
DOI: 10.4018/IJSWIS.333063

International Journal on Semantic Web and Information Systems
Volume 19 • Issue 1

This article published as an Open Access article distributed under the terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and production in any medium,

provided the author of the original work and original publication source are properly credited.

*Corresponding Author

1

A Scalable Sharding Protocol
Based on Cross-Shard Dynamic
Transaction Confirmation for Alliance
Chain in Intelligent Systems
Nigang Sun, School of Microelectronics and Control Engineering, Changzhou University, China

Junlong Li, School of Computer Science and Artificial Intelligence, Changzhou University, China*

Yining Liu, School of Computer and Information Security, Guilin University of Electronic Technology, China

 https://orcid.org/0000-0002-6487-7595

Varsha Arya, Department of Business Administration, Asia University, Taiwan, & Center for Interdisciplinary Research,
University of Petroleum and Energy Studies (UPES), Dehradun, India, & Lebanese American University, Beirut, Lebanon,
& Chandigarh University, Chandigarh, India

ABSTRACT

Applying sharding protocol to address scalability challenges in alliance chain is popular. However,
inevitable cross-shard transactions significantly hamper performance even at low ratios, negating
scalability benefits when they dominate as shard scale grows. This article proposes a new sharding
protocol suitable for alliance chain that reduces cross-shard transaction impact, improving system
performance. It adopts a directed acyclic graph ledger, enabling parallel transaction processing,
and employs dynamic transaction confirmation consensus for simplicity. The protocol’s sharding
process and node score mechanism can deter malicious behavior. Experiments show that compared
with mainstream sharding protocols, the protocol performs better when affected by cross-shard
transactions. Moreover, its throughput has shown improvement compared to high-performance
protocols without cross-shard transactions. This solution suits systems requiring high throughput and
reliability, maintaining a stable performance advantage even as cross-shard transactions increase to
the usual maximum ratio.

Keywords
Alliance Chain, Blockchain, Blockchain Scaling, Consensus Mechanism, Cross-Shard Transaction, Scalability,
Sharding Protocol

INTRODUCTION

Alliance chain is a type of blockchain that offers decentralization and node management capabilities,
garnering significant attention for its widespread adoption in various industries, such as Internet
of things (IoT), smart city, big data finance, and healthcare (Y. Li et al., 2021). However, with the

https://orcid.org/0000-0002-6487-7595

International Journal on Semantic Web and Information Systems
Volume 19 • Issue 1

2

emergence of scenarios involving increased nodes and heightened computational demands, such
as in the case of data-intensive IoT (Lv et al., 2022; Memos et al., 2018; Plageras et al., 2018;
Raj & Pani, 2022) and complex intelligent systems (Afify et al., 2022; Fatemidokht et al., 2021;
D. Li et al., 2019; Sharma et al., 2022), alliance chains face notable scalability challenges, such
as communication congestion and reduced throughput (Dinh et al., 2017). This phenomenon
primarily arises from the requirement for all transactions in the blockchain structure to utilize
nodes’ computing and storage resources (Du et al., 2021; C. Li et al., 2021), leading to substantial
wastage of time and space (Qi et al., 2020). Sharding protocol improves scalability by partitioning
different responsibilities and resources to different sets of nodes (Yu et al., 2020). In 2016, Elastico
(Luu et al., 2016) pioneered by integrating the sharding protocol with blockchain, thereby proposing
an innovation that prevents each participating node from incurring redundant communication and
computation overhead. Sharding protocol has gradually become the prevailing on-chain solution
in the subsequent development, and many studies (Al-Bassam et al., 2017; Hellings & Sadoghi,
2023; Hong et al., 2021; Huang et al., 2022; Kokoris-Kogias et al., 2018; Zamani et al., 2018) have
proved its effectiveness and reflected its advantages. In a sharding protocol, nodes participating
in the consensus process are divided into different shards, each responsible for generating and
maintaining a specific portion of the alliance chain. As a result, the entire system comprises
multiple shards, essentially representing parallel chains within a single network. Within each
shard, most communication predominantly occurs among the nodes residing there. Transactions are
distributed to shards based on specific rules. A vital category of transactions, known as cross-shard
transactions, necessitates the involvement of multiple shards (Wang & Raviv, 2021). While cross-
shard transactions do not encompass all transactions, sharding protocols degenerate the blockchain
into multiple independent systems (Das et al., 2020) without this support. However, processing
cross-shard transactions requires participation in complex communication and coordination
protocols between shards (Hong et al., 2021). Unfortunately, many existing solutions for handling
cross-shard transactions rely on protocols that require splitting such transactions into several sub-
transactions, which complicates the process by calling the consensus algorithm multiple times. Even
in a typical setup where the workload comprises a low percentage of cross-shard transactions, the
performance experiences a substantial decline due to the processing flow (Amiri et al., 2019). The
significance of addressing cross-shard transactions becomes evident as their proportion increases
with the number of shards. For example, cross-shard transactions can account for 99.98% of the
total transaction volume in a scenario with 16 shards (Zamani et al., 2018). Consequently, the way
these transactions are handled results in significant processing overhead, negating the scalability
enhancements provided by the sharding protocol (Deepa et al., 2022). Addressing these challenges
is essential to unlock the full potential of sharding protocols, enhancing their efficiency, scalability,
and applicability across various domains.

Researchers have improved the sharding protocol to reduce consensus calls and message
complexity between shards, thereby providing valuable assistance in achieving efficient cross-
shard transaction processing (Liu et al., 2023). In Attested HyperLedger (AHL), Dang et al.
(2019) reduced the number of nodes needed in each shard by enhancing the consensus protocol
and randomly assigning nodes to shards. The system proposed an additional set of nodes acting as
coordinators, employing classic two-phase commit (2PC) and two-phase locking (2PL) protocols
to handle cross-shard transactions. The application is limited by insufficient scalability and an
unbalanced workload (Asgaonkar, 2022). Amiri et al. (2019) proposed Sharper, a sharding protocol
for permissioned blockchain. Each transaction is treated as a block, in this protocol, and two flattened
consensus protocols are employed to enable parallel processing of transactions across different
shards. Sharper still faces challenges in the complexity of consensus algorithms and issues related
to data access efficiency (Hashim et al., 2022). ZyconChain (Sohrabi & Tari, 2020) is a scalable
and versatile sharding blockchain. It utilizes various consensus algorithms to create blocks, with
each algorithm possessing unique characteristics that render it suitable for specific types of blocks

International Journal on Semantic Web and Information Systems
Volume 19 • Issue 1

3

(Khor et al., 2023). The main disadvantages that hinder the deployment of this protocol are its cross-
shard protocol adopting the complex and difficult-to-implement view change subprotocol and the
honest client assumption (Sohrabi et al., 2022). The K-prototype clustering byzantine fault tolerance
algorithm (KBFT) (Wu et al., 2023) adopts a consensus mechanism that combines Boneh-Lynn-
Shacham multisignature and byzantine fault tolerance (BFT) algorithm, enabling swift transaction
confirmation within shards. This scheme eliminates the design of state sharding, and transactions are
managed by all shards, making it crucial to solving its node storage issue in practical scenarios (Tan
et al., 2023). IGD-ScoreChain (Mehraein & Nourmohammadi, 2023) is a lightweight and scalable
sharding protocol tailored for blockchain-based IoT. It employs intelligent routing algorithms to
delegate transaction processing to cloud nodes, efficiently alleviating the heavy computing load
associated with cross-shard transactions in the fog layer. The storage of blockchain data in the cloud
and its reliance on cloud layer nodes for cross-shard transactions introduce centralization risks, and
network failures can cause system operations to be affected (Baranwal et al., 2023). In traditional
cross-shard transaction processing methods, the widely adopted 2PC protocol often necessitates
node asset locking during cross-shard transaction processing to maintain transaction consistency.
This locking results in nodes holding resources for extended periods during transaction processing,
leading to increased transaction latency and decreased system throughput. Furthermore, achieving
cross-shard transactions relies on BFT consensus algorithms, which involve multiple rounds of
voting and intricate message exchanges, consequently elevating communication overhead. Despite
advancements in sharding protocol research to optimize alliance chain performance, inefficiencies
persist in cross-shard transaction processing. As cross-shard transactions become more frequent
(Hong et al., 2021), such as more shards due to increased devices (Guebli & Belkhir, 2021) and
the uneven distribution of resources (Tiwari & Garg, 2022), the bandwidth and time costs required
for communication rise sharply. This challenge poses a considerable obstacle to implementing
sharding protocols for high-performance alliance chains, as it mitigates the scalability enhancements
protocols offer, rendering them less apparent.

This paper proposes a scalable sharding protocol for the alliance chain. The protocol accomplishes
the parallel process of transactions without overlapping shards by structuring the alliance chain ledger
as a directed acyclic graph (DAG), where each shard solely handles transactions within the path it
maintains, thus avoiding the considerable communication and conflict resolution overhead associated
with cross-shard transactions. The protocol employs the dynamic transaction confirmation consensus
mechanism suitable for alliance chains, which achieves transaction consensus independently and in
parallel within each shard, significantly enhancing transaction processing efficiency and reducing
the conflict of cross-shard messages. The sharding process first clusters and then classifies to form
each shard, thereby preventing nodes from colluding with malicious behavior. The protocol calculates
a behavior score as one of the node attributes based on the node’s activity history in transaction
processing. This mechanism is to ensure the consistent operation of the alliance chain. In general,
the protocol markedly alleviates the impact of cross-shard transactions on alliance chain performance
while enhancing transaction processing efficiency.

