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ABSTRACT 

Peer Data Management Systems (PDMS) are advanced P2P applications which 

enable users to transparently query several distributed, heterogeneous, and 

autonomous data sources. Each peer represents a data source and exports its 

entire data schema or only a portion of it. Such schema, named exported 

schema, represents the data to be shared with the other peers of the system and 

is commonly described by an ontology.  

The most studied data management issues in PDMS are related to schema 

mappings and query processing. These issues can be improved if peers are 

efficiently disposed in the overlay network according to a semantic-based 

approach. In this context, the notion of semantic community of peers is of great 

importance since it aims at logically approximating peers with common 

interests about a specific topic. However, due to the dynamic behavior of peers, 

the creation and maintenance of semantic communities is a challenging issue in 

the current stage of development of PDMS. 

The main goal of this thesis is to propose an ontology-based process to 

incrementally cluster semantically similar peers that compose communities of a 

PDMS. In this process, peers are grouped according to their corresponding 

exported schema (an ontology) and ontology management processes (e.g. 

matching and summarization) are used to assist peer connection. A PDMS 

architecture is proposed to facilitate the semantic organization of peers in the 

overlay network. In order to obtain the semantic similarity between two peer 

ontologies we propose a global similarity measure as output of an ontology 

matching process. To optimize ontology matching an automatic process for 

summarizing ontologies is also proposed. A simulator has been developed 

resembling the architecture of the PDMS. The proposed ontology management 

processes have also been developed and included in the simulator. 

Experimentations of each application in the context of the PDMS as well as the 

results obtained from these experiments are presented. 
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RESUMO 

Os Sistemas P2P de Gerenciamento de Dados (PDMS) são aplicações P2P 

avançadas que permitem aos usuários consultar, de forma transparente, várias 

fontes de dados distribuídas, heterogêneas e autônomas. Cada peer representa 

uma fonte de dados e exporta seu esquema de dados completo ou apenas uma 

parte dele. Tal esquema, denominado esquema exportado, representa os dados a 

serem compartilhados com outros peers no sistema e é comumente descrito por 

uma ontologia. 

Os dois aspectos mais estudados sobre gerenciamento de dados em PDMS 

estão relacionados com mapeamentos entre esquemas e processamento de 

consultas. Estes aspectos podem ser melhorados se os peers estiverem 

eficientemente dispostos na rede overlay de acordo com uma abordagem 

baseada em semântica. Nesse contexto, a noção de comunidade semântica de 

peers é bastante importante visto que permite aproximar logicamente peers com 

interesses comuns sobre um tópico específico. Entretanto, devido ao 

comportamento dinâmico dos peers, a criação e manutenção de comunidades 

semânticas é um aspecto desafiador no estágio atual de desenvolvimento dos 

PDMS.  

O objetivo principal desta tese é propor um processo baseado em 

semântica para agrupar, de modo incremental, peers semanticamente similares 

que compõem comunidades em um PDMS. Nesse processo, os peers são 

agrupados de acordo com o respectivo esquema exportado (uma ontologia) e 

processos de gerenciamento de ontologias (por exemplo, matching e 

sumarização) são utilizados para auxiliar a conexão dos peers. Uma arquitetura 

de PDMS é proposta para facilitar a organização semântica dos peers na rede 

overlay. Para obter a similaridade semântica entre duas ontologias de peers, 

propomos uma medida de similaridade global como saída de um processo de 

ontology matching. Para otimizar o matching entre ontologias, um processo 

automático para sumarização de ontologias também é proposto. Um simulador 

foi desenvolvido de acordo com a arquitetura do PDMS. Os processos de 

gerenciamento de ontologias propostos também foram desenvolvidos e 
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incluídos no simulador. Experimentações de cada processo no contexto do 

PDMS assim como os resultados obtidos a partir dos experimentos são 

apresentadas. 
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Peer-to-Peer, Sistemas P2P de Gerenciamento de Dados, Comunidade 
Semântica, Ontology Matching, Sumarização de Ontologias, Medida de 
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“Never in the field of human conflict was so much owed by so many to so few” 

Winston Churchill 

In the last few years, there has been a growing interest in the Peer-to-Peer 

(P2P) computing paradigm, primarily boosted by the popular file-sharing 

applications that enable massive data sharing among millions of users [Kantere 

et al., 2008]. The P2P paradigm is characterized by a fully distributed and 

cooperative network design, where peers collectively form a system without 

any supervision [Rocha et al., 2004]. 

In a P2P system, peers communicate through an overlay network, i.e. a 

virtual (logical) network which runs as an overlay on top of a physical network 

[Doval and O'Mahony, 2003]. According to the overlay topology employed, 

P2P systems are categorized into three kinds [Sung et al., 2005]: (i) 

unstructured, where a peer may join and leave the network without any 

notification and may connect to any other peer it wishes [Freenet, 2009]; (ii) 

structured, where peers are organized into a rigid structure and connections 

between peers are fixed according to a certain protocol, e.g. Chord [Stoica et 

al., 2001]; and (iii) hybrid, where data sharing is decentralized but a centralized 

directory is available [Milojicic et al., 2002]. Particularly, some works 

[Fiorano, 2003; Sung et al., 2005] also include the super-peer category, where a 

centralized topology is embedded in a decentralized one [Yang and Garcia-

Molina, 2003]. 
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Among several P2P applications that have been proposed, Peer Data 

Management Systems (PDMS) [Halevy et al., 2003b; Lenzerini, 2004; Tatarinov 

and Halevy, 2004; Valduriez and Pacitti, 2004; Halevy et al., 2006; Mandreoli 

et al., 2007; Kantere et al., 2008; Lodi et al., 2008] play a leading role in 

sharing semantically rich information. In a PDMS, each peer is an autonomous 

source that makes available an exported schema [Sung et al., 2005]. Sources 

store and manage their data locally, revealing part of their schemas to the other 

peers. Due to the lack of a single global schema [Aberer et al., 2002], each peer 

expresses and answers queries based on its exported schema. 

Peers also perform local coordination with their acquaintees, i.e. their 

one-distance neighbors in the overlay network [Bernstein et al., 2002]. During 

an acquaintance, two peers exchange information about their exported schemas 

and create schema mappings. Query processing in a PDMS consists in 

propagating the query, submitted in any of the peers, on paths of limited depth 

in the corresponding overlay network [Ng et al., 2003]. At each routing step, 

the query is reformulated to the exported schema of its new host based on the 

respective schema mappings [Tatarinov and Halevy, 2004]. 

1.1 Problem Definition 
In a PDMS, the connection of a new peer requires the definition of the peer’s 

neighbors in the overlay network. Although less dynamic than in traditional 

P2P file sharing systems, peer connection is of great importance, especially 

because peers can share content belonging to distinct knowledge domains. In 

this sense, an arbitrary approach to connect peers is considered inefficient 

regarding query processing, since peers sharing different content can become 

neighbors [Löser et al., 2003]. Consequently, “poor” quality schema mappings 

are established between them [Heese et al., 2005] and incorrect and/or 

inconsistent results can be obtained [Aberer et al., 2002]. 

Another problem caused by the arbitrary connection of peers in a PDMS is 

concerned with query processing. Such problem occurs if semantically similar 

peers are logically positioned far from each other in the overlay network 

[Castano et al., 2003]. As a consequence, the overall query processing task is 

affected. For instance, a query may have to be reformulated several times from 

peer to peer until it reaches relevant peers, i.e. peers that are able to answer the 
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query [Kantere et al., 2008]. During query routing, many irrelevant peers can be 

contacted. As a result, query processing time is increased and an excessive 

number of inconsistent query results may be returned by the involved peers. In 

some cases, an arbitrary approach to connect peers in the overlay network can 

cause a complete isolation of peers sharing semantically similar content 

[Castano et al., 2003]. Relevant peers cannot contribute with important data 

because queries do not reach them. 

1.2 Motivation 
Data retrieval in a PDMS can be improved if peers are efficiently disposed in 

the overlay network according to some kind of organization such as, for 

example, a semantic-based approach [Castano and Montanelli, 2005; Li and 

Vuong, 2007]. In this context, the notion of semantic community of peers 

(community, for short) is of great importance, since it aims at logically 

approximating peers with common interests about a specific topic [Castano and 

Montanelli, 2005]. In a semantic community, when a query is posed at a peer 

the query is transmitted only among the other peers of that community. In short, 

semantic communities enforce sharing of distributed resources and semantic 

collaboration in an effective way [Li and Vuong, 2005]. 

PDMS that employ the notion of semantic communities can obtain several 

benefits. For instance, schema mappings are established between semantically 

similar peers. Since the scope of a query is restricted to the community where it 

has originally been posed, the query is answered only by a few (but relevant) 

peers [Castano and Montanelli, 2005]. Thus, query processing tends to be 

improved in a PDMS. Such kind of peer organization can offer other benefits: 

(i) increase system scalability as the number of messages transmitted through 

the network is minimized; and (ii) avoid unnecessary processing effort and 

storage space in participating peers. 

Due to the dynamic behavior of peers, the creation and maintenance of 

semantic communities is a challenging issue in the current stage of development 

of PDMS [Castano and Montanelli, 2005]. The availability of advanced 

techniques for query propagation on a semantic basis is another relevant issue. 

In this sense, ontologies are more and more employed for describing the 

knowledge shared by peers [Nejdl et al., 2002; Castano et al., 2003; Xiao, 
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2006; Li and Vuong, 2007]. As a result, ontology matching techniques 

[Giunchiglia et al., 2004; Hai, 2005; Castano et al., 2006; Hu and Qu, 2008] are 

required to deal with the different concept meanings in the ontology-based 

schemas provided by different peers. 

1.3 Objectives 
Our main assumption in this work is that the establishment of schema mappings 

and consequently query processing can be improved if semantically similar 

peers are logically grouped in a PDMS overlay network. In this sense, the main 

goal of this thesis is to propose a process for clustering peers in a PMDS. To 

achieve this objective, we propose a PDMS architecture which is designed to 

facilitate the connection of peers according to their corresponding exported 

schema (i.e. an ontology). 

Peer connection in the proposed PDMS is mainly an incremental 

clustering process. When a new peer arrives, it searches for a community where 

peers share schemas (ontologies) belonging to the same knowledge domain. 

Then, within a community, the new peer joins an existing semantic cluster 

(cluster, for short) where peers share similar schemas. A semantic cluster is 

represented by a cluster ontology which describes the schemas of the peers 

within the cluster. In addition, each cluster maintains a link to its semantic 

neighbors in the overlay network, i.e. to other semantically similar clusters. 

Before a new peer joins a semantic cluster it is necessary to determine the 

similarity between them. To this end, we propose a global similarity measure 

that indicates the similarity degree between the ontology of the new peer and a 

cluster ontology. Such measure is obtained from an ontology matching process 

which also produces an ontology alignment between the elements of the 

matching ontologies. 

In order to avoid the matching against all existing clusters, an initial 

cluster is provided to each new peer. From such initial cluster, the search for a 

semantically similar cluster is started by following the semantic neighbors of 

the initial cluster in the overlay network. The initial cluster is provided from a 

semantic index where each entry corresponds to a summary of a cluster 

ontology. Thus, in this thesis, we also propose an automatic process for 

summarizing cluster ontologies. 
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1.4 Expected Contributions 
This thesis presents the following contributions: 

� The specification of a semantic-based architecture for a Peer Data 

Management System (PDMS); 

� The specification, implementation, and validation of an ontology matching 

process that considers, besides the traditional terminological and structural 

matching techniques, a semantic-based one; 

� The specification, implementation, and validation of an automatic process to 

summarize ontologies; 

� The specification, implementation, and validation of an incremental process 

for clustering peers in the proposed PDMS. 

1.5 Thesis Outline 
The reminder of this thesis is organized as follows. 

� Chapter 2 is divided into two distinct parts which are essential to the 

comprehension of this thesis. The first part describes ontologies and some 

related processes such as ontology matching, ontology merging, and 

database schema to ontology mapping. The second part offers an overview 

of clustering and discusses incremental clustering algorithms. In addition, it 

presents the commonly used criteria to evaluate a clustering result; 

� Chapter 3 discusses Peer Data Management Systems (PDMS) and its main 

data management issues: schema mappings and query processing. It 

emphasizes the importance of organizing peers according to a semantic-

based approach and presents the mains challenges to achieve this goal. The 

chapter also describes some existing PDMS that propose a semantic-based 

approach to organize peers in an overlay network. Finally, it presents a 

comparative analysis of such PDMS; 

� Chapter 4 describes the importance of using ontologies in PDMS. It also 

presents the specification our Ontology-based PDMS (OPDMS), whose 

overlay network is mainly designed to assist the organization of peers 

according to their exported schema. Such specification comprises a detailed 

description of the system’s architecture, the distinct types of peers, as well 

as their internal modules, and the different types of ontologies used in the 
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system. Moreover, the specification describes how schema mappings and 

query processing are handled in the proposed PDMS; 

� Chapter 5 describes a semantic-based ontology matching process in which 

the resulting correspondences are generated as a combination of linguistic, 

structural and semantic matching algorithms. The correspondences are used 

to compute a global similarity measure between two (peer) ontologies which 

is used for clustering semantically similar peers in the proposed PDMS. 

Particularly, the semantic matcher is described including the rules that are 

applied to identify the semantic relationships between ontology elements. 

To clarify matters, it presents a case study illustrating how the global 

measure is used. An experimentation of the ontology matching process with 

some obtained results is also provided; 

� Chapter 6 presents an automatic process to summarize cluster ontologies. 

Firstly, an overview of the proposed summarization process and a notation 

to represent ontologies are provided. Then, the two measures (centrality and 

frequency) used to determine the relevance of ontology concepts are 

described. Next, the chapter presents the proposed process to summarize 

ontologies, the summarization algorithm, and an illustrative example. The 

results of applying the proposed process to real world ontologies according 

to different criteria are exposed. Finally, related work is discussed. 

� Chapter 7 presents an ontology-based process for clustering peers in the 

proposed PDMS. It describes how a new peer searches for a particular 

semantic community in the overlay network. Besides, it presents the main 

requirements for clustering peers within a semantic community and the 

incremental clustering algorithm used to manage semantic clusters. The 

main steps to connect a new peer and disconnect a participating peer are 

detailed. Considerations about maintaining the semantic clusters are also 

presented. Finally, experimental results are shown and discussed. 

� Chapter 8 concludes the thesis stating our research contributions and some 

future works. 
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“Childhood is measured by sounds, smells and sights,  

before the dark hour of reason grows” 

John Betjeman 

This chapter offers an overview of ontologies and clustering, two essential 

issues that are needed to understand this thesis. Basically, the chapter is divided 

into two parts. The first one describes ontologies and its main elements (e.g. 

concepts and properties). Heterogeneity problems between distinct ontologies 

are discussed as well as some related ontology management processes, e.g. 

ontology matching, ontology merging, and database schema to ontology 

mapping. The second part of this chapter offers a definition of clustering and 

discusses some important clustering issues such as object set availability and 

sensitivity to input order. It also describes some incremental clustering 

algorithms. Finally, the chapter presents classical criteria to evaluate the results 

of a given clustering algorithm. 

2.1 Ontologies 
The most quoted definition of ontology is “an explicit specification of a 

conceptualization” [Gruber, 1993]. A conceptualization is an abstract model 

that describes objects, concepts, and other elements, particular to some (usually 

restricted) domain, as well as relationships that hold between these elements. 

An explicit specification means that the elements and relationships in the 
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abstract model are given explicit names and semantics, expressed in some 

formal language. In practice, this usually means a logic-based language, as it 

allows for automated reasoning [Noy, 2004a]. Ontologies were developed by 

the Artificial Intelligence community to facilitate knowledge sharing and reuse 

[Guarino, 1998]. They have been used as a fundamental concept in the Semantic 

Web1 [Berners-Lee et al., 2001; Staab and Stuckenschmidt, 2006]. Carrying 

semantics for particular domains, ontologies are largely used for representing 

domain knowledge2. 

Ontologies are expressed in an ontology language. There is a large variety 

of languages for describing ontologies [Staab and Studer, 2004], including: 

DAML+OIL, RDF, and OWL. Most of these languages share the same kinds of 

elements, often with different names but comparable interpretations. For 

instance, OWL [Smith et al., 2004] is a semantic markup language for 

publishing and sharing ontologies on the Web. In the last years, it has become 

the most recommended ontology language for representing knowledge in the 

Semantic Web. Basically, OWL deals with the following kinds of elements 

[Smith et al., 2004]: 

� Concepts or Classes are the main elements of an ontology. These are 

interpreted as a set of individuals in the domain. They are introduced in 

OWL by the owl:Class construct; 

� Individuals or objects or instances are interpreted as a particular 

individual of a domain. These are introduced in OWL by the owl:Thing 

construct; 

� Relations are the ideal notion of a relation independently to what it applies. 

