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Abstract: This paper proposes a new method to analyze the spatial structure of urban systems using 

ideas from fractals. Regarding a system of cities as a set of “particles” distributed randomly on a 

triangular lattice, we construct a spatial correlation function of cities. Suppose that the spatial 

correlation follows the power law. It can be proved that the correlation exponent is the second order 

generalized dimension. The spatial correlation model is applied to the system of cities in China. The 

results show that the Chinese urban system can be described by the correlation dimension ranging from 

1.3 to 1.6. The fractality of self-organized network of cities in both the conventional geographic space 

and the “time” space is revealed with the empirical evidence. The spatial correlation analysis is 

significant in that it is applicable to both large and small sizes of samples and can be used to link 

different fractal dimensions in urban study, including box dimension and radial dimension. 

 

1 Introduction 

The evolution of cities as systems and systems of cities bears some similarity. In theory, a 

system of cites follows the same spatial scaling laws with a city as a system. The great majority of 

fractal models and methods for urban form and structure are in fact available for systems of cities. 

The theory of fractal cities was systemized by Batty and Longley (1994) and Frankhauser (1994) 

more than ten years ago. From then on, a number of advances have been made (e.g. Batty, 2008; 

Benguigui et al, 2000; Benguigui et al, 2006; De Keersmaecker et al, 2003; Thomas, et al, 2008). 

The fractal concepts on cities as systems are well developed, and the results provide the theoretical 

foundation for the study of fractal theories on systems of cities. 

However, a scale difference comes between systems of cities and cities as systems clearly. 
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Systems of cities are defined at the macroscale associated with interurban geography, while cities 

as systems are defined at the microscale associated with intraurban geography. There seems to be 

an explanatory breakup between the macroscale and the microscale. On the one hand, we cannot 

use the spatial interaction of intraurban elements (e.g. housings) to explain interurban dynamics 

and the spatial order of self-organized network of cities. On the other, we cannot use the rule 

based on the large scale, say, national scale, to explain the city growth and urban form. Therefore, 

it is necessary to make fractal studies on systems of cities. It will help us understand urban 

evolution by comparing the rules of these two scales of systems. 

An important point in urban studies of large scale is the rank-size rule. The Zipf’s law in 

essence is a kind of fractal model (Chen and Zhou, 2003; Frankhauser, 1991). The fractal 

dimension of the rank-size distribution of cities is theoretically the ratio of the dimension of urban 

network and that of regional population distribution; it is also the ratio of the dimension of urban 

form and that of population distribution of the largest city in an urban system (Chen and Zhou, 

2006). This discovery is revealing for us to bright to light the relationship between intraurban 

fractal models and interurban fractal models. Although there are not as many fractal studies on 

systems of cities as those on fractal cities, the fractal studies of central place (e.g. Arlinghaus, 

1985; Arlinghaus and Arlinghaus, 1989; Chen and Zhou, 2006), the rank-size distribution (e.g. 

Chen and Zhou, 2004; Frankhauser, 1991; Wong and Fotheringham, 1990) and transportation 

network (e.g. Benguigui and Daoud, 1991; Chen and Liu, 1999; Dendrinos and El Naschie, 1994; 

Lu and Tang, 2004), etc., make a good outset for further research.  

The well-known difficulty in the fractal study of systems of cities is the sample size problem. 

For a small regional scale, we have small number of cities and small spatial sample size. Under 

such circumstances, we cannot use the box-counting method to compute the fractal dimension. So 

it is hard to reveal the fractal structure of systems of cities. The spatial correlation analysis is a 

feasible way out of this difficulty. In this paper, based on the spatial correlation function, we 

develop a method to build the fractal model for systems of cities. The spatial correlation model is 

important for urban studies in that it possesses a potential to link several kinds of fractal models. 

First, the number-scale scaling and the area-radius scaling relation commonly used in fractal urban 

studies are actually special cases of correlation function. Second, the correlation dimension and 

the box dimension belong to the same dimension spectrum. The box dimension is the zero-order 
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dimension and the correlation dimension the second order dimension. In this sense, the correlation 

function not only is helpful in the fractal study of urban systems with small sample size, but also 

has the potential to build a logical relation between different fractal models. 

The correlation function is an effective mathematical tool to describe the fractal structure of the 

chaotic attractor in pseudo phase space. It is simple yet natural to extend the correlation function 

analysis from the phase space to the real geographical space. The difficulty lies in how to prove 

the validity of this extension both in theory and practice. The contribution of this paper can be 

summarized as follows. First, we prove that the spatial correlation exponent is just the second 

order information dimension based on the box-counting method. Second, we give a complete 

example of making use of the spatial correlation model. Third, we provide a systematic analysis 

on the spatio-temporal evolution of systems of cities using the fractal dimension and the scaling 

range. Fourth, we demonstrate the relationship between the spatial correlation dimension and the 

radial dimension of systems of cities. 

The remainder of this paper is structured as follows. Next section presents a spatial correlation 

model. The scaling exponent of the model is proved to be just the spatial correlation dimension of 

urban systems. Section 3 provides an empirical case to illuminate the spatial correlation model by 

applying it to the principal cities in China. The geographical meaning of the scaling range and the 

correlation dimension are illustrated with three measures of urban networks. Section 4 expands the 

discussion about some related questions, especially to demonstrate the relationship between the 

spatial correlation dimension and the radial dimension. Finally, this paper is concluded with a 

summarization of the main points of the modeling approach to fractal systems of cities. 

2 Theoretical and model 

2.1 Triangular lattice model of urban system 

The way we compute the fractal dimension based on the mass correlation function of urban 

system in geographical space is similar to that of computing the correlation dimension of strange 

attractors in phase space. The latter was developed by Grassberger and Procaccia (1983a, 1983b). 

However, the basis of building model is different. Considering urban systems to be networks of 

cities and towns, we start here with the triangular lattice model of city distribution, which is 
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connected with the fractal structure of central place (Chen and Zhou, 2006). As Batty and Longley 

(1994, page 48) point out, “The simplest geometric form of a system of cities is based on an 

entirely regular grid of basic settlement types – neighborhoods or villages say – which are 

systematically aggregated into all encompassing regions at successive levels up the hierarchy.” 