Simulation experiments show that, unlike mainstream sharding protocols, this protocol does
not lead to a sharp drop in performance as the proportion of cross-shard transactions increases to
the typical settings. It has higher throughput, and the latency of 10% cross-shard transactions is 56%
and 36% lower than AHL and Sharper. Moreover, the protocol’s throughput regarding no cross-shard
transaction has shown improvements, with a 9% increase compared to KBFT and a 6% increase
compared to IGD-ScoreChain. The protocol the authors propose in this paper is a highly effective
solution for enhancing the performance of alliance chains in new computing scenarios, such as
intelligent systems with numerous devices that require high scalability and involve a large number
of cross-shard transactions.

International Journal on Semantic Web and Information Systems
Volume 19 • Issue 1

4

RELATED CONCEPTS

This section provides a comprehensive explanation for the key concepts and applications of alliance
chains and sharding protocols, along with a discussion of their advantages and disadvantages in
various scenarios.

Alliance Chain
Alliance chain is a permissioned blockchain network involving authorized entities to manage and
maintain data and transactions collaboratively (X. Li et al., 2020). Unlike the public chain, the
participants of the alliance chain establish a cooperative relationship, jointly make decisions, and
manage the operation of the chain.

The primary purpose of the alliance chain is to create a credible collaboration platform within a
specific industry or organization. It can be used for various purposes, such as payment and settlement
between financial institutions, supply chain management, sharing of medical records, and data
exchange between government agencies (Yang et al., 2008). By providing decentralized, transparent,
traceable, and secure transaction records, alliance chains enhance participant trust and enable efficient
data sharing and automation of business processes (Stuart et al., 2007).

In the alliance chain, participants can join the network through authorized identity verification
and jointly maintain the operation and security of the blockchain. The consensus algorithm of the
alliance chain may vary depending on the design and purpose of the network (De Angelis et al., 2018).
Usually, a consensus mechanism with higher performance is selected, such as proof of authority
(Al Asad et al., 2020), BFT (Gao et al., 2021) or proof of stake (Ge et al., 2022). These consensus
mechanisms usually achieve high throughput and low latency, and are suitable for scenarios with
fewer participants in the alliance chain (Y. Chen et al., 2022).

Although the security of the alliance chain is relatively high due to the involvement of authorized
entities, there is still a certain degree of centralization risk, compared with a fully decentralized public
chain (Zhu et al., 2019). In addition, the governance and consensus mechanisms of the alliance chain
face scalability challenges when the number of nodes and transactions rises, which leads to slower and
more complicated transaction confirmation processes. Despite these limitations, the alliance chain
is a valuable blockchain solution in specific cooperation scenarios. It provides trusted data sharing
and efficient management of business processes, making it suitable for industries and organizations
that prioritize security, collaboration, and data integrity (F. Wang et al., 2021).

Sharding Protocol
Network sharding, transaction sharding, and state sharding are state-of-the-art mechanisms for
implementing blockchain sharding protocols in the modern world (Zhou et al., 2020). Network sharding
divides the entire blockchain network into multiple shards so that different shards can process some
transactions in the entire blockchain at the same time. Transaction sharding distributes transactions
to different shards and allows them to execute concurrently. State sharding separates the entire ledger
and saves it in shards, reducing the network node storage burden.

Sharding protocols can be decomposed into the following phases: Shard configuration, intra-shard
consensus, cross-shard consensus, and reconfiguration (G. Wang et al., 2019). The shard configuration
phase determines which shards a node belongs to and which transactions each shard will handle (Dang
et al., 2019; Kokoris-Kogias et al., 2018; Luu et al., 2016). After completing the previous step, nodes
in the same shard pass messages according to the internal consensus protocol to reach a consensus on
transactions within the shard. The cross-shard consensus protocol uses transaction-related shards as the
basic unit for processing cross-shard transactions. Since the design of shards is relatively independent,
implementing cross-shard transactions involves coordination and communication between multiple
shards (Kokoris-Kogias et al., 2018; Zamani et al., 2018). The reconfiguration step shuts down nodes
and swaps to other shards after a period to maintain each shard’s integrity and avoid attacks from

International Journal on Semantic Web and Information Systems
Volume 19 • Issue 1

5

slowly adapting adversaries (Luu et al., 2016; Zamani et al., 2018). Figure 1 shows the layout of a
blockchain based on the sharding protocol. It includes network sharding, transaction sharding, and
state sharding, also called complete sharding. Although experimental setups or approaches to verify
different techniques may vary, throughput and latency are standard metrics for evaluating protocol
performance (G. Wang et al., 2019).

A SCALABLE SHARDING PROTOCOL FOR ALLIANCE CHAIN

This section provides a detailed description of the components and mechanisms of the sharding
protocol, and their design features receive full consideration to address the challenges. The protocol
constructs the alliance chain ledger as a DAG, realizing that each shard only processes transactions
within its path. It uses a dynamic transaction confirmation algorithm to establish consensus within a
single shard and cross shards, thereby directly improving the efficiency of transaction verification in
the alliance chain. Furthermore, the protocol adopts a sharding configuration combining clustering and
subsequent classification, complementing a node behavior score mechanism. This fusion is harnessed
to bolster the validity of nodes tasked with upholding the consensus process. Figure 2 shows the
architecture of the complete protocol and reflects the connections between different components.
Among them, 1 and 2 are the alliance chain network configuration, 3 is the ledger implementation,
4 is the dynamic confirmation threshold setting, 5, 6, and 7 are transaction consensus, and 8 is the
operation of the score mechanism.

Figure 1. The layout of a blockchain based on the sharding protocol (Note: A node network has only one unique master node.
Each shard has a leader node and multiple consensus nodes. Intra-shard consensus and cross-shard consensus are distinct
methods for block generation. Each chain of shard consists of blocks containing only transactions related to the shard.)

International Journal on Semantic Web and Information Systems
Volume 19 • Issue 1

6

Network Infrastructure
The protocol design incorporates three types of nodes: Consensus, leader, and master nodes. Each
committee consists of all consensus nodes and a leader node in a single shard, and a unique consensus
committee consists of all leader nodes and the only master node. Consensus nodes validate transactions
and submit final consensus results to the leader node within their committees. The leader node
packages the consensus-completed transactions into blocks and uploads them to the alliance chain.
The consensus nodes in the shard can review the transactions during this period. The master node
accepts the challenge message from the consensus node and processes the transaction it reviews. After
the status of all nodes is synchronized, each node will generate a score according to the transaction
history. When an epoch ends, all the scores of each node will be integrated into a sum as its attribute.

A more significant disparity in node types within a shard typically indicates node characteristics
and performance variations across various dimensions, including identity, processing capacity,
historical performance, and geographical location. Within a shard, greater diversity in node types
ensures the system’s resilience, enabling it to continue functioning normally, even if some nodes are
attacked or engage in malicious behavior. Furthermore, this diversity enhances the system’s availability
under varying workloads and environmental conditions. As a result, the authors devised a sharding
process that involves an initial clustering phase and a subsequent classification phase. The protocol
uses the K-prototype clustering algorithm to assign nodes to clusters according to their numeric and
categorical attributes, and the number of clusters is the same as the number of nodes in the shard.
Numeric attributes have numerical or continuous characteristics and can include the identity and
score of a node. Category attributes have discrete characteristics, typically represented as categories
or labels, which can include information such as the organization to which a node belongs, Internet
protocol address, and geographic location.

Let the node dataset be X X X X X
n

= …{ }1 2 3
, , , , , where n is the number of node objects in

da t ase t X , and each node da t a in t he node da t ase t has m a t t r ibu tes (i . e . ,

X X X X X X X X
i i i i ip i p i p im
= … …{ }+() +()1 2 3 1 2

, , , , , , , , , where there are p numeric attributes in front

and m — p categorical attributes in the back). Specify a positive integer g as the number of clusters
to be divided according to actual application requirements, and the clustering algorithm will randomly

Figure 2. Protocol structure and operation (Note: (a) The leader node has the function of sending and adjusting transaction
confirmation threshold (TCT), which impacts consensus; (b) the ledger type determines the block storage method; (c) the
consensus process and results determine the score; (d): leader and master nodes in the network are determined by scores.)

International Journal on Semantic Web and Information Systems
Volume 19 • Issue 1

7

select g nodes as the initial prototype (central point). In the clustering algorithm, the dissimilarity of
mixed attributes is divided into numeric and categorical attributes to be evaluated separately and then
added. The dissimilarity of numeric attributes is calculated by Euclidean distance. The dissimilarity
of categorical attributes is calculated by Hamming distance, and Equation 1 shows the details:

d X Y
X Y

X Yij j
ij j

ij j

,
,

,() =
=
≠








0

1
	 (1)

where 0 indicates the same attribute value, 1 indicates different attribute values, and Yj is the attribute
j of the cluster Y prototype. Equation 2 shows the distance (dissimilarity) between the data and the
cluster:

d X Y X Y u X Y
i

j

p

ij j
j p

m

ij j
, ,() = −() + ()

= = +
∑ ∑

1

2

1

d 	 (2)

where u is the weight factor of the categorical attribute that can be set.
Each node is assigned to the nearest cluster based on the dissimilarity between the nodes. After

each node allocation, the cluster’s prototype (center point) needs to be updated. For numeric attributes,
the numeric prototype of a cluster will be calculated as the mean of the numeric attribute of all
nodes in the cluster. For category attributes, the category prototype of a cluster will be calculated
as the mode (i.e., the value with the highest frequency of occurrence) of the category attributes
of all nodes in the cluster. The above node allocation and prototype updating steps are performed
repeatedly until no node changes its cluster. Once the cluster allocation is complete and stable, the
algorithm allocates the nodes in each cluster to shards based on their order. For example, the first
shard includes the first node from each cluster, and the second shard includes the second node from
each cluster. Figure 3 shows the complete algorithm flow of the two-stage sharding process. Figure
4 (a) shows the clustering results, and Figure 4 (b) shows the classification after clustering. Each
shard contains nodes of different clusters as much as possible to maintain the balance of computing
functions, security, and network quality (Mehraein & Nourmohammadi, 2023). The node with the
highest score in each committee becomes the current Leader node, and the Leader node with the
highest score in the consensus committee becomes the current Master node. Node state transitions
are depicted in Figure 5.

