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ABSTRACT

Growing demand of computational power brings increasing scale and complexity of cloud datacenters. 
However, such increase also generates growing energy consumption and related cost incurred for cooling 
and maintenance. With concerns of cost and energy saving by both industry and academy, the reduction of 
energy consumption of cloud datacenters becomes a hotspot issue. Recently, virtual-machine-consolidation-
based strategies are proposed as promising methods for reduction of cloud energy consumption. Virtual 
machine (VM) consolidation effectively increases the resource utilization rate. However, it remains a 
great challenge how to reduce energy consumption while maintaining the quality of service (QoS) at a 
satisfactory level. In this work, a comprehensive framework is presented for the above-mentioned problem, 
which aims at maximizing the number of physical machines (PMs) to be turned off within a consolidation 
period following the constraints of QoS, in terms of Service-Level-Agreement (SLA) violation rate. In 
comparison with most existing related works which consider invariant utilization rate of PMs in computing 
energy reduction of candidate migration plans, propose framework considers time-varying utilization rate 
and employs the number of PMs to be turned off within a consolidation period (NPTCP for simple) as 
the optimization objective. The proposed framework consists of a resource selection algorithm taking the 
predicted migration overhead (derived by the Pareto distribution) as inputs and another algorithm generating 
optimal matching plans based on preference scores of candidate VMs. For the model validation purpose, 
a case study is conducted on the CloudSim simulation platform and it shows that the proposed method 
achieves better energy reduction and less SLA violation.
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INTRODUCTION

Cloud computing, as an emerging technology, is featured by the ability of elastic provisioning of on-
demand computing resources ranging from applications to storage over the Internet on a pay-per-use 
manner (Graubner et al. 2013). Cloud computing brings in numerous benefits for companies and end 
customers, e.g., end customers can invoke computational resources for almost all possible types of 
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workload when resources are reachable and a large number of today’s Web services are deployed on 
the Cloud (Deng et al.2014), and published on the Internet (Gan et al. 2017).

Cloud data-centers are key enablers for the scalability of the cloud platform (Xia et al., 2015). 
However, inefficient resource utilization is a common problem in today’s cloud datacenters (Vogels, 
2008) mainly because datacenters are usually designed and deployed to meet the peak work load but 
actually running at low load at most of the operational time. Datacenter owners thus have to afford 
huge cost for the investment into physical resources, which are often under-utilized. Both industry and 
academy are in a high need of methods to optimize energy efficiency of cloud datacenters. Recently, 
great efforts have been taken in this direction. The underlying requirement for energy-efficiency-
optimization is to minimize energy consumption while meeting the performance promised to cloud 
users specified by the Service-Level-Agreement (SLA). Several techniques and methods, at both 
hardware and software level, are developed for the above-mentioned purpose. At hardware level, e.g., 
Dynamic Component Deactivation (DCD) and Dynamic Performance Scaling (DPS) are two such 
techniques, by which hardware components can enter the dormant state under the control of hardware 
timers. While at software level, the live migration techniques are developed to offload tasks and 
processes among different machines for load balancing, VM-consolidation, or risk-decentralization 
purposes.

Virtual machine consolidation moves virtual machines (VM) form under-utilized physical 
machines (PM) to better-utilized ones. Thus, PMs with non-load can be switched into dormant state 
and consumes less energy. Moreover, the remaining PMs alive can consequently take a more condensed 
workload and thus the cloud system achieves a high utilization rate. Unfortunately, VM consolidation 
itself consumes time, energy, and resources, especially when the destination PM is highly loaded. 
Performance and QoS degradation, which may further cause SLA violation, can often be observed 
when frequent migration activities are carried out. Hence, strategies must be designed in such a way 
that energy reduction and SLA commitment are both taken into account.

