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ABSTRACT

Cloud gaming (CG) has gradually gained popularity. By leveling shared computing resources on 
the cloud, CG technology allows those without expensive hardware to enjoy AAA games using a 
low-end device. However, the bandwidth requirement for streaming game video is high, which can 
cause backbone network congestion for large-scale deployment and expensive bandwidth bills. To 
address this challenge, the authors proposed an innovative edge-assisted computing architecture that 
collaboratively uses AI-powered foveated rendering (FR) and super-resolution (SR). Using FR, the 
cloud server can stream gaming video in lower resolution, significantly reducing the transmitted data 
volume. The edge server will then upscale the video using a game-specific SR model, recovering 
the quality of the video, especially for the areas players pay the most attention. The authors built a 
prototype system called FRSR and did thorough, objective comparative experiments to demonstrate 
that this architecture can reduce bandwidth usage by 39.47% compared with classic CG implementation 
for similar perceived quality.
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INTRodUCTIoN

The main benefits of cloud gaming (CG) include no need to download and install or click and play. CG 
technology also does not require expensive hardware configuration, and the game subscription model 
can reduce game costs. However, the price paid in exchange for these advantages is high bandwidth 
consumption because the essence of CG is a video transmission that emphasizes timely interaction.
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According to Zhang et al. (2019), a single user’s recommended downstream bandwidth for 
an acceptable-quality gaming experience is 3 megabits per second (Mb/s). Take 1,080-pixel (P) 
resolution as an example: If the transmitted image is 24 bits deep, for a 30 frames per second (fps) 
game experience, the required bandwidth is 18.66 megabytes per second (MB/s) without compression. 
Limited by the 100MB bandwidth of the 4G network, it can guarantee only up to five clients for regular 
use simultaneously. In addition, if the gaming service provider uses a public cloud, such as Amazon 
Web Services (AWS), the charging standard for transferring data from the AWS EC2 server to all 
over the world is as large as $0.02 per GB (Amazon, 2022), so the uncompressed cloud game video 
stream will consume $1.26 per hour for data transfer only. Moreover, this number will quickly become 
unbearable when the number of users increases to hundreds of millions. On the other hand, heavy 
gaming traffic can cause congestion in the backbone network, seriously affecting the performance 
of other online services. Therefore, knowing how to compress the transmission bandwidth of cloud 
games is the key to improve the game experience and save infrastructure costs.

To tackle this challenge, we propose a novel architecture that uses AI-based compression and 
enhancement algorithms to minimize the transmission volume of game video without sacrificing 
the perceived experiences. The methodology behind the architecture is that by deploying a game-
specific trained SR model to the edge side beforehand, the edge server essentially pre-saves game 
video enhancement information closer to the player, thereby allowing the edge server to send relative 
low-quality data and save a significant amount of bandwidth. The trade-off is that more computing 
resources on the player side are used for real-time enhancement, and this requirement can be perfectly 
satisfied by the edge computing paradigm in which computation is moved as close to the end users 
as possible. Here is a summary of the main contributions of this paper:

• We propose an innovative cloud-edge collaborative computing architecture for CG. This 
architecture fully uses the computing power advantages of the cloud and the edge. The computing 
power is exchanged to reduce the amount of transmitted data, achieving economic benefits.

• We describe how we implemented an end-to-end prototype gaming system FRSR. This system is 
the first one using state of the art FR and SR technology to evaluate the collaborative computing 
architecture. The SR model proposed in Wang et al. (2021) is customized to support multiple 
regions of interest (ROIs).

• We describe our thorough objective experiments on FRSR, which were compared to four other 
cloud gaming implementations for four different game genres and recorded metrics, including 
peak signal-to-noise ratio (PSNR), structural similarity index measure (SSIM), bits per pixel 
(BPP), and processing time. The results demonstrate FRSR’s effectiveness on bandwidth reduction 
while maintaining roughly the same level of perceived quality.

BACKGRoUNd ANd RELATEd RESEARCH

Cloud Gaming
Cloud gaming is a technology that runs the game on the cloud using the GPU for rendering and 
streaming the generated game images to the client. Under cloud gaming architecture, the cloud 
server handles both the storage and execution of the played game, and the rendered game images 
are transferred to the player through the network in the form of a real-time video stream. Thus, the 
client on the player side is responsible only for basic decoding and playing of the video stream. The 
game service providers can purchase cloud resources on demand to save cost, and game developers 
do not need to develop corresponding versions for different platforms.