Relations are interpreted as a subset of the cartesian product of the domain. 

These are introduced in OWL by the owl:ObjectProperty or 

owl:DatatypeProperty constructs; 

� Datatypes are particular parts of the domain that specify values as opposed 

to individuals. However, values do not have identities. String and Integer 

are examples of datatypes; 

� Data values are simple values. 

                                                
 
1 The Semantic Web W3C Initiative, http://www.w3.org/2001/sw/ 
2 The National Cancer Institute Ontology, http://www.mindswap.org/2003/CancerOntology/nciOncology.owl 
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Moreover, in OWL, elements can be connected by various kinds of 

relations, including: 

� Specialization between two classes or two properties is interpreted as the 

inclusion of their interpretations. Specialization is introduced in OWL by 

the rdfs:subClassOf or rdfs:subPropertyOf constructs; 

� Exclusion between two classes or two properties is interpreted as the 

exclusion of their interpretations, i.e. when their intersection is empty. 

Exclusion is introduced in OWL by the owl:disjointWith construct; 

� Instantiation or typing between individuals and classes, property instances 

and properties, values and datatypes is interpreted as membership. 

Instantiation is expressed in OWL with the rdf:type construct. 

Ontology interpretation is not left to the users that read the diagrams or to 

the knowledge management systems implementing them, it is specified 

explicitly [Euzenat and Shvaiko, 2007]. The semantics provides the rules for 

interpreting the syntax which do not provide the meaning directly but constrains 

the possible interpretations of what is declared. The semantics of ontologies can 

be constrained by additional axioms. 

2.1.1 Types of Heterogeneity 

Over the last years, ontologies have become one of the most common ways of 

expressing knowledge in different distributed and opened applications [Euzenat 

and Shvaiko, 2008], e.g. semantic P2P systems and multi-agent systems. In 

such systems, the content shared by the actors is commonly described by 

ontologies. Since actors have different interests, use different pieces of 

knowledge, and, most often, reason at different levels of detail, heterogeneity in 

such systems cannot be avoided. These characteristics lead to diverse kinds of 

heterogeneity (even in the same knowledge domain) and, therefore, should be 

carefully taken into consideration. 

Heterogeneity does not lie solely in the differences between goals of the 

applications according to which they have been designed or in the expression 

formalisms in which ontologies have been encoded. Some of the most obvious 

types of heterogeneity include: (i) syntactic heterogeneity: occurs when two 

ontologies are not expressed in the same ontology language; (ii) terminological 

heterogeneity: occurs due to variations in names when referring to the same 
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elements in different ontologies; and (iii) conceptual heterogeneity: also called 

semantic heterogeneity [Euzenat, 2001], stands for the differences in modeling 

the same domain of interest. This can happen due to the use of different axioms 

for defining concepts or due to the use of totally different concepts. 

In the literature, there have been many different classifications to types of 

heterogeneity [Batini et al., 1986; Kashyap and Sheth, 1998; Euzenat, 2001]. 

To deal with such types of heterogeneity between ontologies is the goal of 

ontology matching. 

2.1.2 Ontology Matching 

There have been several definitions for the expression ontology matching [Doan 

et al., 2003; Zhdanova and Shvaiko, 2006; Ehrig, 2007; Euzenat and Shvaiko, 

2007; Zhang et al., 2008]. According to [Euzenat and Shvaiko, 2007], ontology 

matching is the process of finding relationships or correspondences between 

elements of two distinct ontologies (denoted Oi and Oj), generally describing 

the same or similar domains. 

The output of such process is called ontology alignment (alignment, for 

short) and is denoted by A’. An ontology alignment A’ contains a set of 

correspondences indicating which elements of the two ontologies logically 

correspond to each other (i.e. match). An overview of the ontology matching 

process is illustrated in Figure 2.1. Optionally, some other parameters can be 

introduced into the matching process: an input alignment, A, which is to be 

completed by the process; matching parameters, P, e.g. weights and thresholds; 

and external resources, R, used during the matching process, e.g. common 

knowledge or domain specific thesauri. 

 

Figure 2.1. The ontology matching process [Euzenat and Shvaiko, 2007]. 
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The correspondences can be produced by one or more matching algorithms 

(or matchers) which are executed sequentially or in parallel. The 

correspondences are expressed as relationships (e.g. equivalence, subsumption, 

and disjointness) as well as similarity values between 0 (strong dissimilarity) 

and 1 (strong similarity). Similarity values (or level of confidence) can be 

viewed as a measure of trust in the case that the correspondence holds. 

Alignments are used for various tasks, including ontology merging, query 

processing, and data translation. 

Formally, each correspondence of an alignment A’ can be defined as a 5-

tuple: �id, ei, ej, r, n�, where id is a unique identifier of the given 

correspondence; ei and ej are the two matched elements (with ei ∈ Oi and ej ∈ 

Oj); r is the relationship holding between ei and e j; and n expresses the level of 

confidence underlying such correspondence [Euzenat and Shvaiko, 2007]. 

Although ontology elements can be related by different types of 

relationships (e.g. equivalence, subsumption, or disjointness) most of the 

ontology matching algorithms mainly consider the equivalence relationship (≡), 

meaning that the matched elements are the same. As a result, the relationship 

type is commonly omitted (equivalence is assumed) and correspondences are 

frequently resumed to a 4-tuple: �id, ei, ej, n�. 

Ontology Matching Techniques 

In order to solve the matching problem, several matching techniques have been 

proposed [Batini et al., 1986; Larson et al., 1989; Kashyap and Sheth, 1996; 

Parent and Spaccapietra, 1998; Rahm and Bernstein, 2001; Wache et al., 2001]. 

These works address the matching problem from different perspectives, e.g. 

Artificial Intelligence, Information Systems, and Databases. [Shvaiko and 

Euzenat, 2007] have attempted to consider the above mentioned works together 

in order to provide a general classification of matching techniques, focusing on 

schema-based matching methods. 

The classification distinguishes between elementary (or basic) matching 

techniques and composition of techniques. Elementary techniques comprise: 

� String-based techniques: consider the names and name descriptions of 

ontology elements; 
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� Language-based techniques: consider names as words in some natural 

language, e.g. French; 

� Constraint-based techniques: consider the internal constraints being 

applied to the definitions of elements, e.g. types, cardinality of attributes, 

and keys; 

� Alignment reuse: represent an alternative way of exploiting external 

resources, which record alignments of previously matched ontologies; 

� Upper level and domain specific formal ontologies: upper level ontologies 

can be used as external sources of common knowledge, while domain 

specific formal ontologies can be used as external sources of background 

knowledge; 

� Graph-based techniques: consider the ontology elements or their instances 

to compare their relationships with other elements or their instances; 

� Taxonomy-based techniques: are also graph algorithms which consider 

only the specialization relationship; 

� Repository of structures: unlike alignment reuse, it stores only similarities 

between ontologies in order to avoid the matching operation over dissimilar 

ontologies; 

� Model-based techniques: handle the input based on its semantic 

interpretation; 

� Data analysis and statistics techniques: take advantage of a representative 

sample of a population in order to find similarities and discrepancies. 

For classifying the elementary techniques, [Shvaiko and Euzenat, 2007] 

have introduced two synthetic classifications: (i) Granularity/Input 

Interpretation, is based on the matcher granularity (element-level or structure-

level) and on how the techniques generally interpret the input information; and 

(ii) Kind of Input, is based on the kind of input which is used by the elementary 

matching techniques. 

In the Granularity/Input Interpretation classification, elementary 

techniques are distinguished according to the following classification criteria: 

� Element-level vs. structure-level: element-level matching techniques 

compute correspondences by analyzing elements or instances of those 

elements in isolation, ignoring their relations with other entities or their 
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instances. Structure-level techniques compute correspondences by analyzing 

how elements or their instances appear together in a structure; 

� Syntactic vs. external vs. semantic: the key characteristic of syntactic 

techniques is that they interpret the input with regard to its sole structure 

following some clearly stated algorithm. External are the techniques 

exploiting auxiliary (external) resources of a domain and common 

knowledge in order to interpret the input. These resources may be human 

input or some thesaurus expressing the relationships between terms. 

Semantic techniques use some formal semantics to interpret the input and 

justify their results. 

The Kind of Input classification is concerned with the type of input 

considered by a particular technique: 

� The first level is categorized depending on which kind of data the 

algorithms work on: strings (terminological), structure (structural), models 

(semantics), or data instances (extensional). The two first ones are found in 

the ontology descriptions. The third one requires some semantic 

interpretation of the ontology and usually uses some semantically compliant 

reasoner to deduce the correspondences. The last one constitutes the actual 

population of an ontology; 

� The second level of this classification decomposes further these categories if 

necessary: terminological methods can be string-based (considering the 

terms as sequences of characters) or based on the interpretation of these 

terms as linguistic objects (linguistic). The structural methods category is 

split into two types of methods: those which consider the internal structure 

of entities, e.g., attributes and their types (internal), and those which 

consider the relationship of entities with other entities (relational). 

The overall classification of Figure 2.2 can be read both in descending 

(focusing on how the techniques interpret the input information) and ascending 

(focusing on the kinds of manipulated objects) manner in order to reach the 

Basic Techniques layer. 
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Figure 2.2. Classifications of elementary matching approaches [Shvaiko and Euzenat, 2007]. 

Matching Composition 

The elementary matching techniques are the building blocks on which a 

matching solution is built. Once the similarity between ontology elements is 

available, the alignment remains to be computed. Thus, building a matching 

system involves some aspects such as (i) organising the combination of various 

similarities or matching algorithms; and (ii) aggregating the results of the basic 

methods in order to compute a combined similarity value between elements. 

So far, we have presented the matching process as producing an alignment 

between two ontologies (Figure 2.1). A natural way of composing the basic 

matchers consists of improving the matching through the use of sequential 

composition (Figure 2.3). For instance, one might like to first use a matcher 

based on labels before running a semantic matcher. 

 

Figure 2.3. The sequential composition of matchers [Euzenat and Shvaiko, 2007]. 
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Another way to combine matchers consists of running several different 

algorithms independently and aggregating their results: this is called parallel 

composition (Figure 2.4). Aggregation techniques can be very different: it can 

correspond to choosing one of the results on some criterion or merging their 

results through some operator. For instance, it can consist of running several 

matching algorithms in parallel and selecting the correspondences which are in 

all of them (intersection is then used as an aggregation operator) or selecting all 

the correspondences with their highest confidence. 

 

Figure 2.4. The parallel composition of matchers [Euzenat and Shvaiko, 2007]. 

Combined similarity is concerned with the aggregation of individual 

similarity values. Ontology elements such as classes are very often involved in 

many different relationships. For instance, computing the similarity between 

two classes requires the aggregation, in a single similarity measure, of the 

similarity obtained from their names, the similarity of their superclasses, as 

well as the similarity of their instances and that of their properties. In this 

sense, to calculate a combined similarity it is common to apply aggregation 

operators on the individual similarity values, e.g. maximum, minimum, average, 

and weighted sum [Aumüller et al., 2005]. 

Matching Tools 

Several ontology matching tools have emerged during the last years. Each one 

exploits a particular matching technique or a combination of them. A 

comparison of matching systems can be found in [Rahm and Bernstein, 2001; 
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Noy, 2004b; Doan and Halevy, 2005]. Particularly, a comparison of ontology 

matching tools is presented in [Euzenat and Shvaiko, 2007]. 

The increasing number of systems available for ontology matching has 

created a need to establish a consensus for evaluation of these systems. In 2006, 

the Ontology Alignment Evaluation Initiative3 (OAEI) was created with the goal 

of organizing evaluation campaigns aiming at evaluating ontology matching 

systems. OAEI campaigns consist of applying matching systems to ontology 

pairs and evaluating their results. A systematic benchmark series has been 

produced in order to identify the areas in which each ontology matching 

algorithm is strong or weak. Anyone developing ontology matchers can 

participate by evaluating their systems and sending the results to the organizers. 

In this section, our purpose is not to compare ontology matching tools in 

full detail, but rather to demonstrate how the matching techniques have been 

exploited. To this end, we summarize some of the most prominent tools: 

COMA/COMA++ [Do and Rahm, 2002; Aumüller et al., 2005; Hai, 2005], H-

Match [Castano et al., 2006], Falcon-OA [Hu and Qu, 2008], and S-Match 

[Giunchiglia and Shvaiko, 2003; Giunchiglia et al., 2004]. 

COMA/COMA++ (University of Leipzig) 

COMA (COmbination of Match Algorithms) [Do and Rahm, 2002] is a 

schema matching system supporting different applications and multiple schema 

formats, e.g. ontologies and relational schemas. It provides an extensible library 

of ontology matching algorithms which are executed in parallel and combined 

according to different strategies. Most of them implement string-based 

techniques. A matcher implements a thesaurus look-up (table of synonyms). 

The reuse-oriented matcher tries to reuse previously obtained correspondences 

for entire new schemas or for their fragments. The tool can be used as an 

evaluation platform to systematically examine and compare the effectiveness of 

different matchers and combination of matchers. COMA presumes interaction 

with users who approve obtained matches and mismatches to gradually refine 

and improve the accuracy of the match. COMA++ [Aumüller et al., 2005; Hai, 

2005] is implemented on top of COMA by elaborating in more detail the 

                                                
 
3 http://oaei.ontologymatching.org/ 



�� � �� � � ���
��� �� � � 
� � ���

17 

alignment reuse operation. The tool offers a more efficient implementation of 

the COMA matching algorithms and a repository of alignments. Also, it 

provides a generic data model to uniformly support ontologies expressed in 

different languages. 

H-Match (Università degli Studi di Milano) 

H-Match [Castano et al., 2006] is an ontology matching algorithm for 

dynamically matching distributed ontologies. The semantic affinity between 

ontology concepts is evaluated by exploiting both the linguistic features of the 

concepts (linguistic affinity) and semantic relationships among them in an 

ontology (contextual affinity). The evaluation of the linguistic features is based 

on a thesaurus which is built by exploiting WordNet [Miller, 1995]. The 

meaning of each term used as a name of a concept or a property depends on the 

set of terminological relationships that it has with other terms in the thesaurus. 

Moreover, the meaning of a concept also depends on its properties and semantic 

relationships with other concepts in the ontologies. A weighted function is used 

to combine linguistic and contextual similarity values and thus produce a 

combined semantic affinity. By exploiting ontology descriptions, H-Match 

offers four different matching models: (i) surface matching: consider only the 

names of concepts; (ii) shallow matching: consider both concept names and 

concept properties; (iii) deep matching: consider concept names and the whole 

context of concepts (relationships); and (iv) intensive matching: consider, in 

addition to the features of the deep model, also property values. 

Falcon-AO (China Southwest University) 

Falcon-AO [Hu and Qu, 2008] is an automatic ontology matching system 

that helps realizing interoperability between (Semantic) Web applications that 

use different but related ontologies. It supplies a library of linguistic and 

structural matchers, and provides a robust combination of their alignments. One 

of the matchers implements a divide-and-conquer strategy to find block 

mappings between large-scale ontologies. The ontologies are adjusted before 

executing the matchers. In this sense, coordination rules are used to eliminate 

superfluous axioms and reduce structural heterogeneity between the ontologies 

to be matched. A similarity combination approach is used to gradually tune up 

the thresholds based on the measures of both the linguistic and the structural 
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comparability. Linguistic matchers are first used for assessing the similarity 

between ontology concepts on the basis of their name and text annotations. If 

the result has a high confidence, then it is directly returned for extracting an 

alignment. Otherwise, the result is used as input for the structural matcher that 

tries to find an alignment on the basis of the relationships between concepts. 

S-Match (University of Trento) 

S-Match is a semantic-based matching tool which implements the idea of 

semantic matching as initially described in [Giunchiglia and Shvaiko, 2003]. A 

first version of the S-Match system is proposed in [Giunchiglia et al., 2004]. 

Later the system has undergone several evolutions, including extensions of 

libraries of element- and structure-level matchers, adding alignment 

explanations as well as iterative semantic matching [Giunchiglia et al., 2005; 

Giunchiglia et al., 2006; Giunchiglia et al., 2007]. S-Match takes as input two 

tree-like structures (e.g. classifications, XML schemas, and ontologies), and for 

each pair of nodes from the two trees, it returns a logic relationship (e.g. 

equivalence or subsumption), which is supposed to hold between the two nodes 

of the graphs. The relationships are determined by (i) expressing the ontology 

elements as logical formulas, and (ii) reducing the matching problem to a 

propositional validity problem. The elements are translated into propositional 

formulas which explicitly express the concept descriptions as encoded in the 

ontology structure and in external resources, such as WordNet [Miller, 1995]. 

