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ABSTRACT

Applying sharding protocol to address scalability challenges in alliance chain is popular. However, 
inevitable cross-shard transactions significantly hamper performance even at low ratios, negating 
scalability benefits when they dominate as shard scale grows. This article proposes a new sharding 
protocol suitable for alliance chain that reduces cross-shard transaction impact, improving system 
performance. It adopts a directed acyclic graph ledger, enabling parallel transaction processing, 
and employs dynamic transaction confirmation consensus for simplicity. The protocol’s sharding 
process and node score mechanism can deter malicious behavior. Experiments show that compared 
with mainstream sharding protocols, the protocol performs better when affected by cross-shard 
transactions. Moreover, its throughput has shown improvement compared to high-performance 
protocols without cross-shard transactions. This solution suits systems requiring high throughput and 
reliability, maintaining a stable performance advantage even as cross-shard transactions increase to 
the usual maximum ratio.
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INTRODUCTION

Alliance chain is a type of blockchain that offers decentralization and node management capabilities, 
garnering significant attention for its widespread adoption in various industries, such as Internet 
of things (IoT), smart city, big data finance, and healthcare (Y. Li et al., 2021). However, with the 
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emergence of scenarios involving increased nodes and heightened computational demands, such 
as in the case of data-intensive IoT (Lv et al., 2022; Memos et al., 2018; Plageras et al., 2018; 
Raj & Pani, 2022) and complex intelligent systems (Afify et al., 2022; Fatemidokht et al., 2021; 
D. Li et al., 2019; Sharma et al., 2022), alliance chains face notable scalability challenges, such 
as communication congestion and reduced throughput (Dinh et al., 2017). This phenomenon 
primarily arises from the requirement for all transactions in the blockchain structure to utilize 
nodes’ computing and storage resources (Du et al., 2021; C. Li et al., 2021), leading to substantial 
wastage of time and space (Qi et al., 2020). Sharding protocol improves scalability by partitioning 
different responsibilities and resources to different sets of nodes (Yu et al., 2020). In 2016, Elastico 
(Luu et al., 2016) pioneered by integrating the sharding protocol with blockchain, thereby proposing 
an innovation that prevents each participating node from incurring redundant communication and 
computation overhead. Sharding protocol has gradually become the prevailing on-chain solution 
in the subsequent development, and many studies (Al-Bassam et al., 2017; Hellings & Sadoghi, 
2023; Hong et al., 2021; Huang et al., 2022; Kokoris-Kogias et al., 2018; Zamani et al., 2018) have 
proved its effectiveness and reflected its advantages. In a sharding protocol, nodes participating 
in the consensus process are divided into different shards, each responsible for generating and 
maintaining a specific portion of the alliance chain. As a result, the entire system comprises 
multiple shards, essentially representing parallel chains within a single network. Within each 
shard, most communication predominantly occurs among the nodes residing there. Transactions are 
distributed to shards based on specific rules. A vital category of transactions, known as cross-shard 
transactions, necessitates the involvement of multiple shards (Wang & Raviv, 2021). While cross-
shard transactions do not encompass all transactions, sharding protocols degenerate the blockchain 
into multiple independent systems (Das et al., 2020) without this support. However, processing 
cross-shard transactions requires participation in complex communication and coordination 
protocols between shards (Hong et al., 2021). Unfortunately, many existing solutions for handling 
cross-shard transactions rely on protocols that require splitting such transactions into several sub-
transactions, which complicates the process by calling the consensus algorithm multiple times. Even 
in a typical setup where the workload comprises a low percentage of cross-shard transactions, the 
performance experiences a substantial decline due to the processing flow (Amiri et al., 2019). The 
significance of addressing cross-shard transactions becomes evident as their proportion increases 
with the number of shards. For example, cross-shard transactions can account for 99.98% of the 
total transaction volume in a scenario with 16 shards (Zamani et al., 2018). Consequently, the way 
these transactions are handled results in significant processing overhead, negating the scalability 
enhancements provided by the sharding protocol (Deepa et al., 2022). Addressing these challenges 
is essential to unlock the full potential of sharding protocols, enhancing their efficiency, scalability, 
and applicability across various domains.

Researchers have improved the sharding protocol to reduce consensus calls and message 
complexity between shards, thereby providing valuable assistance in achieving efficient cross-
shard transaction processing (Liu et al., 2023). In Attested HyperLedger (AHL), Dang et al. 
(2019) reduced the number of nodes needed in each shard by enhancing the consensus protocol 
and randomly assigning nodes to shards. The system proposed an additional set of nodes acting as 
coordinators, employing classic two-phase commit (2PC) and two-phase locking (2PL) protocols 
to handle cross-shard transactions. The application is limited by insufficient scalability and an 
unbalanced workload (Asgaonkar, 2022). Amiri et al. (2019) proposed Sharper, a sharding protocol 
for permissioned blockchain. Each transaction is treated as a block, in this protocol, and two flattened 
consensus protocols are employed to enable parallel processing of transactions across different 
shards. Sharper still faces challenges in the complexity of consensus algorithms and issues related 
to data access efficiency (Hashim et al., 2022). ZyconChain (Sohrabi & Tari, 2020) is a scalable 
and versatile sharding blockchain. It utilizes various consensus algorithms to create blocks, with 
each algorithm possessing unique characteristics that render it suitable for specific types of blocks 
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(Khor et al., 2023). The main disadvantages that hinder the deployment of this protocol are its cross-
shard protocol adopting the complex and difficult-to-implement view change subprotocol and the 
honest client assumption (Sohrabi et al., 2022). The K-prototype clustering byzantine fault tolerance 
algorithm (KBFT) (Wu et al., 2023) adopts a consensus mechanism that combines Boneh-Lynn-
Shacham multisignature and byzantine fault tolerance (BFT) algorithm, enabling swift transaction 
confirmation within shards. This scheme eliminates the design of state sharding, and transactions are 
managed by all shards, making it crucial to solving its node storage issue in practical scenarios (Tan 
et al., 2023). IGD-ScoreChain (Mehraein & Nourmohammadi, 2023) is a lightweight and scalable 
sharding protocol tailored for blockchain-based IoT. It employs intelligent routing algorithms to 
delegate transaction processing to cloud nodes, efficiently alleviating the heavy computing load 
associated with cross-shard transactions in the fog layer. The storage of blockchain data in the cloud 
and its reliance on cloud layer nodes for cross-shard transactions introduce centralization risks, and 
network failures can cause system operations to be affected (Baranwal et al., 2023). In traditional 
cross-shard transaction processing methods, the widely adopted 2PC protocol often necessitates 
node asset locking during cross-shard transaction processing to maintain transaction consistency. 
This locking results in nodes holding resources for extended periods during transaction processing, 
leading to increased transaction latency and decreased system throughput. Furthermore, achieving 
cross-shard transactions relies on BFT consensus algorithms, which involve multiple rounds of 
voting and intricate message exchanges, consequently elevating communication overhead. Despite 
advancements in sharding protocol research to optimize alliance chain performance, inefficiencies 
persist in cross-shard transaction processing. As cross-shard transactions become more frequent 
(Hong et al., 2021), such as more shards due to increased devices (Guebli & Belkhir, 2021) and 
the uneven distribution of resources (Tiwari & Garg, 2022), the bandwidth and time costs required 
for communication rise sharply. This challenge poses a considerable obstacle to implementing 
sharding protocols for high-performance alliance chains, as it mitigates the scalability enhancements 
protocols offer, rendering them less apparent.