Note that various early contributions consider consolidation and migration plans to be independently 
carried out on PMs, i.e., every PM decides whether to migrate or receive VMs based on its own utilization 
rather than system utilization. Recently, some other works consider dependent consolidation plans but 
most of them assume invariant utilization rate of PMs in computing energy reduction of candidate 
migration plans, i.e., the gains of energy efficiency is calculated by comparing VM distributions before 
and after the consolidation plan is carried out but the utilization rate of every PM is assumed to be 
unchanged after the consolidation is accomplished. Such assumption may lead to considerable accuracy 
loss in calculating energy reduction of candidate consolidation plans and could further mislead the 
determination of optimal plan. In contrast, however, this work considers time-varying utilization rate 
of PMs and circumvent such accuracy loss by employing the number of PMs to be turned off within a 
consolidation period as the optimization objective instead of energy reduction.

In this study, a novel model is proposed to describe the performance-aware and SLA-constraint 
VM consolidation problem and develop a selection algorithm taking the predicted migration overhead 
(derived by the Pareto distribution) as inputs and another algorithm to generate the optimal matching 
plans based on preference scores of candidate VMs. For the model validation purpose, this study 
conducts a case study on the CloudSim simulation platform and show that our proposed algorithms 
achieve better energy saving efficiency.

RELATED WORKS

VM consolidation is a promising method using live migration to consolidate VMs periodically 
(Farahnakian et al., 2014) to reduce the power consumption by packing the existing VMs into fewer 
PMs and switching the idle PMs into a power saving mode (Farahnakian et al., 2016). In recent years, 
there have been numerous researches in data center energy efficiency and most of them focus on 
using VM consolidation methods.



International Journal of Web Services Research
Volume 14 • Issue 4 • October-December 2017

77

Some studies attempted to use statistical or historical data to predict the system state and decide 
how to implement the VM consolidation. Bobroff et al. (2007) present a dynamic server migration 
and consolidation algorithm, which uses time series forecasting techniques and bin packing heuristic 
to minimize the number of PMs required to support a workload. However, their algorithm does not 
take into account the number of migrations required to a new placement.

Sandpiper (Wood et al., 2009) is designed to detect over-utilized PMs and creates a new mapping 
scheme of physical resources to virtual resources. To detect over- loaded PMs, Sandpiper collects VM 
and PM usage statistics, constructs profiles of resource usage and then uses the prediction techniques to 
achieve its goal. Xiao et al. (2013) presented a system, which use virtualization technology to allocate 
data center resources dynamically based on application demands and support green computing by 
optimizing the number of servers in use. They introduce a concept called SKEWNESS to measure the 
unevenness in the multidimensional resource utilization of a server. By minimizing SKEWNESS, they 
can combine different types of workloads nicely and improve the overall utilization of server resources.

Virtual Power Management (VPM), proposed by Nathuji et al. (2007), is designed to support the 
isolated and independent operation assumed by guest VMs running on virtualized platforms and to 
make it possible to control and globally coordinate the effects of the diverse power management policies 
applied by these VMs to virtualized resources. However, it did not take migration cost into account.

Srikantaiah et al. (2008) have applied bin-packing model to virtual machines consolidation based 
on CPU and disk usage. Experiments show the model can well balance energy consumption and 
performance in virtual environment. But the approach is application-oriented which is not suitable for 
a general virtual environment. Kusic et al. (2009) implemented a Limited Look-ahead Control (LLC) 
framework for dynamic resource provisioning and power management in virtual environments. The 
proposed approach accounts for the switching costs incurred while provisioning virtual machines. 
However, the proposed model requires simulation-based learning for the application-specific 
adjustments, which cannot be implemented by Infrastructure as a Service cloud providers. Moreover, 
it is not suitable for large-scale system for its complexity.

A. Verma et al. (2008) have presented an application placement controller pMapper, which that 
minimizes power and migration costs, while meeting the performance guarantees. The controller 
addresses the problem of power and migration cost aware application placement in heterogeneous 
server clusters. It can achieve minimizing power with a fixed performance requirement. A simple static 
and semi-static virtual machine consolidation approaches have been implemented in an enterprise 
environment in their recent work (Verma et al., 2009).