Comparative Analysis 

Table 2.1 is an excerpt from a comparison table presented in [Euzenat and 

Shvaiko, 2007]. It summarizes how the discussed ontology matching tools cover 

the matching techniques included in the Kind of Input classification discussed 

at the beginning of this section. Only the techniques which consider the 

conceptual part of an ontology are considered, i.e. linguistic, structural, and 

semantic. External resources are the methods used by linguistic matchers to 

interpret ontology descriptions. From such comparison, we can state some 

important remarks: (i) in general, each individual matching tool innovates on a 

particular aspect; (ii) matching techniques are not used in isolation; (iii) most 

tools employ a combination of the linguistic and structural matching 

techniques; and (iv) semantic techniques are rarely exploited. 
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Table 2.1. Matching techniques used by the different ontology matching tools [Euzenat and Shvaiko, 
2007]. 

 Terminological External Resource Structural Semantic 
COMA / 
COMA++ 

String-based, 
Language-based, 
Data types 

Dictionary of 
synonyms and 
Abbreviation 
tables, Alignment 
reuse, Repository 
of structures 

DAG (tree) - 

H-Match Domain 
compatibility, 
Language-based, 
Domains and 
ranges 

Thesaurus Matching of 
neighbors 
(thesaurus), 
Relationships 

- 

Falcon-AO String-based WordNet Structural 
affinity 

- 

S-Match String-based, 
Language-based 

WordNet - Propositional 
SAT 

2.1.3 Ontology Merging 

Ontology merging is a first natural use of ontology matching [Noy and Musen, 

2000; Davies et al., 2006; Euzenat and Shvaiko, 2007]. Other uses include 

ontology transformation, data translation, mediation, and reasoning. The notion 

of ontology merging is closely related to that of schema integration in 

databases. 

As depicted in Figure 2.5, the merging process consists in obtaining a new 

ontology Ok from two, possibly overlapping, source ontologies Oi and Oj. The 

matched entities in the source ontologies are related as prescribed by the 

alignment A’ generated as a result of an ontology matching process. The source 

ontologies remain unaltered, along with ontology mappings between each 

source ontology and the merged ontology. Different kinds of ontology 

mappings can be defined between a merged ontology and the source ontologies, 

e.g. concept mappings and property mappings. The merged ontology contains 

the knowledge of the source ontologies. Merging can be presented as the 

following operator: Merge (Oi, Oj, A’) = Ok. 

When the source ontologies are expressed in the same language, merging 

often involves putting the ontologies together and generating bridge axioms. 

Such constructs correspond to formulas, in an ontology language, that express 

the alignments so that it is possible to integrate the elements of an ontology 

within one another. Merging does not usually require a total alignment: those 

elements which have no corresponding element in the other ontology will 
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remain unchanged in the merged ontology. Ontology merging is especially used 

when it is necessary to carry out reasoning involving several ontologies. 

Protégé [Noy and Musen, 2003; Noy, 2004b] and Rondo [Melnik et al., 

2003] are tools that offer independent operators for ontology merging. 

OntoMerge [Dou et al., 2005] takes bridge rules expressed in predicate calculus 

and can merge ontologies in OWL. The Alignment API [Euzenat, 2004] can 

generate axioms in the languages OWL or SWRL for merging ontologies. Other 

systems are able to match ontologies and merge them directly: FCA-merge 

[Stumme and Mädche, 2001], SKAT [Mitra et al., 1999], and DIKE [Palopoli et 

al., 2003]. OntoBuilder [Modica et al., 2001] uses ontology merging as an 

internal operation: the system creates an ontology that is mapped to query 

forms. This ontology is merged with a global ontology so that queries can be 

directly answered from such global ontology. 

 

Figure 2.5. Ontology merging: from two matched ontologies O i and O j, resulting in an 

alignment A’. This allows the creation of a new ontology Ok covering the matched ontologies 

[Shvaiko and Euzenat, 2007]. 

2.1.4 Database Schema to Ontology Mapping 

The popularity of ontologies is rapidly growing since the emergence of the 

Semantic Web [Berners-Lee et al., 2001]. To date, the amount of available Web 

ontologies continues increasing at a phenomenal rate. However, most of the 

data sources available on the Web still store their data in other types of data 
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sources, e.g. relational databases, XML documents, and web pages. Therefore, 

in order to achieve an efficient interoperability between heterogeneous data 

sources, an effective way is to discover mappings between relational database 

schemas and ontologies which can better express the semantic of data sources 

[Ghawi and Cullot, 2007]. 

Database to ontology mapping is the process whereby a database schema 

and an ontology are semantically related at a conceptual level, i.e. 

correspondences are established between the database schema elements and the 

ontology elements [Ghawi and Cullot, 2007]. Such process is considered an 

interdisciplinary research in both Database and Semantic Web communities [Hu 

and Qu, 2007]. Currently, there are many approaches and tools to deal with 

database to ontology mapping. Basically, they can be classified into two main 

categories: (i) approaches for creating a new ontology from a database [Nyulas 

et al., 2007]; and (ii) approaches for mapping a database to an already existing 

ontology [Ghawi and Cullot, 2007]. 

In the first category, an ontology model is initially created from a 

relational database model and then the contents of the database are migrated to 

the generated ontology. The mappings are simply the correspondences between 

each created ontology element (e.g. concept and property) and its original 

database schema element (e.g. table and column). In these approaches, the 

database model and the generated ontology are very similar. Mappings are quite 

direct and complex mapping situations do not usually appear. The creation of 

the ontology structure may be straightforward, involving direct transformations 

of database tables to ontology concepts and columns into properties. This type 

of direct mapping is not sufficient for expressing the full semantics of the 

database domain. The creation of the ontology structure may require the 

discovery of additional semantic relations between database elements (like the 

referential constraints) and take them into account while constructing ontology 

concepts and relations between them. In the first category, we can note some 

relevant projects: DataMaster [Nyulas et al., 2007], a Protégé plug-in that 

allows to automatically import schema definition and data into Protégé; and 

Relational.OWL [de Laborda and Conrad, 2005], an OWL ontology representing 

abstract schema elements of relational databases. 
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The approaches for mapping a database to an already existing ontology 

consider that an ontology and a legacy database already exist. The goal is to 

create mapping between them, and/or populate the ontology by the database 

contents. Mappings here are more complex than those in the previous case 

because different levels of overlap between the database domain and the 

ontology’s one can be found, and those domains do not always coincide because 

the modeling criteria used for designing databases are different from those used 

for designing ontology models [Barrasa et al., 2004]. In this category, several 

languages have been proposed to formally express database to ontology 

mappings: D2R map [Bizer, 2003], a declarative XML-based language to 

describe mappings between relational database models and ontologies 

implemented in RDFS; and R2O [Barrasa et al., 2004], another declarative 

language that describes mappings between database schemas and ontologies. 

Besides languages, mapping approaches include some tools like KAON 

Reverse4, a prototype for mapping relational database content to ontologies; 

Vis-A-Vis [Fuxman et al., 2006], a Protégé plug-in that allows the mapping of 

relational databases to existing Protégé ontologies; DB2OWL [Cullot et al., 

2007], a tool that automatically generates ontologies from database schemas as 

well as mappings that relate the ontologies to the information sources; and 

RDBToOnto [Cerbah, 2008], a user oriented tool that supports the complete 

transitioning process from access to the input databases to generation of 

populated ontologies. A complete comparison of database to ontology matching 

approaches can be found in [Ghawi and Cullot, 2007]. 

2.2 Clustering 
In the following sections, we present an overview of clustering starting with its 

definition and the similarities with the classification problem. We also describe 

object set availability and sensitivity to input order, two clustering issues which 

are associated to the main problem dealt in this thesis: clustering peers in a 

PDMS. Then, incremental clustering algorithms are discussed. Finally, we 

describe some of the most commonly used criteria to evaluate and assess the 

results of a clustering algorithm: external and internal criteria. 

                                                
 
4 http://kaon.semanticweb.org/alphaworld/reverse/view 
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2.2.1 Definition 

Classification is the process of organizing and categorizing objects (or data) in 

distinct classes [Xu and Wunsch, 2005]. In classical object classification, a 

collection of labeled (possibly pre-classified) objects is provided and the 

problem is to label a newly encountered, yet unlabeled, object. Typically, the 

given labeled objects are used to learn the descriptions of classes which in turn 

are used to label a new object. In general, classical object classification is based 

on some general principles: (i) a model is initially created based on object 

distribution; (ii) the model is then used to classify new objects; and (iii) given 

the model, a class can be predicted for new objects. 

As illustrated in Figure 2.6, classification problems can be subdivided into 

two different categories: non-exclusive or exclusive. In a non-exclusive 

classification, an object can be assigned to several classes. Differently, in an 

exclusive classification, an object is assigned to exactly one class. Furthermore, 

an exclusive classification can be subdivided into supervised or unsupervised. 

In the former, the class labels and the number of classes are known in advance 

whereas in the latter such information is not available. 

 

Figure 2.6. A taxonomy of classification types. 

Clustering [Theodoridis and Koutroumbas, 2003; Gan et al., 2007] is a 

type of exclusive and unsupervised classification. It is an automatic process of 

partitioning a finite set of objects in a set of meaningful sub-classes, called 

clusters. A cluster is a collection of objects that are “similar” to one other and 

thus can be treated collectively as one group [Berkhin, 2002]. The problem of 

clustering is to group a given collection of unlabeled objects into meaningful 

clusters. In a sense, labels are also associated with clusters, but these categories 

of labels are object-driven, i.e. they are obtained solely from the objects. 

Clustering helps users to understand the natural grouping or structure in 

an object set. A good clustering method will produce high quality clusters in 

Classification 

Non-exclusive Exclusive 

Supervised Unsupervised 
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which the intra-class (i.e. intra-cluster) similarity is high and the inter-class 

similarity is low. The quality of a clustering result depends on the similarity or 

distance measure used by the method and its implementation. When 

implementing a clustering algorithm on a computer, attention must be paid to 

questions related to computational efficiency. 

In the last decades, clustering techniques have been extensively studied in 

different research areas, e.g. statistics, machine learning, and data mining. 

Many clustering algorithms have been proposed in the literature. In general, 

such algorithms can be classified into several clustering categories: partitioned 

[Hartigan and Wong, 1979], hierarchical [Jain et al., 1999], density-based 

[Ester et al., 1996], grid-based [Wang et al., 1997], and model-based 

[Cheeseman and Stutz, 1996]. An excellent survey of these clustering 

categories can be found in [Jain et al., 1999]. Some advances in clustering are 

presented in [Kotsiantis and Pintelas, 2004]. 

2.2.2 Clustering Issues 

The importance of clustering issues varies according to the area of study and 

the type of problem to be solved. For example, in data mining some of the main 

explored issues are: scalability to large datasets, time complexity, and 

interpretability of results [Berkhin, 2002]. For the purpose of clustering peers in 

a PDMS some important clustering issues that have to be considered are: object 

set availability and sensitivity to input order. 

The first issue is related to the availability of the objects in an object set. 

Basically, there are two main approaches to perform clustering. The first one is 

to consider the object set as a whole and begin to organize it into meaningful 

clusters. This is called batch approach. The second approach is based on the 

assumption that it is possible to add one object from the object set at a time to 

the clustering space. This is called incremental approach or online approach or 

single-pass approach. 

Sensitivity to input order is one of the major issues in incremental 

clustering [Fisher et al., 1992]. An incremental algorithm is order-independent 

if it generates the same partition for any order in which the data is presented. 

Otherwise, it is order-dependent. This property is illustrated in Figure 2.7 

where there are 6 two-dimensional objects labeled 1 to 6. If these objects are 
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presented to an incremental clustering algorithm such as the Leader algorithm 

[Hartigan, 1975] in the order 2, 1, 3, 5, 4, 6 then the two clusters obtained are 

shown by ellipses. If the order is 1, 2, 6, 4, 5, 3, then two clusters are generated 

as shown by the triangles. 

Since in PDMS peers arrive one at a time, incremental clustering 

algorithms are the main basis for the peer clustering approach proposed in this 

thesis. Thus, in the next section, we characterize some of the most popular 

incremental clustering algorithms available in the literature. 

 

Figure 2.7. The leader algorithm is order-dependent [Jain et al., 1999]. 

2.2.3 Incremental Clustering Algorithms 

Incremental clustering algorithms are based on the assumption that it is possible 

to consider objects one at a time to existing clusters. A new object is assigned 

to a cluster without significantly affecting the existing clusters. Basically, 

incremental clustering algorithms follow the high level description described as 

follows [Jain et al., 1999]. 

(1) Assign the first object to a cluster. 
(2) Consider the next object. Either assign this object to one of the 
existing clusters or to a new cluster. This assignment is done based on 
some criterion, e.g. the similarity between the new object and the existing 
cluster centroids; and a threshold. 
(3) Repeat step 2 until all the objects are clustered. 

The number of comparisons of incremental clustering for n objects is 

O(n2). In the worst case, each object creates a new cluster so each object must 

be compared to all the others. If the number of clusters is m, the number of 

comparisons time is O(nm), and if m is bounded by a constant, O(n). 

Some important issues have to be considered concerning incremental 

algorithms. The first one is the selection of the threshold value. In some cases, 
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it defines the range around the cluster centroid5 in which objects have to rely 

for being integrated into a cluster. This is comparable to the problem of the 

user-specified number of clusters in non-incremental methods such as the k-

means algorithm [Hartigan and Wong, 1979]. The second issue is the sensitivity 

to the input order. Typically, clustering results differ significantly for objects 

presented in different sequences. The third issue is the information loss due to 

the abstraction model chosen to summarize a cluster. Finally, the last issue is 

related to efficiency. In many incremental algorithms, including the high level 

description contained in [Jain et al., 1999], before a new object is allocated to a 

cluster it is compared with all existing clusters. In some cases, it can be 

unacceptable in terms of scalability and performance. 

Over the last years, several incremental clustering algorithms have been 

proposed in the literature: Leader [Hartigan, 1975], BIRCH [Zhang et al., 

1997], Bubble and Bubble-FM [Ganti et al., 1999], COBWEB [Fisher, 1987], 

and CLASSIT [Gennari et al., 1989]. A high level description of the Leader 

algorithm [Hartigan, 1975] is described as follows. 

(1) Let s be a similarity threshold. 
(2) Let the first object assigned to cluster C1 be the defining object, c1 
(3) For each object ci+1 

(3.1) Find the closest cluster, Cj 
(3.2) If dist(ci+1,Cj) > d, add ci+1 to Cj 
(3.3) Otherwise, create a new cluster with the defining object ci+1. 

BIRCH [Zhang et al., 1997] uses a hierarchical data structure called CF-

tree for partitioning the incoming data points in an incremental and dynamic 

manner. BIRCH can typically find a good clustering with a single scan of the 

data and improve the quality further with a few additional scans. BIRCH is 

order-dependent as it may generate different clusters for different orders of the 

same input data. Bubble and Bubble-FM [Ganti et al., 1999] clustering 

algorithms are extensions of BIRCH to general metric spaces (categorical 

values in attributes). 

COBWEB [Fisher, 1987] is a popular hierarchical clustering algorithm for 

categorical data. It dynamically builds a classification tree by processing one 

data point at a time. Each cluster is associated with conditional probabilities for 

categorical attribute-values pairs. During the classification tree construction, 

                                                
 
5 The object which represents the central point of a cluster. 
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every new data point is descended along the tree and the tree is potentially 

updated. Decisions are based on an analysis of a category utility. There is a 

similar incremental hierarchical algorithm for all numerical attributes called 

CLASSIT [Gennari et al., 1989]. CLASSIT associates normal distributions with 

cluster nodes. Both algorithms can result in highly unbalanced trees. 

All the above discussed algorithms are order-dependent. Except for the 

Leader algorithm all the other algorithms reconsider the existing clusters after a 

new object is inserted. However, to this end, they necessarily use some kind of 

centralized data structure (e.g. a tree) which offers a detailed and up-to-date 

view of all existing clusters at a certain moment. Unfortunately, due to many 

different reasons (e.g. scalability and performance), this kind of assumption 

cannot be considered in dynamic environments such as PDMS. Next, we 

describe some commonly used criteria to evaluate and assess the results of a 

clustering algorithm. 