Blockchain Ledger
The blockchain ledger is a data structure that allows only appending operations to record and store
transaction information in a hash chain. DAG ledgers differ significantly from traditional blockchain
ledgers. In a traditional blockchain, transactions are packaged into blocks chronologically, with each
block linked to the previous block, forming a linear chain. The DAG ledger uses a more flexible
structure, connecting transactions with directed edges to form a graph. This structure means that
transactions can have multiple parallel paths and are no longer subject to a single chain structure.
The initialization process of the DAG ledger includes steps such as the creation of the genesis block,
the generation of an initial transaction, transaction verification, and the establishment of directed
edges. The initial transaction is used to create the initial state of the ledger, and then transactions
are gradually added to the ledger, building a DAG structure. The protocol follows this methodology:
Every block consists of an individual transaction, and each data shard is duplicated across all nodes
within the committee. Consequently, to guarantee data consistency, it is essential to establish a
complete order among transactions (intra- and cross-shard) that access the identical data shard. The

International Journal on Semantic Web and Information Systems
Volume 19 • Issue 1

8

total order of transactions in this blockchain ledger is achieved by chaining transactions together,
where each block contains either a sequence number or a cryptographic hash of the previous block.
As cross-shard transactions involve multiple committees, the ledger takes on the structure of a DAG.

Figure 6 illustrates the ledger constructed in this protocol model, depicted as (a), and comprising
four committees, namely, p1, p2, p3, and p4. In Figure 6, the genesis block α, both intra-shard and
cross-shard transactions are depicted. t10 and t13 pertain to intra-shard transactions within committee
p1. Each cross-shard transaction is labeled te1,…, ek, where k is the number of committees involved, and
ei denotes the order of the transactions in the transactions of the i committee. t11,21 and t12,22,32,42 are
two cross-shard transactions, where t11,21 accesses p1 and p2, while t12,22,32,42 accesses all four shards.

Figure 6 demonstrates the establishment of order among transactions, encompassing both
intra-shard and cross-shard transactions with a specific shard, such as t10, t11,21, t12,22,32,42 and t13 are
interlinked within a chain. Intra-shard transactions originating from distinct committees can be
simultaneously incorporated into the blockchain ledger, such as t10, t20, t30, and t40 are processed in
parallel by disparate committees. Similarly, in scenarios where two cross-shard transactions engage

Figure 3. Sharding process (Note: The clustering process’s number of clusters and iterations are configured based on specific
requirements. The number of clusters is determined by dividing the number of nodes by the number of shards. A higher number
of iterations ensures a more comprehensive clustering outcome. Nevertheless, increased iterations also lead to longer processing
times, necessitating a trade-off between computational efficiency and result accuracy.)

International Journal on Semantic Web and Information Systems
Volume 19 • Issue 1

9

disjoint subsets of shards, they can be added to the ledger in parallel, such as the concurrent addition
of transactions t11,21 and t31,41.

In this protocol, no committee maintains the entire blockchain ledger. Each committee manages
only one path of transactions associated with its shard. The blockchain ledger emerges as a fusion of
these paths. As Figure 6 (b)—(e) shows, each of the committees p1, p2, p3, and p4 manifests a distinct
ledger path encompassing transactions associated with its respective shard.

Transaction Consensus
Before the formal consensus process begins, the leader node communicates the TCT to the consensus
nodes within the shard. Subsequently, the client broadcasts a transaction request to the shards associated
with the transaction. This transaction request contains detailed information about the transaction,
including transaction content, sender, receiver, and transaction amount. After receiving a transaction
request, the node verifies whether the transaction has a valid digital signature to confirm that the
sender of the transaction is correct. The node checks whether the sender’s account has sufficient
balance to perform the correct transaction. If it involves the execution of a smart contract, the node

Figure 4. Clustering and classification (Note: In the process, 32 nodes are clustered and then classified into a shard configuration
of four nodes per shard.)

Figure 5. State transition of node (Note: Nodes determine their shard membership through shard configuration. The node enters
the shard and participates in the election process of the subsequent leader node. If a node becomes a leader node, it will also
participate in electing a master node. The score becomes an attribute of the node after an epoch ends.)

International Journal on Semantic Web and Information Systems
Volume 19 • Issue 1

10

will verify whether the execution results of the contract comply with the contract rules. The consensus
node adds the transactions with correct verification results to the transaction pool and sends a
confirmation message to the leader node. At the same time, the consensus node replies to the client.
This reply activity is one of the score calculation steps and does not affect the consensus. Once the
number of confirmed consensus nodes reaches TCT, the leader node packages the transaction into
a new block if it solely pertains to that shard. The block is broadcasted to all consensus nodes in the
shard, realizing the synchronization of the state of the alliance chain. Figure 7 shows the intra-shard
consensus mechanism.

The leader node follows a distinct action if a transaction involves multiple shards. It dispatches
a shard confirmation message to the leader nodes of the corresponding shards and awaits their
acknowledgments. In addition to detailed information about the transaction, the verification of these
confirmation messages also requires the complete intra-shard verification process of the sending
shard and the signature of the participating nodes to ensure that the transaction is processed correctly
between each shard. After receiving confirmation details from all relevant shards, the confirmed
leader node packages the transaction into the new block. This block is then disseminated among
other nodes within the shard, promoting the synchronization of the alliance chain’s state. Figure 8
illustrates the cross-shard consensus.

The consensus node receives the block transmitted by the leader node and compares the block’s
contents with the authenticated transactions in the local transaction pool. When the consensus node
encounters a transaction submitted by the leader node that has not yet been verified, it triggers a review
process by sending a challenge message (containing transaction details to be reviewed) to the master
node. The master node sends the received challenge message to the remaining k — 1 shards to initiate
a validation process, excluding the particular shard that initiated the challenge. After verification,
if the results from over 2k/3 shards indicate a potential error in the transaction, the master node
merges the challenge message and the corresponding review result. This merged information is then
encapsulated within a block and distributed to all participating shard nodes engaged in the transaction.

Figure 6. DAG ledger (Note: (a) represents DAG ledger consisting of four shards; (b), (c), (d), and (e) represent graph paths from
four different shards.)

International Journal on Semantic Web and Information Systems
Volume 19 • Issue 1

11

Node Score Mechanism
During each consensus period, all participating nodes undergo a behavioral evaluation, with the
primary metric being the time it takes a node to process a transaction. Based on this metric, each
node receives a score, which plays a crucial role in the comprehensive evaluation of node behavior
within an epoch. The score also serves as node attributes for the next epoch’s sharding process and
node election. Once a new epoch begins and the node’s new state is determined, the score from the
previous epoch is reset to enable a fresh evaluation of the node’s behavior within the new epoch.

Let t t t
j Tx
i

j confirm

i

send

i
,
= −() () , where t

send

i

() is the time when the client sends a request to a member

of shard i, and t
j confirm

i

() is the time when a node j in a shard i confirms a transaction Tx. t
Tx
i is the

average time for all nodes in a shard to confirm Tx, which is defined as Equation 3:

t
t

n
k

Tx
i j

n

k
j Tx
i

= =∑ 1 ,
	 (3)

where n/k is the number of nodes in each shard.
Let d t t

j receive

i

j confirm

i= −() () be the delay from confirmation to delivery of the transaction to the

client, where t
j receive

i

() is the time when node of the response received by the client. Let d0 be the preset
delay standard, and MAX(D) be the maximum acceptable delay for delivery transaction confirmation.
As Equation 4 illustrates, βd is the ratio by which the score needs to be reduced due to unexpected

Figure 7. Intra-shard consensus (Note: The flow chart of intra-shard consensus mechanism in the case of the shard with four
nodes. There are four consensus stages: Send TCT, send transaction, confirm transaction, and reply.)

International Journal on Semantic Web and Information Systems
Volume 19 • Issue 1

12

events in the network (e.g., a sudden increase in traffic) delaying the transaction delivery to the client,
provided that the node confirms the transaction correctly:

b
d

d

MAX D
=

()
	 (4)

As Equation 5 shows, β is a coefficient representing the correctness of the transaction verification
result and the activity of consensus:

Figure 8. Cross-shard consensus (Note: The flow chart of cross-shard consensus mechanism in the case of two shards, where
both clients are the same. There are five consensus stages: Send TCT, send transaction, confirm transaction, cross-shard
confirmation, and reply.)

International Journal on Semantic Web and Information Systems
Volume 19 • Issue 1

13

b =

0

1

,

,

not confirmation or inconsistently confirmation

correct confirmation with d d

d

≤
−

0

1 b ,

correct confirmation with d d MAX D
0

0

< ≤ ()

, d MAX D>











()


	 (5)

After each transaction is completed, the system scores the nodes according to the processing
time and confirmation results. s

j
i

Tx
() is the score of node j in shard i after confirming transaction Tx,

defined as Equation 6:

s
t

tj
i

Tx

Tx
i

j Tx
i() =
,

	 (6)

Finally, s
j
i

final
() is the total score of node j in shard i after confirmed T transaction, defined as

Equation 7:

s s
j
i

final
Tx

T

j
i

Tx
() = ()

=
∑

1

	 (7)

Figure 9 illustrates the complete process of the protocol monitoring and evaluating node behavior
through the score mechanism.