This paper proposes a scalable sharding protocol for the alliance chain. The protocol accomplishes 
the parallel process of transactions without overlapping shards by structuring the alliance chain ledger 
as a directed acyclic graph (DAG), where each shard solely handles transactions within the path it 
maintains, thus avoiding the considerable communication and conflict resolution overhead associated 
with cross-shard transactions. The protocol employs the dynamic transaction confirmation consensus 
mechanism suitable for alliance chains, which achieves transaction consensus independently and in 
parallel within each shard, significantly enhancing transaction processing efficiency and reducing 
the conflict of cross-shard messages. The sharding process first clusters and then classifies to form 
each shard, thereby preventing nodes from colluding with malicious behavior. The protocol calculates 
a behavior score as one of the node attributes based on the node’s activity history in transaction 
processing. This mechanism is to ensure the consistent operation of the alliance chain. In general, 
the protocol markedly alleviates the impact of cross-shard transactions on alliance chain performance 
while enhancing transaction processing efficiency.

Simulation experiments show that, unlike mainstream sharding protocols, this protocol does 
not lead to a sharp drop in performance as the proportion of cross-shard transactions increases to 
the typical settings. It has higher throughput, and the latency of 10% cross-shard transactions is 56% 
and 36% lower than AHL and Sharper. Moreover, the protocol’s throughput regarding no cross-shard 
transaction has shown improvements, with a 9% increase compared to KBFT and a 6% increase 
compared to IGD-ScoreChain. The protocol the authors propose in this paper is a highly effective 
solution for enhancing the performance of alliance chains in new computing scenarios, such as 
intelligent systems with numerous devices that require high scalability and involve a large number 
of cross-shard transactions.
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RELATED CONCEPTS

This section provides a comprehensive explanation for the key concepts and applications of alliance 
chains and sharding protocols, along with a discussion of their advantages and disadvantages in 
various scenarios.

Alliance Chain
Alliance chain is a permissioned blockchain network involving authorized entities to manage and 
maintain data and transactions collaboratively (X. Li et al., 2020). Unlike the public chain, the 
participants of the alliance chain establish a cooperative relationship, jointly make decisions, and 
manage the operation of the chain.

The primary purpose of the alliance chain is to create a credible collaboration platform within a 
specific industry or organization. It can be used for various purposes, such as payment and settlement 
between financial institutions, supply chain management, sharing of medical records, and data 
exchange between government agencies (Yang et al., 2008). By providing decentralized, transparent, 
traceable, and secure transaction records, alliance chains enhance participant trust and enable efficient 
data sharing and automation of business processes (Stuart et al., 2007).

In the alliance chain, participants can join the network through authorized identity verification 
and jointly maintain the operation and security of the blockchain. The consensus algorithm of the 
alliance chain may vary depending on the design and purpose of the network (De Angelis et al., 2018). 
Usually, a consensus mechanism with higher performance is selected, such as proof of authority 
(Al Asad et al., 2020), BFT (Gao et al., 2021) or proof of stake (Ge et al., 2022). These consensus 
mechanisms usually achieve high throughput and low latency, and are suitable for scenarios with 
fewer participants in the alliance chain (Y. Chen et al., 2022).

Although the security of the alliance chain is relatively high due to the involvement of authorized 
entities, there is still a certain degree of centralization risk, compared with a fully decentralized public 
chain (Zhu et al., 2019). In addition, the governance and consensus mechanisms of the alliance chain 
face scalability challenges when the number of nodes and transactions rises, which leads to slower and 
more complicated transaction confirmation processes. Despite these limitations, the alliance chain 
is a valuable blockchain solution in specific cooperation scenarios. It provides trusted data sharing 
and efficient management of business processes, making it suitable for industries and organizations 
that prioritize security, collaboration, and data integrity (F. Wang et al., 2021).

Sharding Protocol
Network sharding, transaction sharding, and state sharding are state-of-the-art mechanisms for 
implementing blockchain sharding protocols in the modern world (Zhou et al., 2020). Network sharding 
divides the entire blockchain network into multiple shards so that different shards can process some 
transactions in the entire blockchain at the same time. Transaction sharding distributes transactions 
to different shards and allows them to execute concurrently. State sharding separates the entire ledger 
and saves it in shards, reducing the network node storage burden.

Sharding protocols can be decomposed into the following phases: Shard configuration, intra-shard 
consensus, cross-shard consensus, and reconfiguration (G. Wang et al., 2019). The shard configuration 
phase determines which shards a node belongs to and which transactions each shard will handle (Dang 
et al., 2019; Kokoris-Kogias et al., 2018; Luu et al., 2016). After completing the previous step, nodes 
in the same shard pass messages according to the internal consensus protocol to reach a consensus on 
transactions within the shard. The cross-shard consensus protocol uses transaction-related shards as the 
basic unit for processing cross-shard transactions. Since the design of shards is relatively independent, 
implementing cross-shard transactions involves coordination and communication between multiple 
shards (Kokoris-Kogias et al., 2018; Zamani et al., 2018). The reconfiguration step shuts down nodes 
and swaps to other shards after a period to maintain each shard’s integrity and avoid attacks from 
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slowly adapting adversaries (Luu et al., 2016; Zamani et al., 2018). Figure 1 shows the layout of a 
blockchain based on the sharding protocol. It includes network sharding, transaction sharding, and 
state sharding, also called complete sharding. Although experimental setups or approaches to verify 
different techniques may vary, throughput and latency are standard metrics for evaluating protocol 
performance (G. Wang et al., 2019).

A SCALABLE SHARDING PROTOCOL FOR ALLIANCE CHAIN

This section provides a detailed description of the components and mechanisms of the sharding 
protocol, and their design features receive full consideration to address the challenges. The protocol 
constructs the alliance chain ledger as a DAG, realizing that each shard only processes transactions 
within its path. It uses a dynamic transaction confirmation algorithm to establish consensus within a 
single shard and cross shards, thereby directly improving the efficiency of transaction verification in 
the alliance chain. Furthermore, the protocol adopts a sharding configuration combining clustering and 
subsequent classification, complementing a node behavior score mechanism. This fusion is harnessed 
to bolster the validity of nodes tasked with upholding the consensus process. Figure 2 shows the 
architecture of the complete protocol and reflects the connections between different components. 
Among them, 1 and 2 are the alliance chain network configuration, 3 is the ledger implementation, 
4 is the dynamic confirmation threshold setting, 5, 6, and 7 are transaction consensus, and 8 is the 
operation of the score mechanism.