2.2.4 Cluster Validity 

Clustering is an unsupervised process since there are no predefined classes and 

no examples that would indicate grouping properties in the data set [Jain et al., 

1999; Theodoridis and Koutroumbas, 2003]. The majority of the clustering 

algorithms behave differently depending on the features of the data set and the 

initial assumptions for defining clusters. Thus, in most applications the 

resulting clustering scheme requires some sort of evaluation regarding its 

validity. Evaluating and assessing the results of a clustering algorithm is the 

main subject of cluster validity [Batistakis et al., 2002a; Batistakis et al., 

2002b]. In this section, we present the fundamental concepts of clustering 

validity. More specifically, we discuss the cluster validity approaches based on 

the classical external and internal criteria [Halkidi et al., 2001; Toledo, 2005]. 

Fundamental Concepts 

Let C denote the clustering structure resulting from the application of a 

clustering algorithm r on a data set X. Also, let N be the size of X, i.e. N = |X|. 

C may be a hierarchy of clusters, as is the case with the hierarchical algorithms, 

or a flat set of clusters. Cluster validity can be approached in two possible 

directions. First, we may evaluate C in terms of an independently drawn 

structure, which is imposed on X a priori and reflects our intuition about the 
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clustering structure of X. The criteria used for the evaluation of this kind are 

called external criteria. In addition, external criteria may be used to measure 

the degree to which the available data confirm a pre-specified structure, without 

applying any clustering algorithm to X. Second, we may evaluate C in terms of 

quantities that involve the objects of X themselves, for example, the similarity 

matrix. The criteria used for this kind of evaluation are called internal criteria. 

Next, we present the fundamental considerations and the representative indices 

for the external and internal criteria. 

External Criteria Measures 

External criteria is used for the comparison of a clustering structure C, 

produced by a clustering algorithm, with a partition P of X drawn independently 

from C. In the following, we consider the validation task concerning a 

clustering structure, C, resulting from a specific clustering algorithm, in terms 

of an independently drawn partition P of X. Let C = {C1,…,Cm} and P = 

{P1,…,Ps}. Note that the number of clusters in C need not be the same as the 

number of groups in P. Our goal is to define appropriate statistical indices to be 

used for the hypothesis test. 

Let nij, denote the number of objects that belong to Ci and Pj. Consider a 

pair of objects (xv, xu). We refer to it as (a) SS if both objects belong to the 

same cluster in C and to the same group in P; (b) DD if both objects belong to 

different clusters in C and to different groups in P; (c) SD if the objects belong 

to the same cluster in C and to different groups in P; and (d) DS if the objects 

belong to different clusters in C and to the same group in P. Let a, b, c, and d 

be the number of SS, SD, DS, and DD pairs of objects of X, respectively. Then, 

a + b + c + d = M, where M is the total number of possible pairs in X, i.e. M = 

N * (N – 1) / 2. 

Let m1 = a + b be the number of pairs of objects that belong to the same 

cluster in C and m2 = a + c be the number of pairs of objects that belong to the 

same group in P. Using the preceding definitions, statistical indices (statistics, 

for short) can be defined in order to measure the degree to which C matches P. 

Such statistical indices are: 

Rand Index [Theodoridis and Koutroumbas, 2003]: measures the fraction of 

the total number of pairs that are either in the same cluster and in the same 
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partition, or in different clusters and in different partitions. The Rand index is 

defined as 

M
daR +=  (1) 

Jaccard Coefficient [Batistakis et al., 2002a]: measures the proportion of pairs 

that are in the same cluster and in the same partition from those that are either 

in the same cluster or in the same partition. The coefficient is defined as 

c)b(a
aJ ++=  (2) 

Fowlkes-Mallows (FM) Index [Fowlkes and Mallows, 1983]: corresponds to 

the probability that two random objects are in the same cluster given they are in 

the same group, and the probability that two random objects are in the same 

group given they are in the same cluster. The FM Index is defined as 

21mm
a

ca
a

ba
aFM =

++
=  (3) 

The values of these statistical indices are between 0 and 1. However, a 

requirement for achieving the maximum value is to have the same number of 

partitions and clusters (m = s), which, in general, is not always possible. For all 

the above defined indices, it is clear that the larger their value (1) the higher the 

agreement between C and P. 

Another popular statistic that is frequently used in conjunction with 

external criteria is the Hubert’s Γ statistic [Batistakis et al., 2002b]. It measures 

the correlation between two matrices, X and Y, of dimension N x N, drawn 

independently of each other, where X(i,j) and Y(i,j) are the (i,j) elements of the 

matrices X and Y, respectively. High values of Γ indicate close agreement 

between X and Y. The normalized Hubert’s Γ statistic is defined as 

c))(ab))(M(ac)(Mb)(a(a

c)b)(a(aMa
�^

+−+−++
++−=  (4) 

Internal Criteria Measures 

In this approach, the goal is to verify whether the clustering structure produced 

by a clustering algorithm fits the data, using only information inherent in the 

data set. In this sense, one of the most used indices is the Silhouette Index 

[Rousseeuw, 1987]. Such index is useful when it is seeking compact and clearly 

separated clusters. 



�� � �� � � ���
��� �� � � 
� � ���

30 

In order to construct silhouettes we need a partition of some clustering 

algorithm, and the similarity matrix containing all the similarities between 

objects. For a given cluster, this method assigns to each object of the cluster a 

quantitative measure s(i), known as the silhouette width. The silhouette width 

indicates the membership of object i in the cluster it has been assigned. Let i be 

any object in the data set, and denote by Cj the cluster to which object i has 

been assigned. Let a(i) the average dissimilarity between i and all the other 

objects in cluster Cj. Consider any cluster Ck different to cluster Cj, and 

compute b(i) = min Ck  ≠ Cj d(i, Ck) (k = 1, 2,..., c; k ≠ j). Then, the silhouette 

width is defined as 

b(i)}max{a(i),
a(i)b(i)

s(i)
−=  (5) 

A neighbor of object i is the cluster Ck for which the minimum is obtained, 

that is, d(i,Ck) = b(i). Cluster Ck represents the second best choice for object i. 

From the equation (5) we can see that −1 ≤ s(i) ≤ 1. A value of s(i) close to 1 is 

obtained when the dissimilarity a(i) is much smaller than the smallest between 

dissimilarity b(i). Therefore we can say that object i is well clustered. On the 

other hand, if s(i) take values close to −1 implies that a(i) is much larger than 

b(i). In this case, we can say that object i has been misclassified, so object i 

may be reassigned. If a(i) and b(i) have similar values then s(i) is about zero. In 

this situation, object i lies equally far away from both cluster Cj and Ck. If the 

data consist of similarities and a’(i) and d’(i,C) represent the corresponding 

average similarities, then b’(i) = maxC≠A d’(i,C). The interpretation is in the 

same way as before. In this case, the silhouette width is defined as 

b'(i)}max{a'(i),
b'(i)a'(i)

s(i)
−=  (6) 

It is also possible to calculate a cluster silhouette Sj, called average 

silhouette width, which represents the heterogeneity of cluster Cj. This 

quantitative measure can be obtained using: 
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We can also consider an overall or global silhouette width denoted by GSu, 

and define as: 
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where U is any partition, U ↔ C : Ci ∪ C2 ∪ ... ∪ Cc. 

2.3 Considerations 
In this chapter, we have presented an overview of ontology and clustering. Both 

concepts form the main basis of this work. Ontologies are mainly used to 

describe the content exported by peers in a PDMS. Clustering techniques are 

used to organize peers in an overlay network according to their exported 

ontology. We have also discussed two classical criteria used to evaluate the 

results of a given clustering algorithm: external and internal. Both criteria are 

based on statistical indices and aim at measuring the degree to which a data set 

confirms a previously specified structure. Although a high computational cost is 

required to compute the statistical indices, the produced results are suitable for 

quantitative evaluation of a clustering result. In this sense, external and internal 

criteria are used to evaluate the peer clustering process proposed in this thesis. 

In the following chapter, we describe Peer Data Management Systems (PDMS) 

and emphasize the importance of clustering peers according to their semantics. 
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“No verão, um balde de água faz uma colher de lama; no outono, uma colher de água 

faz um balde de lama” 

Provérbio ucraniano 

The increasing use of computers and the development of communication 

infrastructures have led to a wide range of data sources being available through 

networks such as Peer Data Management Systems (PDMS) [Halevy et al., 

2003a; Halevy et al., 2003b]. This setting is characterized by having a diversity 

of perspectives, dynamic data, and the possibility of intermittent participation. 

It is generally composed of a set of autonomous and heterogeneous data sources 

(i.e. peers) which are linked by means of mappings or correspondences. 

In this chapter, we characterize PDMS and discuss their main data 

management issues: schema mappings and query processing. Besides, we 

discuss the importance of organizing peers in an overlay network based on their 

semantics and discuss the main challenges to achieve this goal. Afterwards, we 

describe some existing PDMS that propose a semantic-based approach to 

organize peers in the overlay network. Finally, we present a comparative 

analysis of such PDMS. 

3.1 PDMS Definition 
A Peer Data Management System (PDMS) [Ng et al., 2003; Tatarinov et al., 

2003; Ruzzi, 2004; Valduriez and Pacitti, 2004; Halevy et al., 2006; Pires et 
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al., 2006; Mandreoli et al., 2007; Lodi et al., 2008] is an advanced P2P 

application which enables users to transparently query several distributed, 

heterogeneous, and autonomous data sources. Differently from the traditional 

P2P file sharing systems, PDMS deal with more semantically rich structures 

(e.g. XML documents, relational tables, and ontology concepts). Therefore, in 

such systems peers use a more complex specification of their contents, e.g. 

database schemas [Bernstein et al., 2002] and formal ontologies [Rousset et al., 

2006], than the classical P2P file sharing systems [Leibowitz et al., 2003]. 

PDMS are considered the result of blending the benefits of P2P systems, 

such as lack of a centralized authority, with the richer semantics of databases. 

In general, PDMS are rather useful when sources have overlapping structured or 

semi-structured data and users want to access additional related information 

stored in other peers. PDMS may be used for data exchanging, query answering, 

and information sharing in almost every application domain, for example 

scientific research and educational systems. 

Due to the intrinsic characteristics of the P2P computing paradigm 

[Walkerdine et al., 2002], the assumption that all participating peers rely on a 

single global schema, such as in traditional data integration systems 

[Wiederhold, 1992], cannot be made [Aberer et al., 2002]. Otherwise, the 

global schema may need to be updated every time the system evolves 

[Giunchiglia and Zaihrayeu, 2002; Young, 2004]. Instead, each peer represents 

an autonomous data source and provides an exported schema (or peer schema) 

to be shared with the other peers of the system. 

Among those exported schemas, schema mappings, i.e. correspondences 

between schema elements, are generated. Schema mappings are needed to 

establish (meaningful) information exchange between peers. The peers with 

which a particular peer P maintains schema mappings are commonly called the 

neighbors of P. Consequently, these peers form the neighborhood of P. Query 

processing in a PDMS is accomplished by traversing the schema mappings, 

reformulating the queries, executing them on the peers, and gathering the 

results at the peer that requested the data. 

Sharing data in a PDMS is made easier, because each peer can map its 

schema to the most convenient peers in the system rather than to a mediated 
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schema. In addition, peers can query the system using their own schema rather 

than using a mediated schema that may be foreign to them.  

3.2 Data Management Issues in PDMS 
The most studied data management issues in PDMS are probably related to 

schema mappings [Madhavan and Halevy, 2003; Tatarinov et al., 2003; Hai, 

2005] and query processing [Katchaounov, 2003; Ng et al., 2003; Castano et 

al., 2004; Tatarinov and Halevy, 2004; Mandreoli et al., 2006a; Hose et al., 

2007; Souza, 2007; Montanelli and Castano, 2008; Kantere et al., 2009]. In this 

section, we offer an overview of such issues and describe some of the 

techniques commonly applied by well-known PDMS. 

3.2.1 Schema Mappings 

As illustrated in Figure 3.1, two types of mappings are commonly used in 

PDMS [Sung et al., 2005]: local mappings and schema mappings. Since data 

sources can be heterogeneous in a PDMS, a common data model is needed to 

describe exported schemas using a uniform conceptual notation. Thus, local 

mappings are used to define correspondences between the elements available in 

the data source and a peer’s exported schema. Moreover, since exported 

schemas can use different names or formalisms to represent the same data, 

schema mappings are needed to define (semantic) correspondences between the 

elements (e.g. relations and attributes) in two exported schemas for the purpose 

of sharing and integrating data [Madhavan and Halevy, 2003]. As with 

traditional distributed databases, the reason behind integrating data using 

schema mappings in PDMS is to provide a uniform querying environment that 

hides the heterogeneity and distribution of the data sources. 

 

Figure 3.1. The different types of mappings in a PDMS. 
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Most P2P systems assume the existence of schema mappings among peers, 

but do not specify how these mappings are determined. However, the definition 

of the schema mappings is probably one of the hardest aspects of the data 

sharing process. It is considered an expensive process that in some cases 

requires human intervention [Rousse and Berman, 2006]. In traditional data 

integration systems, schema mapping is typically specified manually and at 

design time. Differently, in PDMS peers need to coordinate their data sources 

on-the-fly, therefore ultimately requiring run time schema mapping. [Rahm and 

Bernstein, 2001] propose an approach for determining schema mappings 

automatically. 

Basically, schema mappings can be categorized in one of three groups: 

pair mappings, peer-mediated mappings, and super-peer mediated mappings 

[Sung et al., 2005]. Pair mappings are the simplest approach to define schema 

mappings in PDMS. As illustrated in Figure 3.1, schema mappings are defined 

between pairs of peers. The mappings are stored at the peer interested in 

accessing the other peer’s data. For example, the Local Relational Model 

(LRM) follows this approach to schema integration [Bernstein et al., 2002]. In 

the LRM proposal, a peer specifies translation rules and coordination formulas 

that define how its exported schema relates to an exported schema on another 

peer. Such agreement between two peers is referred to as an acquaintance 

[Kantere et al., 2003]. A semantic network is then defined by the acquaintance 

links between peers. 

In peer-mediated mappings, a peer can define a schema mapping that 

relates two or more peers. Hence, these mappings are a generalization of pair 

mappings. Piazza [Tatarinov et al., 2003] and PeerDB [Ng et al., 2003] are 

systems that follow this approach for integration. Super-peer mediated 

mappings can be defined when peers are organized according to a super-peer 

topology [Yang and Garcia-Molina, 2003]. In such systems, mediated schemas 

are defined at the super-peer level. Super-peer to peer mediated schemas 

contain the mappings for all the regular peers associated to the super-peer. 

Schemas between super-peers, called super-peer to super-peer mediated 

schemas, are also defined to implement data sharing between peers associated 

to different super-peers. 



�� � �� � � ���
��� � � ��� � � ��� � � � � �� � � ��� �� � ���

36 

3.2.2 Query Processing 

In PDMS, where frequent changes in schemas or in source availability are 

common, decentralized techniques for query processing need to be applied. The 

suitability of these techniques has been demonstrated by the success of early 

P2P file sharing systems. In such systems, queries are routed to peers with the 

goal of locating files. However, in systems sharing structured data such as 

PDMS, queries are more expressive. Therefore, query processing should follow 

more traditional optimization, plan generation, and execution stages. 

Query processing in a PDMS can be described as illustrated in Figure 3.2. 

Suppose that a query Q is formulated at an initial peer (P4) according to its 

respective exported schema. The first step consists in identifying the relevant 

peers (i.e. the peers that can answer Q and, consequently, the peers to which Q 

should be sent) among the neighbors of P4. In order to determine the relevant 

peers, several techniques have been proposed, e.g. semantic routing indexes 

[Mandreoli et al., 2006b; Mandreoli et al., 2007], expertise tables [Faye et al., 

2007], and routing tables [Li and Vuong, 2007]. In general, such techniques are 

based on query type and query specifications such as required attributes, 

predicates, and data filters. 

 

Figure 3.2. Typical query processing in a PDMS. 

In the example, assume that P3 is a relevant peer. Once the relevant peers 

are identified, Q is reformulated according to the corresponding schema 

mappings and distributed among relevant peers. At each relevant peer the same 

process is repeated so that Q can reach other peers in the network (in the 
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example, P1, P2, and P5). Due to scalability reasons, query distribution can be 

possibly restricted to a certain limit, e.g. time-to-live (TTL). Processing and 

filtering of results is done incrementally by visited peers as Q is distributed. 