With all these benefits mentioned, CG is facing challenges from several aspects (Dick et al., 2005). 
First, the game player can tolerate only 80–100ms delay time (20 ms for server-side and client-side 
processing time, and 80 ms for network transfer time) (OL2, Inc., 2015). The farther the distance 
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is between the cloud and client sides, the longer it takes to transfer the video stream. Second, video 
streaming has a high demand for bandwidth, usually 1–5 megabits (Mb), according to OnLive (OL2, 
Inc., 2015). Last but not least, the centralized service system limits expanding the service scope. 
Limited by the centralized architecture, the centralized game service model based on cloud computing 
cannot be applied to high-reliability and low-latency game applications.

Liao et al. (2016) proposed that the server-side compresses and transmits the graphic stream 
to the client. The client side renders it to solve the problem of high bandwidth and poor scalability 
caused by traditional stream-based remote rendering.

At present, many companies have released their cloud gaming platforms. GameStream was 
developed by NVIDIA Corporation to bring ultra-high-resolution PC games to NVIDIA SHIELD 
devices (NVIDIA, 2013). This technology leverages the powerful recording capabilities of the GeForce 
GTX graphics card, screen capture, and encoding acceleration from the hardware level to obtain 
the streaming data for transmission with extremely low latency, thus ensuring a real-time gaming 
experience. Steam Link is a cloud gaming solution developed by Valve Corporation. When Steam Link 
is used in a home local area network environment, any game purchased on the Steam platform can be 
streamed to a TV or mobile device by connecting to a streaming box sold by Steam (Steam, 2018). 
StreamMyGame is a pure software cloud game solution first released in 2007. The most significant 
feature of StreamMyGame is that it does not depend on any hardware facilities. StreamMyGame can 
stream Windows-based games or applications to PCs with Windows or Linux operating systems.

Edge Computing
Edge computing emerges as localized clouds (Qiu et al., 2022; Sun et al., 2008). It expands the 
boundaries of cloud computing through distributed computing architecture. In edge computing, data 
computing, and resource storage are moved from the central node of the network to the edge nodes 
closer to users or data sources. The transmission and processing speed are significantly improved, 
thus solving the two bottlenecks of cloud computing bandwidth and delay. Taken together, it has the 
following advantages:

• Higher Security: The data in edge computing is exchanged between the source and edge devices 
only and is no longer completely uploaded to the cloud computing platform, preventing the risk 
of data leakage.

• Low Latency: According to the ISP’s estimation, if the service is processed and forwarded 
through the multi-access edge computing (MEC) deployed at the access point, the delay is 
expected to be controlled within 1 ms. If the service is processed and forwarded to the central 
processing unit of the access network, the wait is about 2~5 ms; even after the MEC processing 
in the edge data center, the delay time can be controlled within 10 ms. For scenarios with high 
delay requirements, such as autonomous driving, edge computing is closer to the data source, 
which can quickly process data and make judgments in real time to fully protect passengers’ safety.

• Reduced Bandwidth Costs: Edge computing supports local data processing, and local offloading 
of large-traffic services can reduce backhaul pressure and effectively reduce costs. For example, 
some connected sensors (such as cameras or aggregated sensors working in the engine) generate 
data. In these cases, sending all this information to a cloud computing center would take a long 
time and be prohibitively expensive. Edge computing processing reduces bandwidth costs.

Foveated Rendering
Foveated rendering is a selective rendering technology that dramatically reduces the occupation of 
computing resources for rendering. In other words, based on ensuring a good experience, foveated 
rendering technology can reduce the requirements for the computing performance of the helmet. To a 
certain extent, this technology can reduce hardware costs and accelerate the popularity of cloud games.
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Foveated rendering technology divides the picture people see into three areas according to the 
gazing process of the human eye (the gaze point is clear and nearby) and based on eye tracking 
technology. Foveated rendering strips and renders the three areas of the image at 100%, 60%, and 
20%. The main essence of foveated rendering is to display high resolution in the area where the eyes 
are easy to focus and display low-key resolution in the peripheral region. Compared with the high-
resolution display of the whole screen, it can effectively reduce the calculation of the GPU, thereby 
reducing power consumption. Foveated rendering relies on eye tracking, and eye tracking needs to 
be perfect. Otherwise, looking around will be distracting with details. Not all foveated rendering 
solutions are created equal. The better the eye is tracking, the more efficient the rendering.