Figure 1. The layout of a blockchain based on the sharding protocol (Note: A node network has only one unique master node. 
Each shard has a leader node and multiple consensus nodes. Intra-shard consensus and cross-shard consensus are distinct 
methods for block generation. Each chain of shard consists of blocks containing only transactions related to the shard.)
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Network Infrastructure
The protocol design incorporates three types of nodes: Consensus, leader, and master nodes. Each 
committee consists of all consensus nodes and a leader node in a single shard, and a unique consensus 
committee consists of all leader nodes and the only master node. Consensus nodes validate transactions 
and submit final consensus results to the leader node within their committees. The leader node 
packages the consensus-completed transactions into blocks and uploads them to the alliance chain. 
The consensus nodes in the shard can review the transactions during this period. The master node 
accepts the challenge message from the consensus node and processes the transaction it reviews. After 
the status of all nodes is synchronized, each node will generate a score according to the transaction 
history. When an epoch ends, all the scores of each node will be integrated into a sum as its attribute.

A more significant disparity in node types within a shard typically indicates node characteristics 
and performance variations across various dimensions, including identity, processing capacity, 
historical performance, and geographical location. Within a shard, greater diversity in node types 
ensures the system’s resilience, enabling it to continue functioning normally, even if some nodes are 
attacked or engage in malicious behavior. Furthermore, this diversity enhances the system’s availability 
under varying workloads and environmental conditions. As a result, the authors devised a sharding 
process that involves an initial clustering phase and a subsequent classification phase. The protocol 
uses the K-prototype clustering algorithm to assign nodes to clusters according to their numeric and 
categorical attributes, and the number of clusters is the same as the number of nodes in the shard. 
Numeric attributes have numerical or continuous characteristics and can include the identity and 
score of a node. Category attributes have discrete characteristics, typically represented as categories 
or labels, which can include information such as the organization to which a node belongs, Internet 
protocol address, and geographic location.

Let the node dataset be X X X X X
n

= …{ }1 2 3
, , , , , where n is the number of node objects in 

da t ase t  X ,  and  each  node  da t a  in  t he  node  da t ase t  has  m  a t t r ibu tes  ( i . e . , 

X X X X X X X X
i i i i ip i p i p im
= … …{ }+( ) +( )1 2 3 1 2

, , , , , , , , , where there are p numeric attributes in front 

and m — p categorical attributes in the back). Specify a positive integer g as the number of clusters 
to be divided according to actual application requirements, and the clustering algorithm will randomly 

Figure 2. Protocol structure and operation (Note: (a) The leader node has the function of sending and adjusting transaction 
confirmation threshold (TCT), which impacts consensus; (b) the ledger type determines the block storage method; (c) the 
consensus process and results determine the score; (d): leader and master nodes in the network are determined by scores.)
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select g nodes as the initial prototype (central point). In the clustering algorithm, the dissimilarity of 
mixed attributes is divided into numeric and categorical attributes to be evaluated separately and then 
added. The dissimilarity of numeric attributes is calculated by Euclidean distance. The dissimilarity 
of categorical attributes is calculated by Hamming distance, and Equation 1 shows the details:
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where 0 indicates the same attribute value, 1 indicates different attribute values, and Yj is the attribute 
j of the cluster Y prototype. Equation 2 shows the distance (dissimilarity) between the data and the 
cluster:
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where u is the weight factor of the categorical attribute that can be set.
Each node is assigned to the nearest cluster based on the dissimilarity between the nodes. After 

each node allocation, the cluster’s prototype (center point) needs to be updated. For numeric attributes, 
the numeric prototype of a cluster will be calculated as the mean of the numeric attribute of all 
nodes in the cluster. For category attributes, the category prototype of a cluster will be calculated 
as the mode (i.e., the value with the highest frequency of occurrence) of the category attributes 
of all nodes in the cluster. The above node allocation and prototype updating steps are performed 
repeatedly until no node changes its cluster. Once the cluster allocation is complete and stable, the 
algorithm allocates the nodes in each cluster to shards based on their order. For example, the first 
shard includes the first node from each cluster, and the second shard includes the second node from 
each cluster. Figure 3 shows the complete algorithm flow of the two-stage sharding process. Figure 
4 (a) shows the clustering results, and Figure 4 (b) shows the classification after clustering. Each 
shard contains nodes of different clusters as much as possible to maintain the balance of computing 
functions, security, and network quality (Mehraein & Nourmohammadi, 2023). The node with the 
highest score in each committee becomes the current Leader node, and the Leader node with the 
highest score in the consensus committee becomes the current Master node. Node state transitions 
are depicted in Figure 5.

Blockchain Ledger
The blockchain ledger is a data structure that allows only appending operations to record and store 
transaction information in a hash chain. DAG ledgers differ significantly from traditional blockchain 
ledgers. In a traditional blockchain, transactions are packaged into blocks chronologically, with each 
block linked to the previous block, forming a linear chain. The DAG ledger uses a more flexible 
structure, connecting transactions with directed edges to form a graph. This structure means that 
transactions can have multiple parallel paths and are no longer subject to a single chain structure. 
The initialization process of the DAG ledger includes steps such as the creation of the genesis block, 
the generation of an initial transaction, transaction verification, and the establishment of directed 
edges. The initial transaction is used to create the initial state of the ledger, and then transactions 
are gradually added to the ledger, building a DAG structure. The protocol follows this methodology: 
Every block consists of an individual transaction, and each data shard is duplicated across all nodes 
within the committee. Consequently, to guarantee data consistency, it is essential to establish a 
complete order among transactions (intra- and cross-shard) that access the identical data shard. The 
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total order of transactions in this blockchain ledger is achieved by chaining transactions together, 
where each block contains either a sequence number or a cryptographic hash of the previous block. 
As cross-shard transactions involve multiple committees, the ledger takes on the structure of a DAG.

Figure 6 illustrates the ledger constructed in this protocol model, depicted as (a), and comprising 
four committees, namely, p1, p2, p3, and p4. In Figure 6, the genesis block α, both intra-shard and 
cross-shard transactions are depicted. t10 and t13 pertain to intra-shard transactions within committee 
p1. Each cross-shard transaction is labeled te1,…, ek, where k is the number of committees involved, and 
ei denotes the order of the transactions in the transactions of the i committee. t11,21 and t12,22,32,42 are 
two cross-shard transactions, where t11,21 accesses p1 and p2, while t12,22,32,42 accesses all four shards.