The results are sent from the visited peers to P4 where the combination of 

results is normally done. 

In this scenario, incomplete and approximate answers are acceptable, as 

long as they are good enough for a PDMS application. This is because some 

schema mappings involved in query answering may become temporarily 

unavailable or invalid. Moreover, a query may have to be reformulated several 

times from peer to peer until it reaches peers that are able to answer it. 

Successive query reformulation produces query versions that can deviate from 

the original query. Obviously, if the chain of schema mappings used for the 

reformulating is “poor” in information relevance to the query (i.e. query parts 

cannot be reformulated accurately), this can result in fast degradation within a 

few hops [Kantere et al., 2009]. 

In the PeerDB system [Ng et al., 2003], queries are executed in two steps: 

in the first step, peers are selected based on the amount of metadata intersection 

between query terms and peer schemas; in the second step, queries are 

submitted to the selected peers and results are sent back to the query initiator. 

In PeerDB, users are involved in the selection of potentially promising peers 

from the set of peers obtained in the first step of query execution. 

Concerning query reformulation, in the Local Relational Model [Bernstein 

et al., 2002], a Query Manager component located at each peer, uses data 

translation rules and semantic dependencies to reformulate queries submitted at 

a peer to match the schemas of other peers. In the Piazza system [Halevy et al., 

2003a], storage mappings are used to associate queries with suitable data 

relations, while description mappings are used to associate query results at one 

peer to results at other peers. Based on these description mappings, a 

reformulation algorithm is capable of producing query expressions which are 

equivalent to a given query. In [Souza et al., 2009], the authors propose a 

semantic-based approach for reformulating queries in a PDMS in which queries 

are semantically enriched with additional elements obtained from a domain 

ontology. 
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3.3 PDMS and Ontologies 
Since peers in a PDMS can store heterogeneous data sources, a common 

metadata model is needed to describe the exported schemas using a uniform 

conceptual notation. The use of a common model facilitates the definition of 

schema mappings and, consequently, improves query processing. Some 

examples of commonly used metadata models include relational schemas, XML 

schemas, RDF schemas, and OWL ontologies. Among such metadata models, 

ontologies turn out to be the most elaborate form [Euzenat and Shvaiko, 2007]. 

The distinctive feature of ontologies is that their interpretation is not left to the 

knowledge management systems implementing them, but is specified explicitly. 

Due to its rich expressiveness, ontologies have been considered as a basis for 

making explicit the content of data sources and, consequently, as a means for 

promoting interoperability in PDMS [Nejdl et al., 2002; Castano et al., 2003; 

Xiao, 2006; Li and Vuong, 2007]. 

Particularly, [Xiao, 2006] has introduced a new definition for the blending 

of PDMS and Ontologies’ researches. In his work, such blending has lead to the 

emergence of Ontology-based Peer Data Management Systems (OPDMS). The 

main goal of such systems is to provide semantic interoperability between 

peers. According to [Xiao, 2006], in an OPDMS ontologies are used not only as 

a uniform conceptual notation to represent exported schemas, but also to 

describe schema mappings between peers. Particularly, in OPDMS the terms 

ontology mappings or semantic mappings are used interchangeably to refer to 

schema mappings [Wicaksana and Yétongnon, 2006]. 

When exported schemas are represented by ontologies, the identification 

of ontology mappings can be assisted by an ontology matching process. Once 

the correspondences between ontology elements are identified, they can be used 

for the purpose of query answering. In a PDMS, the ontologies representing 

exported schemas are designed and developed independently. Thus, even if 

ontologies are used as a uniform conceptual notation, users still may follow 

diverse modeling principles and patterns to encode the same real-world object. 

Moreover, since peers are meant to be totally autonomous, users may use 

different terminologies in order to represent their data, even if they refer to the 

same domain of interest. Ontology matching is somewhat similar to database 

schema matching, but it has many particularities due to the structural and 
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conceptual differences between ontologies and database schemas [Uschold and 

Gruninger, 2004]. Ideally, the ontology matching processes used in PDMS 

should deal with the heterogeneity problems discussed in Section 2.2. 

3.4 Semantic-based Peer Grouping in PDMS 
One of the first solutions for semantic-based peer grouping was proposed for 

P2P file sharing systems [Yang and Garcia-Molina, 2003]. In this work, peer 

grouping is treated as a supervised process which is guided by a predetermined 

semantic classification. The files shared by peers are classified into categories 

and peers are allocated into Semantic Overlay Networks (SONs) according to 

such classification. Clearly, this strategy can be applied when the data shared 

by peers do not differ in terms of structure and vocabulary. However, in PDMS, 

as each peer represents an individual organization, different peers can adopt 

distinct exported schemas. Therefore, peer grouping should be considered an 

unsupervised process and semantic communities should be formed as a result of 

a common agreement among peers [Castano and Montanelli, 2005; Kantere et 

al., 2008; Lodi et al., 2008]. 

Several solutions have already been proposed for the dynamic formation 

and maintenance of semantic communities of peers in PDMS. Some solutions 

[Ramaswamy et al., 2003; Castano and Montanelli, 2005; Doulkeridis et al., 

2006; Kantere et al., 2008] assume that the network is already populated with a 

predetermined number of peers and then the participating peers start the 

formation of semantic communities in an ad-hoc manner. In such systems, 

semantic communities are autonomously emerging [Castano and Montanelli, 

2005]. Communities originate from a declaration of interest of a peer and group 

those peers which spontaneously agree with the declaration, since they can offer 

relevant resources for the community. 

Only a few solutions [Li and Vuong, 2005; Lodi et al., 2008] consider the 

problem of forming semantic communities from scratch. In such solutions, the 

network is initially empty and new peers are added to related semantic 

communities as they join the network. If an interesting semantic community is 

not found then a new one is formed. Moreover, some systems [Kantere et al., 

2008; Lodi et al., 2008] enable peer participation in multiple communities 
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while others are more restrictive in the sense that each peer can take part in 

only one community [Li and Vuong, 2007]. 

Several distinct semantic communities can coexist in a PDMS. Within 

each community peers can be organized according to some existing P2P 

network topology, e.g. unstructured [Leibowitz et al., 2003], structured [Stoica 

et al., 2001; Ratnasamy et al., 2001], or super-peer [Yang and Garcia-Molina, 

2003]. Particularly, concerning the super-peer topology peers also need to be 

organized in a more specific level within the community, i.e. the clusters. Thus, 

an approach to insert peers into appropriate clusters is essential. 

The task of dynamically forming and maintaining semantic communities 

of peers in a PDMS imposes several important challenges. Next, we enumerate 

some of these challenges and succinctly define each one. 

Similarity (or distance) measurement 

A semantic community should contain only semantically similar peers. In order 

to determine if two peers are semantically similar (or dissimilar) it is necessary 

to measure their semantic similarity (or distance) [David and Euzenat, 2008]. In 

this sense, peer exported schemas are commonly used to calculate the similarity 

(or distance) measure between peers. 

Neighborhood search 

All peers in a semantic community share content associated to the same 

knowledge domain. However, a peer can be more semantically related to some 

particular peers in a community than to others. Therefore, even after a new peer 

joins a semantic community it is still necessary to determine the peer’s 

neighborhood inside the community [Lodi et al., 2008]. In this sense, an 

efficient strategy for routing peers to other related peers should be available. 

Such strategy can be associated to the type of network topology (e.g. 

unstructured, structured, or super-peer) adopted to organize peers within the 

community. 

Neighborhood selection 

During the definition of a peer’s neighborhood several possible candidate peers 

can be identified in a semantic community. Therefore, the new peer needs to 

choose a subset of the identified peers in order to determine its neighborhood. 
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Range-based [Lodi et al., 2008] and threshold-based [Castano and Montanelli, 

2005] techniques can be used to select the most similar peers. However, such 

techniques are not very restrictive in the sense that a high number of peers can 

be chosen to form a peer’s neighborhood. Since the physical capacity (e.g. 

network bandwidth) of a peer is limited it could be necessary to limit the 

number of neighbors in order to avoid the consuming of all peer resources 

[Ramanathan et al., 2002; Zhuang at al., 2004]. 

Neighborhood maintenance 

Due to the dynamicity of peer participation in a PDMS it is necessary to adjust 

the neighborhood of each peer as new peers join the system or participating 

peers leave the system. For instance, such adjustment can be done periodically 

(e.g. network stabilization) [Xu and Srimani, 2005] or by monitoring peer’s 

answers during query processing [Ramanathan et al., 2002; Ng et al., 2003]. 

3.5 Existing Semantic-based PDMS 
Several PDMS have been proposed in the literature: Piazza [Halevy et al., 

2003a; Halevy et al., 2003b; Tatarinov et al., 2003], PeerDB [Ng et al., 2003; 

Ooi et al., 2003], Hyperion [Arenas et al., 2003], APPA [Valduriez and Pacitti, 

2004], and Xpeer [Bellahsène and Roantree, 2004]. In general, such initial 

systems propose solutions to problems associated with schema mappings and 

query processing. 

In the last few years, research on PDMS has focused on semantic-based 

techniques to overcome the main limitations of initial PDMS, especially those 

limitations related to query processing. In this light, several PDMS have been 

proposed employing some kind of semantic-based approach to organize peers in 

the network: Sunrise [Lodi et al., 2008], Helios [Castano et al., 2004], and 

OntSum [Li and Vuong, 2007]. In this section, we offer a more detailed 

description of such PDMS focusing on the way that semantic communities are 

formed and maintained. These PDMS were chosen because they propose 

solutions to the challenges related to semantic community management 

discussed in Section 3.4. At the end of the section, we also present a 

comparative analysis of such PDMS. 
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3.5.1 Sunrise (University of Bologna) 

[Lodi et al., 2008] propose a solution for the creation and maintenance of a 

flexible network organization for PDMS that clusters together heterogeneous 

peers which are semantically related. Each peer in the network is represented by 

a set of concepts describing its main topics of interest. The representation of 

each peer derives from the peer’s exported schema as it describes the semantic 

content of the underlying data. The network is organized in a set of Semantic 

Overlay Networks (SONs) [Crespo and Garcia-Molina, 2002] in such a way to 

assist each new peer in the selection of the semantically closest peers as its 

neighbors. A SON is a group of semantically related peers locally connected 

through a link structure. Peers are assigned to one or more SONs on the basis of 

their exported set of concepts. A sample of network made up by two SONs 

supporting a web of research-related data is shown in Figure 3.3. The network 

includes various peers. Some of them, such as the EDBT Association (EDBT 

Ass.) and the University of Rome (URome) are monothematic, i.e. they only deal 

with publications and university people, respectively. Other peers, instead, are 

concerned with both themes, e.g. Stanford. 

 

Figure 3.3. Sample of network organization [Lodi et al., 2008]. 

Similarity between peers is captured by a distance function d considering 

their exported sets of concepts. The function quantifies the distance between 

two given concepts by comparing their WordNet [Miller, 2005] hypernymy 

hierarchies. Two variants of linguistic distances are considered. The first 

distance is obtained by computing the depths of the concepts in the WordNet 
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hypernymy hierarchy and the length of the path connecting them. The other 

distance considers the number of links connecting the two given concepts in the 

hypernymy hierarchy as well as the height of the hierarchy (16 in WordNet). 

The approach for organizing peers is inspired on incremental clustering 

algorithms. The network evolves incrementally to assimilate new peers. When a 

peer joins the system, it first performs a coarse-grained neighbor selection by 

accessing the Access Point Structure (APS). APS is a centralized structure 

which maintains a summarized representation of each SON available in the 

network. The APS helps new peers to decide which SONs to join or whether to 

form new SONs by providing useful information such as the most 

representative concepts of each SON. Such representative concepts are 

compared to the new peer’s concepts. 

When a new peer has chosen its semantically closest SONs, it navigates 

the link structure within each selected SON with the aim of searching for its 

preferred neighbors, i.e. the semantically nearest peers. In particular, two types 

of neighbor selection are supported: each peer is allowed to select either the k 

semantically nearest peers (k-NN selection) or the peers in the SON for which 

the distance between their SON’s concepts and the peer SON’s concepts are 

below a given threshold (range-based selection). The topology of the network 

is strongly influenced by the type of neighbor selection. A k-NN selection 

limits the number of neighbors and thus controls the degree of connectivity. 

This is not possible in a range-based selection where it is only possible to 

provide an estimation of the number of neighbors based on the SON statistics 

maintained at the APS level. 

Adopting a broadcast-based approach to search neighbors could imply 

wasting precious resources. Therefore, the authors propose that the neighbor 

selection process to be guided by a distributed index mechanism which 

maintains at each node specifically devised indices named Semantic Clustering 

Indices (SCIs) [Mandreoli et al., 2006a; Mandreoli et al., 2006b]. The 

collection of SCIs distributed across the peers that the new peer visits, drives 

its navigation towards the peers in the same SON containing the concepts 

nearest to its concepts. The Sunrise semantic framework is presented in 

[Mandreoli et al., 2007].�
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3.5.2 Helios (Università degli Studi di Milano) 

Helios [Castano et al., 2003] is a system for ontology-based knowledge 

discovery and sharing in peer-based open distributed systems. It addresses the 

problem of forming semantic communities of peers in a P2P system. Each peer 

provides an ontology representing the resources it exposes to the network. 

Ontologies are represented in the H-Model [Castano et al., 2004], a language 

independent ontology model capable of describing a number of ontology 

specification formalisms (e.g. OWL, RDF(S), and UML). Each peer implements 

a Semantic Matchmaker component for matching ontologies in order to find 

which concepts match in different ontologies and at which level. The Semantic 

Matchmaker is based on the H-Match algorithm [Castano et al., 2004] and 

performs dynamic ontology matching by taking into account both linguistic and 

contextual features of the concepts. H-Match performs ontology matching at 

different levels of depth, implementing four different matching models: surface, 

shallow, deep, and intensive [Castano et al., 2006]. 

In Helios, a semantic community of peers is identified by a unique 

Community Identifier (CID), and a subject category or topic area of interest 

called community Identity Card (ICard), defined as an ontology [Castano and 

Montanelli, 2005]. The semantic community formation process is addressed 

under certain assumptions: (i) each peer can be member of multiple 

communities; (ii) no centralized authority (e.g. super-peer) is expected to 

coordinate the community discovery and formation process; and (iii) the choice 

of joining an emergent community depends on the matching results. A semantic 

community of peers emerges when a peer, called community founder, invokes a 

semantic handshake process which is composed of the following tasks: 

ICard advertisement. The founder Pf defines a CID and an ICard 

describing the topic area of interest of the emerging community, along with a 

set of commitment constraints specifying the conditions required for the 

community establishment (e.g. minimum number of members). Then, Pf 

composes an Invitation Message containing the CID and the ICard created, as 

well as a TTL parameter defining the maximum number of hops allowed for the 

invitation propagation, the matching model to be used for affinity evaluation, 

and the matching threshold t specifying the minimum semantic affinity value 

required to consider a concept of the ICard and a concept of a peer ontology as 
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matching concepts. Then, the invitation message is sent to all Pf neighbors in 

order to advertise the new community. 

Member identification. Each invited peer Pi invokes the Semantic 

Matchmaker in order to compare the incoming ICard with its peer ontology. Pi 

is relevant for the community if the Semantic Matchmaker identifies concepts 

in the peer ontology with a semantic affinity higher than the specified threshold 

t with respect to the ICard. In this case Pi replies to Pf with an Interest Message 

reporting the portion of its peer ontology related to the matching concepts 

found to be relevant for the community by the Semantic Matchmaker. 

Independently from the matching results and if TTL � 0, Pi forwards the 

invitation message to all its neighbors. 

Request approval. Once the interest messages are received, Pf has to 

evaluate which peers are admitted in the community. For this reason, Pf invokes 

its Semantic Matchmaker and compares each peer ontology portion received by 

the interested peers with its peer ontology. For each candidate peer, the goal of 

this comparison is to evaluate whether the provided knowledge matches the 

knowledge of Pf, and then to assess whether they share a common perspective 

of the community interests. If the matching results are higher than t, Pf admits 

the peer in the community and sends an Approval Message to the admitted peer. 

Community commitment. Once the Request approval phase is completed, 

Pf verifies if the commitment constraints are satisfied. In this case, a 

Commitment Message is sent to all the admitted peers and the semantic 

community is effectively established. If the committed constraints are not 

satisfied, Pf stops the community formation. In this case, the admitted peers 

wait for the commitment message until a predefined timeout expires. 