According to this idea, the geographical surface can be thought of as a sort of triangular lattice, 

while cities are particles distributed randomly on the lattice.  

The triangular lattice analogy is made for two reasons: (1) it is consistent with the central place 

model of Christaller (1966); and (2) it is in agreement with the study of spatial complexity. Some 

researchers such as Bura et al (1996), Sanders et al (1997) and Sanders (2006) take triangular 

lattice as a spatial support in the study of settlement system and urbanism by using the multiagent 

system (MAS). In modern science, the complexity is thought of as the order in a random 

background. Correspondingly, in our assumption of the triangular lattice, the urban system is 

treated as the random distribution in the orderly background (Figure 1). The order in the random 

background and the random distribution in the orderly background are in fact dual questions. 

 

r

 
Figure 1. The triangular lattice pattern of the spatial distribution of an urban system 

Note: The background of the model is a triangular lattice, which is consistent to the central place network. The real 

cities can be thought of as random particles distributed on the standard lattice nodes. This kind city distribution no 

longer has the rigid symmetry. The number of coordinate cities around a city does not equal 6. 

 

The notion of triangular lattice model of urban systems can be developed as follows. First, take 

the ideal earth surface as a triangular lattice. Original settlements are well-distributed on the lattice 

nodes, forming a triangular lattice. Secondly, there exist some unpredictable random factors, 
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namely chance factors, which cannot be expressed by models. Owing to the effect of chance, 

some original settlements evolved into cities or towns earlier than others. The immediate 

settlements around the cities are restrained from growing into cities because of “shade effect” 

(Chen and Zhou, 2006; Evans, 1985). To outward seeming, these cities are distributed randomly 

on the lattice nodes. The first aspect indicates a kind of determined geographical spatial system, 

while the second one indicates the random activity of city evolution in the deterministic system.  

We start our work of modeling spatial correlation of cities from the first law of geography 

proposed by Tobler (1970, P236): “Everything is related to everything else, but near things are 

more related than distant things.”(See also Tobler, 2004, P304) We can derive two hypotheses 

from this law. One is the spatial correlation effect: every city is related to every city else. The 

other is the distance-decay effect: near cities are more related than distant cities. The spatial 

correlation effect is the basis for our modeling, while the distance-decay effect is the prerequisite 

for mass correlation function. There are two basic modes of the spatial action in urban evolution. 

One is action at a distance, suggesting an inverse power-law relation; the other is locality, 

suggesting a negative exponential distribution (Chen, 2008). If the above hypotheses are true, the 

correlation function of cities will follow some power laws, and the correlation exponent is the 

fractal dimension or the function of fractal dimension.  

In the triangular lattice model shown in Figure 1, every city can be counted as a particle. The 

problem is to find the regularity in the spatial distribution patterns of these “particles”. For 

purpose of this, it is necessary to make some mathematical models. By using the concepts of 

auto-covariance and standardized data (e.g. Dendrinos and El Naschie, 1994; Vicsek, 1989), we 

can define a density-density correlation function such as 

)()(1)( rxxr
x

+= ∑ ρρ
S

R ,                            (1) 

where R(r) denotes the density correlation, a generalization of the covariance function, ρ(x) refers 

to city density, S represents the area of a cellular unit occupied by a particle, x is the location of a 

certain particle (defined by the radius vector), and r denotes the distance to x. According to 

equation (1), if there is a city at x, the probability of finding another city at distance r from x is 

R(r). The key problem is how to determine the relationship between correlation function R(r) and 

distance r.  
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Suppose that the correlation function satisfies the scaling relation (Feder, 1988; Vicsek, 1989) 

)()( rr RR αλλ −∝ .                                (2) 

Thus the system has the property of scaling invariance, and its structure is self-similar in certain 

spatial-temporal condition. In equation (2), λ is the scale ratio, and α is the scaling exponent (α>0). 

If and only if the density correlation function takes a form of inverse power law such as 

α−∝ rr)(R ,                                   (3) 

will the functional equation (2) come into existence. In this case, the scaling exponent is expected 

to be α=d-D, where d=2 is a Euclidean dimension of geographical space, and D, the correlation 

dimension of cities. Equation (3) is a spatial scaling law. In fact, it has been shown that the 

correlation density follows the power-law distribution or the exponential distribution, sometimes 

other distributions. What kind of distribution will it be as to a system of cities? This cannot be 

proved with apriori knowledge. It depends on the real empirical results. If an urban system 

evolves into a self-organized critical state, the spatial correlation follows a power law. Otherwise, 

it follows an exponential law (Liu and Liu, 1992). More discussion can be seen from Batty and 

Kim (1992) for the comparison of exponential laws vs. power laws. 

The density correlation function is useful in characterize urban form, the DLA models, etc., but 

it seems not to be a convenient modeling approach to the strange attractors in a two- or 

three-dimensional pseudo phase space (Williams, 1997). In order that the correlation function can 

be applied to the two-dimension pseudo phase space, the density correlation should be 

transformed into the mass correlation. For simplicity, we assume that the fractal object is of 

isotropy, i.e., the correlation of particles is independent of direction. The density correlation 

function only depends on the scalar r, equation (2) reduces to a homogeneity relation, and 

R(r)=R(r). Defining a cumulative distribution of city density, we have a mass function 

ξξξρπ d)(2)(
0∫ +=+
r

xrxA ,                            (4) 

in which ξ is a spatial displacement (0≤ξ≤r, r>0). For a certain point x (i.e. r=0), the density 

approaches to infinity. A(x) can be endowed with a value by taking a unit area for it so that the 

point is of mathematical meaning. Therefore, the density function has no difference from the mass 

function, i.e., ρ(x)≡A(x). In this instance, the density notation ρ(x) can be replaced by the mass 

symbol A(x), and equation (1) can be changed into an integral form 
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where C(r) is called correlation integral or correlation sum (Williams, 1997). Thus the density 

correlation, a decreasing function, is transformed into the mass correlation, an increasing function. 