The score mechanism serves as a means to restrict node behavior during transaction consensus.
Also, it incentivizes well-performing nodes by offering them increased opportunities to assume roles
such as leader or master nodes during elections. Despite the effectiveness of this score mechanism
in guiding node behavior, it cannot eliminate the possibility of malicious activities. Therefore, a
corresponding penalty mechanism is also designed to increase the cost of nodes performing malicious
behaviors. If a node makes an error during the verification process or fails the challenge during the
review process, its total score within the current epoch will be reduced by 50%. If a node engages
in the malicious behavior mentioned above again, the system will delete the node from the network.
The identification of malicious behavior and whether a deleted node may reenter the network will
depend on the specific usage scenario.

Adjustment of Transaction Confirmation Threshold
TCT determines how many consensus nodes are needed to confirm a transaction, thus directly affecting
the security and credibility of the transaction. When the TCT increases, the number of nodes required
for consensus also increases accordingly, which means more nodes will participate in confirming
transactions, thereby improving the system’s overall security. This mechanism can effectively deal
with potential network attacks and threats, ensuring that transactions are considered valid only after
enough nodes reach consensus.

However, when the network is unstable, an excessively high TCT will make it difficult for nodes
to send confirmation messages, leading to network congestion and ultimately threatening normal
consensus progress. This design allows users to adjust TCT according to conditions to balance
performance, security, and stability. Especially when facing network fluctuations or attacks, dynamic
TCT can ensure system availability.

International Journal on Semantic Web and Information Systems
Volume 19 • Issue 1

14

The protocol stipulates that TCT can only be adjusted once by the Leader node in the shard
during its term, and the adjustment range is limited. This limitation increases the cost for potential
attackers because attackers need to control multiple consecutive Leader nodes to affect the TCT of
the system in order to harm the system. This mechanism further enhances the alliance chain’s security
and availability, protecting the integrity of transactions and data.

CORRECTNESS ARGUMENT

In this section, discussions focus on the overall improvements to each component in the above design.
These discussions encompass consensus duration, communication complexity, computational cost,
component functionality, and their connections.

Performance Analysis
There are n/k nodes in the shard, the time for a node to process a message is fixed at t1, and the message
delivery time is fixed at t2. T is the time required to complete the cross-shard confirmation process
involving two shards in this protocol. According to the dynamic transaction confirmation consensus
process, there are four stages of message transmission. Nodes process a transaction message, TCT

Figure 9. Score calculation process (Note: (a) Calculate the time interval from the client sending the transaction request to confirm
the transaction to determine the node’s confirmation time. (b) Calculate the average value from the confirmation times of all
nodes participating in the consensus. (c) Measure the node consensus activity using the time interval from the node confirming
the transaction to delivering the transaction to the client and the correctness of the verification. (d) After each transaction is
processed, a node’s score is calculated to evaluate the node’s performance in confirming a specific transaction. (e) The total
score of a node is calculated after processing all transactions in the epoch. The total score is a numerical attribute for the node’s
sharding and election in the next epoch.)

International Journal on Semantic Web and Information Systems
Volume 19 • Issue 1

15

confirmation messages, cross-shard confirmation messages, and the block. Equation 8 shows the
calculation of the time complexity for achieving consensus:

T t TCT t= + +()4 3
2 1

	 (8)

T’ is the time required to complete cross-shard transaction flows for byzantine nodes in SharPer,
a permissioned chain sharding protocol employed for handling cross-shard transactions within a
network comprising byzantine nodes, which has demonstrated good outcomes in performance and
security aspects. The consensus process has a total of four stages of message transmission. Nodes in
a shard need to process a request message, a prepare message, 4n/(3k) accept messages, and 4n/(3k) +
2 commit messages. Equation 9 shows the calculation of the time complexity of achieving consensus:

′ = + +










T t
n

k
t4

8

3
4

2 1
	 (9)

Equation 10 originates from Equations 8 and 9:

′ − = + −










T T
n

k
TCT t

8

3
1

1
	 (10)

In the cross-shard transaction consensus phase, the dynamic transaction confirmation consensus
outperforms Sharper in terms of efficiency. The specific value of the improvement is jointly determined
by t1, n/k, and TCT.

The values of TCT are set to TCT1 and TCT2, and the difference in message confirmation
completion time is equal to the reduced transaction confirmation latency T , as Equation 11 shows:

T TCT TCT t= −
1 2 1

	 (11)

The transaction latency will also change if the TCT in the dynamic transaction confirmation
consensus changes. t1is usually measured in milliseconds, so TCT has little impact on system
throughput.

The proposed protocol adopts a dynamic transaction confirmation consensus mechanism and
a DAG ledger to address the challenges of cross-shard transaction processing. The intra-shard
consensus complexity of the dynamic transaction confirmation consensus mechanism is lower than
the mainstream BFT consensus protocol. The processing of cross-shard transactions only relies on the
Leader node and does not require an additional node set, which helps reduce communication overhead.
The alliance chain uses the DAG ledger structure to achieve more transaction parallelism, allowing
independent blocks to be added to the ledger simultaneously. The synergy of these mechanisms
enables the protocol to efficiently handle high-frequency and large-scale cross-shard transactions
while the system remains secure and available.

Stability and Safety
In this protocol, the client segment sends transaction information to each node in the shard (a total
of n/k messages), and each node will send a confirmation message. The Leader node sends a cross-
shard confirmation message and broadcasts block information (a total of n/k — 1 messages) in the

International Journal on Semantic Web and Information Systems
Volume 19 • Issue 1

16

shard. Equation 12 shows the number of messages S required to complete transaction confirmation
in two shards:

S
n

k
= −

6
2 	 (12)

According to the Sharper process, the client sends a request message to the Leader node, which
broadcasts a prepare message to each consensus node (total of 2n/k — 1 messages). Each node
broadcasts an accept message (total of [2n/k — 1]2 messages) and a commit message (total of [2n/k
— 1]2 messages). Equation 13 shows the number of messages required to achieve consensus in a
shard with the same configuration:

′ = −









+S

n

k

n

k
2

2
1

2
2

	 (13)

The overhead of the proposed work is primarily calculated based on the algorithm’s communication
complexity. During the consensus process, its communication complexity is O(n), which exhibits
clear advantages compared to the BFT consensus algorithm, with a complexity of O(n2). The O(n)
complexity signifies that the computational overhead of the consensus process scales linearly with
the number of nodes, enabling more efficient execution within large-scale networks. Furthermore,
the O(n) complexity approach is more cost-effective in computing resource consumption, thereby
reducing hardware expenditures. The consensus process operates swifter, significantly reducing
transaction confirmation delays, a crucial feature for application scenarios that demand rapid
transaction verification. In addition to consensus, the complexity associated with the sharding process
and score calculation must be considered. In the sharding stage, the K-prototype clustering algorithm
is employed. During the initialization phase, this algorithm entails the random selection of initial
cluster centers, and its complexity depends on the number of clusters and node attributes. In the
iterative phase, the algorithm updates cluster centers, and the number of clusters and node attributes
similarly influences its complexity. The primary iterative complexity of the algorithm is determined
by factors such as the number of iterations, the number of samples, the number of clusters, and the
number of attributes. For the case where only the number of nodes is a variable, the complexity is
O(n). In the process of node score calculation, each transaction only requires a single node calculation
without the need for an iterative process, resulting in a complexity of O(n).

In identical computer and network conditions, this protocol’s consensus is less susceptible to
the negative impact of node scaling and rising proportions of cross-shard transactions compared
to the transaction flow involving byzantine nodes. The protocol boasts enhanced stability and can
curtail network resource consumption and storage capacity. When the system undergoes multiple
verifications due to mishandled transactions or erroneous transaction messages by the verifying nodes,
the performance of the alliance chain will not return to its usual state until the malevolent nodes are
purged. Both malicious nodes and wrong transactions can result in TCT exerting an influence on
stability.

The existing protocols for selecting a master node have certain characteristics. One approach
involves selecting a different node as a Master node in each epoch or round according to the rotation
rules, which introduces latency and additional communication overhead and allows an attacker to
control the rotation order (Amiri et al., 2019; Zamani et al., 2018). Another approach is staking-based
selections, which incentivize nodes to follow the rules and maintain normal behavior (Fitzi et al.,
2020). Over time, this mechanism may lead to centralization within the system. Performance-based
selection can improve system efficiency, but can cause some nodes to become the master node,

International Journal on Semantic Web and Information Systems
Volume 19 • Issue 1

17

continually reducing the utilization of others (Kokoris-Kogias et al., 2018). The protocol design
utilizes the behavior score of nodes to select. This approach has several advantages, such as efficiently
allocating resources, improving overall network throughput, and maintaining a low likelihood of
consensus errors.

Regarding node assignment, methods based on node properties (e.g., liveness and performance)
have centralization risks (Luu et al., 2016; Zamani et al., 2018), while free-choice assignment methods
are less resistant to malicious behavior (Chen & Wang, 2019). In the protocol design, node allocation
first clusters the nodes with high similarity and then assigns the nodes of each cluster to different shards.
Clustering is achieved by calculating the attribute (e.g., the node’s identity, score, the organization to
which the node belongs, internet protocol address, and geographical location) dissimilarity between
nodes. While not eliminating the possibility of manipulating individual parameters, this guarantees
a robust and manipulation-resistant identity generation process.