Figure 3.4 illustrates an example where the handshake algorithm is applied 

to a P2P network and the community founder (Pf), represented by a double 

hoop, sets an initial TTL = 2. Dashed lines represent random P2P connections 

and the path followed by the invitation message (continuous line) defines a tree 

structure where the root is identified by Pf and the leafs are represented by the 

invited peer with TTL = 0. Each invited peer negotiates its participation in the 

community directly with Pf. Once it is admitted, the peer exploits the tree 

structure and communicates within the community through its community 

neighbors. The authors define the community neighbors of a community 
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member Pm as the peer that invited Pm in the community (i.e. Pm predecessor) 

and the peers that Pm invited in the community (i.e. Pm successors). An invited 

peer not interested in the community or discarded by Pf is to be pruned from the 

tree structure of the community. For this reason, after the approval phase, each 

community member Pm notifies to its predecessor Pp of its presence in the 

community. If Pp is not member of the community, it forwards the Pm 

notification to its predecessor Pg and notifies Pm that Pg is its new predecessor. 

As an example, consider peer E in Figure 3.4. The community members peer H 

and peer K notify peer E of their participation. Peer E has not joined the 

community and is to be pruned from the community tree. Then, peer E forwards 

the notification to peer B and notifies peer H and peer K that peer B is the new 

predecessor of peers H and K. 

 

Figure 3.4. Example of aggregation of a semantic community [Castano and Montanelli, 

2005]. 

3.5.3 OntSum (University of British Columbia) 

OntSum [Li and Vuong, 2007] is a PDMS which uses an ontology-based 

approach to address the routing issues of expressive queries. Peers use 

ontologies to describe their shared content. A metric to measure peers’ ontology 

similarity is used to organize peers according to their semantic properties. The 

network topology is reconfigured with respect to peer’s ontological similarity, 

so that peers with similar ontologies are close to each other. As proposed in 

Description Logics [Baader et al., 2003], the system divides a peer’s ontology 

into two parts: (i) taxonomical box (T-Box): stores conceptual knowledge; and 

(ii) assertion box (A-Box): represents the concrete knowledge about individuals. 

A peer’s T-Box concepts are indexed into a vector (ontological signature 
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vector). The semantic similarity between two peers A and B is defined as the 

cardinality obtained from the intersection between V(A) and V(B) divided by the 

cardinality of V(A), where V(A) and V(B) are the ontology signature vectors of 

peers A and B. Two peers are semantically similar if their similarity is beyond a 

similarity threshold. 

Figure 3.5 illustrates a high level view of the network topology. Peers 

form multi-layered clusters reflecting the semantic locality: peers with similar 

ontological topics form a big domain; inside the domain, peers may create 

smaller clusters if they share the same ontology. For instance, all peers in the 

medical domain are interested in medically related information. They may be 

interested in different aspects of the medical resources, and they may use 

different ontologies to describe their contents, but since they share the similar 

interests (medicine), they connect with each other through some links. Peers N1, 

N2, N5, and N8 use the same ontology: ont1, so they form a same-ontology 

cluster. The term “domain” is used to represent a group of clusters sharing 

similar ontological topics while the term “cluster” is used to denote the same-

ontology cluster. Clusters and domains do not have fixed boundaries; they are 

formed by randomly connecting relevant peers. 

 

Figure 3.5. The network topology [Li and Vuong, 2007]. 

To form this multi-level structured network a peer distinguishes three 

kinds of neighbors based on their semantic similarity. Two peers A and B can 

be neighbors at different levels: (i) zero-distance neighbor (or same-ontology 

neighbor, intra-cluster neighbor), if sim(A,B) = 1; (ii) short-distance neighbor 

(or semantically related neighbor) if sim(A,B) � t (0 < t < 1 is A’s semantic 

threshold); and (iii) Long-distance neighbor (or semantically unrelated 
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neighbor) if sim(A,B) < t. A peer always tries to find as many close neighbors 

as possible, but it also keeps some long distance neighbors to reach out to other 

ontological clusters. 

Peers in the system may pose two types of queries: neighbor-discovery 

query and resource-discovery query. The neighbor-discovery query is used to 

construct the ontology-based network topology. When a new peer joins the 

network, it issues neighbor-discovery query to find semantically related 

neighbors, so that it can join their domain and cluster by connecting to them. 

The resource-discovery query is used to locate desirable resources in the 

network. To efficiently route queries, two routing schemes are proposed: inter-

cluster routing and intra-cluster routing. The former quickly locates 

semantically related clusters; while the latter efficiently finds desirable 

resources satisfying the query constraints. Related with the two routing 

schemes, two routing tables are maintained at each node: (i) inter-cluster 

routing table: stores the abstract semantic knowledge of its neighboring clusters 

(short-distance and long-distance neighbors, their semantic similarities to the 

peer, and their semantic signature vector); and (ii) intra-cluster routing table: 

used to forward queries inside a cluster. 

A peer joins the network by connecting to one or more bootstrapping 

neighbors. Then the joining peer issues a neighbor-discovery query, and 

forwards the query to the network through its bootstrapping neighbors. The 

neighbor-discovery query is routed mainly according to the inter-cluster routing 

table. A neighbor-discovery query message includes several parts: (i) the 

querying peer’s ontology signature vector; (ii) a similarity threshold which is a 

criteria to determine if a peer is semantically related to the query; (iii) a query 

TTL to decide how far the query should be propagated; and (iv) a list of 

clusters the query has passed through, so that the query would not be forwarded 

to the same cluster. When a peer N receives a neighbor-discovery query Q 

which tries to find neighbors for a new joining peer X, N computes the semantic 

similarity between X and itself; if N is semantically related to X, N will send a 

Neighbor Found reply. If the query’s TTL does not expire, N computes the 

semantic similarity between X and each of its neighbors, and forwards the 

query to semantically similar neighbors. If no semantically similar neighbors 

are found, the query will be forwarded to N’s long-distance neighbors. 
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3.5.4 Comparative Analysis 

Table 3.1 presents a comparative analysis of the previously discussed PDMS. 

All of them employ a semantic-based approach to organize peers in the overlay 

network. The comparative criteria were chosen according to the main interest of 

our work. They indicate how the PDMS deal with the challenges related to 

forming and maintaining semantic communities discussed in Section 3.4. The 

criteria are described as follows. 

� Schema representation: refers to the metadata model that is used to 

represent peer exported schemas; 

� Network topology: indicates the P2P topology that is used to organize peers 

in the network; 

� Network population: indicates the network population status at the moment 

communities start being formed; 

� Domains: indicates if semantic communities are originated spontaneously 

from the peers or if predefined semantic communities are initially available; 

� Multiple communities: indicates if a peer can participate in multiple 

communities (or clusters); 

� Neighborhood search: refers to the strategy that is used by new peers to find 

other semantically similar peers in a community; 

� Semantic similarity measure: corresponds to the measure used to calculate 

the (semantic) similarity between peers; 

� Neighborhood selection: refers to the method used to determine the semantic 

neighborhood of a peer in a community (or cluster). 

Table 3.1. A comparison of PDMS employing a semantic-based approach to organize peers in the 
network. 

PDMS Schema 
represent. 

Network 
topology 

Network 
population Domains Multiple 

communities 
Neighborhood 
search 

Semantic 
similarity 
measure 

Neighborhood 
selection 

OntSum Ontologies Unstructured Not empty 
Predefined 
semantic 
domains 

No 

Flooding; first 
short-distance 
links, then 
long-distance 
links; inter-
cluster table 

Semantic 
similarity 
measure 
(ontology 
matching) 

Threshold 

Sunrise 

Generic 
(Ontologies, 
Relational, 
XML) 

Unstructured Empty 
Non 
existing 
domains 

Yes 

Centralized 
Access Point 
Structure 
(APS) 
followed by 
SCI 

Semantic 
distance 
between 
concepts 
(clustroids) 

Range-based 
and kNN-
based 
algorithms 

Helios Ontologies Unstructured Not empty 
Non 
existing 
domains 

Yes Flooding Ontology 
matching Threshold 
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Concerning OntSum, the authors do not mention anything about the 

ontology matching algorithm used in the system. A very simple and asymmetric 

global measure is used to compute the semantic similarity between two peers’ 

ontologies. Moreover, it is hard to accept that peers in a PDMS share exactly 

the same ontology, especially when the authors assume that peers’ ontologies 

can differ in terms of structure and vocabulary. In this work, we propose a 

symmetric global measure to determine the similarity between peer schemas 

(ontologies). The measure is obtained as a result of an ontology matching 

process which uses linguistic, structural, and semantics matchers. 

Sunrise concentrates all efforts related to peer grouping in a centralized 

structure called Access Point Structure (APS). The APS is an index structure in 

which each entry contains the most representative concepts of a SON. Such 

concepts are obtained from the peers that participate in the SON. In this sense, 

the APS maintains a summarized representation of each SON available in the 

network. Each time a new peer joins a SON, if it has at least one concept that is 

not listed in the most representative concepts of the SON, then the APS needs 

to be updated. The same occurs if a participating peer leaves the system. Thus, 

the frequency of updates in the APS can be intense and consequently bring 

scalability problems to the system. 

A distinguishing feature of Helios with respect to the other PDMS is that 

semantic communities are formed in an ad-hoc manner after peers are 

connected to the system. Such approach enables the formation of dynamic 

communities since no classification or set of semantic domains needs to be 

available a priori. However, since the initial neighborhood of peers is defined 

randomly then unrelated peers may become neighbors in the network. 

Therefore, during the process of community formation many unrelated peers 

can be accessed and unnecessary ontology matching comparisons may be 

executed. The complete absence of any kind of centralized control does not 

enable a community founder to verify the existing communities before starting 

the formation of a new one. Thus, it is possible to coexist multiple communities 

dealing with the same topic. To avoid these problems, we consider the use of 

predefined semantic communities. Each community is initially empty and new 

peers are added to the community as they join the system. 
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3.6 Considerations 
In this chapter, we have described Peer Data Management Systems (PDMS) and 

two of its data management issues: schema mappings and query processing. We 

have shown the importance of organizing peers in a PDMS overlay network 

according to their semantics and the main challenges to achieve this goal. A 

description of existing PDMS and a comparative analysis of them were also 

provided. According to such comparison, we conclude that (i) none of the 

discussed systems take advantage of the benefits provided by the mixed use of 

P2P network topologies to facilitate the formation of semantic communities; 

and (ii) ontologies are mostly used to represent peer exported schemas. In the 

next chapter, we propose a PDMS in which ontologies are used in a broader 

way to improve some of its main services. The overlay network of the proposed 

PDMS is mainly designed to assist the connection of peers according to their 

exported schema (i.e. an ontology). 
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“The problems that exist in the world today cannot be solved  

by the level of thinking that created them” 

Albert Einstein 

In this chapter we discuss how ontologies can be employed in a PDMS to 

improve its main services. We describe an Ontology-based PDMS (OPDMS) 

whose overlay network is mainly designed to assist the organization of peers 

according to their exported schema (i.e. an ontology). Such description includes 

an overview of the system’s architecture, the distinct types of peers as well as 

their internal modules, and the different types of ontologies used in the system. 

We also describe how schema mappings and query processing are handled in 

the proposed OPDMS. 

4.1 Ontology-based PDMS 
An ontology typically provides a vocabulary describing a domain of interest 

and a specification of the meaning of terms in that vocabulary. Ontologies are 

viewed as the “silver bullet” for many applications [Fensel, 2004] such as, for 

example, database integration, P2P systems, e-commerce, semantic web 

services, and social networks. 
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Xiao [Xiao, 2006] has introduced the concept of OPDMS through two 

important issues: (i) ontologies are used in local sources as a uniform 

conceptual metadata representation; and (ii) ontology mappings are established 

between peers’ ontologies to allow query processing. In this thesis, we argue 

that ontologies may be used in a broader way to enhance PDMS services. 

Considering that, we propose an extension to the original OPDMS description. 

We define an OPDMS as a PDMS which is conceived for supporting dynamic 

ontology-based knowledge sharing, and this knowledge must be employed to 

improve its services [Pires et al., 2008]. Moreover, based on our analysis of the 

state-of-the-art on PDMS presented in Chapter 3, we have identified a set of 

high-level requirements that an OPDMS should fulfill: 

R1) Exported schema representation: peer’s metadata should be mapped onto 

an ontology description, using a common model; 

R2) Global conceptualization: an ontology should represent a high-level view 

over a set of heterogeneous peer exported schemas; 

R3) Support for correspondences identification: an ontology may also be used 

to assist the identification of correspondences between peer exported schemas, 

i.e. between ontologies; 

R4) Support for query processing: query answering in a PDMS may use a global 

ontology in a twofold way: a) as a high-level view of the sources; and b) as a 

terms’ reference for query reformulation between peers. The former is 

concerned with query formulation, i.e. the user can formulate a query using the 

global ontology without specific knowledge of the different data sources stored 

in the peers. The latter is concerned with query reformulation, i.e. the query is 

reformulated into a target query over other connected peers, according to the 

defined correspondences among them; 

R5) Semantic index: a semantic index can be built according to the main terms 

or categories referring to a set of ontologies. Such index must enable efficient 

location of peers; 

R6) Semantic matching capabilities: a semantic matching component is needed 

for matching ontologies in order to find out which concepts match in different 

ontologies and (possibly) at which level. Such capability can be used for the 

organization of peers in the network and the definition of semantic 

correspondences between peers. 
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A system should take into account the previous requirements not only to 

be considered an OPDMS, but also to take full advantage of using ontologies 

for semantic enrichment. Table 4.1 illustrates the requirements fulfilled by the 

three PDMS discussed in Chapter 3 (OntSum, Sunrise, and Helios). None of 

them satisfies all the identified requirements. In this sense, we propose a new 

OPDMS architecture satisfying all the requirements. Particularly, how the 

requirements R1, R2, R3, R5, and R6 are satisfied by the OPDMS are discussed 

throughout this work, while R4 is treated in more details in [Souza, 2009]. In 

the following sections, we describe the proposed OPDMS. 

Table 4.1. High-level requirements fulfilled by PDMS. 

PDMS R1 R2 R3 R4 R5 R6 

OntSum � � � � � � 

Sunrise � � � � � � 

Helios � � � � � � 

SPEED � � � � � � 

4.2 System Architecture 
In this section, we propose an OPDMS, named SPEED (Semantic PEEr-to-Peer 

Data Management System) [Pires, 2007a]. The system utilizes a mixed P2P 

network topology: DHT [Stoica et al., 2001], super-peer [Yang and Garcia-

Molina, 2003], and unstructured [Freenet, 2009]. The strengths of such 

topologies are exploited in order to assist peer organization in the network 

according to their exported schemas. SPEED’s main goal is to cluster 

semantically similar peers in order to facilitate the establishment of semantic 

mappings between peers and, consequently, improve query processing on a 

large number of data sources [Pires et al., 2009c]. Next, we present an overview 

of the SPEED’s architecture. 

4.2.1 Architecture Overview 

A DHT network is used to link particular peers that represent a certain 

knowledge domain. Peers are grouped according to their knowledge domain 

(e.g. education and health), forming a semantic community. When a new peer 
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wishes to join the system, it has to find its corresponding knowledge domain. 

Within a semantic community, peers are organized in a finer grouping level, i.e. 

clusters. In other words, semantically similar peers are clustered in a super-peer 

network considering their exported schemas. 

As illustrated in Figure 4.1, three distinct types of peers are considered in 

the proposed system: data peers, integration peers, and semantic peers. A data 

peer is a simple computer or a server storing an autonomous data source. DPij1, 

DPij2, and DPijk are examples of data peers. 

Data peers are logically organized in a super-peer network. In this sense, 

semantic clusters are formed according to data peers’ exported schema. Each 

semantic cluster has a special type of peer named integration peer. In fact, an 

integration peer is a data peer with higher computational capacity. It is 

responsible for defining and maintaining schema mappings as well as for 

managing query processing and data peer’s metadata. For instance, IPij is the 

integration peer of the cluster formed by the data peers DPij1, DPij2, and DPijk. 

 

Figure 4.1. An overview of the SPEED architecture. 

A set of clusters sharing content belonging to a common knowledge 

domain forms a semantic community. Each semantic community has a special 

type of peer named semantic peer. SPi is an example of a semantic peer. 

Semantic peers are connected through a DHT network, while integration peers 

are connected through an unstructured network. Our approach assumes that an 
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integration peer names its respective cluster, while a semantic peer names its 

corresponding semantic community (e.g. semantic cluster IPij and semantic 

community SPi). The semantic community SPi is formed by the clusters IPi1, 

IPi2, and IPij. 