At Oculus Connect 5, Facebook showed off progress on FR. Michael Abrash, the company’s 
principal virtual reality (VR) researcher, demonstrated a new method of using machine learning to 
fill low-resolution regions, allowing for a tiny foveal part. The example Abrash showed was that only 
5% of the display resolution is required for a 20x saving. Sony’s upcoming PS VR2 will support 
foveated rendering (based on eye tracking), which can radically improve the picture quality of VR 
games (VR Gyro, 2019).

Super Resolution
Super-resolution is also known as upsampling; it can efficiently improve the density of pixels, 
resulting in more detailed features being recovered. These details can play essential roles in specific 
scenarios. First, the SR is an indeterministic problem. Because there can be multiple corresponding 
high-resolution candidates for one low-resolution input, there is no single source of truth. As a result, 
to limit the domain, reliable prior information is essential. Based on the preceding information, several 
classic SR methods were proposed—for example, the gradient knowledge-based method (Sun et al., 
2008), statistics-based methods (Xiong et al., 2010; Wang et al., 2018), flow learning-based method 
(Wang et al., 2018), and sparse representations-based method (Kim & Quon, 2010). The application 
of deep neural network-based methods has gained popularity in the SR field, and various deep neural 
network models and their variants have been proposed recently.

Kappeler et al. (2016) were the first to use the convolution neural network (CNN) in an SR 
task, and they pointed out that making the adjacent frames align with the vital edge is essential for 
upsampling. To achieve this aim, their method first computes the optical flow between neighboring 
structures, combines these distorted frames, and passes them through a CNN model to generate the 
final SR result. Li et al. (2017) also adopted a two-phrase method based on optical flow motion 
compensation, and they proposed a new residential CNN model to recover high-frequency details. 
Another method is a separate optical flow network. Xue et al. (2019) offered a joint training framework 
to learn the most suitable optical flow feature representation for video training video tasks according 
to specific task arrangements. The model achieves good results in video interpolation, denoising, and 
super-resolution. To build a unified framework, Kim et al. (2019) proposed an efficient 3D-CNN 
video super-resolution method inspired by the time-series capture capability of 3D-CNNs, which 
does not require motion alignment as a preprocessing step. The network employs residual learning 
to maximize the capture of temporal nonlinearities between low- and high-resolution frames while 
maintaining the temporal depth of spatiotemporal feature maps. Instead of direct or slow fusion, Yi et 
al. (2019) proposed a new progressive fusion network to use spatiotemporal information better. Tian 
et al. (2020) proposed a temporal deformable alignment network named TDAN that uses deformable 
convolutions to adaptively align reference and support frames without calculating optical flow. Wang 
et al. (2019) also adopted deformable and 3D convolutions to handle the video super-segmentation 
task. Inspired by TDAN, Wang et al. (2019) proposed an EDVR that uses deformable convolution 
to complete image alignment at the intermediate feature level, effectively avoiding the problem of 
explicit or implicit optical flow calculation in traditional alignment methods. Li et al. (2019) used 
a fast spatio-temporal residual network (FSTRN) that improved 3D convolution with a convolution 
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decomposition strategy and proposed a more lightweight model considering the effect and running 
speed on video SR.

dESIGN ANd IMPLEMENTATIoN

Architecture overview
The classic CG pipeline consists of five main steps: game logic execution, visuals capturing, encoding 
and streaming, decoding and rendering, and user interaction. The first three steps are executed on a 
remote cloud, and the last two are performed on a thin client on the player side. There are two types 
of streaming implementation: one is streaming game video data, and the other is streaming rendering 
instructions. The main problems of streaming rendering instructions are that keeping bandwidth 
low is hard for the following reasons: Graphics data is complex (e.g., textures, vertex buffers, and 
index buffers), and streams are uncompressed at a variable rate of up to multiple gigabits per second 
(Gbps). In addition, command streaming cannot leverage standard compression codecs with decades 
of research and hardware support, such as H.265; instead, it requires research into new compression 
algorithms. It is safe to conclude that the market cannot anticipate the joint adoption of command 
streaming soon. All existing CG platforms use video streaming methods, and our work also focuses 
on the video streaming scenario.