Generally speaking, in equation (5), x is location variable, r is a scale parameter. However, for 

the scaling analysis, the variable x can be fixed and r acts as a variable. The attribute of r depends 

on the analytical framework. We can change r, for example, by multiplying it with a numerical 

value λ. If the structure of urban system is simple, i.e., it has certain characteristic length, the 

mass-mass correlation function, equation (5), will change with the parameters. Thus we can find a 

most proper value for r as a constant (no scaling invariance). If the structure of urban system is of 

singularity, equation (5) implies the scale-free characteristics. Therefore, for a certain system, 

regarding all locations as known numbers, and the parameter r as a variable (instead of constant), 

we can get mathematical relation between the correlation function C(r) and the displacement scale 

r, based on which we can compute the correlation dimension. 

For convenience, the triangular lattice state can be divided into two types: if there exists a 

particle, the state is 1; otherwise, the state is 0. Then we can use the dummy variable to describe 

the spatial distribution of a system of cities. 

2.2 Spatial correlation sum function 

In the following part we will derive the correlation sum function in the geo-spatial view. For a 

homogeneous region with N cities, if there is a city at x, the state of x is considered to be 1 in 

terms of our assumption, that is, A(x)≡1. As to the field within a radius of r from x, there are two 

possible states: (1) cities occur in the scope, the state is represented by 1; (2) no city in the scope, 

the state is 0. Given homogenous distribution of the N points, the area S can be expressed by the 

number of cities N in the topology sense (S~N2). In fact, taking a city i at x as the center, we can 

draw a circle Ci with a radius of r to represent the field, and then examine the probability that city 

j is compassed by circle Ci. Filling the circle forms a disk, which indicates a small box on the 

digital map. For city i, it is surely in the circle, and the probability Pi(x)=A(x)/N=1/N. As to city j, 

there are two kinds of possibilities: (1) it is in the circle, the probability Pj(x)=1/N; (2) it is not in 

the circle, the probability Pj(x)=0/N. So the cumulative probability of finding city j within the 
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circle can be represented in the Heaviside function form such as A(x+r)/N=∑H(r-dij)/N, where dij 

is the distance between city i and city j, and H(▪) is the Heaviside function. Thus, for the 

standardized data, equation (5) can be replaced by 

∑∑
= =

−=
N

i

N

j
ijdrH

N
rC

1 1
2 )(1)( ,                           (6) 

where r is the length of the yardstick, corresponding to the displacement parameter, C(r) is the 

spatial correlation sum. The Heaviside function has the following property 
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Apparently, H(▪) acts as a kind of gatekeeper or admissions director. If the density correlation 

function follows the inverse power law in the form of equation (3), i.e. )()( DdrrR −−∝ , we have 

2)()( +−−∝ DdrrC according as equation (4). When d=2, we have 

DrrC ∝)( ,                                   (8) 

where D is the scaling exponent, i.e. the correlation exponent (Williams, 1997). It can be proved 

that D is just the correlation dimension, and the value of which varies from 0 to 2. 

2.3 The dimension implications of the scaling exponent 

The correlation dimension implications of the aforementioned scaling exponent can be 

expounded through the generalized dimension. Based on the Renyi information entropy (Rényi, 

1970), the generalized correlation dimension Dq can be defined as follows (Feder, 1988; Vicsek, 

1989) 

ε

ε
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P

q
D ,                              (9) 

where q refers to the order of moment ( ∞−−−∞= ,,2,1,0,1,2,,q ), ε to the dimensionless 

box size, and Pi to the count in each box divided by the total count and thus the summation is over 

the N(ε) boxes. Equation (9) gives a multifractal spectrum (Mandelbrot, 1999), and it is a 

reference formula for the following analogy. 

In order to prove that the scaling exponent D in equation (8) represents the correlation 
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dimension, we conduct the following spatial analysis. Using any of the cities, say city i, as the 

center to draw a circle of Ci with a radius of r, we then examine the probability to find cities in the 

circle (Figure 2). Suppose that Ci compasses Nk(i) cities, including the center city i, and k can be 

regarded as the serial number of all the cities compassed by Ci. Then the cumulative probability of 

finding cities at a randomly chosen site within the given circle is 

)(
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)(1)( iP
N

iN
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j
iji ==−= ∑ ,                      (10) 

In terms of equation (6), the spatial correlation function can be expressed in the form 
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If Ci compasses city j, Cj will compass city i (Figure 2a). Now cities i and j share the same serial 

number (Figure 2b). In this instance, all the cities compassed by the circle of radius r can be 

compassed by a small box with the same scale r. The box is numbered by k, and the number of 

small box Nr≤N. Then the spatial correlation function equation (11) can be revised as 
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where Pk=Nk (i)/N is the probability of city-city correlation depending on scale r. Then equation (8) 

can be rewritten as 

r

P
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A subscript, s, is attached to fractal dimension D to denote spatial correlation. Comparing equation 

(13) with equation (9), we can find that the scaling exponent Ds is just a kind of correlation 

dimension, which can be termed as spatial correlation dimension.  

The value of spatial correlation dimension comes between 0 and 2. In fact, for an isolated city 

in the region, we have Pk=P=1/Nr=1. The length of the smallest yardmeasure is close to 0 

infinitely. According as equation (13), we have 

0
ln

])/1ln[(
lim

ln

)/1(ln
lim

2

0

2

0
===

→→

∑
r
N

r

N
D r

r

N

k
r

rs

r

;                   (14) 



 10

If cities distribute evenly in triangular array in a 2-dimension plane, still we will have Pk=P=1/Nr, 

and the length of the smallest yardstick is rNr /1= . According as equation (13), we have 

2
)/1ln(

])/1(ln[
ln

)/1(ln 2
2

===
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r

rr
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k
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s N
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r
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Apparently an even distribution system suggests a trivial structure of Euclidean geometry. The 

dimension of the cities distributed equably on the triangular lattice can be regarded as 2. It has 

been proved that the fractal dimension of the standard central place pattern is just D=2 (Chen and 

Zhou, 2006). However, the spatial distribution of real cities has a dimension varying from 0 to 2. 