Alliance chains often require permission to enter, which helps control access to the network, but
there are still some security risks. Attackers may deliberately delay the confirmation of transactions,
thereby affecting the performance of the entire alliance chain system. The node score mechanism can
solve this attack by evaluating node performance, motivating nodes to process transactions quickly, and
punishing malicious nodes. A group of dishonest nodes may collude in the same shard to corrupt the
validation of transactions involving that shard. The shard configuration process reduces the likelihood
of such collusion attacks by ensuring each shard contains nodes with different properties. Attackers
may try to occupy the position of the leader or master node and thereby control the consensus process.
The node election process ensures that high score nodes hold these key positions, so the risk of pivotal
nodes being controlled is low. Attackers may conduct network attacks to interrupt the communication
of the alliance chain and interfere with the consensus process. The dynamic consensus confirmation
threshold mechanism relaxes the network quality requirements for system operation and increases
the cost of attacks.

The various components of this protocol interact to ensure that the system is available while
maintaining high performance. The impact of transaction information and ledger structure in the ledger
design on the formula is that they can change the consensus algorithm’s computational complexity,
storage requirements, verification efficiency, and privacy protection. The node score mechanism
significantly improves the reliability of the system. Rewarding nodes with good performance and
punishing malicious nodes reduces the failure rate and malicious behavior of nodes and enhances
the entire system’s stability. Regarding scalability, the node score mechanism ensures that high-
quality nodes are allocated to different shards, improving each shard’s performance and security and
increasing the system’s robustness. At the same time, it limits the participation of dishonest nodes,
prevents repeated verification, and further enhances the system’s scalability. The sharding process
divides a node into multiple shards, each responsible for processing a specific range of transactions.
This process helps improve the system’s scalability as different shards can process transactions in
parallel, thus increasing the overall system’s throughput. The sharding process also needs to ensure the
consistency and security of cross-shard transactions, so leader nodes need to be elected to coordinate
consensus between different shards. Node selection ensures that nodes with high scores and good
performance become leader nodes, which can effectively manage the consensus process and ensure
system reliability.

Consensus nodes are responsible for verifying transactions and sending challenge messages. Both
wrong verification and challenge failure will reduce the score of the consensus node. The leader node
is responsible for adjusting the TCT, counting the number of confirmation messages, and generating
blocks. If the leader node sends different TCTvalues to each consensus node or does not send to some
consensus nodes, the consensus node will replace the leader node due to inconsistent status. If the
consensus node finds that the TCT and voting information in the block are wrong, it will consider
the leader node malicious and send a challenge message to the master node. The access mechanism
of the alliance chain and the upper limit of adjustment of TCT make it very expensive for the leader

International Journal on Semantic Web and Information Systems
Volume 19 • Issue 1

18

node to adjust TCT malicious. The master node is responsible for processing challenge messages.
If the master node fails to process the challenge message in time, the node that sent the challenge
proposes to all nodes to replace the master node. After the master node is replaced, the new master
node will process unprocessed challenge messages. In summary, the protocol is safe and practical.

Experimental Design
Performance testing takes place in a simulated system to verify the impact of the protocols analyzed
above on system scalability. The experiment involves comparing the performance of the sharding
protocol with the mainstream sharding protocol used in the alliance chain with different cross-sharding
protocol ratios. Additionally, it tests how the system performance is affected by varying TCTs and
block sizes. The simulated alliance chain is designed to have a consistent system architecture and
network model, and any discrepancies are minimized to remain within the protocol scope.

Experiment and Configuration
Experiments simulate clients and nodes using a C++ simulation system that utilizes multithreading. In
this testing scenario, clients are responsible for transmitting transactions, while each shard comprises
multiple consensus nodes alongside a leader node. The system is categorized into distinct modules: the
transaction module and the consensus module. The system’s performance and scalability assessment
revolve around throughput and transaction latency metrics. Table 1 shows the detailed configuration.

Experimental Testing
This experiment measures the performance of an alliance chain using three different types of
sharding protocols, but with a fixed number of shards and nodes. By gradually adjusting the
proportion of cross-shard transactions from 1% to 100%, it is possible to observe changes in
transaction confirmation latency and throughput to measure the impact of cross-shard transactions
on the efficiency of different protocols. Latency is the maximum interval between the client
sending a transaction and the completion of processing within an epoch, and its unit is seconds.
Throughput is the average number of transactions a system processes per second. Figure 10 shows
that the transaction processing latencies of the three protocols are similar when the proportion of
cross-shard transactions is low. When the cross-shard transaction ratio is 10%, a typical setting for
partitioned databases, the protocol’s latency is 36% lower than Sharper and 56% lower than AHL.
This latency advantage continues to persist as the volume of cross-shard transactions expands,
underscoring the superior scalability of this protocol.

Figure 11 presents a comparative assessment of transaction confirmation throughput as the
proportion of cross-shard transactions increases. The throughput of this protocol has been significantly
ahead of Sharper and AHL, when the cross-shard transaction ratio is 10%. In the impact of the
subsequent expansion of the proportion of cross-shard transactions, although the performance
difference has changed, the protocol still maintains its throughput advantage over other protocols.
For example, after the gap with AHL narrows, the throughput increases by at least 76%.

Table 1. Software and hardware environment configuration

Software and hardware environment Configure

CPU 2.40 GHz Intel Core i5-9300H

RAM 16GB 2667 MHz DDR4

System Windows 11

Note: CPU (central processing unit) is the primary processing unit of a computer. RAM (random access memory) is a computer memory that temporarily
stores running programs and data. System refers to the computer’s operating system.

International Journal on Semantic Web and Information Systems
Volume 19 • Issue 1

19

In addition, adjust the sharding configuration to test the expanded alliance chain. Figure 12 shows the
performance comparison between different sharding protocols after the number of nodes increases. Compared
to other protocols, the advantages of this protocol become more evident as the node scale increases.

Figure 10. Comparison of latency for different cross-shard transaction ratios (Note: System latency averages comparison for
cross-shard transaction proportions ranging from 1%, 5%, …, 100%. Other factors (shard counts = 4, number of nodes in shard
= 4, TCT = 3, and transaction counts = 400) are the same except for the sharding configuration.)

Figure 11. Comparison of throughput for different cross-shard transaction ratios (Note: System throughput averages comparison
for cross-shard transaction proportions ranging from 1%, 5%, …, 100%. Other factors (shard counts = 4, number of nodes in
shard = 4, TCT = 3, and transaction counts = 400) are the same except for the sharding configuration.)

International Journal on Semantic Web and Information Systems
Volume 19 • Issue 1

20

The above experimental results are derived from the average of multiple measurements, which is
sufficient to demonstrate that this protocol can steadily improve performance. The dynamic transaction
confirmation consensus mechanism rationally utilizes system resources under the increasing proportion
of cross-shard transactions, including transmitting transactions between various shards and ensuring
conflict handling and consistency.

This experiment measures the performance of an alliance chain using three different types of
sharding protocols, but with a fixed number of shards. It is necessary to adjust the number of nodes in

Figure 12. Comparison of protocol performance after adding nodes (Note: System throughput and latency average comparison
for cross-shard transaction proportions ranging from 0%, 20%, …, 100%. Other factors (shard counts = 5, number of nodes in
shard = 4, TCT = 3, and transaction counts = 400) are the same except for the sharding configuration.)

International Journal on Semantic Web and Information Systems
Volume 19 • Issue 1

21

each shard from four to 12, observe the changes in latency and throughput of the alliance chain within
an epoch, and compare how the increased number of nodes affects the efficiency of different protocols
while keeping the units of latency and throughput. As Figure 13 illustrates, in the scenario where
there are no cross-shard transactions, the latency of this protocol is significantly reduced compared
with high-performance sharding protocols. It has a minimum advantage of 10% over KBFT on 24
nodes and 6% over IGD-ScoreChain on 32 nodes. This latency advantage remains firmly maintained
as the number of nodes increases.

Figure 14 shows a test of system throughput as the number of nodes increases. Although the
numerical gap keeps changing, the protocol maintains a stable lead over the other two in throughput.
For example, its throughput is 9% higher than KBFT in the case of 24 nodes and 6% higher than
IGD-ScoreChain in the case of 32 nodes, and these are only the minimal improvements shown.

As the experimental results showed, the data confirm the performance advantages of this
protocol. This protocol has varying performance advantages in scenarios with different nodes, and
the overall gap tends to expand as the number of nodes increases. This situation results from the
designed consensus mechanism, which optimizes the transaction confirmation process, ensuring that
the required communication scale remains low even when dealing with a large number of nodes. The
data presented above represents averages from multiple tests.

TCT plays a decisive role in the consensus process of transactions, and the authors explained its
importance in the analysis process. Therefore, designing experiments to study how to set up dynamic
TCT is necessary. This experiment uses two alliance chains with different sharding configurations (i.e.,
four shards, each shard containing 8 or 9 nodes) to study the impact of TCT on system performance.
Gradually increase TCT in each shard and observe the changes in the alliance chain latency and
throughput within an epoch. Figure 15 shows a summary of the results.

Experimental results show that in the absence of erroneous transactions, dynamic TCT does not
significantly impact system throughput or latency. Therefore, in the early stages of system operation,
it is recommended to configure the configuration within the range of 1/3 to 2/3 of the total number

Figure 13. Comparison of latency without cross-shard transaction (Note: System latency averages comparison for node counts
of per shard ranging from 4, 5, …, 12. Other factors (TCT = 3 and transaction counts = 800) are the same except for the sharding
configuration.)

International Journal on Semantic Web and Information Systems
Volume 19 • Issue 1

22

of shard nodes within the range of conventional alliance chains to prevent malicious behavior of
byzantine nodes. Consistent with the analysis, the experimental results show that this parameter
adjustment ensures the system’s stability.