Recently, Caprolu et al. (2019) and Zhang et al. (2019) proposed frameworks that offload 
computation-intensive 3D rendering tasks onto GPU-based infrastructures in edge cloud and stream 
edge-rendered visuals to end users. The center cloud is assigned only lightweight functions, such 
as user management, state management, and monitoring. Most heavy lifting, including game logic 
execution, visuals capturing, encoding, and streaming are left to the edge cloud. This design makes 
theoretical sense, but existing edge servers available on the market are mainly miniaturized versions 
of center cloud servers, which can hardly achieve consistent performance compared with the center 
cloud servers. Thus, this disproportionate allocation of computing could be an unbearable burden 
for the edge servers, causing a performance decline of the entire process.

Based on the above insights, we proposed an architecture that strikes a better balance between 
computation allocation and bandwidth consumption for both the cloud and the edge sides. To achieve 
this, we introduced another step for the CG pipeline: video stream enhancement. With the help of this 
enhancement step, the cloud side can stream a lower-quality video, saving transmission bandwidth and 
processing time without affecting the player’s perception after the video is appropriately enhanced. In 
our design, core CG tasks, including game logic execution, screen capturing, encoding, and streaming, 
are still taken by the cloud side, taking full advantage of its creative and stable computation power. 
Still, instead of streaming directly to the client, the edge server is introduced as a man-in-the-middle 
component responsible for the video stream enhancement. The architecture is illustrated in Figure 1. 
The advantages of this architecture are twofold. First, the bandwidth consumption on the backbone 
network has been significantly reduced because a higher compression rate is allowed. Second, this 
design is noninvasive and fully compatible with mainstream CG platforms. It can be seamlessly 
adopted without changing current CG scheduling and security mechanisms.

Prototype design
To validate the practicability of the architecture shown in Figure 1, we implemented a prototype CG 
system named FRSR that uses FR and SR together for compression and enhancement. The overall 
pipeline is illustrated in Figure 2.

The cloud server is mainly responsible for providing the environment for game logic execution and 
encoding the generated gaming video by using a classic video encoder. Specifically, the original gaming 
frame is fed to a game-specific ROI prediction model and a downsampler, the ROI model determines 
which parts of the gaming images are more important to the game player, and the downsampler will 
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downsample the original frame, generating a much smaller output. Then, the compressed frame and 
the correspondent ROI information are sent to an H.265 encoder to generate a real-time video stream 
to the edge server. The performance of the ROI prediction model needs to be high enough to ensure 
the streaming delay is low; this requirement should not be a concern given that the cloud side usually 
has abundant shared GPU resources that can be dynamically and efficiently scheduled. We discuss 
the details of the ROI model in the Edge Side Super Resolution section.

The edge server decodes the video stream delivered from the cloud server and upsampling the 
video content using a game-specific SR model that can efficiently restore and enhance the visuals, 

Figure 1. 
Overview of edge assistant CG architecture

Figure 2. 
The architecture of FRSR
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especially for the ROI regions. We discuss how the SR model works in the Training and Implementation 
section. After the enhancement process, the video data is streamed to the thin client side.

The job for the thin client stays the same as in the classic CG system: It will decode and play 
the video stream from the edge server to the game player, collect players’ controls and stream them 
back to the cloud server.

Cloud Side Foveated Rendering
Compressing the video content based on ROI is known as foveated rendering (Romero-Rondón et al., 
2018; Illahi et al., 2020). Recently several ROI prediction models have been proposed in CG scenarios. 
Mossad et al. (2021) proposed a video coding architecture named DeepGame. They offered an ROI 
prediction model that learns from the game player’s gaze point and then adaptively predicts the ROI 
area and its temporal correlation in the frame. Based on the ROI information, different regions of 
the video frame are encoded with corresponding qualities and control parameters according to their 
importance.

Our center cloud prototype uses the same model for two reasons: First, its performance can 
meet real-time streaming requirements according to its report. Second, it supports the prediction of 
multiple ROIs, which is very important for good gaming experience. We briefly introduce the model 
architecture, as shown in Figure 3, and refer to Mossad et al. (2021) for detailed information.

