
“some not” 0.0335 P28 P27 0.0330

P16. Misusing primitive and
defined classes 0.0335 P05 P05 0.0318

Important
(2)

P23. Using incorrectly ontology
elements 0.0303 P24 P24 0.0312

P24. Using recursive definition 0.0303 P12 P23 0.0303

Important
(2)

P12. Missing equivalent properties 0.0301 P10 P12 0.0303

P34. Untyped class 0.0284 P23 P10 0.0287

P10. Missing disjointness 0.0283 P34 P34 0.0286

P35. Untyped property 0.0281 P35 P30 0.0283

P25. Defining a relationship inverse
to itself 0.0279 P11 P35 0.0283

P30. Missing equivalent classes 0.0279 P25 P11 0.0275

P18. Specifying the domain or
range exceedingly 0.0272 P26 P25 0.0273

P26. Defining inverse relationships
for a symmetric one 0.0272 P18 P26 0.0270

P17. Specializing a hierarchy
exceedingly 0.0267 P17 P18 0.0267

P11. Missing domain or range in
properties 0.0252 P30 P17 0.0261

continued on following page

Copyright © 2014, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

18 International Journal on Semantic Web and Information Systems, 10(2), 7-34, April-June 2014

• Critical: From 0.0314 to 0.0379

In order to demonstrate that the ranking
method selected is robust, we compared it
with two other ranking methods, namely, the
“lexicographic order” (Miettinen, 1999) and the
“centroid function” (Barron, & Barrett, 1996).
The rankings obtained for these methods are
shown in Table 1, more precisely, in the second
and third columns from the left respectively.
For the case of the “centroid function” we have
also calculated the intervals for the “Critical”,
“Important”, and “Minor” categories in the same
manner as explained for the “weighted sum”.
As the “lexicographic order” does not involve
weights or ranges, it does not make sense to
split the range in this fashion. More precisely,
the lexicographic order is calculated as follows:
first, the pitfalls are ordered according to the
votes that the value “critical (3)” attained. The
more votes attained, the higher the pitfall is
placed in the ranking. For example, the P06 is
first with 46 votes12. When two or more pitfalls
have the same number of votes in this category,
the information about the next importance levels
is used to break the tie. For example, P29 and

P14 have 37 votes for the value “critical”, so
the votes for “important (2)” are used, that is,
the P14 is placed first with 12 votes, and P14
is next with 9 votes.

Once the rankings were computed, we ana-
lyzed the similitudes and differences between
them. That is, given two rankings we measure
how similar the orders established for the list of
pitfalls are. To do so, we calculated the Kendall
coefficient (Winkler & Hays, 1985), being the
values obtained for each pair of rankings the
following13:

• Weighted Sum – Lexicographic Order:
0.882352941

• Weighted Sum – Centroid Function:
0.905882353

• Lexicographic Order – Centroid Func-
tion: 0.929411765

We can observe that the three values are
very high; this fact means that the rankings
are very similar and proves that the decision
of choosing the weighted sum does not affect
significantly the final classification. In fact,
there is only one pitfall, “P24. Using recursive

(a) Weighted
sum

(b) Lexicographic order (c) Centroid
function

Order Weight Order Order Weight

Minor (3)

P04. Creating unconnected
ontology elements 0.0248 P04 P07 0.0253

Minor (3)

P09. Missing basic information 0.0245 P07 P04 0.0253

P33. Creating a property chain with
just one property 0.0240 P02 P09 0.0245

P02. Creating synonyms as classes 0.0239 P09 P33 0.0237

P07. Merging different concepts in
the same class 0.0234 P33 P02 0.0236

P21. Using a miscellaneous class 0.0222 P21 P32 0.0226

P32. Several classes with the same
label 0.0219 P13 P21 0.0226

P13. Missing inverse relationships 0.0201 P32 P13 0.0215

P22. Using different naming criteria
in the ontology 0.0189 P20 P20 0.0206

P20. Misusing ontology annotations 0.0187 P08 P08 0.0205

P08. Missing annotations 0.0186 P22 P22 0.0200

Table 1. Continued

Copyright © 2014, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

International Journal on Semantic Web and Information Systems, 10(2), 7-34, April-June 2014 19

definition” that has been attached to different
importance levels according to the weighted
sum method (classified as “important”) and
to the centroid function method (classified as
“critical”).

When a new pitfall is inserted in the cata-
logue, an importance level has to be assigned to
it. This importance level is decided in conjunc-
tion with the developers of OOPS!, experienced
ontological engineers, and the users (if any)
proposing the given pitfall. For the pitfalls P36
to P40, four experts in ontological engineering
and vocabulary publication have defined the
pitfalls and assigned their importance levels. As
a result, the importance levels shown in Table
2 have been attached to each pitfall.

Taking into account the importance levels
extracted from the survey and those levels as-
signed by ontology experts, we have created
a final classification of pitfalls as shown in
Figure 314.

OOPS! (ONTOLOGY
PITFALL SCANNER!)

OOPS! is a web-based tool for diagnosing po-
tential problems in ontologies that could lead
to modeling errors. This tool is intended to
help ontology developers, mainly newcomers,
during the ontology validation activity (Suárez-
Figueroa, Aguado-de-Cea, & Gómez-Pérez,
2013). Currently, OOPS! provides mechanisms
to (semi-)automatically diagnose 32 pitfalls
of the 40 described in the pitfall catalogue as
Figure 3 shows.

This section is divided into two parts: the
first subsection explains the internal architecture

of OOPS!; and the second subsection describes
the detection methods used within the system in
order to spot pitfalls in the ontology analyzed.

OOPS! Architecture

Figure 4 presents the underlying architecture
of OOPS!. OOPS! is a web application based
on Java EE15, HTML16, jQuery17, JSP18 and
CSS19 technologies. In order to produce a list
of evaluation results, OOPS! takes as input both
the pitfall catalogue and an ontology.