The number of transactions in an epoch will affect the throughput and latency of the entire system
because it involves the frequency of node allocation. This experiment studies the impact of total
transaction volume over a period on the performance of this protocol. While the shard configuration,
cross-shard transaction ratio, and TCT remain unchanged, only the total transaction count is adjusted.
The results combine performance data from multiple measurement systems (Figure 16). The units of
delay and throughput are the same as in the above experiments, and transaction size is the number
of transactions in an epoch.

Increasing the total transaction size enhances throughput, albeit at the expense of extended block
confirmation times. Hence, the practical realization of a comprehensive transaction necessitates an
evaluation of performance requirements within distinct application contexts. Striking the optimal
equilibrium between throughput and transaction confirmation latency is essential to satisfy user
expectations and demands. Achieving this balance entails meticulously assessing the blockchain
protocol’s design and configuration, ensuring alignment with the demands of the specific use case.

While simulations may not perfectly replicate the intricacies of real-world distributed settings,
they provide a controlled avenue for researchers to analyze and evaluate the protocol’s behavior.
These experiments serve the purpose of comprehending the holistic procedure and gauging the
scalability enhancements introduced by this protocol compared to existing methodologies. It is
essential to acknowledge that disparities might arise when transitioning this protocol into an actual
distributed environment. These differences should not hinder the deployment of protocol processes in
a distributed setup or undermine the potential for enhanced scalability and the advantageous position
over other protocols.

Figure 14. Comparison of throughput without cross-shard transaction (Note: System throughput averages comparison for node
counts per shard ranging from 4, 5, ..., 12. Other factors (TCT = 3 and transaction counts = 800) are the same except for the
sharding configuration.)

International Journal on Semantic Web and Information Systems
Volume 19 • Issue 1

23

RELATED WORK

In this section, the authors conduct a review of relevant previous studies, methods, and protocols,
with an emphasis on highlighting the unique advantages of this protocol in terms of performance
through these comparisons.

Many classic cross-sharding schemes have been proposed, but they all have some limitations.
Omniledger (Kokoris-Kogias et al., 2018) is designed based on Elastico (Luu et al., 2016) and adopts

Figure 15. Comparison of system performance for different TCT (Note: System latency and throughput averages comparison
for different TCT values from 2, 3, . . ., 6. Experiments are conducted in two shard configurations, where the number of shards
is 4, but the number of nodes within the shards is 8 and 9 (the total number of nodes is 32 and 36). Other factors (the typical
settings include cross-shard transaction proportion = 10% [Amiri et al., 2019], transaction counts = 400) are the same except for
the sharding configuration.)

International Journal on Semantic Web and Information Systems
Volume 19 • Issue 1

24

a client-driven cross-shard transaction processing method. However, a malicious leader node may
provide false proof of acceptance, causing inconsistencies between shards. Furthermore, no detailed
construction method for rejection proofs has been provided. The collection and delivery of evidence
increases the burden on clients. RapidChain (Zamani et al., 2018) splits cross-shard transactions
into multiple single-input single-output transactions and commits them sequentially. However, this
increases the total number of transactions, thereby increasing the processing and storage burden on
the entire network. Additionally, no detailed instructions are provided on how to generate a specific

Figure 16. Comparison of system performance for different transaction sizes (Note: Performance averages for different total
transaction sizes from 400, 500, ..., 1000. Experiments are conducted in two shard configurations, where the number of shards
is 4, but the number of nodes within the shards is 4 and 5. Other factors (the typical settings include cross-shard transaction
proportion = 10% [Amiri et al., 2019] and TCT = 2).)

International Journal on Semantic Web and Information Systems
Volume 19 • Issue 1

25

shard transaction. Chainspace (Al-Bassam et al., 2017) combines 2PC with BFT, but transactions
can only be processed individually, resulting in many BFT calls. Monoxide (Wang & Wang, 2019)
proposed a relay mechanism in an account/balance-based system. Each cross-shard transaction is
divided into subtransactions, including internal and relay transactions. Each internal transaction
corresponds to an associated shard. A relay transaction is required between every two consecutive
internal transactions. AHL (Dang et al., 2019) adopts trusted hardware to limit the malicious behavior
of nodes. However, this system has several disadvantages. First, running a fault-tolerant protocol among
80 nodes results in high latency. Second, the protocol requires an additional set of nodes to form the
reference committee, resulting in high communication overhead between nodes and the reference
committee. Finally, since a single reference committee handles cross-shard transactions, the protocol
cannot parallel cross-shard transactions with non-overlapping clusters. SharPer (Amiri et al., 2019) is
a permissioned blockchain system with a ledger designed as a DAG, which is not maintained by any
node. Therefore, SharPer can process cross-shard transactions in nonoverlapping clusters in parallel,
but consensus in this process requires cross-shard communication from each participating node.
Pyramid (Hong et al., 2021) proposes a new cross-shard block structure and provides a hierarchical
shard consensus to expand the number of relevant shards in cross-shard blocks. Its work relies on
frequent BFT consensus calls from bridge shards that handle transactions across multiple shards.

Although the above sharding protocols can guarantee certain atomicity and consistency of
cross-shard transactions, they require cumbersome consensus to handle cross-shard transactions.
In systems, particularly those employing complete sharding protocols, each cross-shard transaction
undergoes segmentation into numerous subtransactions. All the associated subtransactions must
be verified and processed to submit a cross-shard transaction successfully. This severely degrades
sharding performance in terms of throughput and acknowledgment latency. Compared with these
existing studies, the proposed protocol avoids the large communication and conflict resolution
overhead associated with cross-shard transactions through a DAG ledger and a dynamic confirmation
consensus mechanism. In addition, the protocol can utilize the sharding process and behavior score
mechanism to quickly process transactions while preventing nodes from colluding in malicious
behavior. Multiple benefits and a broad spectrum of application domains become apparent when
implementing the protocol within a typical intelligent system. Its elevated throughput rate renders
it apt for data-intensive operations, such as extensive data analysis and machine learning training,
thereby enhancing system efficiency. Its low confirmation latency promises expedited user response
times for interactive applications like virtual assistants and intelligent search engines, ultimately
augmenting the user experience. In the realm of IoT, it lends support for high throughput and swift
transaction processing within expansive systems, guaranteeing the punctual handling of sensor data
and device control.

CONCLUSION

This paper proposes a scalable sharding protocol for alliance chain systems with dynamic confirmation
cross-shard transactions. The protocol employs a DAG to structure the alliance chain ledger and
utilizes dynamic transaction confirmation consensus as the consensus process. This approach enables
independent and parallel transaction consensus within each shard, significantly improving intra-shard
and cross-shard consensus efficiency. The protocol incorporates a sharding process involving clustering
before classification and a node behavior score mechanism to deter attackers from concentrating their
controlled nodes into specific shards. This measure reduces system delays and mitigates repeated
message propagation caused by potential attacks.

Experimental results demonstrate that the proposed sharding protocol outperforms other methods
when dealing with cross-shard transactions, substantially enhancing the scalability of the alliance
chain. It is crucial to adjust the dynamic confirmation threshold and block capacity to ensure users
access the alliance chain frequently and utilize many fault-free nodes within a smooth network

International Journal on Semantic Web and Information Systems
Volume 19 • Issue 1

26

environment, especially those intelligent systems that usually require multiple smart devices and
sensors to work together. The protocol features high throughput and low latency, allowing related
devices to transmit data and respond to commands more quickly, thereby improving the performance
and reliability of intelligent systems, such as smart city and industrial IoT. Moreover, the protocol
remains applicable even in intelligent systems with poorly performing node facilities and scenarios
where computing models and environments change frequently. The protocol has been confirmed by
analysis and experiments as an improvement to the alliance chain, which improves efficiency and
reduces costs of related equipment, thereby improving the performance and reliability of intelligent
systems. This research is expected to provide strong support for intelligent systems to realize data
integration in information systems through data collection, intelligent analysis and reasoning, real-
time response, and control.

The protocol employs a clustering algorithm during the sharding phase, which consumes
computing power to establish node identities rather than processing transactions. Further work will
design corresponding resharding and node election mechanisms to improve the utilization of equipment
computing power. Additionally, diverse case usage and performance evaluations will be conducted to
improve other protocol components. These efforts are intended to enhance the protocol’s utility and
enable researchers to broadly explore its application potential in more new intelligent systems that
require efficient data exchange and collaborative work, including but not limited to the IoTs with a
large number of smart devices, sensors, and infrastructure. Notably, these computing environments
continue to evolve, making further improvements in scalability critical for future research, which
involves combining the sharding protocol with other conflict-free scaling solutions and designing a
lightweight consensus mechanism as a component of the sharding protocol.

AUTHOR NOTE

This research was supported by Postgraduate Research & Practice Innovation Program of Jiangsu
Province [KYCX22_3059].