Wu & Fuyuki (2015) proposed an improved grouping genetic algorithm to estimate migration 
overhead and implement heterogeneous VM consolidation. The migration overhead is calculated 
according to memory size and page-dirty-ratio of the surveyed VM. A scoring system deployed 
the control node, based on migration overhead and the energy reduction, and is further developed 
to decide the optimal consolidation plan from all candidate ones. Wang et al. (2017) discussed the 
underlying problem of deciding necessary and sufficient Condition for effective resource mapping.

Beloglazov et al. (2011, 2013) proposed heuristic-based and statistical-measure-based approaches 
to dynamically decide threshold values to trigger consolidation activities. The VM Consolidation 
problem is divided into sub-problems. Each sub-problem, e.g., the overload detection problem and 
VM selection problem, has multiple candidates of heuristic algorithms, which are selected at run-
time based on system status.

Monilet al. (2016) proposed a heuristic and fuzzy-logic-based migration control method based 
on Beloglazov’s strategies. In their work, a Fuzzy VM selection algorithm dynamically decides the 
source PM for consolidation. The overhead to make such decision is reduced in comparison with 
traditional approaches with deterministic decisions. An overload detection algorithm is also proposed 
to decide the destination PM for the consolidation activity, based on the mean, median and standard 
deviation of utilization of candidate PMs.
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PROPOSED METHOD

In this section, a resource selection algorithm and an optimal-matching-based VM consolidation 
algorithm are proposed for performance-aware and SLA-constrained VM consolidation problem. 
Before going in details, the datacenter configuration is discussed in part A. This part elaborates 
basic configuration of a datacenter and discusses the need of using NPTCP as the alternative 
optimization objective.

Datacenter Configuration
This study considers a cloud datacenter comprised of numbers of physical machines. Each physical 
machine, PMi, can be characterized by its CPU capacity (CPUi), memory size (MEMi), and bandwidth 
(BWi). Through virtualization, a single PM can support and execute no more than n multiple VMs. 
Each VM instances can be characterized by their assigned resources (cpuj’, memj’ and bwj’) or their 
actual resource usage (cpuj, memj and bwj). The control node of the datacenter is response for the 
VM-PM mapping and energy-aware VM consolidation.

CPU utilization is the most important performance and energy-efficiency metric since CPUs 
consume the majority of energy. (1) captures the relationship between CPU utilization of a running 
PM, denoted by ui, and its power consumption (i.e., energy consumption per unit time), P(ui). The 
maximal/idle power consumptions of a PM are usually considered to fixed values, as denoted by Ppeak 
and Pidle. According to most existing works, P(ui) is approximately showing a linearly trend and can 
be obtained as (Beloglazov & Buyya, 2013):
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Consequently, energy consumption can be obtained as the following equation by considering 
time-varying power consumption:
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CPU utilization of a PM can be calculated as the CPU usage for VMs plus Virtual-Machine-
Manager (VMM):

u t
cpu cpu t cpu t

cpui
vmm i in

i
( ) = + ( ) +…+ ( )1 	 (3)

Let Em denote the total energy consumption of m PMs in a period of time T and P xm ( )  the total 
energy consumption on condition that x PMs are already turned into dormant state at time T:
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Let’s consider two different consolidation plans which turn e and s PMs into the dormant state 
and 1<e<s<m. ES(e) and ES(s) denote the energy savings for the two consolidation plans, it is clear 
to see that:
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Equation (6) indicates that during a VM consolidation period T, turning more PMs into dormant 
state leads to a better energy reduction in next period.