Figure 6 demonstrates the establishment of order among transactions, encompassing both 
intra-shard and cross-shard transactions with a specific shard, such as t10, t11,21, t12,22,32,42 and t13 are 
interlinked within a chain. Intra-shard transactions originating from distinct committees can be 
simultaneously incorporated into the blockchain ledger, such as t10, t20, t30, and t40 are processed in 
parallel by disparate committees. Similarly, in scenarios where two cross-shard transactions engage 

Figure 3. Sharding process (Note: The clustering process’s number of clusters and iterations are configured based on specific 
requirements. The number of clusters is determined by dividing the number of nodes by the number of shards. A higher number 
of iterations ensures a more comprehensive clustering outcome. Nevertheless, increased iterations also lead to longer processing 
times, necessitating a trade-off between computational efficiency and result accuracy.)
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disjoint subsets of shards, they can be added to the ledger in parallel, such as the concurrent addition 
of transactions t11,21 and t31,41.

In this protocol, no committee maintains the entire blockchain ledger. Each committee manages 
only one path of transactions associated with its shard. The blockchain ledger emerges as a fusion of 
these paths. As Figure 6 (b)—(e) shows, each of the committees p1, p2, p3, and p4 manifests a distinct 
ledger path encompassing transactions associated with its respective shard.

Transaction Consensus
Before the formal consensus process begins, the leader node communicates the TCT to the consensus 
nodes within the shard. Subsequently, the client broadcasts a transaction request to the shards associated 
with the transaction. This transaction request contains detailed information about the transaction, 
including transaction content, sender, receiver, and transaction amount. After receiving a transaction 
request, the node verifies whether the transaction has a valid digital signature to confirm that the 
sender of the transaction is correct. The node checks whether the sender’s account has sufficient 
balance to perform the correct transaction. If it involves the execution of a smart contract, the node 

Figure 4. Clustering and classification (Note: In the process, 32 nodes are clustered and then classified into a shard configuration 
of four nodes per shard.)

Figure 5. State transition of node (Note: Nodes determine their shard membership through shard configuration. The node enters 
the shard and participates in the election process of the subsequent leader node. If a node becomes a leader node, it will also 
participate in electing a master node. The score becomes an attribute of the node after an epoch ends.)
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will verify whether the execution results of the contract comply with the contract rules. The consensus 
node adds the transactions with correct verification results to the transaction pool and sends a 
confirmation message to the leader node. At the same time, the consensus node replies to the client. 
This reply activity is one of the score calculation steps and does not affect the consensus. Once the 
number of confirmed consensus nodes reaches TCT, the leader node packages the transaction into 
a new block if it solely pertains to that shard. The block is broadcasted to all consensus nodes in the 
shard, realizing the synchronization of the state of the alliance chain. Figure 7 shows the intra-shard 
consensus mechanism.

The leader node follows a distinct action if a transaction involves multiple shards. It dispatches 
a shard confirmation message to the leader nodes of the corresponding shards and awaits their 
acknowledgments. In addition to detailed information about the transaction, the verification of these 
confirmation messages also requires the complete intra-shard verification process of the sending 
shard and the signature of the participating nodes to ensure that the transaction is processed correctly 
between each shard. After receiving confirmation details from all relevant shards, the confirmed 
leader node packages the transaction into the new block. This block is then disseminated among 
other nodes within the shard, promoting the synchronization of the alliance chain’s state. Figure 8 
illustrates the cross-shard consensus.

The consensus node receives the block transmitted by the leader node and compares the block’s 
contents with the authenticated transactions in the local transaction pool. When the consensus node 
encounters a transaction submitted by the leader node that has not yet been verified, it triggers a review 
process by sending a challenge message (containing transaction details to be reviewed) to the master 
node. The master node sends the received challenge message to the remaining k — 1 shards to initiate 
a validation process, excluding the particular shard that initiated the challenge. After verification, 
if the results from over 2k/3 shards indicate a potential error in the transaction, the master node 
merges the challenge message and the corresponding review result. This merged information is then 
encapsulated within a block and distributed to all participating shard nodes engaged in the transaction.

Figure 6. DAG ledger (Note: (a) represents DAG ledger consisting of four shards; (b), (c), (d), and (e) represent graph paths from 
four different shards.)
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Node Score Mechanism
During each consensus period, all participating nodes undergo a behavioral evaluation, with the 
primary metric being the time it takes a node to process a transaction. Based on this metric, each 
node receives a score, which plays a crucial role in the comprehensive evaluation of node behavior 
within an epoch. The score also serves as node attributes for the next epoch’s sharding process and 
node election. Once a new epoch begins and the node’s new state is determined, the score from the 
previous epoch is reset to enable a fresh evaluation of the node’s behavior within the new epoch.

Let t t t
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j confirm
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i
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where n/k is the number of nodes in each shard.
Let d t t
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i
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i= −( ) ( )  be the delay from confirmation to delivery of the transaction to the 

client, where t
j receive

i

( )  is the time when node of the response received by the client. Let d0 be the preset 
delay standard, and MAX(D) be the maximum acceptable delay for delivery transaction confirmation. 
As Equation 4 illustrates, βd is the ratio by which the score needs to be reduced due to unexpected 

Figure 7. Intra-shard consensus (Note: The flow chart of intra-shard consensus mechanism in the case of the shard with four 
nodes. There are four consensus stages: Send TCT, send transaction, confirm transaction, and reply.)
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events in the network (e.g., a sudden increase in traffic) delaying the transaction delivery to the client, 
provided that the node confirms the transaction correctly:

b
d

d

MAX D
=

( )
	 (4)

As Equation 5 shows, β is a coefficient representing the correctness of the transaction verification 
result and the activity of consensus:

Figure 8. Cross-shard consensus (Note: The flow chart of cross-shard consensus mechanism in the case of two shards, where 
both clients are the same. There are five consensus stages: Send TCT, send transaction, confirm transaction, cross-shard 
confirmation, and reply.)
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After each transaction is completed, the system scores the nodes according to the processing 
time and confirmation results. s

j
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( )  is the score of node j in shard i after confirming transaction Tx, 

defined as Equation 6:
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Finally, s
j
i

final
( )  is the total score of node j in shard i after confirmed T transaction, defined as 

Equation 7:
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Figure 9 illustrates the complete process of the protocol monitoring and evaluating node behavior 
through the score mechanism.