The user interface consists of a webpage, in
which the user enters either the ontology URI or
its OWL code, which describes the ontology to
be analyzed. Once the ontology is parsed using
the Jena API20, the “Pitfall Scanner” module
inspects the declared ontology21 looking for
pitfalls among those available in the catalogue.
More precisely, the 32 pitfalls implemented are
those that can be detected (semi-) automatically
with the information provided by the ontology
OWL code (T-box). Those pitfalls that require
an external reference framework (e.g., an
ontology requirement document, an A-box or
corpora, and/or domain knowledge) or human
intervention are not yet automated. During this
scanning phase, the ontology elements prone
to potential errors are detected, whereas some
modeling suggestions are generated by the “Sug-
gestion Scanner” module. Finally, the evaluation
results are displayed in the web user interface,
which shows the list of pitfalls detected, if any,
and the ontology elements affected, as well as
explanations describing the findings (Figure 5).
The web interface allows not only analyzing all
the automated pitfalls, but also choosing specific
pitfalls or predefined groups according to the

Table 2. Importance levels for pitfalls assigned by experts

Pitfalls

Critical (1) • P37. Ontology not available
• P39. Ambiguous namespace
• P40. Namespace hijacking

Important (2) • P38. No OWL ontology declaration

Minor (3) • P36. URI contains file extension

Copyright © 2014, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

20 International Journal on Semantic Web and Information Systems, 10(2), 7-34, April-June 2014

pitfall classification presented in this paper.
This “Advanced evaluation” feature is linked
from the homepage and available at index http://
www.oeg-upm.net/oops/advanced.jsp.

Furthermore, to allow other programs and
applications to use OOPS! pitfall detection
methods, we have developed a web service22.

Next subsection describes the different
approaches used to implement the methods for
detecting pitfalls.

Pitfall Detection Methods

The pitfall catalogue covers many different
aspects of ontologies, such as their internal
structure, their associated or embedded human-
readable documentation, or their availability
on the Web. As a consequence, the detection
methods implemented to detect pitfalls make
use of different techniques and technologies for
diagnosing them. More precisely, the detection

Figure 3. Classification of pitfalls by level of importance

Copyright © 2014, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

International Journal on Semantic Web and Information Systems, 10(2), 7-34, April-June 2014 21

Figure 4. OOPS! architecture

Figure 5. OOPS! response example

Copyright © 2014, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

22 International Journal on Semantic Web and Information Systems, 10(2), 7-34, April-June 2014

methods used within OOPS! are based on one
(or more) of the following approaches:

• Structural Pattern Matching: The detec-
tion methods based on patterns analyze the
internal structure of the ontology, seeking
specific parts of the model. In these cases, a
pitfall is diagnosed when a given structural
pattern is spotted. Of the 32 pitfalls, 24
have been implemented using structural
patterns. A number of these structural pat-
terns are shown in Figure 6 and Figure 7.
In such figures, classes are represented
by rectangles, properties by plain arrows,
individuals by ellipses, and OWL and
RDFS primitives by dotted arrows. Proper-
ties can also be represented by diamonds
including property characteristics (e.g.
transitive). The patterns can also include
statements following the OWL functional
syntax, mainly to indicate that the pattern
checks the lack of such information. It
should be noted that some pitfalls are de-
tected by different patterns, for example,
“P19. Swapping intersection and union”;
in those cases the pitfall is detected when
at least one of the patterns is identified in
the ontology.

• Lexical Content Analysis: The detection
methods based on the analysis of lexical
entities make use of the content of annota-
tions (e.g., rdfs:label or rdfs:comment) and
identifiers (the ID part of the element URI)
for detecting pitfalls. These methods are
used in 9 of the 32 implemented pitfalls.
For the pitfall “P22. Using different nam-
ing criteria in the ontology”, the identifiers
of the ontology elements are analyzed to
check whether all of them use the same
naming convection for example, if all the
identifiers are formed according to the
CamelCase rules.

• Specific Characteristic Search: Five
detection methods have been automated
by checking general characteristics of
the ontology not related to the internal
structure of the ontology or to the content
of the lexical entities. These characteris-

tics could be related, for example, to the
name given to the ontology as in the pitfall
“P36. URI contains file extension”, which
is detected when the ontology URI refers
to the technology or ontology language
used during its development as RDF or
OWL. Detailed technical information about
detection methods for seeking a specific
characteristic can be found in Poveda-
Villalón et al. (2013).

In addition, some pitfalls can appear sev-
eral times in the same ontology while others
may appear at most once, since they affect the
whole ontology instead of its different elements
(classes, properties and axioms, among others).

Figure 8 shows the type of technique(s)
used for detecting each pitfall and its cardinal-
ity, that is, how many times such a pitfall could
be spotted in a given ontology. For example,
we can observe that the pitfall “P11. Missing
domain or range in properties” is detected by
seeking a given pattern and that it could appear
more than once, or more precisely, it could
appear as many times as relations are defined
in the ontology.

There are cases where a detection method
uses more than one technique as indicated in
Figure 8, with the rectangles located between
two cells. For example, to detect “P30. Missing
equivalent classes”, OOPS! seeks a structural
pattern, or more precisely, the lack of equiva-
lence between classes. Then for each pair of
classes not defined as equivalent, it is checked
whether the concepts they represent could be
synonyms according to WordNet (Fellbaum,
1998), so that possible equivalences between
classed are proposed to the user. For “P31.
Defining wrong equivalent classes” exactly
the opposite is checked, that is, whether two
concepts that are defined as equivalent are not
considered synonyms in WordNet (Fellbaum,
1998) in any context.