 

City 1

City 3

City 2

rr

City 2

City 3

City 1

 

a. Spatial correlation of cities              b. Coverage of small box 

Figure 2. Demonstration on the spatial correlation of cities and the coverage of small boxes 
Note: In Figure 2a, the serial number of the three cities are i, j=1, 2, 3. The number of cities is N=3. Using each 

city as the center, we can draw a circle Ci with a radius r (Ci also represents a box). In the given scale r, C1 

compasses only city 1, while C2 compasses city 2 and city 3 and C3 compasses city 3 and city 2. Therefore, if we 

cover the cities using small boxes with the scale of r, we need only two boxes, as shown in Figure 2b. City 2 and 

city 3 will share the same small box. The serial number of boxes can be defined as k=1, 2. The number of small 

boxes is Nr=2<N=3 (refer to Appendix 1). 

3 Empirical analysis: a case of China 

3.1 The size threshold of cities and distance measurement 

Compared to the study of fractal cities as systems, the research on systems of cities poses a 

much harder challenge to us. Firstly, it is difficult to define the limits of space and the size of an 
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urban system owing to the self-similarity of both urban form and the rank-size distribution of 

cities (Batty and Longley, 1994; Chen and Zhou, 2003; Frankhauser, 1994). Secondly, 

geographical laws are the statistical laws which always appear at the macro level of systems. 

Geographical regularity of urban systems can be effectively revealed by large samples with a great 

many cities, as indicated by the work of Zanette and Manrubia (1997). Thirdly, geography seems 

to be a science of process instead of a science of being/existence. It always takes a long time of 

evolvement for geographical features to reach a state of regularity. The geographical laws should 

be understood in both space and time context. China is an available place for us to find statistical 

spatial regularity in that it has a large sample of cities and a long history. Our study area covers the 

whole continent part of China, including more than 660 cities (Figure 3).  
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Figure 3. The spatial distribution of the main cities in China 
Note: All the gateway cities except Shenzhen are important seaports in China. They are big cities similar to 

provincial capital cities. Their city function is as important as that of provincial cities. Although Shenzhen is not a 

seaport, it is a gateway connecting the mainland and Hongkong. 

 

The lower limit of city size should be defined for our analysis. To estimate the lower size limit 

is analogous to determining a level of “resolution”. For an urban system obeying the Zipf’s law, 

the city-size distribution is of scale invariance, and theoretically there is no distinct limit between 
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urban and rural settlements. Zipf’s law indicates fractal structure (Chen and Zhou, 2004; 

Frankhauser, 1990; Nicolis, et al, 1989; Wong and Fotheringham, 1990), while a fractal implies 

that the scale can be very small. However, in practice, we can discriminate city from non-urban 

settlements by the scaling range of the double logarithmic plot demonstrating the rank-size 

distribution of cities, because the self-similarity always break down when the scale is too large or 

too small. Actually, it is demonstrated that the rank-size distribution of rural settlements follows 

the exponential law instead of the power law (Grossman and Sonis, 1989; Sonis and Grossman, 

1984).  

The lower limit of the scaling range of the power-law distribution of cities is the critical size 

threshold, the tail below which can be regarded as non-urban settlements. Among all the cities 

(more than 660) in China, about 510 cities appear above the critical size threshold. However, it is 

difficult to demonstrate the analytic process in pictures if we consider all the 510 or so cities in 

computation. For simplicity, we consider the most outstanding cities according as both the city 

function and size. Thus the number of cities can be reduced to N=39, including the 34 cities as 

provincial capitals and the 5 cities as the most important gateways (Figure 3). So we will treat 

with a 39× 39 distance matrix. 

Note that the number of spatial correlation is a concept easy to be misunderstood. For a system 

of N cities, we have N×N square matrix. Clearly the number of correlation is (1/2)N(N+1). 

Excepting the N diagonal elements indicative of the auto-correlation distance, we get a number of 

correlation of (1/2)N(N-1). However, it is hard to understand the correlation number of (1/2)N(N-1) 

in physical meaning. For the spatial correlation of any two cities, say city i and city j, the number 

of correlation is not 1 but 4. Here we have the cross-correlation of i and j (based on i), j and i 

(based on j), auto-correlation of i and i (based on i), and j and j (based on j). Therefore, in the 

correlation probability function, the denominator is N2 instead of (1/2)N(N-1). Otherwise, we 

cannot implement the related mathematical transformation for the spatial correlation model. 

Distance is one of the basic measures in the urban spatial analysis. We have two kinds of 

distances: one is in a straight line, the other in a curve line. The former is equivalent to the crow 

distance, while the latter may be analogous to the cow distance (Kaye, 1989, P178). In terms of 

our triangular lattice model, the straight-line distance between cities i and j can be defined in the 

system of barycentric coordinates first introduced by Moebius (1827). The distance formula is 
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where dij denotes a beeline, x, y and z are the coordinates of cities. Equation (16) is equivalent to 

the definition of the Euclidean distance based on the rectangular coordinates. The distance can be 

computed easily by using digital maps in GIS. Obviously, if we use the beeline distance, the 

geographical implication of the probability Ci(r) is the ratio of the number of cities falling into the 

circle of radius r centered at city i to the number of all the cities N. According as equation (11), the 

correlation function C(r) is the sum of Ci(r) divided by N. 

As to the city distribution in the real world, however, it is very complex. The geographical 

implication of beeline distance is more explicit to demonstrate on a map, while the transportation 

distance has more practical sense. Therefore, for an empirical analysis, we extend from the 

Euclidean distance to the real transportation distance, including the distance by highway or 

railway between any two cities. In this case, the above circle covering cities will have topological 

transmogrification. 

As mentioned above, the correlation exponent based on beeline distance is just the correlation 

dimension in two-dimensional embedding space. However, how to interpret the correlation 

exponent based on transportation distance? We need to refer to the concept of multidimensional 

scaling of coordinate and the remapping method. In principle, if only we have a distance matrix of 

a certain kind of nodes or location, measured by Euclidean distance, journey time, travel cost or 

transportation distance, we can remap the spatial distribution. As Haggett et al (1977, P326) 

pointed out: “Geographers are frequently concerned with discovering map structure from a matrix 

of interpoint distances.” Although there is no precise solution to this mapping problem, there are 

ways of making a ‘best estimate’ of the cities’ location (Haggett, 2001). As the railway distance 

and highway distance are generally proportional to travel time, we can use the method of 

multidimensional scaling to transform a conventional transportation map into a new map format. 