The score mechanism serves as a means to restrict node behavior during transaction consensus. 
Also, it incentivizes well-performing nodes by offering them increased opportunities to assume roles 
such as leader or master nodes during elections. Despite the effectiveness of this score mechanism 
in guiding node behavior, it cannot eliminate the possibility of malicious activities. Therefore, a 
corresponding penalty mechanism is also designed to increase the cost of nodes performing malicious 
behaviors. If a node makes an error during the verification process or fails the challenge during the 
review process, its total score within the current epoch will be reduced by 50%. If a node engages 
in the malicious behavior mentioned above again, the system will delete the node from the network. 
The identification of malicious behavior and whether a deleted node may reenter the network will 
depend on the specific usage scenario.

Adjustment of Transaction Confirmation Threshold
TCT determines how many consensus nodes are needed to confirm a transaction, thus directly affecting 
the security and credibility of the transaction. When the TCT increases, the number of nodes required 
for consensus also increases accordingly, which means more nodes will participate in confirming 
transactions, thereby improving the system’s overall security. This mechanism can effectively deal 
with potential network attacks and threats, ensuring that transactions are considered valid only after 
enough nodes reach consensus.

However, when the network is unstable, an excessively high TCT will make it difficult for nodes 
to send confirmation messages, leading to network congestion and ultimately threatening normal 
consensus progress. This design allows users to adjust TCT according to conditions to balance 
performance, security, and stability. Especially when facing network fluctuations or attacks, dynamic 
TCT can ensure system availability.
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The protocol stipulates that TCT can only be adjusted once by the Leader node in the shard 
during its term, and the adjustment range is limited. This limitation increases the cost for potential 
attackers because attackers need to control multiple consecutive Leader nodes to affect the TCT of 
the system in order to harm the system. This mechanism further enhances the alliance chain’s security 
and availability, protecting the integrity of transactions and data.

CORRECTNESS ARGUMENT

In this section, discussions focus on the overall improvements to each component in the above design. 
These discussions encompass consensus duration, communication complexity, computational cost, 
component functionality, and their connections.

Performance Analysis
There are n/k nodes in the shard, the time for a node to process a message is fixed at t1, and the message 
delivery time is fixed at t2. T is the time required to complete the cross-shard confirmation process 
involving two shards in this protocol. According to the dynamic transaction confirmation consensus 
process, there are four stages of message transmission. Nodes process a transaction message, TCT 

Figure 9. Score calculation process (Note: (a) Calculate the time interval from the client sending the transaction request to confirm 
the transaction to determine the node’s confirmation time. (b) Calculate the average value from the confirmation times of all 
nodes participating in the consensus. (c) Measure the node consensus activity using the time interval from the node confirming 
the transaction to delivering the transaction to the client and the correctness of the verification. (d) After each transaction is 
processed, a node’s score is calculated to evaluate the node’s performance in confirming a specific transaction. (e) The total 
score of a node is calculated after processing all transactions in the epoch. The total score is a numerical attribute for the node’s 
sharding and election in the next epoch.)
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confirmation messages, cross-shard confirmation messages, and the block. Equation 8 shows the 
calculation of the time complexity for achieving consensus:

T t TCT t= + +( )4 3
2 1

	 (8)

T’ is the time required to complete cross-shard transaction flows for byzantine nodes in SharPer, 
a permissioned chain sharding protocol employed for handling cross-shard transactions within a 
network comprising byzantine nodes, which has demonstrated good outcomes in performance and 
security aspects. The consensus process has a total of four stages of message transmission. Nodes in 
a shard need to process a request message, a prepare message, 4n/(3k) accept messages, and 4n/(3k) + 
2 commit messages. Equation 9 shows the calculation of the time complexity of achieving consensus:
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Equation 10 originates from Equations 8 and 9:
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In the cross-shard transaction consensus phase, the dynamic transaction confirmation consensus 
outperforms Sharper in terms of efficiency. The specific value of the improvement is jointly determined 
by t1, n/k, and TCT.

The values of TCT are set to TCT1 and TCT2, and the difference in message confirmation 
completion time is equal to the reduced transaction confirmation latency T , as Equation 11 shows:

T TCT TCT t= −
1 2 1

	 (11)

The transaction latency will also change if the TCT in the dynamic transaction confirmation 
consensus changes. t1is usually measured in milliseconds, so TCT has little impact on system 
throughput.

The proposed protocol adopts a dynamic transaction confirmation consensus mechanism and 
a DAG ledger to address the challenges of cross-shard transaction processing. The intra-shard 
consensus complexity of the dynamic transaction confirmation consensus mechanism is lower than 
the mainstream BFT consensus protocol. The processing of cross-shard transactions only relies on the 
Leader node and does not require an additional node set, which helps reduce communication overhead. 
The alliance chain uses the DAG ledger structure to achieve more transaction parallelism, allowing 
independent blocks to be added to the ledger simultaneously. The synergy of these mechanisms 
enables the protocol to efficiently handle high-frequency and large-scale cross-shard transactions 
while the system remains secure and available.

Stability and Safety
In this protocol, the client segment sends transaction information to each node in the shard (a total 
of n/k messages), and each node will send a confirmation message. The Leader node sends a cross-
shard confirmation message and broadcasts block information (a total of n/k — 1 messages) in the 
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shard. Equation 12 shows the number of messages S required to complete transaction confirmation 
in two shards:

S
n

k
= −

6
2 	 (12)

According to the Sharper process, the client sends a request message to the Leader node, which 
broadcasts a prepare message to each consensus node (total of 2n/k — 1 messages). Each node 
broadcasts an accept message (total of [2n/k — 1]2 messages) and a commit message (total of [2n/k 
— 1]2 messages). Equation 13 shows the number of messages required to achieve consensus in a 
shard with the same configuration:
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The overhead of the proposed work is primarily calculated based on the algorithm’s communication 
complexity. During the consensus process, its communication complexity is O(n), which exhibits 
clear advantages compared to the BFT consensus algorithm, with a complexity of O(n2). The O(n) 
complexity signifies that the computational overhead of the consensus process scales linearly with 
the number of nodes, enabling more efficient execution within large-scale networks. Furthermore, 
the O(n) complexity approach is more cost-effective in computing resource consumption, thereby 
reducing hardware expenditures. The consensus process operates swifter, significantly reducing 
transaction confirmation delays, a crucial feature for application scenarios that demand rapid 
transaction verification. In addition to consensus, the complexity associated with the sharding process 
and score calculation must be considered. In the sharding stage, the K-prototype clustering algorithm 
is employed. During the initialization phase, this algorithm entails the random selection of initial 
cluster centers, and its complexity depends on the number of clusters and node attributes. In the 
iterative phase, the algorithm updates cluster centers, and the number of clusters and node attributes 
similarly influences its complexity. The primary iterative complexity of the algorithm is determined 
by factors such as the number of iterations, the number of samples, the number of clusters, and the 
number of attributes. For the case where only the number of nodes is a variable, the complexity is 
O(n). In the process of node score calculation, each transaction only requires a single node calculation 
without the need for an iterative process, resulting in a complexity of O(n).