It should be noted that for some pitfalls, the
detection methods applied might not cover all
the possible situations in which a pitfall occurs
but a subset of them. In these cases, the methods
may be indicators, but for detecting non-simple

Copyright © 2014, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

International Journal on Semantic Web and Information Systems, 10(2), 7-34, April-June 2014 23

Figure 6. Example of patterns to detect pitfalls (part 1 of 2)

Copyright © 2014, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

24 International Journal on Semantic Web and Information Systems, 10(2), 7-34, April-June 2014

Figure 7. Example of patterns to detect pitfalls (part 2 of 2)

Copyright © 2014, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

International Journal on Semantic Web and Information Systems, 10(2), 7-34, April-June 2014 25

pitfalls background knowledge might be needed.
For example, while “P11. Missing domain or
range in properties” is detected in all possible
cases by the pattern presented in Figure 6, it is
not the case for “P05. Defining wrong inverse
relationships”. In this case, the current pattern
will not cover the case of defining, in a math
ontology, the relationship “lessThan” as inverse
of “greaterThan” instead of “lessThanOrEqual”,
as some background and common sense
knowledge is needed. We plan to improve these
methods by incorporating linguistic techniques
and resources as proposed in Suárez-Figueroa,
Kamel, and Poveda-Villalón (2013).

In other cases, a detected pitfall might not
represent a factual error, and this might be due to
specific modeling decision or requirements. For
example, “P02. Creating synonyms as classes”
might be implemented in some cases in order
to support backwards compatibility between
different versions of the same ontology.

MOST COMMON PITFALLS

In order to know which are the most frequent
errors in ontology development, we have re-
corded the number of pitfalls detected in each
ontology analyzed with OOPS! To carry out
this task we used the 32 pitfalls implemented
up to February 2014.

When analyzing OOPS! execution logs,
we could observe that

• Between November 14th, 2011 and Feb-
ruary 17th, 2014, 1971 executions were
carried out. During these executions, the
ontology analyzed was identified by its URI
in 1809 cases, whereas the ontology was
“anonymous” (its URI was not defined or
it was “null”) in 162 cases.

• From these 1809 ontologies identified,
some URIs indicate that the same ontology
has been evaluated several times. We have
filtered duplicated URIs, keeping only the
first execution per URI. As a result, we
counted 610 different ontologies. Fur-
ther studies will take into account all the
executions per URI and analyze the evolu-
tion of the pitfalls appearing.

• With regard to the 162 anonymous ontolo-
gies, we have removed executions with
equal results, assuming that they belong to
the same ontology, thus avoiding duplica-
tions. As a result, we counted 83 different
anonymous ontologies.

• Overall, OOPS! has analyzed 693 ontolo-
gies23 (610 with URI and 83 anonymous).
This set of random ontologies submitted
by OOPS! users contains upper level
ontologies, as well as domain ontologies.
These ontologies were developed either
by domain experts, students, newcomers
or ontology experts.

Finally, Figure 9 shows in how many
ontologies each pitfall implemented in OOPS!
has been diagnosed. The table reveals that most

Figure 8. Classification of pitfalls based on the techniques used for their diagnoses

Copyright © 2014, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

26 International Journal on Semantic Web and Information Systems, 10(2), 7-34, April-June 2014

common pitfalls in ontologies are those related
to the lack of explicit human and machine-
readable information. However, these pitfalls
do not correspond to those defined as critical
by ontology practitioners but to those defined
as “important” or “minor”.

It should be noted that up to September
2013 only 21 were implemented and since
then 11 new pitfalls have been implemented
and included in the system, more precisely
from P30 to P40, marked with a * in Figure
9. Therefore these new 11 pitfalls have been
observed within 241 different ontologies instead
of the 693 previously mentioned.

This study is complemented with a deeper
analysis, described in Keet, Suárez-Figueroa,
and Poveda-Villalón (2013), about pitfalls de-
tected in (1) ontologies registered in OOPS! log;
(2) ontologies developed by students; and (3)
well-known ontologies developed by experts.
In this analysis, the authors conclude that in
most of the cases there is no clear evidence of
noteworthy differences between the ontologies
extracted from OOPS! log, the ones developed
by students and the well-known ontologies.
Therefore, even though the lack or appearance
of pitfalls is considered a sign of quality, it
could not be considered a measure of maturity
in ontologies.

USER-BASED EVALUATION

OOPS! main goal is to get ontology evalu-
ation closer to ontology developers, mainly
newcomers and domain experts who are not
familiar with description logics and ontology
implementation languages.

In order to have an impression of the users’
satisfaction when using OOPS!, a feedback
form24 is available online. On this form users can
express their impressions after using the system.
The answers to the questionnaire received so
far reveal that (a) the tool clearly shows which
is the problem detected; (b) OOPS! is a useful
system; and (c) users would use it again and
recommend it to their colleagues. Some users
also pointed out some drawbacks such as (a)
only rdfs:label and rdfs:comment are considered
as annotation but not skos25 or dc26 annotations;
and (b) OOPS! does not provide suggestions
about how to solve a problem.

In that questionnaire, users also indicated
how the system effectively improved the on-
tologies and helped in the process of ontology
curation. In this regard, users mainly pointed
out that OOPS! was useful for (a) discovering
potential missing statements (e.g. human read-
able annotations, domain and range declarations
and property characterization as inverse, among
others), (b) detecting incorrect pairs of inverse
properties, (c) enriching property definitions

Figure 9. Most frequent pitfalls diagnosed by OOPS! in a set of 693 ontologies

Copyright © 2014, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

International Journal on Semantic Web and Information Systems, 10(2), 7-34, April-June 2014 27

(e.g. by adding the symmetric or transitive
characteristic). Besides being used to diagnose
ontologies, OOPS! has also been useful as part
of the ontology assessment process in the context
of ontologies for human behavior recognition,
as explained in Rodríguez et al. (2014).

We have also received feedback and sug-
gestions by email in which users show their
agreement or disagreement regarding, for
example, (a) the pitfall “P13. Missing inverse
relationships”, which is one of the typical debat-
able modeling decisions; or (b) when any pitfall
detected affects ontology elements that belong
to an imported ontology. More detailed informa-
tion about this type of user evaluation can be
found at (Poveda-Villalón, Suárez-Figueroa, &
Gómez-Pérez, 2012).