In the new map, the beeline distance among cities equal to certain transportation distance, and we 

can use the same method as the above-shown one to prove the correlation dimension in the “time” 

space (See Haggett et al, 1977, for the concept of time space). 

Here we do not need to carry out this kind of map transformation in that we have a better 
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method to compute the correlation dimension based on transportation distance. However, such 

ideas of multidimensional concepts and spatio-temporal map transformation provide us with a 

theoretical foundation to interpret the spatial correlation: the correlation dimension based on 

beeline distance is a kind of fractal dimension in conventional geographic space, while the 

correlation dimension based on transportation distance is in essence a kind of fractal dimension 

based on a time-space map. 

The following is an empirical analysis of China’s cities by using our method. The distance data 

by both railway and highway can be gotten from the Chinese transportation map. Owing to the 

absence of railway or highway data between some cities, our computation based on the railway 

network will deal with only 31 cities (a 31× 31 distance matrix), and the computation based on 

the highway network involves 34 cities (a 34× 34 distance matrix). In fact, we are in a dilemma. 

On the one hand, the number of cities should be kept constant in order to make comparable the 

fractal parameters based on different distances; on the other, the elements of the urban system 

should be as many as possible in order to benefit the future study related to this subject. As a 

compromise, the computation based on different distances will involve different numbers of cities. 

3.2 Computation method and results 

It is easy for us to deal with the spatial correlation function based on the Euclidean distance by 

drawing circles with the aid of GIS (see Longley et al, 2001). However, this method seems to be 

unsuited for the distance by highway or railway. In order to avoid difficulty involving curve length 

(transport mileage), we use the yardstick to measure the number of cities. Thus, the work of 

drawing circles on digital map (representing concrete space) is replaced by counting in table 

(representing abstract space). Here we investigate the regularity in the spatial distribution of cities 

using the Euclidean distance. For a system of 39 cites (N=39), the distances between any two 

cities form a square matrix with dimension 39×39, which has N2=1521 elements. The entries are 

the distance dij. For simplicity, let N(r)=C(r)N2, i.e., we substitute the accumulative number N(r) 

for the accumulative density C(r); Therefore equation (6) changes to 

∑∑
= =

−=
N

i

N

j
ijdrHrN

1 1

)()( ,                            (17) 

which is in practice equivalent to the correlation function. Then equation (8) should be replaced by 
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the following relation 

sDrrN ∝)( .                                  (18) 

Replacing the correlation function C(r) with the city number N(r) don’t influences the spatial 

correlation exponent, Ds. It is apparent that a log-log plot of equation (18) should produce a 

straight line slope suggesting the fractal dimension. 

According as the property of the data distribution, we choose a step length of △r=100 

kilometers. The least yardstick is 100, and the real yardstick or stride length is r=n△r=100n, 

where n=1, 2, ,  are natural numbers. It is not difficult to calculate the number N(r) with 

equation (17). Changing the step length r, we will obtain different numbers N(r). Here we have a 

series of 40 data, and the results are list in Table 1 and are displayed in Figure 4. The double 

logarithmic plot shows that there exists a definite scale-free region, and the slope of the line 

segment in the scaling range gives the estimated value of spatial correlation dimension. Of course, 

the scaling range is clearly confined as the moment order is q=2. The higher order of correlation 

indicates the narrower scaling region. 

 

Table 1 The correlation number of China’s cities measured with variable yardstick 

Yardstick 
(r) 

City Number N(r) Yardstick
(r) 

City Number N(r) 
Euclidian 
distance 

Railway 
distance 

Highway 
distance 

Euclidian 
distance 

Railway 
distance 

Highway 
distance 

4000 1521 931 1028 2000 1277 539 528
3900 1519 923 1012 1900 1255 511 500
3800 1515 919 1000 1800 1187 453 474
3700 1511 909 988 1700 1115 433 434
3600 1503 903 978 1600 1061 415 408
3500 1499 895 962 1500 979 375 374
3400 1493 889 938 1400 889 343 342
3300 1485 873 916 1300 821 299 304
3200 1479 851 904 1200 741 263 274
3100 1473 841 882 1100 647 221 250
3000 1463 819 860 1000 561 191 210
2900 1445 807 848  900 481 161 178
2800 1441 795 820  800 405 139 148
2700 1423 785 782  700 339 129 122
2600 1407 767 754  600 257 93 102
2500 1395 733 720  500 195 79 84
2400 1369 699 676  400 129 61 64
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2300 1351 667 640  300 95 43 48
2200 1335 625 594  200 63 33 40
2100 1313 599 558  100 47 31 34

Note: (1) The Euclidean distance is computed through the digital map of China by using the ESRI ArcGIS 

software; (2) The transportation distance data come from the New Communications Atlas of China. SinoMaps 

Press, 2003; (3) The data with bold character in this table are those falling into the scaling range. 
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Figure 4. The spatial correlation sum plot of Chinese cities based on Euclidean distance 

 

A difficult problem is to determine the limits of the scaling range objectively in the log-log plot. 

Two methods are employed in our study. One is the intuitionistic method, that is, one can inspect 

the scale-free ranges by eye before carrying out detailed calculations, and, from this visual 

inspection, get some general guidance to a judgment of scaling regions. However, sometimes a 

simple observation of the plot does not work, and then we need the second method, the regression 

analysis method. Firstly, we can get a straight line segment as the scale-free region using the 

simple intuitionistic method. Secondly, make regression analyses using the data in the line 

segment. If they fit well to the power function, extend the data range and test again; otherwise, 

reduce the range and test. Conduct the test again and again until we find the proper scaling range. 

A least squares computation involving the data points falling into the scaling range yields the 

spatial correlation model of Chinese cities in the form 

472.1021.0)( rrN = . 