In identical computer and network conditions, this protocol’s consensus is less susceptible to 
the negative impact of node scaling and rising proportions of cross-shard transactions compared 
to the transaction flow involving byzantine nodes. The protocol boasts enhanced stability and can 
curtail network resource consumption and storage capacity. When the system undergoes multiple 
verifications due to mishandled transactions or erroneous transaction messages by the verifying nodes, 
the performance of the alliance chain will not return to its usual state until the malevolent nodes are 
purged. Both malicious nodes and wrong transactions can result in TCT exerting an influence on 
stability.

The existing protocols for selecting a master node have certain characteristics. One approach 
involves selecting a different node as a Master node in each epoch or round according to the rotation 
rules, which introduces latency and additional communication overhead and allows an attacker to 
control the rotation order (Amiri et al., 2019; Zamani et al., 2018). Another approach is staking-based 
selections, which incentivize nodes to follow the rules and maintain normal behavior (Fitzi et al., 
2020). Over time, this mechanism may lead to centralization within the system. Performance-based 
selection can improve system efficiency, but can cause some nodes to become the master node, 
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continually reducing the utilization of others (Kokoris-Kogias et al., 2018). The protocol design 
utilizes the behavior score of nodes to select. This approach has several advantages, such as efficiently 
allocating resources, improving overall network throughput, and maintaining a low likelihood of 
consensus errors.

Regarding node assignment, methods based on node properties (e.g., liveness and performance) 
have centralization risks (Luu et al., 2016; Zamani et al., 2018), while free-choice assignment methods 
are less resistant to malicious behavior (Chen & Wang, 2019). In the protocol design, node allocation 
first clusters the nodes with high similarity and then assigns the nodes of each cluster to different shards. 
Clustering is achieved by calculating the attribute (e.g., the node’s identity, score, the organization to 
which the node belongs, internet protocol address, and geographical location) dissimilarity between 
nodes. While not eliminating the possibility of manipulating individual parameters, this guarantees 
a robust and manipulation-resistant identity generation process.

Alliance chains often require permission to enter, which helps control access to the network, but 
there are still some security risks. Attackers may deliberately delay the confirmation of transactions, 
thereby affecting the performance of the entire alliance chain system. The node score mechanism can 
solve this attack by evaluating node performance, motivating nodes to process transactions quickly, and 
punishing malicious nodes. A group of dishonest nodes may collude in the same shard to corrupt the 
validation of transactions involving that shard. The shard configuration process reduces the likelihood 
of such collusion attacks by ensuring each shard contains nodes with different properties. Attackers 
may try to occupy the position of the leader or master node and thereby control the consensus process. 
The node election process ensures that high score nodes hold these key positions, so the risk of pivotal 
nodes being controlled is low. Attackers may conduct network attacks to interrupt the communication 
of the alliance chain and interfere with the consensus process. The dynamic consensus confirmation 
threshold mechanism relaxes the network quality requirements for system operation and increases 
the cost of attacks.

The various components of this protocol interact to ensure that the system is available while 
maintaining high performance. The impact of transaction information and ledger structure in the ledger 
design on the formula is that they can change the consensus algorithm’s computational complexity, 
storage requirements, verification efficiency, and privacy protection. The node score mechanism 
significantly improves the reliability of the system. Rewarding nodes with good performance and 
punishing malicious nodes reduces the failure rate and malicious behavior of nodes and enhances 
the entire system’s stability. Regarding scalability, the node score mechanism ensures that high-
quality nodes are allocated to different shards, improving each shard’s performance and security and 
increasing the system’s robustness. At the same time, it limits the participation of dishonest nodes, 
prevents repeated verification, and further enhances the system’s scalability. The sharding process 
divides a node into multiple shards, each responsible for processing a specific range of transactions. 
This process helps improve the system’s scalability as different shards can process transactions in 
parallel, thus increasing the overall system’s throughput. The sharding process also needs to ensure the 
consistency and security of cross-shard transactions, so leader nodes need to be elected to coordinate 
consensus between different shards. Node selection ensures that nodes with high scores and good 
performance become leader nodes, which can effectively manage the consensus process and ensure 
system reliability.

Consensus nodes are responsible for verifying transactions and sending challenge messages. Both 
wrong verification and challenge failure will reduce the score of the consensus node. The leader node 
is responsible for adjusting the TCT, counting the number of confirmation messages, and generating 
blocks. If the leader node sends different TCTvalues to each consensus node or does not send to some 
consensus nodes, the consensus node will replace the leader node due to inconsistent status. If the 
consensus node finds that the TCT and voting information in the block are wrong, it will consider 
the leader node malicious and send a challenge message to the master node. The access mechanism 
of the alliance chain and the upper limit of adjustment of TCT make it very expensive for the leader 
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node to adjust TCT malicious. The master node is responsible for processing challenge messages. 
If the master node fails to process the challenge message in time, the node that sent the challenge 
proposes to all nodes to replace the master node. After the master node is replaced, the new master 
node will process unprocessed challenge messages. In summary, the protocol is safe and practical.

Experimental Design
Performance testing takes place in a simulated system to verify the impact of the protocols analyzed 
above on system scalability. The experiment involves comparing the performance of the sharding 
protocol with the mainstream sharding protocol used in the alliance chain with different cross-sharding 
protocol ratios. Additionally, it tests how the system performance is affected by varying TCTs and 
block sizes. The simulated alliance chain is designed to have a consistent system architecture and 
network model, and any discrepancies are minimized to remain within the protocol scope.

Experiment and Configuration
Experiments simulate clients and nodes using a C++ simulation system that utilizes multithreading. In 
this testing scenario, clients are responsible for transmitting transactions, while each shard comprises 
multiple consensus nodes alongside a leader node. The system is categorized into distinct modules: the 
transaction module and the consensus module. The system’s performance and scalability assessment 
revolve around throughput and transaction latency metrics. Table 1 shows the detailed configuration.

Experimental Testing
This experiment measures the performance of an alliance chain using three different types of 
sharding protocols, but with a fixed number of shards and nodes. By gradually adjusting the 
proportion of cross-shard transactions from 1% to 100%, it is possible to observe changes in 
transaction confirmation latency and throughput to measure the impact of cross-shard transactions 
on the efficiency of different protocols. Latency is the maximum interval between the client 
sending a transaction and the completion of processing within an epoch, and its unit is seconds. 
Throughput is the average number of transactions a system processes per second. Figure 10 shows 
that the transaction processing latencies of the three protocols are similar when the proportion of 
cross-shard transactions is low. When the cross-shard transaction ratio is 10%, a typical setting for 
partitioned databases, the protocol’s latency is 36% lower than Sharper and 56% lower than AHL. 
This latency advantage continues to persist as the volume of cross-shard transactions expands, 
underscoring the superior scalability of this protocol.