4.2.2 Architecture Formalization 

In this section, we provide a formalization of some important concepts and 

terminologies which are necessary to a complete understanding of the SPEED’s 

architecture. Other important definitions are presented in Section 4.3. 

Definition 1 (Data Peer). A data peer DPijk is a simple computer or a server 

storing an autonomous data source, e.g. a relational database. The content 

shared by a data peer is accessed through an exported schema. Such schema 

provides access to the entire content available in its data source or only to a 

portion of it. 

Definition 2 (Integration Peer). An integration peer IPij is a distinguishing 

data peer offering better computational resources in terms of availability, 

network bandwidth, processing power, and storage capacity. Therefore, an IPij 

is responsible for managing important tasks in the proposed PDMS, e.g. query 

processing and data integration. 

Definition 3 (Requesting Peer). A requesting peer RPn is a peer wishing to 

join the system. To this end, a RPn must provide an exported schema. Once 

connected, a RPn assumes the role of a data peer or an integration peer. 

Definition 4 (Semantic Cluster). A semantic cluster CLij (cluster, for short) 

corresponds to a logical set of data peers sharing semantically similar exported 

schemas. One of the data peers in a semantic cluster CLij is necessarily an 

integration peer IPij. A data peer DPijk participates in only one semantic cluster 

CLij. Formally, CLij = {IPij, (DPij1,…,DPijk)}, where k is the number of data 

peers in CLij; with k ≥ 0. If k = 0, then a semantic cluster CLij contains only an 

integration peer IPij. For instance, at the moment a cluster is created. 

Definition 5 (Semantic Community). A semantic community CMi (community, 

for short) is a logical set of semantic clusters sharing content associated to a 

common knowledge domain, e.g. education and health. Formally, CMi = {SPi, 

(CLi1,…,CLij)}, where j is the number of semantic clusters in a semantic 

community CMi; with j ≥ 1. 
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Definition 6 (Semantic Peer). A semantic peer SPi is a special type of peer 

associated to a semantic community CMi. It acts as an entry point for its 

semantic community. A SPi is responsible for forwarding a requesting peer to 

an initial semantic cluster CLij. Such initial cluster is obtained from a semantic 

index. Only one semantic peer is allowed per semantic community. 

Definition 7 (Semantic Index). A semantic index is a structure located at a 

semantic peer SPi describing the content available in the clusters (CLi1,…,CLij) 

of a semantic community CMi. Each index entry represents an individual cluster 

CLij and contains a pointer to the corresponding cluster. In short, a semantic 

index stores the following information: (i) cluster summary: a summarized 

representation of the schemas shared by the peers of a particular cluster CLij; 

and (ii) cluster address: the network address of the corresponding integration 

peer IPij. A semantic index is used to assist the connection of requesting peers. 

Such process is detailed in Chapter 7. 

Definition 8 (SPEED). SPEED is a Semantic-based PDMS composed of 

multiple semantic communities. Formally, SPEED = {CM1,…,CMi}, where i is 

the number of semantic communities; with i ≥ 1. 

Definition 9 (Semantic Neighbor). Two distinct clusters CLij and CLik are 

considered semantic neighbors (neighbors, for short) if they (i) belong to the 

same community CMi; (ii) share semantically similar content; and (iii) are one-

distance neighbors in CMi’s overlay network. Particularly, the item (ii) is better 

detailed in Chapter 7. 

Definition 10 (Semantic Neighborhood). The set of semantic neighbors of a 

cluster CLij composes the semantic neighborhood (neighborhood, for short) of 

CLij and is denoted by Nij. 

Definition 11 (Relevant Peer). Given that a query Q is being processed at an 

integration peer IPij, each semantic neighbor of IPij or each data peer DPijk in 

the corresponding cluster CLij that is capable of answering Q (integrally or 

partially) is considered a relevant peer. 

4.3 Ontologies in SPEED 
In SPEED, ontologies are employed in many different ways. The semantic 

knowledge, expressed by ontologies, is used as a way to enrich some important 

PDMS services and provide users with more complete results. Since peers can 
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store heterogeneous data sources, ontologies are used as the system’s common 

data model. Moreover, considering a cluster of semantically similar peers, an 

ontology is used as a conceptual representation of the cluster to provide a 

shared understanding of the terms that are being shared. Particularly, in this 

work our main interest is in demonstrating how ontologies can be employed to 

assist peer organization in the proposed OPDMS network. 

In this sense, four distinct types of ontologies are employed (Figure 4.2): 

(i) local ontologies, resembling the schema of the data sources stored in data 

peers and integration peers; (ii) cluster ontologies, representing the schemas of 

the peers in the semantic clusters; (iii) summarized cluster ontologies, 

representing a cluster ontology in a succinct way; and (iv) community 

ontologies, containing concepts and properties of a particular knowledge 

domain. Next, we provide a formal definition of these types of ontologies. 

 

Figure 4.2. The different types of ontologies used in SPEED. 

Definition 12 (Local Ontology). A local ontology LOijk corresponds to the 

exported schema describing the content shared by a data peer DPijk, an 

integration peer IPij, or a requesting peer RPn. 

Definition 13 (Cluster Ontology). A cluster ontology CLOij describes the 

content available in a semantic cluster CLij. A CLOij is obtained by merging the 

local ontologies (LOij1,...,LOijk) of the data peers in a semantic cluster CLij. It is 

stored in an integration peer IPij which also maintains its local ontology LOij. 

Definition 14 (Community Ontology). A community ontology CMOi is an 

ontology describing the knowledge domain associated to a semantic community 

CMi. A CMOi is stored at a semantic peer SPi. 
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Definition 15 (Summarized Cluster Ontology). A summarized cluster 

ontology OSij corresponds to an abridged version of a cluster ontology CLOij. 

An OSij is a subontology of CLOij containing the most relevant elements of 

CLOij. The process of summarizing a cluster ontology is described in Chapter 6. 

In order to describe the different types of ontologies employed in SPEED, 

consider the setting illustrated in Figure 4.3 in which a semantic community is 

composed of two clusters. Each cluster contains an integration peer and two 

data peers. The setting is considered until the end of this chapter to explain the 

main ontology management processes used in SPEED. 

 

Figure 4.3. A setting of a semantic community containing two clusters. 

In the described setting, the participating peers store content related to the 

education knowledge domain and wish to share data about universities and the 

corresponding activities occurring at them, e.g. given courses and publications. 

Thus, assume that each participating peer shares an exported schema as follows: 

Cluster 1 (CL11) Cluster 2 (CL12) 
Integration Peer IP11 (Object-Relational Model) 
Publication (Title, PublicationDate, isAuthoredBy) 
Author (Name, EmailAddress,  isAuthorOf) 
Article (Pages) isA Publication 

Integration Peer IP12 (Object-Oriented Model) 
Student (StudName, EmailAddress)  
GraduateStudent (advisor) isA Student 
UndergraduateStudent (ConclusionYear) isA Student 
Professor (ProfName, EmailAddress, advices) 

Data Peer DP111 (Relational Model) 
Researcher (ResID, FirstName, LastName, University) 
Publication (PubID, Title, PubDate, Area, ResID) 
Article (ArtID, FullPaper, PubID) 
Book (BookID, ISBN, Chapters, Publisher, PubID) 
Journal (PubID, Volume) 
PublicationResearcher (PubID, ResID) 

Data Peer DP121 (Object-Relational Model) 
Course (CourseName) isA Work 
Faculty (FacultyName, EmailAddress, isTeacherOf) 
Student (StudentName, EmailAddress, takesCourse) 
GraduateCourse (University) isA Course 
Work (Manager) 

Data Peer DP112 (Object-Oriented Model) 
Proceedings (ProceedingName, hasPublication) 
Author (AuthorName, EmailAddress, isAuthorOf) 
Publication (Title, Pages, isAuthoredBy) 
Conference (Name, Year, Area, hasProceeding) 

Data Peer DP122 (Relational Model) 
University (UnivID, UnivName, Homepage) 
Faculty (FacID, FirstName, LastName, UnivID) 
Student (StudID, StudentName, EmailAddress, UnivID, 
FacID) 
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Moreover, consider that, before joining the system, the participating peers 

have built an ontological description resembling the structure of their exported 

schemas. In other words, each peer has translated its exported schema, 

originally described in its data source metadata model, onto a Local Ontology 

(LO). Such translation is needed because data sources can be heterogeneous. 

For the sake of correct query processing, the translation must preserve the 

structure and the integrity constraints (e.g. relational foreign keys) originally 

expressed on the exported schemas. 

Figure 4.4 depicts the local ontologies of participating peers. All 

ontologies in this section are represented in OWL [Smith et al., 2004] and 

depicted using the OntoViz (Protégé plug-in) notation6. In order to simplify the 

example, properties are not exhibited. 

 

Figure 4.4. Local ontologies of participating peers. 

In SPEED domain ontologies are used as a semantic reference at the 

community level. A Community Ontology (CMO) is a domain ontology 

offered by a semantic peer which is used as a semantic reference by all current 

clusters within the corresponding community. In our setting, we have 

considered the community ontology (UnivCSCMO.owl) described in the 

Appendix A. 

                                                
 
6 http://protege.cim3.net/cgi-bin/wiki.pl?OntoViz#nid6CS 
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A Cluster Ontology (CLO) is obtained by merging the local ontologies of 

the peers participating in a particular cluster. In fact, a cluster ontology acts as 

a shared vocabulary inside a semantic cluster, inter-relating semantically 

similar ontological concepts. In our setting, considering the local ontologies of 

participating peers (Figure 4.4), we have the following two cluster ontologies 

diagrammed in Figure 4.5. 

 

Figure 4.5. The cluster ontologies of Cluster 1 and Cluster 2. 

To assist the connection of requesting peers, each cluster ontology is 

represented as a Summarized Cluster Ontology (OS). The summaries are kept 

at the semantic index of a semantic peer. Figure 4.6 depicts the summarized 

cluster ontologies corresponding to the cluster ontologies of our example. 

 

Figure 4.6. The summarized cluster ontologies of Cluster 1 and Cluster 2. 

Ontologies are handled by appropriate modules located at the peers. In the 

following section, we detail the internal modules of each type of peer. 
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4.4 Peer Internal Modules 
In the previous sections, we have seen that three types of peers are considered 

in SPEED: data peers, integration peers, and semantic peers. Since they can 

assume distinguishing roles in the system, they have different internal modules. 

Moreover, each module can be subdivided into several components as described 

in what follows. 

4.4.1 Data Peer 

A data peer is presumed to be any kind of peer (e.g. a simple computer or a 

server) which can frequently connect and disconnect from the P2P network. In 

fact, a data peer corresponds to a data source whose content is shared with other 

data peers through the establishment of semantic mappings. As illustrated in 

Figure 4.7, a data peer is composed of several modules and components. 

 

Figure 4.7. The internal modules of a data peer. 

� Peer-to-Peer Layer: used for communication with an integration peer; 

� User Interface / Data Management API: represents an interface for users to 

submit queries according to their exported schema; 

� Connectivity Manager: responsible for managing data peer connectivity in 

the system. In a data peer, this module is composed of only one component: 
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� Ontology Translator: translates the exported schema originally described 

using the data source metadata model to an ontology metadata model. As 

output, this component produces a local ontology along with local 

correspondences between elements of the exported schema and the local 

ontology. 

� Data Manager: provides access to the content available in a data source 

through the exported schema. This module is subdivided into two 

components: 

� Wrapper: translates user queries from the common query language to the 

data source query language, and vice-versa. Such component is also 

responsible for translating query results from the source data model to 

the common data model adopted in the system, i.e. to an ontology 

metadata model; 

� Data Source: a data repository containing the content available in a data 

peer, e.g. a relational database. Only the content described by the 

exported schema can be accessed by the other peers in the network. 

� Query Manager: responsible for managing user queries (i) submitted at the 

data peer or (ii) received from an integration peer. The participation of a 

data peer in query processing is discussed in Section 4.7. In a data peer, the 

query manager module is composed of only one component: 

� Query Processor: processes user queries at the data peer. 

� Knowledge Base: stores an exported schema, a local ontology, and the local 

correspondences between them. Also, it maintains information (e.g. network 

address) used for communicating with its corresponding integration peer. 

4.4.2 Integration Peer 

The internal modules of data peers and integration peers are basically the same. 

However, when a peer acts as a data peer, some modules (those associated to an 

integration peer) are disabled. Since an integration peer is also a data peer, it 

may also store a data source. Thereby, its shared content is also considered 

during query processing. The internal modules of an integration peer are 

depicted in Figure 4.8. 

In addition to the specific modules of a data peer described previously, the 

other modules of an integration peer include: 
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� Peer-to-Peer Layer: provides communication with (i) data peers in the same 

cluster; (ii) other integration peers in the same community; (iii) its 

corresponding semantic peer; and (iv) requesting peers; 

 

Figure 4.8. The internal modules of an integration peer. 

� Knowledge Base: stores a cluster ontology, an exported schema, a local 

ontology, and the local correspondences. Besides, it contains semantic 

mappings which are essential for query processing. The knowledge base also 

maintains information (e.g. network address) for communicating with data 

peers, integration peers (i.e. the semantic neighbors), semantic peer, and 

requesting peers; 

� Query Manager: responsible for managing user queries formulated (i) at an 

integration peer; (ii) received from the data peers; or (iii) received from 

other integration peers. The participation of an integration peer in query 

processing is discussed in Section 4.7. In an integration peer, the query 

manager module is subdivided into the following components: 

� Query Processor: processes user queries at the integration peer. It also 

determines the relevant peers to which a query must be sent; 



�� � �� � � ���
���� � ���� ��� �� � � ��
�� �� ���� � � ��� � � ��� � � � � �� � � ��� �� � ��

65 

� Query Reformulator: reformulates a user query in such a way that the 

same query can be executed in data peers and other integration peers 

according to the terminology of their respective ontologies; 

� Data Integrator: integrates query results returned from data peers and 

other integration peers; 

� Cache Manager: maintains the local data cache of an integration peer. 

� Connectivity Manager: manages integration peer connectivity in the 

network. It is responsible for assisting the connection of requesting peers 

and the disconnection of participating data peers. Since exported schemas 

are represented as ontologies peer connectivity is assisted by ontology 

processes, e.g. matching and merging. Thus, in an integration peer, this 

module is subdivided into the following components: 

� Ontology Matcher: automatically matches two peer ontologies and 

returns (i) an ontology alignment and (ii) a semantic similarity measure 

between the two (peer) ontologies. The matched ontologies can be a 

cluster ontology and a requesting peer’s local ontology. In this case, the 

matching process determines if a requesting peer is able to join a cluster. 

The matched ontologies can also be two cluster ontologies. In this case, 

the matching process determines if two clusters are (still) semantic 

neighbors in the network. This component is detailed in Chapter 5; 

� Ontology Merger: takes as input an ontology alignment as well as the 

associated ontologies. As a result, it automatically produces a merged 

ontology containing the elements of both input ontologies as well as 

semantic correspondences between them; 

� Ontology Summarizer: automatically produces a summarized version of a 

cluster ontology. This component is invoked whenever a cluster ontology 

is modified. For instance, when a requesting peer joins a cluster. Its 

specification and implementation is detailed in Chapter 6; 

� Ontology Manager: updates a cluster ontology whenever a data peer 

disconnects from a cluster. The component removes from the cluster 

ontology the elements which were shared only by the disconnected data 

peer. Moreover, it eliminates the associated semantic correspondences. 

Considering that a data peer can reconnect to the same cluster, the 
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information is logically deleted. Physical deletion only occurs after a 

certain time interval. 

4.4.3 Semantic Peer 

A semantic peer acts as a knowledge (ontologies and metadata) server in the 

peer hierarchy offering a community ontology. Since a semantic peer does not 

store a data source, it does not participate in query processing. As illustrated in 

Figure 4.9, a semantic peer is composed of several modules and components 

described as follows. 

 

Figure 4.9. The internal modules of a semantic peer. 

� Peer-to-Peer Layer: used for communication with (i) integration peers in the 

same community; (ii) other semantic peers; and (iii) requesting peers; 

� Knowledge Base: stores a community ontology and a semantic index. Both 

structures are used as auxiliary information during the connection of 

requesting peers; 

� Connectivity Manager: responsible for assisting the connection of 

requesting peers and updating the semantic index. In a semantic peer, this 

module is composed of a single component: 

� Ontology Matcher: matches a requesting peer’s local ontology against 

the summarized cluster ontologies available at the semantic index. 

4.5 Architectural Considerations 
In SPEED, the connection of requesting peers starts by the DHT network. Such 

network is used to facilitate resource discovery by assisting requesting peers to 
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“easily” find a semantically related community. DHT networks are 

characterized by efficient searches and sensibility to changes in their structure. 