The determination coefficient value is R2=0.9974, and the spatial correlation dimension is 

estimated as Ds=1.472. Apparently, the scaling invariance of the spatial correlation exists only 
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within a certain scale range of city distance. If the yardstick r is so small that there is no any other 

city around a city, spatial correlation does not exist around the city. On the other hand, if the 

yardstick r is so large that it is greater than the ultimate distance of urban influence, the interaction 

between any two cities should be ignored. This saturation effects indicates the window size. In our 

computation, the scaling range of cities is in between 300 km (lower limit)-1700 km (upper limit). 

Similarly, we can estimate the parameter values of the spatial correlation models based on the 

transportation distance (Figure 5). As to the railway network, N=31, the number of elements of the 

matrix is 961. The number of data points given by equation (17) is 51, and part of the data 

overflowing the scaling range is omitted in Table 1. A least squares computation utilizing the data 

within the scale-free region yields 

3831.10146.0)( rrN = . 

The goodness of fit is R2=0.9966, and the spatial correlation dimension Ds=1.3831. As to the 

highway network, N=34, the number of elements of the matrix is 1156. The number of data based 

on equation (17) is 62. (Still, Table 1 omitted part of the data overflowing the scaling region). The 

spatial correlation model based on the scaling range is given by a least squares analysis such as 

3155.1024.0)( rrN = , 

The correlation coefficient squared is R2=0.9981, and the spatial correlation dimension Ds=1.3155. 

All the computation results are shown in Table 2.  

 

Table 2 Spatial correlation dimension, scaling range and related statistics of Chinese cities (2002) 

Distance 
type 

Scaling 
range 

Total dot 
number 

Dot number 
in scaling 

range 

Correlation 
dimension 

Goodness 
of fit 

Spatial 
correlation 

distance 
Euclidian 
Distance 

3~17 40 14 1.4720 0.9974 300~1700 km 

Railway 
Distance 

3~27 51 24 1.3831 0.9965 300~2700 km 

Highway 
Distance 

3~30 62 27 1.3155 0.9943 300~3000 km 
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        a. By railway network                     b. By highway network 

Figure 5. The scaling ranges of the spatial correlation sum of Chinese cities based on 

transportation distance (2002) 

 

Now we know that the spatial correlation function of Chinese cities, measured either by the 

Euclidean distance or by the transportation distance, has the property of scaling invariance. This 

means that the spatial structure of Chinese urban system is statistically self-similar. The scaling 

range based on transportation distance is wider than that based on beeline distance, but the 

dimension value based on beeline measure is greater than that based on transportation measure. 

Indeed in fractal geometry it is known that when considering a tortuous and ramified network and 

measuring the distances λ on the network, the number N(λ) of points accessible is c)( DN λλ ∝ , 

where Dc is the connectivity dimension (Rammal et al, 1984), which bears an analogy with the 

dimension related to transportation distance. Usually Dc<D, only for non-tortuous fractals, we 

have D=Dc. This is in accordance with the above results.  

The spatial correlation dimension based on the Euclidean distance and the transportation 

distance can be employed to measure the development of the transportation network. For cities in 

a certain region, their location will not change for a short time and the Euclidean distance between 

any two cities will remain unchanged. However, the transportation networks usually change with 

the lapse of time. If the transportation between any two cities is a straight line, the transportation 

network of the urban system reaches a limit state. Let Db indicate the correlation dimension based 

on the beeline distance, and Dt, the dimension based on the transportation network. The more 
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development the transportation network is, the closer Db reaches Dt (Db≤Dt). With the 

development of the transportation, theoretically we will have 

1/ bt →DD .                                (19) 

Therefore, we can define an index to represent the accessibility of an urban network 

b

t11
D
D

−−=ω .                               (20) 

It can be called the development index of a transportation network. Knowing that 0<D<2 in theory 

but 1<D<2 in practice, we have 0<ω<1. The closer ω reaches 1, the better connection between 

cities is. Based on Table 2, the development index of Chinese railway network, ωr=0.9396, and 

that of the highway network, ωh= 0.8937. However, as we didn’t conduct a computation based on 

an identical data set of Chinese cities, the result here is only valid to some extent. 

4 Discussion 

4.1 Spatial correlation of different scales 

The computation in Section 3 shows that the spatial correlation function follows the power law 

indicative of fractal structure. It implies that the spatial distribution of cities has the property of 

scaling invariance, which reminds us of the possible self-organized criticality (SOC) in the urban 

system. Generally speaking, to a self-organizing system without evolving into critical state, the 

correlation function obeys the exponential law rather than the power law (Liu and Liu, 1994). The 

correlation function will appear in the form of power law only when the system reaches the critical 

state. As Hergarten (2002, P99) pointed out, “A system exhibits SOC if its phase space contains a 

strange attractor where events of all sizes occur, and the size distribution of these events follows a 

power law.” This study lends further support to the notion of possible SOC in central place 

systems as self-organized urban networks (Chen and Zhou, 2006). 

However, the scaling invariance of an urban system only exists within a certain range of scale. 

There is a fixed distance between any two cities. If the yardstick is too short, the probability of 

finding other cities around one city will be so small that there is hardly an object of spatial 

correlation. On the other hand, if the yardstick is too long, the corresponding distance between any 

pair of cities will be very far, and the correlation intensity will be too weak to be considered. A 
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fractal city is an evolving fractal (Benguigui et al, 2000), so is a fractal urban system. The size of 

the scaling range suggests the development degree of the fractal structure of an urban system. 

Generally speaking, the more closely the evolution of an urban system approaches a 

self-organized critical state, the more distinct a fractal structure is. The lower limit of the scaling 

range indicates the shortest distance of spatial distribution of cities in an average sense, while the 

upper limit indicates the longest average effective distance of urban action. It can be seen from 

Table 2 that the average effective Euclidean distance of Chinese cities of provincial capitals is 

about 1700 km. It is about 3000 km measured by transportation distance. Because the railway 

network is likely to be made of straight lines, the effective action distance measured by railway 

comes between that measured by beeline and that by highway. 