International Journal on Semantic Web and Information Systems
Volume 19 • Issue 1

27

REFERENCES

Afify, M., Loey, M., & Elsawy, A. (2022). A robust intelligent system for detecting tomato crop diseases
using deep learning. International Journal of Software Science and Computational Intelligence, 14(1), 1–21.
doi:10.4018/IJSSCI.304439

Al Asad, N., Elahi, M. T., Al Hasan, A., & Yousuf, M. A. (2020). Permission-based blockchain with proof
of authority for secured healthcare data sharing. In the 2020 2nd International Conference on Advanced
Information and Communication Technology (ICAICT) (pp. 35-40). Dhaka, Bangladesh. doi:10.1109/
ICAICT51780.2020.9333488

Al-Bassam, M., Sonnino, A., Bano, S., Hrycyszyn, D., & Danezis, G. (2017). Chainspace: A sharded smart
contracts platform. CoRR, abs/1708.03778, 1—16. 10.1109/ICAICT51780.2020.9333488

Amiri, M. J., Agrawal, D., & El Abbadi, A. (2019). SharPer: Sharding permissioned blockchains over
network clusters. In Proceedings of the 2021 International Conference on Management of Data, China.
doi:10.1145/3448016.3452807

Asgaonkar, A. (2022). Scaling blockchains and the case for ethereum. In D. A. Tran (Ed.), Handbook on
blockchain (pp. 197–213). Springer. doi:10.1007/978-3-031-07535-3_6

Baranwal, G., Kumar, D., & Vidyarthi, D. P. (2023). Blockchain based resource allocation in cloud and distributed
edge computing: A survey. Computer Communications, 209, 469–498. doi:10.1016/j.comcom.2023.07.023

Chen, H., & Wang, Y. (2019). Sschain: A full sharding protocol for public blockchain without data migration
overhead. Pervasive and Mobile Computing, 59, 101055. doi:10.1016/j.pmcj.2019.101055

Chen, Y., Li, M., Zhu, X., Fang, K., Ren, Q., Guo, T., Chen, X., Li, C., Zou, Z., & Deng, Y. (2022). An improved
algorithm for practical byzantine fault tolerance to large-scale consortium chain. Information Processing &
Management, 59(2), 102884. doi:10.1016/j.ipm.2022.102884

Dang, H., Dinh, T. T. A., Loghin, D., Chang, E. C., Lin, Q., & Ooi, B. C. (2019). Towards scaling blockchain
systems via sharding. In Proceedings of the 2019 International Conference on Management of Data, New York,
NY, USA. doi:10.1145/3299869.3319889

Das, S., Krishnan, V., & Ren, L. (2020). Efficient cross-shard transaction execution in sharded blockchains.
CoRR, abs/2007.14521, 1—16. https://doi.org/10.48550/arXiv.2007.14521

De Angelis, S., Aniello, L., Baldoni, R., Lombardi, F., Margheri, A., & Sassone, V. (2018). PBFT vs. proof-
of-authority: Applying the CAP theorem to permissioned blockchain. In the 2nd Italian Conference on Cyber
Security, ITASEC 2018 tenutosi a Milan, Italy. https://iris.uniroma1.it/handle/11573/1337256

Deepa, N., Pham, Q.-V., Nguyen, D. C., Bhattacharya, S., Prabadevi, B., Gadekallu, T. R., Maddikunta, P. K. R.,
Fang, F., & Pathirana, P. N. (2022). A survey on blockchain for big data: Approaches, opportunities, and future
directions. Future Generation Computer Systems, 131, 209–226. doi:10.1016/j.future.2022.01.017

Dinh, T. T. A., Wang, J., Chen, G., Liu, R., Ooi, B. C., & Tan, K.-L. (2017). Blockbench: A framework for
analyzing private blockchains. In Proceedings of the 2017 ACM International Conference on Management of
Data (pp. 1085-1100). ACM. doi:10.1145/3035918.3064033

Du, Z., Pang, X., & Qian, H. (2021). PartitionChain: A scalable and reliable data storage strategy for permissioned
blockchain. IEEE Transactions on Knowledge and Data Engineering, 35(4), 4124–4136. doi:10.1109/
TKDE.2021.3136556

Fatemidokht, H., Rafsanjani, M. K., Gupta, B. B., & Hsu, C.-H. (2021). Efficient and secure routing protocol
based on artificial intelligence algorithms with UAV-assisted for vehicular ad hoc networks in intelligent
transportation systems. IEEE Transactions on Intelligent Transportation Systems, 22(7), 4757–4769. doi:10.1109/
TITS.2020.3041746

Fitzi, M., Gazi, P., Kiayias, A., & Russell, A. (2020). Proof-of-stake blockchain protocols with near-optimal
throughput. Cryptology ePrint Archive. https://eprint.iacr.org/2020/037

Gao, W., Mu, W., Huang, S., Wang, M., & Li, X. (2021). Improved byzantine fault-tolerant algorithm based
on alliance chain. Wireless Communications and Mobile Computing, 2021, 1–10. doi:10.1155/2021/8455180

http://dx.doi.org/10.4018/IJSSCI.304439
http://dx.doi.org/10.1109/ICAICT51780.2020.9333488
http://dx.doi.org/10.1109/ICAICT51780.2020.9333488
http://dx.doi.org/10.1145/3448016.3452807
http://dx.doi.org/10.1007/978-3-031-07535-3_6
http://dx.doi.org/10.1016/j.comcom.2023.07.023
http://dx.doi.org/10.1016/j.pmcj.2019.101055
http://dx.doi.org/10.1016/j.ipm.2022.102884
http://dx.doi.org/10.1145/3299869.3319889
https://iris.uniroma1.it/handle/11573/1337256
http://dx.doi.org/10.1016/j.future.2022.01.017
http://dx.doi.org/10.1145/3035918.3064033
http://dx.doi.org/10.1109/TKDE.2021.3136556
http://dx.doi.org/10.1109/TKDE.2021.3136556
http://dx.doi.org/10.1109/TITS.2020.3041746
http://dx.doi.org/10.1109/TITS.2020.3041746
https://eprint.iacr.org/2020/037
http://dx.doi.org/10.1155/2021/8455180

International Journal on Semantic Web and Information Systems
Volume 19 • Issue 1

28

Ge, L., Wang, J., & Zhang, G. (2022). Survey of consensus algorithms for proof of stake in blockchain. Security
and Communication Networks, 2022, 1–13. doi:10.1155/2022/2812526

Guebli, W., & Belkhir, A. (2021). Inconsistency detection-based LOD in smart homes. [IJSWIS]. International
Journal on Semantic Web and Information Systems, 17(4), 56–75. doi:10.4018/IJSWIS.2021100104

Hashim, F., Shuaib, K., & Zaki, N. (2022). Sharding for scalable blockchain networks. SN Computer Science,
4(1), 2. doi:10.1007/s42979-022-01435-z

Hellings, J., & Sadoghi, M. (2023). Byshard: Sharding in a byzantine environment. The VLDB Journal, 1—25.
10.1007/s00778-023-00794-0

Hong, Z., Guo, S., Li, P., & Chen, W. (2021). Pyramid: A layered sharding blockchain system. In the IEEE
INFOCOM 2021-IEEE Conference on Computer Communications (pp. 1-10). BC, Canada. doi:10.1109/
INFOCOM42981.2021.9488747

Huang, H., Peng, X., Zhan, J., Zhang, S., Lin, Y., Zheng, Z., & Guo, S. (2022). Brokerchain: A cross-
shard blockchain protocol for account/balance-based state sharding. In the IEEE INFOCOM 2022-IEEE
Conference on Computer Communications (pp. 1968-1977). London, United Kingdom. doi:10.1109/
INFOCOM48880.2022.9796859

Khor, J. H., Sidorov, M., & Zulqarnain, S. A. B. (2023). Scalable lightweight protocol for interoperable public
blockchain-based supply chain ownership management. Sensors (Basel), 23(7), 3433. doi:10.3390/s23073433
PMID:37050490

Kokoris-Kogias, E., Jovanovic, P., Gasser, L., Gailly, N., Syta, E., & Ford, B. (2018). Omniledger: A secure,
scale-out, decentralized ledger via sharding. In the 2018 IEEE symposium on security and privacy (SP) (pp.
583-598). San Francisco, CA, USA. doi:10.1109/SP.2018.000-5

Li, C., Zhang, J., Yang, X., & Youlong, L. (2021). Lightweight blockchain consensus mechanism and storage
optimization for resource-constrained IoT devices. Information Processing & Management, 58(4), 102602.
doi:10.1016/j.ipm.2021.102602

Li, D., Deng, L., Gupta, B. B., Wang, H., & Choi, C. (2019). A novel CNN based security guaranteed image
watermarking generation scenario for smart city applications. Information Sciences, 479, 432–447. doi:10.1016/j.
ins.2018.02.060

Li, X., Lv, F., Xiang, F., Sun, Z., & Sun, Z. (2020). Research on key technologies of logistics information
traceability model based on consortium chain. IEEE Access : Practical Innovations, Open Solutions, 8, 69754–
69762. doi:10.1109/ACCESS.2020.2986220

Li, Y., Qiao, L., & Lv, Z. (2021). An optimized byzantine fault tolerance algorithm for consortium blockchain.
Peer-to-Peer Networking and Applications, 14(5), 2826–2839. doi:10.1007/s12083-021-01103-8

Liu, Y., Xing, X., Cheng, H., Li, D., Guan, Z., Liu, J., & Wu, Q. (2023). A flexible sharding blockchain protocol
based on cross-shard byzantine fault tolerance. IEEE Transactions on Information Forensics and Security, 18,
2276–2291. doi:10.1109/TIFS.2023.3266628

Luu, L., Narayanan, V., Zheng, C., Baweja, K., Gilbert, S., & Saxena, P. (2016). A secure sharding protocol for
open blockchains. In Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications
Security (pp. 17-30). ACM. doi:10.1145/2976749.2978389

Lv, L., Wu, Z., Zhang, L., Gupta, B. B., & Tian, Z. (2022). An edge-AI based forecasting approach for improving
smart microgrid efficiency. IEEE Transactions on Industrial Informatics, 18(11), 7946–7954. doi:10.1109/
TII.2022.3163137