The DeepGame ROI prediction network consists of two parts. The first part uses the YOLO 
model for target detection and recognition in the spatial space, obtains ROI area information with 
annotation and location information, and then inputs the multiframe content with ROI information 
into a 2D network. This 2D network has two branches—one input for x-axis information and the 
other input for y-axis information. This information is used to predict the temporal correlation in the 
horizontal and vertical directions of the ROI regions, respectively. The second part of the network 
uses a simple long short-term memory (LSTM) structure. The structure of the LSTM network is 
shown in Figure 4. The network structure has 128 hidden units with an input size of M or N and the 
number of objects in the game. We use fully connected layers with ReLU activation functions with 
sizes 64 and 32. The output is the area the user is most likely to pay attention to and the corresponding 
confidence. Multiple ROI regions can be obtained in a single video frame through the above steps.

Edge Side Super Resolution
Super resolution was first used for CG scenarios in SRCNN (Dong et al., 2015). The major challenge 
of using SR in CG is that the delay introduced by the model cannot meet the low latency requirement. 
As mentioned in Khani et al. (2021), the inference time used by the SR model must be controlled 
within 20 milliseconds. Thus, only a lightweight model can be chosen. We used the lightweight model 
proposed in Wang et al. (2021) and offer an innovative adjustment to make it work for multiple ROIs. 
The experiment proved that the support for multiple ROI could achieve a better quality of experience.

Figure 3. 
The architecture of deep game
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In our edge cloud prototype, we trained a game-specific SR model. No ROI information is used 
in the SR training phase because this SR model is supposed to learn the general information about 
upsampling the entire gaming frame. After obtaining the full-featured SR model, we could make the 
inferring process efficient enough for real-time enhancement. We achieved this by allowing only the 
ROI regions to go through a deep network to generate high-resolution upsampling and letting most 
non-ROI areas through a thin network to generate relatively low-resolution output. The model structure 
is illustrated in Figure 5, where d1, d2, and d3 represent feature depth and r1, r2, and r3 represent region 
size. However, this model has one limitation: Only one ROI can be supported, which can cause a 
significant adverse effect on the player’s perception.

To solve this problem, we adjusted the FOCAS model to support multiple ROI regions. We used 
the multi-head mechanism to design the network in the inference stage, letting each head process one 
ROI area. First, all heads will share the same model depth (feature depth) and region size. In the infer 

Figure 4. 
The architecture of the LSTM

Figure 5. 
Overview of FOCAS
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stage, the feature input will first pass through the low-level convolution of the SR model to ensure that 
each head branch learns the standard underlying visual features. At the depth of the first region model, 
we cropped different sub-features at different spatial positions of the feature map according to the ROI 
data passed from the cloud side to learn features of higher quality. Each head branch will get the feature 
map that represents the highest quality. Finally, we averaged the characteristics of all head branches 
and transformed the features into predicted images through the Pixel Unshuffle layer. Because different 
departments share parameters and do not involve feature dimension adjustment, our prediction model 
can dynamically adjust the number of branches according to the number of predicted ROIs in the cloud 
to achieve the adjustment of SR effects in different network environments. In the experiments, our 
inference structure is two branches, as shown in Figure 6. Qt-1 represents previous SR input. Ht-1 and Ht 
represent the previous feature map and the current feature map. It-1, It represent the previous frame and 
the current frame, respectively.

With the SR model we proposed, the processing pipeline on the edge side is divided into three 
steps. First, the video stream is decoded by H.265 to obtain a low-resolution image frame and the 
coordinate information of the ROI in each image frame. Second, both pieces of information pass 
through our SR model for enhancement, and the ROI area gets better enhancement compared with 
the non-ROI area. The enhanced frame stream is encoded again in the third step and sent to the client.

Figure 6. 
Model architecture of FOCAS for multiple ROIs
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Training and Implementation
Cloud Server
Our ROI model shares the same model structure and training process proposed in Illahi et al. (2020). 
This model has 65.25M parameters. The training dataset has 138,426 game frames from four popular 
games and the gaze location in each frame. The dataset is available at Illahi et al. (2020). The inference 
speed reaches more than 40 fps, which meets the needs of real-time inference. In games such as FIFA 
and CSGO, the ROI model can achieve a prediction accuracy of 80.23%.

After we implemented the game runtime on top of the container, the video of the game was 
captured and processed in the GPU directly. The ROI model was deployed on the same container to save 
the transformation between servers. We used H.265 and WebRTC for video encoding and streaming.