Figure 11 presents a comparative assessment of transaction confirmation throughput as the 
proportion of cross-shard transactions increases. The throughput of this protocol has been significantly 
ahead of Sharper and AHL, when the cross-shard transaction ratio is 10%. In the impact of the 
subsequent expansion of the proportion of cross-shard transactions, although the performance 
difference has changed, the protocol still maintains its throughput advantage over other protocols. 
For example, after the gap with AHL narrows, the throughput increases by at least 76%.

Table 1. Software and hardware environment configuration

Software and hardware environment Configure

CPU 2.40 GHz Intel Core i5-9300H

RAM 16GB 2667 MHz DDR4

System Windows 11

Note: CPU (central processing unit) is the primary processing unit of a computer. RAM (random access memory) is a computer memory that temporarily 
stores running programs and data. System refers to the computer’s operating system.
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In addition, adjust the sharding configuration to test the expanded alliance chain. Figure 12 shows the 
performance comparison between different sharding protocols after the number of nodes increases. Compared 
to other protocols, the advantages of this protocol become more evident as the node scale increases.

Figure 10. Comparison of latency for different cross-shard transaction ratios (Note: System latency averages comparison for 
cross-shard transaction proportions ranging from 1%, 5%, …, 100%. Other factors (shard counts = 4, number of nodes in shard 
= 4, TCT = 3, and transaction counts = 400) are the same except for the sharding configuration.)

Figure 11. Comparison of throughput for different cross-shard transaction ratios (Note: System throughput averages comparison 
for cross-shard transaction proportions ranging from 1%, 5%, …, 100%. Other factors (shard counts = 4, number of nodes in 
shard = 4, TCT = 3, and transaction counts = 400) are the same except for the sharding configuration.)
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The above experimental results are derived from the average of multiple measurements, which is 
sufficient to demonstrate that this protocol can steadily improve performance. The dynamic transaction 
confirmation consensus mechanism rationally utilizes system resources under the increasing proportion 
of cross-shard transactions, including transmitting transactions between various shards and ensuring 
conflict handling and consistency.

This experiment measures the performance of an alliance chain using three different types of 
sharding protocols, but with a fixed number of shards. It is necessary to adjust the number of nodes in 

Figure 12. Comparison of protocol performance after adding nodes (Note: System throughput and latency average comparison 
for cross-shard transaction proportions ranging from 0%, 20%, …, 100%. Other factors (shard counts = 5, number of nodes in 
shard = 4, TCT = 3, and transaction counts = 400) are the same except for the sharding configuration.)
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each shard from four to 12, observe the changes in latency and throughput of the alliance chain within 
an epoch, and compare how the increased number of nodes affects the efficiency of different protocols 
while keeping the units of latency and throughput. As Figure 13 illustrates, in the scenario where 
there are no cross-shard transactions, the latency of this protocol is significantly reduced compared 
with high-performance sharding protocols. It has a minimum advantage of 10% over KBFT on 24 
nodes and 6% over IGD-ScoreChain on 32 nodes. This latency advantage remains firmly maintained 
as the number of nodes increases.

Figure 14 shows a test of system throughput as the number of nodes increases. Although the 
numerical gap keeps changing, the protocol maintains a stable lead over the other two in throughput. 
For example, its throughput is 9% higher than KBFT in the case of 24 nodes and 6% higher than 
IGD-ScoreChain in the case of 32 nodes, and these are only the minimal improvements shown.

As the experimental results showed, the data confirm the performance advantages of this 
protocol. This protocol has varying performance advantages in scenarios with different nodes, and 
the overall gap tends to expand as the number of nodes increases. This situation results from the 
designed consensus mechanism, which optimizes the transaction confirmation process, ensuring that 
the required communication scale remains low even when dealing with a large number of nodes. The 
data presented above represents averages from multiple tests.

TCT plays a decisive role in the consensus process of transactions, and the authors explained its 
importance in the analysis process. Therefore, designing experiments to study how to set up dynamic 
TCT is necessary. This experiment uses two alliance chains with different sharding configurations (i.e., 
four shards, each shard containing 8 or 9 nodes) to study the impact of TCT on system performance. 
Gradually increase TCT in each shard and observe the changes in the alliance chain latency and 
throughput within an epoch. Figure 15 shows a summary of the results.

Experimental results show that in the absence of erroneous transactions, dynamic TCT does not 
significantly impact system throughput or latency. Therefore, in the early stages of system operation, 
it is recommended to configure the configuration within the range of 1/3 to 2/3 of the total number 

Figure 13. Comparison of latency without cross-shard transaction (Note: System latency averages comparison for node counts 
of per shard ranging from 4, 5, …, 12. Other factors (TCT = 3 and transaction counts = 800) are the same except for the sharding 
configuration.)
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of shard nodes within the range of conventional alliance chains to prevent malicious behavior of 
byzantine nodes. Consistent with the analysis, the experimental results show that this parameter 
adjustment ensures the system’s stability.

The number of transactions in an epoch will affect the throughput and latency of the entire system 
because it involves the frequency of node allocation. This experiment studies the impact of total 
transaction volume over a period on the performance of this protocol. While the shard configuration, 
cross-shard transaction ratio, and TCT remain unchanged, only the total transaction count is adjusted. 
The results combine performance data from multiple measurement systems (Figure 16). The units of 
delay and throughput are the same as in the above experiments, and transaction size is the number 
of transactions in an epoch.

Increasing the total transaction size enhances throughput, albeit at the expense of extended block 
confirmation times. Hence, the practical realization of a comprehensive transaction necessitates an 
evaluation of performance requirements within distinct application contexts. Striking the optimal 
equilibrium between throughput and transaction confirmation latency is essential to satisfy user 
expectations and demands. Achieving this balance entails meticulously assessing the blockchain 
protocol’s design and configuration, ensuring alignment with the demands of the specific use case.

While simulations may not perfectly replicate the intricacies of real-world distributed settings, 
they provide a controlled avenue for researchers to analyze and evaluate the protocol’s behavior. 
These experiments serve the purpose of comprehending the holistic procedure and gauging the 
scalability enhancements introduced by this protocol compared to existing methodologies. It is 
essential to acknowledge that disparities might arise when transitioning this protocol into an actual 
distributed environment. These differences should not hinder the deployment of protocol processes in 
a distributed setup or undermine the potential for enhanced scalability and the advantageous position 
over other protocols.

Figure 14. Comparison of throughput without cross-shard transaction (Note: System throughput averages comparison for node 
counts per shard ranging from 4, 5, ..., 12. Other factors (TCT = 3 and transaction counts = 800) are the same except for the 
sharding configuration.)
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RELATED WORK

In this section, the authors conduct a review of relevant previous studies, methods, and protocols, 
with an emphasis on highlighting the unique advantages of this protocol in terms of performance 
through these comparisons.