System Model
As mentioned by the previous section, we need to maximize the number of PMs to be turned off. 
The decision of turning off PMs and VM consolidation is made by the control node. To achieve a 
global optimality, the control note periodically or randomly scans the datacenter (or a part of the 
datacenter) to gather system information and make such decision. The control node maintains a request 
buffer for consecutively-arrived requests. It continuously handles requests from the request buffer 
on an FIFO (first-in-first-output) basis and tries to place corresponding VMs on PMs. However, the 
initial placement decision made by the control node may be biased and not energy-efficient. E.g., 
the Openstack framework can randomly select one PM from top-10 under-utilized candidates for 
the load-balance purpose. In doing this, PMs tend to equally share the workload and have a low 
utilization, which is disadvantageous to energy-efficiency. Therefore, consolidation activities may 
alter the initial placement scheme by moving, through the live migration techniques, VMs to towards 
hotspots while turning off cold one.

Based on the above discussions, an abstract control-flow model for the consolidation decision 
problem can be developed in Figure 1. It abstracts away implementation details cloud platforms and 
components while preserving the control-flow contents useful for optimal consolidation plan decision.

By repeatedly copying the refreshed dirty memory pages, live VM migration allows VMs being 
migrated continuing working, thereby reducing the service downtime. Note that live migration is not 

Figure 1. An overview diagram of control node functions
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always welcomed since it requires more pages to be copied and moved to the destination PM than the 
non-live one. Consequently, increasing SLA-violations, caused by insufficient available bandwidth 
needed to carry out page copy on the destination PM, may occur. Moreover, local computation is 
required on the destination PMs and thus a migration can only be carried out if the destination PM 
has sufficient remaining CPU resources for such computation.

It is easy to see that the algorithm for destination PM selection capable of selecting the 
appropriate destination PM, with adequate remaining bandwidth and CPU resources, is in high 
need. For this purpose, we first have to calculate the lower bound the time, T, required to carry 
out a successful migration:

T
E D
Bi

=
( )

	 (7)

where E(D) denotes the expected amount of data to be copied within a migration, D is usually decided 
by the ratio at which memory pages of the VM are dirtied, and Bi the remaining bandwidth on the 
ith candidate destination machine PMi.

It has been widely recognized that heavy-tailed distributions are well suited for modeling job 
processing and request handling activities in computer systems and networks. Thus, D is considered 
to be following such distribution. In particular, D is with the Pareto distribution type and it is lower-
bounded by x . The tail of D can therefore be obtained as:
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vj denotes the Pareto index and α  and ω are constants associated with the special resource 
configuration of VM memory:
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Total expected pages to be migrated can be calculated as:
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Deciding the Maximum NPTCP
Based on observations above, it can be seen that the consolidation plan are supposed to follow the 
constraints of bandwidth and CPU resources. For this purpose, we first have to decide the maximum 
number of PMs to be shut down in a period T (see Figure 2).

Let xij denote that VMi is on PMj, m the total number of current alive PMs, NPTCP the number 
of PMs which can be turned off within a period. PMs are sorted by their assigned resources, i.e., 
PMi has more rest resources than PMi+1. The problem of deciding the maximum number of PMs to 
be shut down is formulated as follows:
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The first three constraints guarantee that there is sufficient resource to support the migration 
activity within time T. The last equation guarantees that a VM can reside in one and only one PM.

Maximum NPTCP can be decided using Algorithm 1. Note that the complexity of this algorithm 
is O(mlogm) since the sorting time is O(mlogm) and it takes O(m) time to decide s when the sorting 
is done.