We visualized the ROI prediction results of the two games (NBA and CS: GO) during the 
experiment, as shown in Figure 7. Note that the ROI model can correctly identify the critical areas 
in the game screen.

Edge Server
Our SR model is trained in the same way as in Dick et al. (2005). This model has 13.5M parameters. 
The training dataset has 138,426 game frames from four popular games and the gaze location in 
each frame. The dataset is available at Illahi et al. (2020). In the Recurrent mode, the inference speed 
of the SR model is 28 fps, while in a non-recurrent way, the inference speed reaches 41 fps, which 
satisfies the real-time requirement.

We followed FOCAS using the same hyperparameters and training parameters. Specifically, the 
intermediate feature has 128 channels. The learning rate is 0.0001 and decreases to 1e-5 at epoch 60. 
We needed to train a total of 70 epochs by using the Adam optimizer. The parameters of the Adam 
optimizer are beta1 = 0.9, beta2 = 0.999, and weight decay is 5e-4.

EXPERIMENTS

To quantify the bandwidth reduction of our designed architecture while keeping a practical user 
experience, we built a simulation environment in the laboratory and conducted detailed objective 
comparative experiments.

Simulation Environments
Our CG testbed was built using two PCs and two laptops setup, as shown in Figure 8. The first PC 
serve as the center cloud; it has high-end specifications (Intel i7 processor, RTX 3090 GPU). The 

Figure 7. 
Prediction of ROI
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second PC serves as the edge server; it has relative low-end specifications (Intel i5 processor, RTX 
3060 GPU). We used one laptop as the client; it has the lowest specification (Intel i3 processor, 
Integrated GPU). We used another laptop as a network bridge between the cloud server and the edge 
server. We used NetEm, a network emulator software that allows adding delay, packet loss, and other 
characteristics to packets outgoing from a selected network interface. To imitate the public Internet 
connection between the cloud server and edge server as in real life, the edge server and the client are 
connected through a local area network hub to emulate a local area network.

Evaluation Metrics
We collected and computed PSNR and SSIM and processing time to evaluate objective video quality.

PSNR
PSNR is an engineering term that expresses the ratio of the maximum possible power of a signal to 
the power of destructive noise that affects the accuracy of its representation. Because many signs 
have a wide dynamic range, the peak signal-to-noise ratio is expressed in logarithmic decibel units.

To calculate PSNR, we must know the value of the mean squared error (MSE) first. Consider 
two m×n monochrome images I and K. If one is a noisy approximation of the other, then their MSE 
is defined as shown in Equation (1):
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When the difference between the real value y and the predicted value f (x) is greater than 1, 
the error will be amplified. When the difference is less than 1, the error will be reduced, which is 
determined by the square operation. MSE will give a larger punishment for larger errors (>1), and 
a smaller punishment for smaller errors (<1). The concept of MSE is well known, which is also a 
common loss function. PSNR is obtained by MSE, and the formula is as shown in Equation (2):
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MAXI is the maximum value that represents the color of the image point. If each sampling point 
is represented by 8 bits, then it is 255. The numerator in the log is the maximum value representing 
the color of image points. If each sampling point is represented by 8 bits, it is 255. The larger the 
PSNR, the better the image quality.

Figure 8. 
Simulation environment step
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SSIM
For the image quality assessment, the effect of local calculation of the SSIM index is better than global. 
First, the statistical features of the image are usually unevenly distributed in space. Second, the distortion 
of the image also varies in length. Third, within an average viewing distance, people can focus on only 
one area of the picture, so the local processing is more in line with the characteristics of the human 
visual system. Fourth, the local quality detection can obtain the mapping matrix of the spatial quality 
change of the picture, and the result can be used in other applications, as shown in Equation (3).

SSIM x y
c c
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x y x y
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In Equation (3), m
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 represent the average value of x and y, respectively.s
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represent the standard deviation of x and y, respectively. s

xy
 represents the covariance of x and y. c

1
 

and c
2

 are constants to avoid system errors caused by the 0 denominator.
We measured the PSNR and SSIM metrics in the ROIs because they are the main areas on which 

players focus.