Next, we present some evidence of how
OOPS! has been used and adopted worldwide27
up to February 17th, 2014. To do so, we have
analyzed the log files from the server (from
March 1st, 2012 to February 17th, 2014). From
these logs we have deduced that OOPS! homep-
age has been visited over 3000 times from 69
different countries, and that the system has been
executed around 2000 times28 from 48 countries.
It should be noted that the total number of dif-

ferent IP addresses for accessing and executing
OOPS! is 1446 and 535, respectively.

Focusing on the ten countries from where
OOPS! has been executed most, Figure 10 shows
how many times OOPS! has been executed in
each country, how many single users have run
it (different IPs), and how many users have
executed the system more than once. These
figures show that, in general, most of OOPS!
users execute the system more than once.

It is worth mentioning that the OOPS! web
service29 has been integrated by third-party
software; more precisely, it has been integrated
into the Ontohub repository30. Finally, the sys-
tem has been distributed for local installation
within some private enterprises since their
security policies do not allow them to submit
the ontologies to an external website.

RELATED WORK

While in the introduction of this work a number
of methods and techniques on ontology evalu-
ation have been reviewed, in this section we
focus on existing tools. More precisely, we
review topology-based tools for ontology evalu-
ation, that is, those tools focused on the internal

Figure 10. Map with the top 10 countries executing OOPS!

Copyright © 2014, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

28 International Journal on Semantic Web and Information Systems, 10(2), 7-34, April-June 2014

structure (classes, properties, instances, and the
explicit and formal relations between them) of
the ontology. Basic systems as syntax validators
(e.g., RDF Validation Service31 or Manchester
OWL Validator32) are out of scope as they only
check whether the ontology is compliant with
the given ontology implementation language.

There are systems that depend on an as-
sociated ontology editor. This is the case of
XD-Analyzer33, a plug-in for NeOn Toolkit34,
and Ontocheck35 (Schober et al., 2012), a plug-in
for Protégé. The former checks some structural
features (such as lack of domain and range
definitions, use of intersection in domain and
ranges, isolated entities, lack of annotations, and
missing types, among others) and architectural
features (e.g., unused imported ontologies),
whereas the latter focuses on metadata aspects
(e.g., annotations and naming conventions). The
wiki-based ontology editor Moki36 (Pammer,
2010) also provides some evaluation features
(e.g., lack of annotation and orphaned elements).
In addition, even though there is some overlap,
the number of problems detected by these tools
is lower than the current list of pitfalls detected
by OOPS!. In order to provide a detailed com-
parison, Table 3 shows which pitfall could
be detected by OOPS! and the different tools
mentioned above. In addition, the right column
shows which pitfall could be detected by means
of a reasoner and specific test cases designed
to identify each type of error.

Regarding web-based systems, we can
consider OQuaRE37, which extracts quality
measurements from the ontology structure
and compares these measurements to certain
predefined values. The main drawbacks of this
tool are that it does not point out any specific
problem and that it does not give any information
about how to improve the ontology.

Finally, we can mention command-line
tools such a Eyeball38, which is also available
as Java API, a fact that makes its use more suit-
able for users with technological background. A
graphical user interface in the form of a desk-
top application is also provided; however, the
interface is still in an experimental phase. On
the other hand, the problems detected by this

tool have little overlap with OOPS!. Its main
drawbacks are the technical knowledge needed
to use it and the installation process required.

CONCLUSION AND
FUTURE WORK

Evaluating an ontology that is being designed
is a vital activity in any ontology development
project. A number of approaches for ontology
evaluation and tools have been proposed in the
literature in the last decades.

In this work we have focused on a diagnosis
method based on a checklist of common errors
against which the ontology is compared. Our
first contribution, in the form of a live catalogue
of pitfalls, represents an extension of previous
works about common problems in ontologies.

The automation of the detection process
of 32 pitfalls included in the catalogue leads
us to our second contribution: OOPS! (OntOl-
ogy Pitfall Scanner!), an online tool for (semi-)
automatic ontology diagnosis. This tool aims to
help developers, mainly newcomers, during the
ontology evaluation activity. OOPS! represents
a step forward within ontology evaluation tools
since (a) it enlarges the list of errors detected by
most recent and available systems, such as MoKi
(Pammer, 2010), XD-Analyzer and OntoCheck
(Schober et al., 2012); (b) it is fully independent
of any ontology development environment; (c)
it works with the main web browsers (Firefox,
Chrome, Safari, and Internet Explorer); and (d)
its modular design facilitates the inclusion or
removal of detection methods. In addition, the
system could also be used for ontology selection.
For example, when an organization wants to
publish an existent data set as LD, the publisher
has to choose one or more ontologies to model
the published data. In this case, OOPS! could
be used to compare the candidate ontologies
along different quality dimensions.

It can be stated that the approach here pre-
sented has been widely accepted by the semantic
web community and experts in other areas. Our
approach is supported by the following facts:

Copyright © 2014, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

International Journal on Semantic Web and Information Systems, 10(2), 7-34, April-June 2014 29

Table 3. Comparative of pitfall coverage between tools (✓ pitfall covered by the tool - * pitfall
that could be detected by a reasoner and specific test cases)

Pitfall OOPS! XD-Tools Moki Onto-check Reasoner

P01. Creating polysemous elements

P02. Creating synonyms as classes ✓

P03. Creating the relationship “is” instead
of using ‘’rdfs:subClassOf’’, ‘’rdf:type’’ or
‘’owl:sameAs’’