One question is what if we change the area coverage or the size threshold? Will the regularity in 

spatial correlation is still there? In order to answer this question, it is necessary to give another 

empirical example based on relatively small scale. We will reduce our study area to a province of 

China, Henan, and we will reduce the threshold of city size to the level of the main cities in this 

province. For simplicity, we study Henan’s 17 principal cities, which construct a 17×17 matrix. 

The step length takes as △r=25 km, so the smallest distance is 25, and we have r=25n, where n=1, 

2, 3, …. The 17 cities are mainly connected with highway, and railway only exists between some 

of the cities. In this case, we conduct a computation of the Euclidean distance and the highway 

distance data in two different years. By means of equation (17), we get a series of yardstick and 

their corresponding city numbers (see Appendix 2). The double logarithmic plot of equation (18) 

will yield a straight line as a whole or in part, if the analytical model is correct. As expected, there 

is a scaling range on each log-log plot. The main modeling results are listed below 

5192.1054.0)( rrN = , 3383.10965.0)( rrN = , 3855.10794.0)( rrN = . 

The analytical process shows that the spatial correlation model is also valid in a smaller region, 

say Henan Province of China. The main points of the analytical process can be summarized as 

follows. First, the scaling range measured by Euclidean distance is the smallest of the three, i.e., 

the result based on the transportation is better to reflect the fractal structure of an urban system. 

Secondly, the spatial correlation dimension based on the transport mileage increase from 1993 to 

2002, accordingly, the development index of transport network rises from 0.8809 to 0.9120. The 
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addition of traffic line to the urban network can be revealed with the index. Thirdly, for those 

cities with lower function and smaller size, the correlation distance indicated by the scaling range 

decreased a lot. The lower limit is about 50 km and the upper limit is about only 300 km (Table 3). 

Table 3 Spatial correlation dimension and the scaling range of cities in Henan Province 

Distance type Year Scaling 
range 

Dot number 
in scaling 
range 

Correlation 
dimension 

Goodness 
of fit 

Correlation 
distance 

Euclidean Distance Any 2~8 7 1.5192 0.9932 50~200 km 
Railway Distance 1993 2~14 13 1.3383 0.9965 50~350 km 
Highway Distance 2002 2~12 11 1.3855 0.9943 50~300 km 
 

Whether it is for a large region like China or a medium region like Henan Province, the measure 

of transportation distance is better than that of Euclidian distance in the case of revealing the 

fractal distribution of cities. As mentioned above, the transportation distance is proportional to 

travel time. It can be inferred that urban system in “time” space has a better fractal structure than 

that in conventional geographical space. Therefore, it is very necessary to develop the theory and 

method of map transformation using the ideas of multidimensional scaling. 

4.2 One-point correlation and the number-radius scaling 

Now let turn our attention from point-point correlation to one-point correlation of cities. This 

deals with the relationship between the correlation function and the regular fractal dimension. The 

correlation function of an urban system is related to two regular dimensions: one is the box 

dimension, and the other is the radial dimension (see Frankhauser, 1994). The theoretical relation 

between correlation dimension and box dimension is given in Section 2.3. Because the number of 

cities in our examples is relatively small, empirically it does not make sense to estimate the fractal 

dimension using the box-counting method. However, the analysis of the radius dimension can 

provide some useful information. In equation (5), endow x with a fixed value, say, let x=0, then the 

correlation function is proportional to mass function. Thus we reduce the point-point correlation 

function to a one-point correlation function. That is, the relationship between any two cities 

changes to the relationship between one city and other cities around. More straightly, in equation 

(17), let j=0, it means that we fix a city. Thus the cumulative number of correlation changes to 

cumulative number of cities within a radius of r from the given city. In this way, the dimension 
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defined by equation (18) is not the second order correlation dimension, but the zero-order 

correlation dimension, i.e., the radius dimension of urban systems. 

Taking city j=0 as the center, we can draw a series of concentric circles at regular intervals. The 

radius of each circle is r. Let N(r) be the cumulative number of cities in the circles. Then we can 

compute the radius dimension based on the power function N(r)∝ rD. The radius dimension is 

different from the spatial correlation dimension in that it describes the relationship between the 

center and its peripheral cities. There are two more simple methods to estimate the radius 

dimension. One is to set r=di0 (the subscript j=0 can be omitted), then we have N(di)∝ di
D. The 

other is to define an average distance 
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where Rg(s) is the radius of gyration (Vicsek, 1989), the serial number of cities i=1,2, …, s; 

s=1,2, …, N (N is city number). The fractal dimension based on the gyration radius can be given 

by 

DssR /1
g )( ∝ .                                 (22) 

As the distance measure is smoothed by equation (21), we can achieve a better result of dimension 

estimation statistically. 

Take Beijing, the China’s capital, as the center, then compute the radius dimension using the 

above two relations. The computation results from two methods share the same scaling range, i.e., 

i=3~37 (N=39). Obviously, the scaling range of the one-point correlation is much wider than that 

of the point-point correlation. In fact, the scaling range is narrower the higher the moment order of 

correlation dimension becomes. Based on the first method, we have 

2641.18607.0)( ii ddN = . 

The goodness of fit is R2=0.9932 (Figure 6(a)). Based on the second method, we obtain 

3104.1/1
g 7862.0)( ssR = . 

The goodness of fit R2=0.9981 (Figure 6(b)). The radius dimensions computed are almost the 

same, both approximate to 1.3, smaller than the former correlation dimension 1.472. 

We can take each city in Figure 3 as the correlation center, and compute the corresponding 

one-point correlation dimension using Equations (21) and (22) based on straight line distance. It is 
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showed that the one-point correlations of all cities except Xi’an, Hefei, Ji’nan and Qingdao have 

fractal characteristics. The fractal dimension ranges from 1 to 3, and mostly comes between 1 and 

2, with an average of 1.6589. Several cities including Zhengzhou, Nanning, Dalian, Fuzhou and 

Xiamen have the structure of bifractals. Much spatio-temporal information about the evolution of 

urban systems can be revealed from the fractal structure and fractal dimension of the one-point 

correlation of each city. Such information is an important supplement to the above spatial 

correlation analysis. The same methods can be applied to the one-point correlation analysis based 

on the distance by railway and highway. As space is limited, we will not develop it in this paper. In 

fact, although the provincial cities in Figure 3 seem to distribute randomly, it has internal spatial 

order. It can be found through Cartesian transform that the distribution of these cities bears clear 

bilateral symmetry pattern. It is not easy to explain this kind of spatial emergence phenomenon 

without correlation analysis. However, the relationship between this bilateral symmetry and the 

dilation symmetry is a problem which needs further exploration.  
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      a. Straight distance                        b. Radius of gyration 

Figure 6. Estimation of radius dimension based on Beijing by two methods 
Note: If we exchange the place of the independent variable and dependent variable, the regression result will be a 

little different (Chen and Zhou, 2003). Therefore, the result in Figure 6(b) differs subtly from that in text. It should 

be noticed that a point (Rg(2)<1) is out of the frame of plot and thus is not shown in Figure 6(b). 