Processing Time
We used the ROI model in the cloud to predict the ROI coordinate data. The ROI model requires 
continuous image frame rates as input, while according to Illahi et al. (2020), the game environment 
can be accurately predicted using the last second of data. Therefore, we do not need to expect ROI on 
every image frame. We predicted every three structures in the experiment and used the result as the 
ROI coordinate information of the following three frames. Considering that a single ROI prediction 
time is 25 million seconds and our model predicts every three structures, our solution fully meets the 
30fps real-time video transmission requirements of the CG. We could use a more significant sampling 
period for games with higher frame rates to ensure that the solution meets real-time requirements.

The time required for cloud encoding and edge decoding is relatively fixed. Precisely encoding 
takes an average of 5 ms per frame, and decoding takes 2 ms. As for SR’s performance, the performance 
gap between the non-recurrent mode and the recurrent method is small, so we choose the faster non-
recurrent SR for SR inference, which takes 24.27 ms.

objective Study
We selected four common types of games for testing: FIFA, CSGO, NBA, and NHL. We compared 
five CG implementations to verify the effect of our method. In the first implementation, we adopted 
the classic cloud game architecture. The game runs in the cloud, and the output video is directly 
streamed to the client after H.264 encoder. In the second implementation, we upgraded to H.265 
encoder. We integrated the SR technology into the cloud game process for the last three performances 
and compared it with the first two classic implementations. The main difference between these three 
solutions was on the edge side: On the cloud side, we downsampled the game video’s resolution to 
480p and then encoded it through an H.265 encoder and streamed it to the edge side. In the third 
implementation, we directly decoded the low-resolution video stream and upsampled it to 1080P 
through bicubic interpolation. In the fourth implementation, we used FOCAS for SR. The fifth 
implementation was to use our SR model optimized for multiple ROIs.

The constant rate actor (CRF) is the default quality (and rate control) setting for the H.264 and 
H.265 encoders. We could set the CRF values between 0 and 51, where lower values would result in 
better quality at the expense of larger file sizes. Higher values mean more compression, but at some 
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point, some quality degradation could be observed. We used CRF to control the BPP value of the 
compressed output of H.264 and H.265 video streams in different experiments.

Figure 8 shows the PSNR and SSIM values achieved by different schemes at comparable BPP values. 
In addition, considering that different game types have additional video attributes, we offer the experimental 
results on four games, including CSGO, FIFA, NBA, and NHL. Table 1 shows the experimental results of 
CSGO. Note that under the same BPP value, FRSR and SSIM are higher than LR and FOCAS.

As shown in Figure 9, our method needs only 19.32% of the BPP value to achieve a similar 
performance to H.265. Specifically, to accomplish the PSNR index of 30dB, our approach needs 
only 0.051 BPP, while classic CG video transmission requires 0.264 and 0.289 BPP under H.265 and 
H.264 encoding. Furthermore, our method outperforms all other PSNR and SSIM metrics at similar 
BPP values. Note that combining ROI prediction and SR into the transmission process of cloud games 

Table 1. 
PSNR and SSIM values of CSGO game

BPP Model PSNR(dB) SSIM

0.112

LR 26.80 0.923

FOCAS 29.80 0.964

FRSR 30.67 0.965

0.078

LR 26.39 0.917

FOCAS 29.38 0.960

FRSR 30.26 0.961

0.051

LR 26.07 0.913

FOCAS 28.76 0.956

FRSR 29.94 0.957

0.033

LR 25.57 0.910

FOCAS 28.33 0.954

FRSR 29.21 0.955

Figure 9. 
Trade-off between video quality and bits-per-pixel for different approaches on four cloud games from datasets in Mossad et al. 
(2021). (Horizontal coordinate is pixel depth; coordinates are PSNR and SSIM.)
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can effectively reduce the use of video streaming bandwidth, which also means that our cloud game 
system can maintain data transmission in a more complex network environment.

Compared with the three SR schemes in Figure 9, our method is significantly better than 
FOCAS in PSNR and SSIM under the same BPP value, indicating that the SR prediction of multiple 
ROI regions can be performed with the same bandwidth. The quality of video transmission can be 
improved under the circumstance, and the multibranch network structure can be adjusted according 
to the network situation to adapt to different network changes. The bicubic interpolation scheme has 
the fastest prediction speed among the three SR schemes, but the transmission quality is the worst. 
Under different ranges of BPP values, the PSNR index of 30 dB cannot be achieved, so it cannot be 
applied to the actual CG system.