Mehraein, E., & Nourmohammadi, R. (2023). IGD-ScoreChain: A novel lightweight-scalable blockchain based
on nodes sharding for the Internet of things. Cryptology ePrint Archive. https://eprint.iacr.org/2023/576

Memos, V. A., Psannis, K. E., Ishibashi, Y., Kim, B.-G., & Gupta, B. B. (2018). An efficient algorithm for
media-based surveillance system (EAMSuS) in IoT smart city framework. Future Generation Computer Systems,
83, 619–628. doi:10.1016/j.future.2017.04.039

http://dx.doi.org/10.1155/2022/2812526
http://dx.doi.org/10.4018/IJSWIS.2021100104
http://dx.doi.org/10.1007/s42979-022-01435-z
http://dx.doi.org/10.1109/INFOCOM42981.2021.9488747
http://dx.doi.org/10.1109/INFOCOM42981.2021.9488747
http://dx.doi.org/10.1109/INFOCOM48880.2022.9796859
http://dx.doi.org/10.1109/INFOCOM48880.2022.9796859
http://dx.doi.org/10.3390/s23073433
http://www.ncbi.nlm.nih.gov/pubmed/37050490
http://dx.doi.org/10.1109/SP.2018.000-5
http://dx.doi.org/10.1016/j.ipm.2021.102602
http://dx.doi.org/10.1016/j.ins.2018.02.060
http://dx.doi.org/10.1016/j.ins.2018.02.060
http://dx.doi.org/10.1109/ACCESS.2020.2986220
http://dx.doi.org/10.1007/s12083-021-01103-8
http://dx.doi.org/10.1109/TIFS.2023.3266628
http://dx.doi.org/10.1145/2976749.2978389
http://dx.doi.org/10.1109/TII.2022.3163137
http://dx.doi.org/10.1109/TII.2022.3163137
https://eprint.iacr.org/2023/576
http://dx.doi.org/10.1016/j.future.2017.04.039

International Journal on Semantic Web and Information Systems
Volume 19 • Issue 1

29

Plageras, A. P., Psannis, K. E., Stergiou, C., Wang, H., & Gupta, B. B. (2018). Efficient IoT-based sensor BIG
Data collection–processing and analysis in smart buildings. Future Generation Computer Systems, 82, 349–357.
doi:10.1016/j.future.2017.09.082

Qi, X., Zhang, Z., Jin, C., & Zhou, A. (2020). BFT-Store: Storage partition for permissioned blockchain via
erasure coding. In the 2020 IEEE 36th International Conference on Data Engineering (ICDE) (pp. 1926-1929).
IEEE. doi:10.1109/ICDE48307.2020.00205

Raj, M. G., & Pani, S. K. (2022). Chaotic whale crow optimization algorithm for secure routing in the IoT
environment. International Journal on Semantic Web and Information Systems, 18(1), 1–25. doi:10.4018/
IJSWIS.300824

Sharma, P., Raj, B., & Gill, S. S. (2022). Spintronics based non-volatile MRAM for intelligent systems: Memory
for intelligent systems design. International Journal on Semantic Web and Information Systems, 18(1), 1–16.
doi:10.4018/IJSWIS.310056

Sohrabi, N., & Tari, Z. (2020). ZyConChain: A scalable blockchain for general applications. IEEE Access :
Practical Innovations, Open Solutions, 8, 158893–158910. doi:10.1109/ACCESS.2020.3020319

Sohrabi, N., Tari, Z., Voron, G., Gramoli, V., & Fu, Q. (2022). SAZyzz: Scaling AZyzzyva to meet blockchain
requirements. IEEE Transactions on Services Computing, 16(3), 2139–2152. doi:10.1109/TSC.2022.3214976

Stuart, T. E., Ozdemir, S. Z., & Ding, W. W. (2007). Vertical alliance networks: The case of university–
biotechnology–pharmaceutical alliance chains. Research Policy, 36(4), 477–498. doi:10.1016/j.respol.2007.02.016

Tan, B., Chen, Y., Zhuang, G., Zhou, Y., & Dong, Z. (2023). A novel dynamic practical byzantine fault tolerance
protocol based on node grouping. Authorea, 2023(1), 1—3. 10.22541/au.168922622.23659736/v1

Tiwari, A., & Garg, R. (2022). Adaptive ontology-based IoT resource provisioning in computing systems.
International Journal on Semantic Web and Information Systems, 18(1), 1–18. doi:10.4018/IJSWIS.306260

Wang, C., & Raviv, N. (2021). Low latency cross-shard transactions in coded blockchain. In the 2021
IEEE International Symposium on Information Theory (ISIT) (pp. 2678-2683). IEEE. doi:10.1109/
ISIT45174.2021.9518047

Wang, F., Ji, Y., Liu, M., Li, Y., Li, X., Zhang, X., & Shi, X. (2021). An optimization strategy for PBFT consensus
mechanism based on consortium blockchain. In Proceedings of the 3rd ACM International Symposium on
Blockchain and Secure Critical Infrastructure (pp. 71-76). ACM. doi:10.1145/3457337.3457843

Wang, G., Shi, Z. J., Nixon, M., & Han, S. (2019). Sok: Sharding on blockchain. In Proceedings of the 1st ACM
Conference on Advances in Financial Technologies (pp. 41-61). ACM. doi:10.1145/3318041.3355457

Wang, J., & Wang, H. (2019). Monoxide: Scale out blockchains with asynchronous consensus zones. In
Proceedings of the 16th USENIX Symposium on Networked Systems Design and Implementation (NSDI 19)
(pp. 95—112). USENIX Association. https://www.usenix.org/conference/nsdi19/presentation/wang-jiaping

Wu, X., Jiang, W., Song, M., Jia, Z., & Qin, J. (2023). An efficient sharding consensus algorithm for consortium
chains. Scientific Reports, 13(1), 20. doi:10.1038/s41598-022-27228-1 PMID:36593262

Yang, J., Wang, J., Wong, C. W., & Lai, K.-H. (2008). Relational stability and alliance performance in supply
chain. Omega, 36(4), 600–608. doi:10.1016/j.omega.2007.01.008

Yu, G., Wang, X., Yu, K., Ni, W., Zhang, J. A., & Liu, R. P. (2020). Survey: Sharding in blockchains. IEEE
Access : Practical Innovations, Open Solutions, 8, 14155–14181. doi:10.1109/ACCESS.2020.2965147

Zamani, M., Movahedi, M., & Raykova, M. (2018). Rapidchain: Scaling blockchain via full sharding. In
Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security (pp. 931-948).
ACM. doi:10.1145/3243734.3243853

Zhou, Q., Huang, H., Zheng, Z., & Bian, J. (2020). Solutions to scalability of blockchain: A survey. IEEE Access
: Practical Innovations, Open Solutions, 8, 16440–16455. doi:10.1109/ACCESS.2020.2967218

Zhu, L., Yu, H., Zhan, S., Qiu, W., & Li, Q. (2019). Research on high-performance consortium blockchain
technology. Journal of Software, 30(6), 1577–1593. doi:10.13328/j.cnki.jos.00573

http://dx.doi.org/10.1016/j.future.2017.09.082
http://dx.doi.org/10.1109/ICDE48307.2020.00205
http://dx.doi.org/10.4018/IJSWIS.300824
http://dx.doi.org/10.4018/IJSWIS.300824
http://dx.doi.org/10.4018/IJSWIS.310056
http://dx.doi.org/10.1109/ACCESS.2020.3020319
http://dx.doi.org/10.1109/TSC.2022.3214976
http://dx.doi.org/10.1016/j.respol.2007.02.016
http://dx.doi.org/10.4018/IJSWIS.306260
http://dx.doi.org/10.1109/ISIT45174.2021.9518047
http://dx.doi.org/10.1109/ISIT45174.2021.9518047
http://dx.doi.org/10.1145/3457337.3457843
http://dx.doi.org/10.1145/3318041.3355457
https://www.usenix.org/conference/nsdi19/presentation/wang-jiaping
http://dx.doi.org/10.1038/s41598-022-27228-1
http://www.ncbi.nlm.nih.gov/pubmed/36593262
http://dx.doi.org/10.1016/j.omega.2007.01.008
http://dx.doi.org/10.1109/ACCESS.2020.2965147
http://dx.doi.org/10.1145/3243734.3243853
http://dx.doi.org/10.1109/ACCESS.2020.2967218
http://dx.doi.org/10.13328/j.cnki.jos.00573

International Journal on Semantic Web and Information Systems
Volume 19 • Issue 1

30

Nigang Sun is an associate professor and deputy dean in School of Microelectronics and Control Engineering,
Changzhou University, China. His research interests are in the areas of spread spectrum communication, stream
cipher, consensus mechanism, and privacy protection in blockchain.

Junlong Li is a postgraduate at Changzhou University. His major research field is blockchain consensus mechanism
and sharding protocol.

Yining Liu received his B.S. degree in applied mathematics from Information Engineering University, Zhengzhou,
China, in 1995, his M.S. degree in computer software and theory from the Huazhong University of Science and
Technology, Wuhan, China, in 2003, and his Ph.D. degree in mathematics from Hubei University, Wuhan, in
2007. He is currently a professor with school of Computer and Information Security, Guilin University of Electronic
Technology, Guilin, China. His research interests include data privacy, security and privacy in VANETs, image
security, data mining, and machine learning.

Varsha Arya did Master’s degree from Rajasthan University, India in 2015 and has been working as a researcher
for the last 7 years. She published more than 25 papers in top journals and conferences. Her research interests
include business administration, technology management, Cyber physical systems, cloud computing, healthcare
and networking. Currently, she is doing research at Asia University, Taiwan.