Figure 2. Migration activities on PMs

Algorithm 1. MAX NPTCP evaluation

1. Input Memory, CPU and Bandwidth configuration of each PM; Input assigned Memory, CPU and Bandwidth of each 
VM; Input Memory, CPU, Bandwidth usage and dirty ratio of each VM;
2. Input Period time T;
3. PMlist←Sort PMs increasingly based on PM assigned resource;
4. Integer VMN←0, NPTCP←0, td←0, tfbw←0;//VMN:a sum of VM on counted PMs; td: total data needs to be 
transmit; tfbw: total free bandwidth on destination PM;
5. While NPTCP ≤1 2/ & &m VMN ≤ m-NPTCP&&# of VMs in PMs(NPTCP+VMN+1) < n && td/tfbw < T
6.             NPTCP←NPTCP+1;
7.             VMN←VMN +# of VM on PMlist (NPTCP);
8.             td←td+ totaldata(PMlist(NPTCP));
9.             tfbw←tfbw+ freebandwidth(PMlist (NPTCP+1:NPTCP+1+VMN));
10. return NPTCP;
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Deciding Destination PMs
The candidate virtual machines ready for migration is denoted by V while the destination PMs selected 
by Algorithm 1can be described as H. The sizes of V and H are denoted by m and n. The problem of 
finding a strategy to migrate every candidate VM with minimum migration cost can be formulated 
as a matching problem on a weighted bipartite graph, {G=(V,H,E), w}.Networking plays a crucial 
role in Cloud computing (J. Huang et al. 2015&2016). VM consolidation costs networking resource 
and does negative effects to the performance of data centers. To take these effects into account, in 
this paper, we use the weight w(j,i) of edge eji∈Edenotes the cost of migrating VMj to PMi:

w j i
D MTD

B x b
j ji

i r

m
ir r
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MTD denotes the time-delay matrix and MTDji the delay required by migrating VMj to PMi. Such 
delay time depends on the datacenter network topology and relative position of both source PM (i.e., 
the PM which VMj was deployed before migration) and the destination PM, i.e., PMi. MTD can be 
measured and obtained from real tests.

A matching scheme M is assumed to be a subset of V×H such that (vj, hi)∈M implies that v finds 
h acceptable, each VM is assigned to at most one PM and vice versa. M e( )  denotes a function over 
edges such that M eij( ) =1 if eij is accepted by the matching scheme M and M eij( ) = 0  otherwise.

The resulting problem can be formulated as:
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To solve the problem, a preference list matrix, PLM, is generated. PLM is an m*n matrix and 
every row of the matrix represents the preference list of one of the candidate VMs. Elements of 
each row is a permutation of the set H with an increasing order by their weights. Let Tuples p = (r, 
k) denote positions of PLM generated by the above algorithm, r is some row and k is some natural 
number. A matching corresponds to a set of positions, P, if there is exactly one position for each row 
and no two positions contain the same PM and P=M.

PLM can be generated by Algorithm 2 with the time complexity of n2logn.
PLM serves as an input into Algorithm 3. This algorithm first explores the PLM column by 

column and considers each un-matched VM in turn. If there exists a non-overriding PM in this 
position, the algorithm generates a matching and removes the VM and PM from V and H, respectively. 
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This operation makes sure that most selected elements are on the left of the PLM and it generated 
a solution called Pareto optimal matching (POM) which means no two VMs could both improve by 
swapping the PMS that they are assigned to.

The second loop of this algorithm randomly selects two matches specified by PLM and swaps the 
destination PMs on condition that such swap leads to a reduced aggregated weight of the corresponding 
bipartite graph. Parameter s denotes the cycle index of this loop.

A good example is presented in Figure 3 to show the effectiveness of the proposed algorithm. 
Each row of the PLM example given in this figure denotes a candidate VM of V, and elements of each 
row are a permutation of the destination PM set H. The algorithm first investigates the first column 
of PLM and decides that elements1, 2 and 4 are available for VM 1, 3 and 5, respectively. Matches 
of {1, 1}, {3, 2} and {5, 4} are generated and therefore selected VMs and PMs are removed from 
V and H. In the following, the algorithm traverses remaining columns. Thus, by the process above, 
matches of {1, 1}, {2, 5}, {3, 2}, {4, 3} and {5, 4} are finally decided.