✓

P04. Creating unconnected ontology elements ✓ ✓ ✓

P05. Defining wrong inverse relationships ✓ *

P06. Including cycles in the hierarchy ✓ *

P07. Merging different concepts in the
same class

✓

P08. Missing annotations ✓ ✓ ✓ ✓

P09. Missing basic information

P10. Missing disjointness ✓

P11. Missing domain or range in properties ✓ ✓ ✓

P12. Missing equivalent properties ✓ *

P13. Missing inverse relationships ✓ ✓ *

P14. Misusing ‘’owl:allValuesFrom’’ *

P15. Misusing “not some” and “some not” *

P16. Misusing primitive and defined classes *

P17. Specializing a hierarchy exceedingly

P18. Specifying the domain or range
exceedingly

P19. Swapping intersection and union ✓ ✓ *

P20. Misusing ontology annotations ✓

P21. Using a miscellaneous class ✓

P22. Using different naming criteria in the
ontology

✓ ✓

P23. Using incorrectly ontology elements

P24. Using recursive definition ✓

P25. Defining a relationship inverse to itself ✓

P26. Defining inverse relationships for a
symmetric one

✓

P27. Defining wrong equivalent relationships ✓ *

P28. Defining wrong symmetric relationships ✓ *

P29. Defining wrong transitive relationships ✓ *

P30. Missing equivalent classes ✓ *

P31. Defining wrong equivalent classes ✓ *

P32. Several classes with the same label ✓

P33. Creating a property chain with just one
property

✓ *

P34. Untyped class ✓

P35. Untyped property ✓

continued on following page

Copyright © 2014, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

30 International Journal on Semantic Web and Information Systems, 10(2), 7-34, April-June 2014

• OOPS! has been broadly accepted by a
high number of users worldwide and has
been executed more than 2000 times from
48 different countries.

• It has been continuously used from very
different geographical locations.

• It is integrated with third-party software
and locally installed in private enterprises
(e.g., Semantic Arts39 and Raytheon40).

To sum up, it could be stated that the ap-
proach proposed in this work has proof of being
on the right track since it has become useful
for ontology practitioners and for newcom-
ers willing to evaluate their ontologies. All
along the paper we have tried to show how
both the catalogue and the tool are maintained
and evolved according to users’ feedback and
research results.

Even though there are still several complex
issues to address, our immediate future work will
concentrate on the automation of the remaining
8 pitfalls and the enhancement of some of the
already implemented ones. This extension might
require increasing the users’ interaction with
the system by keeping them on the loop and
using natural language processing techniques
as proposed in Suárez-Figueroa, Kamel, and
Poveda-Villalón (2013). Future lines of work
should create and incorporate guidelines into
OOPS! in order to repair the ontology according
to the detected pitfalls.

Focusing on the LOD scenario in which a
huge amount of data is annotated by making use
of ontologies, an immediate line of work is to
consider such data during the evaluation with
the purpose of enhancing the results. As a first

step, mismatches between the model defined
and the instantiated data could be detected as
well as inconsistencies.

Another line of work would involve making
the system scalable for ontologies that contain a
high number of terms. At the moment of writing
this paper the system presents important delays
with big ontologies, as for example DBpedia on-
tology41, being the main bottleneck the number
of object properties defined in the ontologies.

More ambitious plans include allowing us-
ers to define their own pitfalls or to contextualize
existing ones and providing the mechanisms
to interpret and process the pitfalls without
manual encoding.

Finally, the integration of OOPS! within
existing ontology editors, such as WebProtege42
or the NeOn Toolkit, would be very convenient
for the users since they would not need to change
platforms to repair their ontologies after the
diagnosis phase.

ACKNOWLEDGMENT

We are very grateful to Rosario Plaza for her
revisions of the English language; to Antonio
Jiménez and Alfonso Mateos for their comments
and help on statistics; to Mariano Fernández-
López for his revision and suggestions on the
ontology part; to Miguel García for his technical
support; to all the anonymous reviewers, and
finally, to OOPS! users. This work has been
partially supported by the Spanish project
“4V: volumen, velocidad, variedad y validez
en la gestión innovadora de datos” (TIN2013-
46238-C4-2-R).

Pitfall OOPS! XD-Tools Moki Onto-check Reasoner

P36. URI contains file extension ✓

P37. Ontology not available ✓

P38. No OWL ontology declaration ✓

P39. Ambiguous namespace ✓

P40. Namespace hijacking ✓

Table 3. Continued

Copyright © 2014, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

International Journal on Semantic Web and Information Systems, 10(2), 7-34, April-June 2014 31

REFERENCES

Aguado de Cea, G., Gómez-Pérez, A., Montiel-Pon-
soda, E., & Suárez-Figueroa, M. C. (2008). Natural
language-based approach for helping in the reuse of
ontology design patterns. In Knowledge engineering:
Practice and patterns (pp. 32-47). Springer Berlin
Heidelberg. doi:10.1007/978-3-540-87696-0_6

Allemang, D., & Hendler, J. (2011). Semantic web
for the working ontologist: Effective modeling in
RDFS and OWL. Elsevier.

Archer, P., Goedertier, S., & Loutas, N. (2012). D7.
1.3–Study on persistent URIs, with identification of
best practices and recommendations on the topic for
the MSs and the EC. PwC EU Services.

Barron, F. H., & Barrett, B. E. (1996). Decision quality
using ranked attribute weights. Management Science,
42(11), 1515–1523. doi:10.1287/mnsc.42.11.1515

Berners-Lee, T., Hendler, J., & Lassila, O. (2001).
The semantic web. Scientific American, 284(5),
28–37. doi:10.1038/scientificamerican0501-34
PMID:11341160

Blomqvist, E., Gangemi, A., & Presutti, V. (2009).
Experiments on pattern-based ontology design.
In Proceedings of the Fifth International Confer-
ence on Knowledge Capture (pp. 41-48). ACM.
doi:10.1145/1597735.1597743

Burton-Jones, A., Storey, V. C., Sugumaran, V., &
Ahluwalia, P. (2005). A semiotic metrics suite for
assessing the quality of ontologies. Data & Knowl-
edge Engineering, 55(1), 84–102. doi:10.1016/j.
datak.2004.11.010

Djedidi, R., & Aufaure, M. A. (2010). ONTO-
EVOAL an ontology evolution approach guided by
pattern modeling and quality evaluation. In Foun-
dations of information and knowledge systems (pp.
286-305). Springer Berlin Heidelberg.

Duque-Ramos, A., Fernández-Breis, J. T., Stevens,
R., & Aussenac-Gilles, N. (2011). OQuaRE: A
SQuaRE-based approach for evaluating the quality
of ontologies. Journal of Research and Practice in
Information Technology, 43(2), 159.