Figure 9 shows that on four different types of games, our scheme achieves the best PSNR and 
SSIM metrics among the three side SR methods. Compared with the H.264 and H.265 standard 
codecs, the BPP required to complete a 30dB PSNR value is significantly reduced. This also reflects 
the generalization of our solution to meet the video transmission needs of various types of games.

Qualitative Results
We also qualitatively demonstrated the actual effect of real-time SR and restoration of 1080P images 
for two games, CSGO and FIFA. As seen in Figure 10, our method effectively increases the video data 
from 480P to 1080P and restores most of the details of the ROI region. Compared with the bicubic 
interpolation scheme, our super-resolution restoration results are more precise, and the texture, light, 
and shadow effects are effectively preserved.

In Figure 11, we also show the SR of different regions of the whole picture in the case of 
multiple ROI regions. The red boxes are two ROI regions, while the green box is a regular region. 
Note that the SR effect is better in red boxes, effectively improving the quality of image details from 
480P to 1080P, while in the green box, the quality of SR is relatively general. There are also some 
textures in the corners. This also reflects the advantages of our SR at the edge. The traditional SR 
will improve the quality of the entire image, which will incur high computing costs, high latency, and 

Figure 10. 
SR using different models
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low frame rate, all of which are unsuitable for cloud gaming scenarios. Consider that human vision 
is more sensitive to video quality in attentional regions and less susceptible to peripheral areas. Our 
scheme better conforms to the attention mechanism. It only performs high-quality super-resolution 
prediction on the ROI area of each image frame, thereby reducing the computational cost, achieving 
lower latency and high frame rate, and achieving similar image quality to overall super resolution.

To test the actual effect of the model architecture in real life, we found 10 people to experience 
the original game and the processed game, and scored, as shown in Table 2. Note in this table that 
the architecture user experience after using the FRSR model is higher and the score is higher.

To compare the difference in user experience between one ROI region and multiple ROI regions, 
we invited more than 10 people to experience games with only one ROI region and multiple ROI 
regions. Table 3 shows that users in multiple ROI regions scored higher.

CoNCLUSIoN

To the best of our knowledge, we are the first to propose cloud edge collaboration architecture that 
uses foveated rendering and super resolution together. We presented the design and implementation 
of prototype dubbed as FRSR. Our experiments demonstrated that FR can minimize the CG video 
volume on the cloud side, saving 39% of bandwidth, which is the most critical factor for the CG 

Figure 11. 
SR of different regions

Table 2. 
Subjective score of game

Game FIFA CSGO NBA NHL

Model Base FRSR Base FRSR Base FRSR Base FRSR

Score 2.5 2.5 2.6 3.4 2.2 3.3 2.9 3.7
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experience. The SR on the edge side can do game-specific enhancement without sacrificing the 
player’s perception, and the entire pipeline can be executed in real time for a qualified CG experience.

In the future, many steps in the CG process can be optimized for better performance and flexibility. 
To name a few, we want to extend our analysis further to derive mathematical relationships between 
FR and SR model parameters and quality of service parameters for cloud gaming so that the adaptive 
encoding scheme can be designed according to the network status. With regard to models, many 
transformer-based video ROI prediction algorithms have been proposed recently, and they may 
provide better performance compared with current two-stage RNN based methods. Furthermore, 
Khani et al. (2021) proposed a lightweight SR model that encodes video into two bitstreams—a 
content stream and a model stream. This model encodes periodic updates to an SR neural network 
customized for short segments of the video. We strongly believe this idea of content-adaptive video 
streaming scheme together with the cloud edge collaborative computing frame have the potential to 
be applied not only in CG scenarios but also to many other applications where high-quality content 
needs to be rendered on a thin end. For example, in education field it can enable immersive learning 
through virtual reality or augmented reality, or provide remote access to medical simulations or 
training, saving both bandwidth cost and expense on high end hardware. The only assumption we 
base our idea on is the popularization of artificial intelligence computing power, which is likely to 
be realized in the foreseeable future.
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Table 3. 
Subjective evaluation on the number of ROI regions

Game FIFA CSGO NBA NHL

Model One 
ROI

Two 
ROIs

Three 
ROIs

One 
ROI

Two 
ROIs

Three 
ROIs

One 
ROI

Two 
ROIs

Three 
ROIs

One 
ROI Two ROIs Three 

ROIs

Score 2.0 2.5 2.7 2.1 3.2 3.3 2.5 3.2 3.7 2.7 3.2 3.6
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