Swap process randomly picks two matches out, e.g., {2, 5} and {3, 2}. It then exchanges the PMs 
to generate two new matches, i.e., {2, 2} and {3, 5}. Finally, it accepts the swap if w(2,2) + w(3,5)< 
w(2, 5)+w(3, 2). The process repeats Algorithm 3 for s times. As shown by Figure 3, the consolidation 
plan illustrated in the lower right part is generated.

Algorithm 2. PLMGENERATOR

1. input V: a set of candidate VM, H: a set of destination PM and w
2. input preference list matrix PLM←null;
3. for j in V
4.      for i in H
5.           T(key, value)←{i, w(j,i)};
6.      endfor
7.      sort T increasingly based on value ;
8.      PLM(j)←T;
9.      T←null;
9.endfor
10.return PLM

Algorithm 3. POM (Pareto-Optimal-Matching) swap

1.   input preference list matrix PLM, set V, set H
2.   input list L←null, set VE←∅,set HE←∅;
3.   for i←1 to n
4.        for j in V
5.              if PLM(i, j)∈H
6.                    L(j)←PLM(i, j);
7.                    VE:=VE∪j;
8.                    HE:=HE∪PLM(i, j);
9.        endfor
10.      H:=H/HE;
11.      V:=V/VE;
12. endfor
13. for k←1 to s
14.      randomly pick x, y from V;
15.      S←w(x, L(x))+w(y, L(y));
16.      S’ w(y, L(x))+w(x, L(y));
17.      if S’<S
18.            exchange(L(x),L(y))
19. endfor
20. return L
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EVALUATION

Experimental Setup
Our proposed algorithms are implemented in CloudSim 3.0.3 and the cloud system simulated is based 
on the HP ProLiant G4 (1860MIPS for each core) and HP ProLiant G5 (2660MIPS for each core) 
servers. Network bandwidth is 1GB/s. VMs are of 4 types, namely, High-CPU Medium Instance (2500 
MIPS, 0.85 GB); Extra Large Instance (2000 MIPS, 3.75 GB); Small Instance (1000 MIPS, 1.7 GB); 
and Micro Instance (500 MIPS,613 MB). The consolidation period Tis 2 seconds and the parameters 
of pare to index α and ω are 4 and 1.5, respectively. The consolidation period T is 2 seconds and the 
number of Swap loops is equal to m.

Energy consumption and SLA violation rate are considered as the major metrics for optimal 
consolidation determination:

1. 	 Energy Consumption (kWh): The main metric as the target of VM consolidation is to reduce 
energy consumption. Energy consumption is computed by taking into account all PMs throughout 
the simulation by mapping of CPU and energy consumption from Table 1. The CPU utilization 
is measured and power consumption is calculated from Table 1 and at the end of the simulation 
energy consumption is measured by accumulating all PMs’ energy consumption.

Figure 3. An example of POM-swap
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To compare the energy saving efficiency of datacenters of different sizes, ESE is introduced. 
ESE donates the energy consumption of a datacenter employed a consolidation strategy versus the 
energy consumption of a same size datacenter employed the basis energy saving method DVFS:

ESE POM Swap
E
E
POM Swap

DVFS

−( ) = − 	 (21)

2. 	 Service level agreement violation (SLAV): Combined impact of Overload time fraction and 
Performance degradation due to migration. This metric can be directly got from the Cloudsim.

Note that saving energy and reducing SLA violation rate is usually conflicting goals. The 
product of ESE and SLAV, ESV, is therefore considered as a metric to decide the optimality of 
consolidation plans.

Experimental Result
To study the effect of VM consolidation on energy consumption, the simulation runs using Random 
workloads for 24 hours. Proposed method is designed to compare with traditional consolidation 
strategies used in CloudSim. Traditional consolidation strategies are combinations of two Overload 
detection algorithms (LR and THR) and four VM selection (MC, MMT, MU and RS) methods. 
Consequently, proposed method is compared with 8 different consolidation configurations. As can be 
seen from tables and figures in this article, proposed method outperforms most other consolidation 
strategies in terms of energy efficiency and SLA violation rate. By considering ESV as the metric of 
optimality, proposed method outperforms all other consolidation strategies.