Fellbaum, C. (1998). WordNet: An electronic lexical
database. WordNet. Available at http://www. cogsci.
princeton. edu/wn

Fernández-López, M., Gómez-Pérez, A., Sierra, J. P.
& Sierra, A. P. (1999). Building a chemical ontology
using methontology and the ontology design envi-
ronment. Intelligent Systems and their Applications,
IEEE, 14(1), 37-46.

Gangemi, A., Catenacci, C., Ciaramita, M., & Lehm-
ann, J. (2006). Modelling ontology evaluation and
validation (pp. 140–154). Springer Berlin Heidelberg.

Gómez-Pérez, A. (2004). Ontology evaluation. In S.
Staab, & R. Studer (Eds.), Handbook on ontologies
(pp. 251–273). Springer. doi:10.1007/978-3-540-
24750-0_13

Guarino, N., & Welty, C. A. (2009). An overview of
OntoClean. In Handbook on ontologies (pp. 201–
220). Springer Berlin Heidelberg. doi:10.1007/978-
3-540-92673-3_9

Heath, T., & Bizer, C. (2011). Linked data: Evolving
the web into a global data space. Synthesis Lectures
on the Semantic Web: Theory and Technology, 1(1),
1-136.

Hogan, A., Harth, A., Passant, A., Decker, S., &
Polleres, A. (2010). Weaving the pedantic web. In
Linked Data on the Web Workshop.

Ji, Q., Haase, P., Qi, G., Hitzler, P., & Stadtmüller, S.
(2009). RaDON—repair and diagnosis in ontology
networks. In The semantic web: Research and ap-
plications (pp. 863–867). Springer Berlin Heidelberg.

Keet, C. M., Suárez-Figueroa, M. C., & Poveda-
Villalón, M. (2013). The current landscape of pitfalls
in ontologies. In Proceedings of the 5th International
Conference on Knowledge Engineering and Ontol-
ogy Development.

Miettinen, K. (1999). Non-linear multiobjective
optimization. Kluwer Academic Publishers.

Noy, N. F., & McGuinness, D. L. (2001). Ontology
development 101: A guide to creating your first on-
tology. Technical Report SMI-2001-0880, Standford
Medical Informatics.

Pammer, V. (2010) PhD thesis: Automatic support for
ontology evaluation review of entailed statements and
assertional effects for OWL ontologies. Engineering
Sciences. Graz University of Technology.

Pinto, H. S., Staab, S., & Tempich, C. (2004).
DILIGENT: Towards a fine-grained methodology
for distributed, loosely-controlled and evolvInG.
In Proceedings of the 16th European Conference
on Artificial Intelligence (Ecai 2004) (Vol. 110, p.
393). IOS Press.

Poveda-Villalón, M., Suárez-Figueroa, M. C., &
Gómez-Pérez, A. (2010). A double classification
of common pitfalls in ontologies. In Workshop on
Ontology Quality at the 17th International Confer-
ence on Knowledge Engineering and Knowledge
Management.

http://dx.doi.org/10.1007/978-3-540-87696-0_6
http://dx.doi.org/10.1287/mnsc.42.11.1515
http://dx.doi.org/10.1038/scientificamerican0501-34
http://www.ncbi.nlm.nih.gov/pubmed/11341160
http://dx.doi.org/10.1145/1597735.1597743
http://dx.doi.org/10.1016/j.datak.2004.11.010
http://dx.doi.org/10.1016/j.datak.2004.11.010
http://www.cogsci.princeton.edu/wn
http://www.cogsci.princeton.edu/wn
http://dx.doi.org/10.1007/978-3-540-24750-0_13
http://dx.doi.org/10.1007/978-3-540-24750-0_13
http://dx.doi.org/10.1007/978-3-540-92673-3_9
http://dx.doi.org/10.1007/978-3-540-92673-3_9

Copyright © 2014, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

32 International Journal on Semantic Web and Information Systems, 10(2), 7-34, April-June 2014

Poveda-Villalón, M., Suárez-Figueroa, M. C., &
Gómez-Pérez, A. (2012). Validating ontologies with
oops! In Knowledge Engineering and Knowledge
Management (pp. 267–281). Springer Berlin Hei-
delberg. doi:10.1007/978-3-642-33876-2_24

Poveda-Villalón, M., Vatant, B., Suárez-Figueroa,
M. C., & Gómez-Pérez, A. (2013). Detecting good
practices and pitfalls when publishing vocabularies
on the web. In Proceedings of the Workshop on On-
tology Patterns at the 12th International Semantic
Web Conference.

Presutti, V., Gangemi, A., David S., Aguado, G.,
Suárez-Figueroa, M.C., Montiel-Ponsoda, E. &
Poveda, M. (2008) NeOn D2.5.1: A library of
ontology design patterns: Reusable solutions for
collaborative design of networked ontologies. NeOn
project. (FP6-27595).

Rector, A., Drummond, N., Horridge, M., Rogers,
J., Knublauch, H., & Stevens, R. et al. (2004). OWL
pizzas: Practical experience of teaching OWL-DL:
Common errors & common patterns. In Engineering
Knowledge in the Age of the Semantic Web (pp. 63–
81). Springer Berlin Heidelberg. doi:10.1007/978-
3-540-30202-5_5

Rodríguez, N. D., Cuéllar, M. P., Lilius, J., & Calvo-
Flores, M. D. (2014). A survey on ontologies for hu-
man behavior recognition. ACM Computing Surveys,
46(4), 43. doi:10.1145/2523819

Schober, D., Tudose, I., Svatek, V. & Boeker, M.
(2012). OntoCheck: Verifying ontology naming
conventions and metadata completeness in Protégé
4. Journal of Biomedical Semantics, 3(Suppl 2), S4.

Staab, S., Studer, R., Schnurr, H. P., & Sure,
Y. (2001). Knowledge processes and ontolo-
gies. IEEE Intelligent Systems, 16(1), 26–34.
doi:10.1109/5254.912382

Strasunskas, D., & Tomassen, S. L. (2008). The
role of ontology in enhancing semantic searches:
The EvOQS framework and its initial validation.
International Journal of Knowledge and Learning,
4(4), 398-414.