 

5 Summarization of procedure 

Fractals provide new ways of looking at cities (Batty, 1995) and a new tool for the spatial 
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analysis of cities (Frankhauser, 1998). The spatial correlation function is a useful modeling 

approach to researching the fractal distribution of cities, and the correlation dimension is in 

essence a scaling exponent of spatial autocorrelation. The main points of the analytical process in 

this paper can be summarized as follows. 

Firstly, determine the studied area and the threshold of the city size. Step one is to 

determine the area coverage in terms of the research objects. It can be an administration district, or 

a region confined by a natural boundary, or even a circular or rectangular region intercepted from 

the map. Step two is to determine the city size threshold according to the double logarithmic plot 

of the city-size distribution. Whether it is a primate distribution or a rank-size distribution, the 

scaling range on the log-log plot has a lower limit and an upper limit, and the smallest city size 

should be larger than the lower limit. When all these conditions are satisfied, the threshold can be 

defined according as our study purpose. It can also be determined by both the city size and the 

importance of urban function. In order to guarantee a sample with enough number of cities, the 

studied area should not be too small, or the city size threshold should not be too high. 

Secondly, choose the yardstick of measurement. The measurement can be the Euclidean 

distance, or the real transport mileage represented with the distance by highway or railway. The 

Euclidean distance is more reasonable because it is accord with the mathematical definition of the 

spatial correlation sum function. However, the empirical results show that the computation based 

on the actual transportation distance is better to describe the fractal structure of an urban system. It 

seems to suggest that the topological structure of an urban system in “time” space bears more 

practical meanings than the Euclidean geometrical structure in conventional geographic space. 

Thirdly, analyze the fractal dimension and some related parameters. Theoretically, the 

spatial correlation dimension of an urban system is intervenient between 0 and 2. The larger the 

fractal dimension is, the more homogeneous the distribution of cities is. Otherwise, the 

distribution is more concentrated or nonuniform. The most valuable parameter is the development 

index of transportation network defined by the ratio of fractal dimensions. Given a determinate 

number of cities, the more closely the correlation dimension computed based on the transportation 

distance approaches the dimensions based on the Euclidean distance, the better accessibility 

among cities it suggests. With the development of transport network, the dimension based on 

traffic lines becomes more and more close to the dimension based on the Euclidean distance. 
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Fourthly, analyze the length of the scaling range. The spatial relations among cities are based 

on certain yardmeasure. If the yardstick is too small, there will be no city for correlation; 

otherwise, the corresponding distance will be out of the action scope of a city. Therefore, the 

interaction among cities is only available in certain spatial scale, which means that there exists a 

scaling range for effective correlation. Besides the moment order of the correlation dimension, the 

width of the scaling region depends on the development of the fractal urban system and the 

influence scope of cities. The lower limit of the scaling range reflects the character of the spatial 

distribution of cities while the upper limit reflects the interaction distance of cities. Analyzing the 

scaling range can reveal some significant information of the fractal structure of an urban system. 
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Appendices  

1. Key points to understand the derivation of the correlation dimension 

In the derivation process of spatial correlation dimension, the key step is the conversion from the 

probability based on the number of cities to the probability based on the number of small boxes. 

Here is a simple illustration of this process. As to Figure 2 in the text, N=3. The probability of 

finding cities in the circle around city 1 is  

3
1

11 =P , 
3
0

12 =P , 
3
0

13 =P . 

Then we have a cumulative probability 

1

3

1
11 3

1)( PPrC
j

j === ∑
=

. 

The probability of finding cities in the circle around city 2 and city 3 is 
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3
0

21 =P , 
3
1

22 =P , 
3
1

23 =P . 

Thus we have 
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. 

Note that i, j=1, 2, 3; k=1, 2. As to the number of small boxes, we have Nr=2, N1(1)=1, 

N2(2)=N2(3)=2. According as equation (11), we get the correlation sum as follows 
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This is just the result indicated by equation (12). In short, equation (11) can be transformed into 

equation (12) naturally. The above computation can be generalized to any number of cities.  

2. The measurement results of spatial correlation of Henan’s cities 

The measurement results of spatial correlation of the main cities in Henan Province are tabulated 

as follows (Table A1). The bold numbers are the data falling in between the two limits of scaling 

range, while the italic numbers indicate the limit of spatial measurement. For Henan’s 17 cities, 

the limit of spatial correlation number is N(r)=17*17=289. With the development of the network 

of cities from 1994 to 2003, the upper limit of correlation distance by highway becomes shorten 

from 575 km to 525 km. 

 

Table A1 The correlation number of Henan’s cities measured with variable yardstick 

Rank Yardmeasure Based on Euclidean distance Based on highway distance 
1994-2003 1994 2003 

1 25 17 17 17 
2 50 19 19 19 
3 75 43 31 33 
4 100 59 43 41 
5 125 81 59 59 
6 150 111 75 81 
7 175 139 97 107 
8 200 163 129 129 
9 225 187 141 147 

10 250 205 161 167 
11 275 229 177 191 
12 300 251 201 213 
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13 325 255 215 227 
14 350 267 237 247 
15 375 277 247 251 
16 400 281 251 265 
17 425 287 265 275 
18 450 289 275 279 
19 475 289 279 283 
20 500 289 279 285 
21 525 289 283 289 
22 550 289 287 289 
23 575 289 289 289 

 