Energy consumptions of datacenters of five different sizes are shown in Table 2.
By comparing the ESE results of proposed and traditional methods in the Figure 4, it is obviously to see 

that energy consumption is significantly reduced in proposed method. Average ESE of the proposed method 
is 0.59 while the minimum average result of all other methods is 0.65. These results confirm that resource 

Table 1. Characteristics of servers

Machine 
Type

Power Consumption Based on CPU Utilization

0 20% 40% 60% 80% 100%

HP G4 (Watt) 86 92.6 99 106 112 117

HP G5 (Watt) 93.7 101 110 121 129 135

Table 2. Energy consumption of different energy-saving strategies(kWh)

Number 
of Hosts

Energy Consumption of Different Energy-Saving Strategies(kWh)

DVFS POM-Swap Lr-mmt Lr-mc Lr-mu Lr-rs Thr-mmt Thr-mc Thr-mu Thr-rs

25 27.86 16.49 18.79 18.23 18.82 18.29 21.92 21.66 23.01 21.5

50 53.11 31.26 35.4 34.5 35.55 34.52 42.45 41.41 44.81 41.76

75 76.3 45.14 51.64 50.38 52.34 50.29 62.37 61.34 66.62 61.88

100 101.56 60.01 68.21 65.84 68.93 66.35 82.97 80.8 87.67 81.44

150 152.63 91.33 101.73 98.52 102.84 99 124.24 121.42 131.26 122.05
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selection strategy of proposed method, maximum NPTCP, performs well on saving energy. Therefore, it can 
be inferred that the energy saving strategy of proposed method owns an advantage over traditional methods.

The overall SLA violations of all consolidation methods are shown in Table 3 and Figure 5. The 
average SLA violation of our proposed method, 2.76%, outperforms Lr-mmt, Lr-mc, Lr-mu, Lr-rs, 
Thr-mmt, Thr-mc, and Thr-rs methods. Although our approach achieves similar violation to Thr-mu 
method, Thr-mu allows merely a single VM to be migrated at a time and while our approach allows 
multiple VMs to be migrated and definitely achieves better energy efficiency. As indicated by Figure 
6, our proposed approach achieves lowest ESV as well.

CONCLUSION

VM consolidation is a promising method to reduce the energy consumption of the data centers. In this 
study, a novel consolidation strategy consists of a resource selection method and resource matching 
method is proposed. A Pareto distribution is employed for estimating the total memory required in 
migrating VMs and the overall optimality of consolidation can be measured by the maximum number 
of servers to be turned off in a given period. An algorithm called POM-Swap is presented in order to 

Figure 4. Energy saving efficiency

Table 3. Overall SLA violation of different energy-saving strategies

Number 
of Hosts POM-Swap Lr-mmt Lr-mc Lr-mu Lr-rs Thr-mmt Thr-mc Thr-mu Thr-rs

25 2.26% 2.56% 2.97% 3.18% 2.60% 2.92% 3.19% 2.67% 3.47%

50 2.67% 3.50% 3.14% 3.55% 3.55% 3.15% 3.34% 2.80% 3.16%

75 2.83% 4.23% 3.65% 3.74% 3.85% 3.07% 3.22% 2.61% 3.31%

100 2.86% 4.16% 4.04% 4.00% 3.75% 2.90% 3.29% 2.54% 3.20%

150 3.18% 4.44% 4.34% 4.18% 4.25% 2.87% 3.28% 2.80% 3.12%
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generate the optimal consolidation plan with minimal SLA violation. A simulative case study suggests 
that the proposed strategy outperforms traditional methods in terms of energy saving and SLA violation.
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