Many classic cross-sharding schemes have been proposed, but they all have some limitations. 
Omniledger (Kokoris-Kogias et al., 2018) is designed based on Elastico (Luu et al., 2016) and adopts 

Figure 15. Comparison of system performance for different TCT (Note: System latency and throughput averages comparison 
for different TCT values from 2, 3, . . ., 6. Experiments are conducted in two shard configurations, where the number of shards 
is 4, but the number of nodes within the shards is 8 and 9 (the total number of nodes is 32 and 36). Other factors (the typical 
settings include cross-shard transaction proportion = 10% [Amiri et al., 2019], transaction counts = 400) are the same except for 
the sharding configuration.)
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a client-driven cross-shard transaction processing method. However, a malicious leader node may 
provide false proof of acceptance, causing inconsistencies between shards. Furthermore, no detailed 
construction method for rejection proofs has been provided. The collection and delivery of evidence 
increases the burden on clients. RapidChain (Zamani et al., 2018) splits cross-shard transactions 
into multiple single-input single-output transactions and commits them sequentially. However, this 
increases the total number of transactions, thereby increasing the processing and storage burden on 
the entire network. Additionally, no detailed instructions are provided on how to generate a specific 

Figure 16. Comparison of system performance for different transaction sizes (Note: Performance averages for different total 
transaction sizes from 400, 500, ..., 1000. Experiments are conducted in two shard configurations, where the number of shards 
is 4, but the number of nodes within the shards is 4 and 5. Other factors (the typical settings include cross-shard transaction 
proportion = 10% [Amiri et al., 2019] and TCT = 2).)
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shard transaction. Chainspace (Al-Bassam et al., 2017) combines 2PC with BFT, but transactions 
can only be processed individually, resulting in many BFT calls. Monoxide (Wang & Wang, 2019) 
proposed a relay mechanism in an account/balance-based system. Each cross-shard transaction is 
divided into subtransactions, including internal and relay transactions. Each internal transaction 
corresponds to an associated shard. A relay transaction is required between every two consecutive 
internal transactions. AHL (Dang et al., 2019) adopts trusted hardware to limit the malicious behavior 
of nodes. However, this system has several disadvantages. First, running a fault-tolerant protocol among 
80 nodes results in high latency. Second, the protocol requires an additional set of nodes to form the 
reference committee, resulting in high communication overhead between nodes and the reference 
committee. Finally, since a single reference committee handles cross-shard transactions, the protocol 
cannot parallel cross-shard transactions with non-overlapping clusters. SharPer (Amiri et al., 2019) is 
a permissioned blockchain system with a ledger designed as a DAG, which is not maintained by any 
node. Therefore, SharPer can process cross-shard transactions in nonoverlapping clusters in parallel, 
but consensus in this process requires cross-shard communication from each participating node. 
Pyramid (Hong et al., 2021) proposes a new cross-shard block structure and provides a hierarchical 
shard consensus to expand the number of relevant shards in cross-shard blocks. Its work relies on 
frequent BFT consensus calls from bridge shards that handle transactions across multiple shards.

Although the above sharding protocols can guarantee certain atomicity and consistency of 
cross-shard transactions, they require cumbersome consensus to handle cross-shard transactions. 
In systems, particularly those employing complete sharding protocols, each cross-shard transaction 
undergoes segmentation into numerous subtransactions. All the associated subtransactions must 
be verified and processed to submit a cross-shard transaction successfully. This severely degrades 
sharding performance in terms of throughput and acknowledgment latency. Compared with these 
existing studies, the proposed protocol avoids the large communication and conflict resolution 
overhead associated with cross-shard transactions through a DAG ledger and a dynamic confirmation 
consensus mechanism. In addition, the protocol can utilize the sharding process and behavior score 
mechanism to quickly process transactions while preventing nodes from colluding in malicious 
behavior. Multiple benefits and a broad spectrum of application domains become apparent when 
implementing the protocol within a typical intelligent system. Its elevated throughput rate renders 
it apt for data-intensive operations, such as extensive data analysis and machine learning training, 
thereby enhancing system efficiency. Its low confirmation latency promises expedited user response 
times for interactive applications like virtual assistants and intelligent search engines, ultimately 
augmenting the user experience. In the realm of IoT, it lends support for high throughput and swift 
transaction processing within expansive systems, guaranteeing the punctual handling of sensor data 
and device control.

CONCLUSION

This paper proposes a scalable sharding protocol for alliance chain systems with dynamic confirmation 
cross-shard transactions. The protocol employs a DAG to structure the alliance chain ledger and 
utilizes dynamic transaction confirmation consensus as the consensus process. This approach enables 
independent and parallel transaction consensus within each shard, significantly improving intra-shard 
and cross-shard consensus efficiency. The protocol incorporates a sharding process involving clustering 
before classification and a node behavior score mechanism to deter attackers from concentrating their 
controlled nodes into specific shards. This measure reduces system delays and mitigates repeated 
message propagation caused by potential attacks.

Experimental results demonstrate that the proposed sharding protocol outperforms other methods 
when dealing with cross-shard transactions, substantially enhancing the scalability of the alliance 
chain. It is crucial to adjust the dynamic confirmation threshold and block capacity to ensure users 
access the alliance chain frequently and utilize many fault-free nodes within a smooth network 
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environment, especially those intelligent systems that usually require multiple smart devices and 
sensors to work together. The protocol features high throughput and low latency, allowing related 
devices to transmit data and respond to commands more quickly, thereby improving the performance 
and reliability of intelligent systems, such as smart city and industrial IoT. Moreover, the protocol 
remains applicable even in intelligent systems with poorly performing node facilities and scenarios 
where computing models and environments change frequently. The protocol has been confirmed by 
analysis and experiments as an improvement to the alliance chain, which improves efficiency and 
reduces costs of related equipment, thereby improving the performance and reliability of intelligent 
systems. This research is expected to provide strong support for intelligent systems to realize data 
integration in information systems through data collection, intelligent analysis and reasoning, real-
time response, and control.

The protocol employs a clustering algorithm during the sharding phase, which consumes 
computing power to establish node identities rather than processing transactions. Further work will 
design corresponding resharding and node election mechanisms to improve the utilization of equipment 
computing power. Additionally, diverse case usage and performance evaluations will be conducted to 
improve other protocol components. These efforts are intended to enhance the protocol’s utility and 
enable researchers to broadly explore its application potential in more new intelligent systems that 
require efficient data exchange and collaborative work, including but not limited to the IoTs with a 
large number of smart devices, sensors, and infrastructure. Notably, these computing environments 
continue to evolve, making further improvements in scalability critical for future research, which 
involves combining the sharding protocol with other conflict-free scaling solutions and designing a 
lightweight consensus mechanism as a component of the sharding protocol.
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