Suárez-Figueroa, M. C. (2010) PhD Thesis: NeOn
methodology for building ontology networks:
Specification, scheduling and reuse. Universidad
Politécnica de Madrid.

Suárez-Figueroa, M. C., Cea, G. A. D., & Gómez-
Pérez, A. (2013). Lights and shadows in creating a
glossary about ontology engineering. Terminology,
19(2), 202–236. doi:10.1075/term.19.2.03sua

Suárez-Figueroa, M. C., Gómez-Pérez, A., Motta, E.,
& Gangemi, A. (Eds.). (2012). Ontology engineering
in a networked world. Springer. doi:10.1007/978-3-
642-24794-1

Suárez-Figueroa, M. C., Kamel, M., & Poveda-
Villalón, M. (2013). Benefits of natural language
techniques in ontology evaluation: The OOPS! case.
In Proceedings of the 10th International Conference
on Terminology and Artificial Intelligence (TIA 2013)
(pp. 107-110). ISBN: 978-2-9174-9025-9.

Winkler, R. L. & Hays, W. L. (1985). Statistics:
Probability, inference, and decision.

ENDNOTES
1 http://www.w3.org/DesignIssues/Linked-

Data.html
2 http://neon-toolkit.org/wiki/XDTools
3 http://protegewiki.stanford.edu/wiki/Onto-

Check
4 https://moki.fbk.eu/website/index.php
5 It should be observed that the term “pitfall”

is used all along this paper for characteristics
that often represent a problem or that could
lead to errors in ontologies; however, this is
not always the case. In other words, depending
on the ontology at hand, pitfalls can or cannot
represent an actual error.

6 http://www.w3.org/TR/owl-ref/
7 http://www.w3.org/TR/rdf-primer/
8 The online version of the catalogue is avail-

able at http://www.oeg-upm.net/oops/cata-
logue.jsp. Previous versions were included
in Poveda-Villalón, Suárez-Figueroa, and
Gómez-Pérez (2010) and Poveda-Villalón,
Suárez-Figueroa, and Gómez-Pérez (2012).

9 Pitfalls “17. Specializing a hierarchy exceed-
ingly” and “P18. Specifying the domain or
range exceedingly” were previously titled
“P17. Specializing too much a hierarchy” and
“P18. Specifying too much the domain or the
range” respectively.

10 The call was launched through several mail-
ing list used by the semantic web community
and through particular emails sent to known
OOPS! users, mainly experts on ontology
modeling or evaluation.

11 It is worth mentioning, since it could seem
contradictory, that for processing the data
and ranking the pitfalls we have assigned the
value 3 for critical pitfalls, so that they appear
in the top positions. However, for assigning
importance levels within the catalogue we
have set the “critical” position in 1, since the

http://dx.doi.org/10.1007/978-3-642-33876-2_24
http://dx.doi.org/10.1007/978-3-540-30202-5_5
http://dx.doi.org/10.1007/978-3-540-30202-5_5
http://dx.doi.org/10.1145/2523819
http://dx.doi.org/10.1109/5254.912382
http://dx.doi.org/10.1075/term.19.2.03sua
http://dx.doi.org/10.1007/978-3-642-24794-1
http://dx.doi.org/10.1007/978-3-642-24794-1
http://www.w3.org/DesignIssues/LinkedData.html
http://www.w3.org/DesignIssues/LinkedData.html
http://neon-toolkit.org/wiki/XDTools
http://protegewiki.stanford.edu/wiki/OntoCheck
http://protegewiki.stanford.edu/wiki/OntoCheck
https://moki.fbk.eu/website/index.php
http://www.w3.org/TR/owl-ref/
http://www.w3.org/TR/rdf-primer/
http://www.oeg-upm.net/oops/catalogue.jsp
http://www.oeg-upm.net/oops/catalogue.jsp

Copyright © 2014, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

International Journal on Semantic Web and Information Systems, 10(2), 7-34, April-June 2014 33

critical pitfalls should be corrected in first
place.

12 See file “SurveyImportanceLevelsLexcico-
graphicOrder.pdf” at http://goo.gl/0IkbS2.

13 The data and calculations for obtaining the
coefficients are available at http://goo.gl/
QeSyHX

14 Figure 3 also indicates which pitfalls are cur-
rently implemented by OOPS!.

15 http://www.oracle.com/technetwork/java/
javaee/overview/index.html

16 http://www.w3.org/html/wg/
17 http://jquery.com/
18 http://www.oracle.com/technetwork/java/

javaee/jsp/index.html
19 http://www.w3.org/Style/CSS/
20 http://jena.sourceforge.net/
21 At the moment of writing this document no

inference is used during the evaluation process.
22 http://oops-ws.oeg-upm.net/
23 The filtered data, that is, without duplicates,

from OOPS! log is available at http://goo.gl/
DWSTNW. Due to privacy issues the ontolo-
gies’ URIs have been renamed.

24 http://goo.gl/9W7bLl
25 skos is the prefix used for the namespace

http://purl.org/linked-data/xkos#

26 dc is the prefix used for the namespace http://
purl.org/dc/terms/

27 Detailed use statistics are available at http://
www.oeg-upm.net/oops/use.html.

28 It is worth mentioning that these executions
are those registered in the server log since May
2012. This log is different from the OOPS!
log of executions that gathers ontologies and
results since November 2011.

29 http://oops-ws.oeg-upm.net/
30 See http://goo.gl/TKHr5z for more informa-

tion.
31 http://www.w3.org/RDF/Validator/
32 http://owl.cs.manchester.ac.uk/validator/
33 http://neon-toolkit.org/wiki/XDTools
34 http://neon-toolkit.org/wiki/Main_Page
35 http://protegewiki.stanford.edu/wiki/Onto-

Check
36 https://moki.fbk.eu/website/index.php
37 http://miuras.inf.um.es:9080/oqmodelslitecli-

ent/
38 http://jena.sourceforge.net/Eyeball/
39 http://semanticarts.com/
40 http://www.raytheon.com/
41 http://wiki.dbpedia.org/Ontology
42 http://protegewiki.stanford.edu/wiki/WebPro-

tege

María Poveda-Villalón is a Ph.D student at the Artificial Intelligence Department of the Computer
Science Faculty of Universidad Politécnica de Madrid, in the Ontology Engineering Group.
Her research activities focus on Ontological Engineering, Knowledge Representation and the
Semantic Web. Previously she finished her studies as an engineer in Computer Science (2009)
by Universidad Politécnica de Madrid, and then she moved to study the Artificial Intelligence
Research Master finished in 2010 in the same university. She has collaborated during a four-month
research stay in 2013 with Mondeca (París, France), during a three-month stay in 2012 with
the Free University of Berlin and with the University of Liverpool in a three-month stay in 2011.

http://goo.gl/0IkbS2
http://goo.gl/QeSyHX
http://goo.gl/QeSyHX
http://www.oracle.com/technetwork/java/javaee/overview/index.html
http://www.oracle.com/technetwork/java/javaee/overview/index.html
http://www.w3.org/html/wg/
http://jquery.com/
http://www.oracle.com/technetwork/java/javaee/jsp/index.html
http://www.oracle.com/technetwork/java/javaee/jsp/index.html
http://www.w3.org/Style/CSS/
http://jena.sourceforge.net/
http://oops-ws.oeg-upm.net/
http://goo.gl/DWSTNW
http://goo.gl/DWSTNW
http://goo.gl/9W7bLl
http://purl.org/linked-data/xkos#
http://purl.org/dc/terms/
http://purl.org/dc/terms/
http://www.oeg-upm.net/oops/use.html
http://www.oeg-upm.net/oops/use.html
http://oops-ws.oeg-upm.net/
http://goo.gl/TKHr5z
http://www.w3.org/RDF/Validator/
http://owl.cs.manchester.ac.uk/validator/
http://neon-toolkit.org/wiki/XDTools
http://neon-toolkit.org/wiki/Main_Page
http://protegewiki.stanford.edu/wiki/OntoCheck
http://protegewiki.stanford.edu/wiki/OntoCheck
https://moki.fbk.eu/website/index.php
http://miuras.inf.um.es:9080/oqmodelsliteclient/
http://miuras.inf.um.es:9080/oqmodelsliteclient/
http://jena.sourceforge.net/Eyeball/
http://semanticarts.com/
http://www.raytheon.com/
http://wiki.dbpedia.org/Ontology
http://protegewiki.stanford.edu/wiki/WebProtege
http://protegewiki.stanford.edu/wiki/WebProtege

Copyright © 2014, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

34 International Journal on Semantic Web and Information Systems, 10(2), 7-34, April-June 2014

Asunción Gómez-Pérez is Full Professor at UPM (2007), Director of the Artificial Intelligence
department (2008), Director of the Ontology Engineering Group (1995, 8th group in the UPM
ranking), Director of the Master (2010) and Ph.D Program (2013) on Artificial Intelligence,
Director of the Co-founder of the COM joint institute between Santander Bank and UPM (2012).
PhD in Computer Science (1993) and Master on Business Administration (1992). Before joining
UPM, she was visiting (1994-1995) as a postdoc the Knowledge Systems Laboratory at Stan-
ford University. She has supervised 18 Ph.D thesis, she has coordinated 4 EU projects SEALS,
SemSorGrid4Env and Ontogrid and now she is coordinating LIDER. She has participated 21
EU projects (FP5, FP6 and FP7) as main researchers, and in more than 40 national projects
funded by Spanish research agencies and companies. Her main research interests are ontolo-
gies, semantic technologies, linked data and the semantic Web. She has published more than 150
papers and two books on Ontological Engineering. Her works on Ontological Engineering about
Methontology and the NeON methodology are world-wide known. She has been co-director of
the summer school on Ontological Engineering and the Semantic Web since 2003 up to 2011.
She acts as reviewers in journals and conferences related with semantic technologies.

Mari Carmen Suárez-Figueroa is a teaching assistant at the Escuela Técnica Superior de In-
genieros Informáticos, Universidad Politécnica de Madrid (UPM) and a senior researcher at
the Ontology Engineering Group. She graduated in Computer Science in 2001 and got the PhD
in Artificial Intelligence in 2010. She has received an Outstanding Award granted by the UPM
PhD Commission. Her research lines include ontology development methodologies, ontology
development in different domains, ontology evaluation, ontology design patterns, and linked
data. In these areas, she has participated in several European and Spanish projects. She has
been research visitor at University of Liverpool in 2004, at KMi (Open University) in 2007, and
at IRIT (Toulouse) in 2012. She is co-editor of the book “Ontology Engineering in a Networked
World” (Springer 2012). She co-organized sessions, conferences, workshops, and tutorials in
international events such as ESWC 2014, TKE 2012, ISWC 2012, EKAW 2012, EKAW 2008,
ESWC 2008, and WWW 2006.

	Reference r1
	Reference r2
	Reference r3
	Reference r4
	Reference r5
	Reference r6
	Reference r7
	Reference r8
	Reference r9
	Reference r10
	Reference r11
	Reference r12
	Reference r13
	Reference r14
	Reference r15
	Reference r16
	Reference r17
	Reference r18
	Reference r19
	Reference r20
	Reference r21
	Reference r22
	Reference r23
	Reference r24
	Reference r25
	Reference r26
	Reference r27
	Reference r28
	Reference r29
	Reference r30
	Reference r31
	Reference r32
	Reference r33
	Reference r34
	Reference r35
	Reference r36
	Figure f01
	Figure f02
	Table t1
	Table t2
	Figure f03
	Figure f04
	Figure f05
	Figure f06
	Figure f07
	Figure f08
	Figure f09
	Figure f10
	Table t3
	Table t1
	Table t3