They usually work with some kind of pointer tables, pointing to peers “closer” 

to the desired data. These pointer tables need to be updated at each connection 

and disconnection of a peer. Thus, SPEED’s DHT network is only composed of 

semantic peers, i.e. peers with high reliability, network bandwidth, and 

availability. Excluding dynamic peers from the DHT network avoids 

unnecessary maintenance costs. In addition, the DHT network helps to forward 

requesting peers to corresponding communities which are more likely to be 

achieved with a smaller number of hops. 

In cluster-based architectures, if a peer participates in more than one 

cluster, inefficiencies can be introduced [Vdovjak et al., 2006]. For example, a 

query can be answered by all the clusters that include the (redundant) peer, 

resulting in duplication of query results and in an increase of communication 

effort. Therefore, in SPEED a peer takes part in only one cluster of a given 

semantic community. 

If unrelated peers are neighbors in the network then semantic mappings 

can be incorrect or inconsistent. Clustering peers according to their exported 

schema (i.e. local ontology) provides an environment that is better suited to the 

establishment of schema mappings. Besides, as each integration peer maintains 

a description of its attached data peers, query routing is easily carried out. 

Furthermore, the physical heterogeneity of participating peers is also exploited 

in the selection of integration peers. 

The construction of semantic clusters representing multiple data peers 

allows queries to navigate only among cluster ontologies, i.e. integrated 

schemas. A query received by an integration peer is processed in the relevant 

data peers inside the corresponding cluster. In this way, query results are more 

precise, since they come from semantically similar peers. Moreover, these peers 

receive a query version that has not been successively reformulated multiple 

times, and most importantly, through a cluster ontology that is as lossless as 

possible in terms of semantics. Therefore, the query that the integration peers 

receive is not degraded so much as it is through multiple successive 

reformulations [Tatarinov and Halevy, 2004; Kantere et al., 2009]. 
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Due to the different (and possibly numerous) cluster ontologies available 

in a semantic community, starting the search for a semantically similar cluster 

in an ad-hoc manner can be too costly in terms of time and network bandwidth. 

Ideally, the search should begin at a promising cluster and continue through 

other semantically similar clusters until a certain limit is reached. This strategy 

increases the probability that a requesting peer will quickly find a semantically 

similar cluster. In this sense, the basic idea is to search for the cluster that is 

probably more semantically similar to the requesting peer. To this end, a 

summarized version of each cluster ontology is used as an entry in a semantic 

index. We assume that a summary does not represent a cluster ontology in its 

entirety. Therefore, an initial cluster does not necessarily means the cluster to 

which a requesting peer will be connected. In the following sections, we 

describe how schema mappings and query processing are handled in SPEED. 

4.6 Schema Mapping 
Since exported schemas are represented by ontologies, schema mappings in 

SPEED are also named semantic mappings or ontology mappings. Semantic 

mappings describe the correspondences between elements of two distinct 

ontologies. According to the type of ontologies, semantic mappings can be 

subdivided into cluster-to-local mappings and cluster-to-cluster mappings.  

Cluster-to-local mappings are semantic mappings between a cluster 

ontology and a local ontology. They are created when a requesting peer joins a 

cluster as a data peer and are removed when a data peer disconnects from a 

cluster. These mappings are stored at integration peers. 

Cluster-to-cluster mappings are semantic mappings between the cluster 

ontology of two integration peers (semantic neighbors). They are created when 

a new cluster is formed. In this case, cluster-to-cluster mappings are defined 

between the new cluster and its corresponding semantic neighbors. They are 

updated when a cluster ontology is modified. In general, a cluster ontology is 

modified when a data peer joins a cluster, or a data peer (or integration peer) 

leaves the cluster. Such modification is needed to reflect the content shared in 

the referred cluster. Cluster-to-cluster mappings between any two clusters are 

stored at both integration peers. 
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4.7 Query Processing 
In SPEED, queries can be posed and answered by data peers and integration 

peers. They are formulated according to the peer’s exported schema and 

internally translated into the common query model. A query is disseminated 

only among the clusters of the semantic community where it was posed. 

Semantic peers do not participate in query processing. Consequently, if a query 

is submitted at a particular semantic community the query is not forwarded to 

other communities. During the navigation, a query is reformulated according to 

previously established semantic mappings. Integration peers are responsible for 

integrating query results received from its data peers and other integration 

peers. 

To better explain how query processing is handled in SPEED, consider 

again the setting described in Figure 4.3 containing one semantic community 

and two clusters. Assume that queries and exported schemas are represented in 

a common data model. Suppose that a query Q1 is submitted at the data peer 

DP111 (Figure 4.10). In this case, Q1 is translated into a query Q1’ described in 

the common query model. Afterwards, Q1’ is sent to its corresponding 

integration peer IP11 in order to be propagated in the community. In parallel, Q1 

is executed at the data peer DP111 and the query result (R1) is sent to the 

integration peer IP11 to be integrated with other query results possibly received 

from other clusters. 

 

Figure 4.10. An example of query processing in SPEED. 

Once the integration peer IP11 receives Q1’, it uses its semantic mappings 

to identify relevant peers for Q1’. In the example, assume that the relevant peers 

are the data peer DP112 as well as the integration peers IP11 and IP12. Thus, Q1’ 
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is reformulated into the queries Q2 and Q3 and forwarded to IP12 and DP112, 

respectively. Particularly, Q1’ is executed at IP11 where the corresponding query 

result will be integrated with the ones obtained from DP111, DP112, and IP12. 

Assume that IP12 has identified DP122 and IP12 as relevant peers (DP121 is not 

relevant). Thus, Q2 is reformulated into Q4 and forwarded only to DP122. 

When the reformulated query Q3 arrives at the data peer DP112, Q3 is 

executed at the data source and the query result (R3) is returned to the 

integration peer IP11 for data integration. Similarly, the data peer DP122 

executes Q4 in its local data source and returns its query result (R4) to the 

integration peer IP12. At IP12, the query result R3 is integrated with the one of 

IP12 and returned to IP11. 

At the integration peer IP11, the query results R1’, R2, and R3 are 

integrated. The final query result (R) is then returned to the data peer DP111 

where the initial query Q1 was posed. At DP111, the integrated query result is 

finally presented to the user who has formulated Q1. 

4.8 Comparative Analysis of SPEED and Related PDMS 
In this section, we present a comparative analysis between SPEED and the three 

PDMS discussed in Chapter 3 (OntSum, Sunrise, and Helios). Similarly to 

SPEED, all of them employ a semantic-based approach to organize peers in 

their corresponding network. The comparison is illustrated in Table 4.2 which 

extends Table 3.1 with new a line summarizing SPEED. 

Table 4.2. A comparison of PDMS employing a semantic-based approach to organize peers in the 
network (including SPEED). 

PDMS Schema 
Repres. 

Network 
Topology 

Network 
Population Domains 

Multiple 
Communities 
or Clusters 

Neighborhood 
Search 

Semantic 
Similarity 
Measure 

Neighborhood 
Selection 

OntSum Ontologies Unstructured Not empty 
Predefined 
semantic 
domains 

No 

Flooding; first 
short-distance 
links, then long-
distance links; 
inter-cluster 
table 

Semantic 
similarity 
measure 
(ontology 
matching) 

Threshold 

Sunrise 

Generic 
(Ontologies, 
Relational, 
XML) 

Unstructured Empty 
Non 
existing 
domains 

Yes 

Centralized 
Access Point 
Structure (APS) 
followed by SCI 

Semantic 
distance 
between 
concepts 
(clustroids) 

Range-based 
and kNN-
based 
algorithms 

Helios Ontologies Unstructured Not empty 
Non 
existing 
domains 

Yes Flooding Ontology 
matching Threshold 

SPEED Ontologies 

Mixed 
(DHT, 
unstructured 
and super-
peer) 

Empty 
Predefined 
semantic 
domains 

No 

Mixed 
(semantic 
index and 
flooding) 

Ontology 
matching Threshold 
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Except for Sunrise in which semantic similar peers are discovered through 

a centralized index (APS), all the other systems use a flooding strategy for such 

task. Particularly, the flooding strategy of OntSum first tries to find out similar 

peers using short-distance links and then long-distance links. In SPEED, a 

mixed search strategy is used to discover semantically similar peers. First, 

requesting peers search for a corresponding community in a DHT network. If 

such community is found, then a semantic index is used to forward a requesting 

peer to an initial cluster where a flooding strategy is employed to discover a 

semantically similar cluster (if it exists). The search strategy used in SPEED is 

detailed in Chapter 7. Differently from Sunrise, the semantic index proposed in 

SPEED cannot be seen as a structure that fully controls peer connectivity in the 

system. Instead, its goal is only to provide a promising initial cluster to a 

requesting peer. Moreover, in SPEED the frequency of index updates is 

minimized since summarized cluster ontologies contain the most frequent 

concepts of a cluster which are not constantly modified. 

In Sunrise, the similarity between peers is calculated using the peer’s 

representative concepts. Differently, the other two systems (Helios and 

OntSum) use ontology matching functions for the same task. Particularly, the 

ontology matching algorithm of Helios (H-Match) does not produce a global 

similarity measure between two (peer) ontologies. Besides, only a fragment of 

the peers’ ontologies is considered during the member identification phase. 

Concerning OntSum, although a global similarity measure is employed, such 

measure is obtained through a simple and asymmetric function. Similarly to 

OntSum, SPEED uses an ontology matching function to produce a symmetric 

global similarity measure. Such function considers the complete peers’ 

ontologies as well as the linguistic, structural, and semantic characteristics of 

the ontology elements. The ontology matching function used in SPEED is 

detailed in Chapter 5. 

4.9 Considerations 
In this chapter, we have proposed SPEED, a semantic-based PDMS whose 

overlay network is mainly designed to assist peer connection. We have also 

described the three types of peers (data peers, integration peers, and semantic 
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peers), their internal modules, and the different types of ontologies used in the 

system (local ontologies, cluster ontologies, and community ontologies).  

In the following chapters we detail the SPEED features specified in this 

work. In Chapter 5, we propose a global similarity measure between ontologies. 

The measure is obtained as a result of a semantic-based ontology matching 

process and is used to determine the similarity between peers in SPEED. In 

Chapter 6, we propose an automatic process to summarize cluster ontologies. 

The summaries are used to improve the ontology matching process. Instead of 

matching local ontologies against cluster ontologies which can be large in terms 

of the quantity of concepts, we match against their corresponding summaries. In 

Chapter 7, we propose an incremental process for clustering requesting peers 

into semantic clusters. The basic idea is to put together in the overlay network 

peers sharing semantically similar schemas. The clustering process makes use 

of the matching and summarization processes. 
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“Do not add days to your life but life to your days” 

Harry Benjamin 

In this chapter, we present SemMatch, a semantic-based ontology matching 

process [Pires et al., 2009b]. Basically, the process takes as input two (peer) 

ontologies and returns an ontology alignment as well as a global similarity 

measure between them. The resulting correspondences are generated as a 

combination of linguistic, structural and semantic alignments produced by 

existing ontology matching tools. Each correspondence in the resulting 

alignment is associated with (i) a combined similarity value which expresses the 

level of confidence between the elements; and (ii) the semantic relationship 

(e.g. equivalence and subsumption) between them. 

In a PDMS such as SPEED in which peers are organized within semantic 

clusters according to their local ontologies, a global measure is needed for 

clustering semantically similar peers. Such global measure represents the 

overall similarity degree between two peer ontologies (and not only between 

their elements!). The measure is computed using the correspondences generated 

by our ontology matching process. To clarify matters, in this chapter we present 

a case study illustrating how the measure can be used. We also provide an 

experimentation of the ontology matching process with some obtained results. 
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5.1 Introduction 
Traditional approaches to ontology matching mainly rely on linguistic and/or 

structural techniques. As a result, over the last years a high number of tools that 

employ a combination of these approaches have been developed [Aumüller et 

al., 2005; Castano et al., 2006; Hu and Qu, 2008]. However, there are cases in 

which linguistic and structural approaches fail to figure out relevant 

correspondences between ontology elements. In such cases, these approaches 

can be complemented by the semantic approach [Reynaud and Safar, 2007]. 

Besides producing a similarity value for each correspondence, semantic 

matching techniques are capable of identifying the semantic relationship (e.g. 

equivalence and subsumption) between ontology elements. To this end, they 

employ different kinds of solutions, e.g. a domain ontology or a thesaurus. 

Although semantic matching techniques can improve an ontology matching 

process they are still rarely exploited in the literature and thus only a few tools 

[Giunchiglia et al., 2004] implement semantic matchers. 

In this work, in order to determine the correspondences between ontology 

elements we use the semantic matcher proposed in [Souza, 2009]. Such matcher 

has been developed as part of the SPEED’s project and therefore its description 

is useful to understand the proposed ontology matching process. Basically, in 

such matcher, the identification of correspondences between the elements of a 

source ontology with elements of a target one is assisted by a domain ontology 

which is used as background knowledge [Sabou et al., 2006]. The basic idea is 

to first align the elements from both input ontologies with the corresponding 

domain ontology and then use the existing relationships of such domain 

ontology in order to derive semantic correspondences between the source and 

target ontologies’ elements. 

5.2 A Motivating Scenario 
In SPEED, the task of clustering peers consists in grouping semantically similar 

peers into a semantic community and then into semantic cluster. To this end, a 

global similarity measure between peer ontologies is useful in several situations 

that characterize peer clustering. For instance, a global measure is needed to 

indicate (i) the initial cluster for a requesting peer from which it will start the 
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search for a similar cluster; (ii) the semantic similarity between a requesting 

peer and a cluster; and (iii) the semantic neighbors of a cluster. 

Considering such situations, we introduce a motivating scenario that 

reproduces the situation (ii) enumerated above. The scenario is used throughout 

the chapter and considers three peers: Pi, Pj, and Pk (Figure 5.1). All peers 

belong to the Education knowledge domain. Assume that Pi is an integration 

peer and Pj is a requesting peer. Moreover, consider that Pi and Pj have 

complementary data about academic people and their works (e.g. Research) 

from different institutions. The integration peer Pi is described by the cluster 

ontology Oi (Semiport.owl). The requesting peer Pj is described by the local 

ontology Oj (UnivBench.owl). Both are public ontologies which are available 

for download on the Web7,8. In addition, assume that Pk is a semantic peer 

offering a Domain Ontology (DO) as background knowledge. The domain 

ontology corresponds to a community ontology and is named UnivCSCMO.owl. 

 

Figure 5.1. A motivating scenario for matching ontologies in SPEED. 

Figure 5.2 shows excerpts from the three ontologies using OWLViz9, a 

Protégé plug-in. A description of the ontologies UnivBench.owl, Semiport.owl, 

and UnivCSCMO.owl is provided in the Appendix A. Given the motivating 

scenario, we are interested in obtaining the semantic similarity between Pi and 

Pj in order to determine if Pj should join Pi’s cluster. To this end, the ontologies 

                                                
 
7 http://ontoware.org/frs/download.php/18/semiport.owl 
8 http://www.lehigh.edu/~zhp2/2004/0401/univ-bench.owl 
9 http://www.co-ode.org/downloads/owlviz/ 
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Oi (cluster ontology), Oj (local ontology), and DO (domain ontology) are 

considered. 

 

Figure 5.2. Excerpts from the ontologies of O i, Oj, and DO. All of them belong to the 

Education knowledge domain. 

To simplify matters, we assume that both ontologies Oi and Oj have been 

normalized [Rahm and Bernstein, 2001] to a uniform representation format 

according to the terms of the DO. In other words, element names from Oi and Oj 

have been adjusted to become compatible with the element names found in the 

DO. For instance, the concept GraduateStudent in the ontology Oj has been 

obtained from the original concept label (GradStud). 

In the following section, we provide an overview of the semantic matcher 

used in the proposed ontology matching process. Basically, we enumerate the 

rules that can be applied to identify the semantic correspondences between 

ontology elements. The semantic matcher is not a contribution of this work and 

is described to facilitate the understanding of the proposed ontology matching 

process. 

5.3 Using a Domain Ontology to Define Semantic 
Correspondences 

Domain Ontologies (DO) contain concepts and properties of a particular 

knowledge domain and may be used as background knowledge in some 

important tasks. Particularly, we consider DO as reliable references that are 

available on the Web. In our scenario, a DO is used to bridge the conceptual 
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differences or similarities between ontologies belonging to an integration peer 

(cluster ontology) and a requesting peer (local ontology). 

In this sense, first concepts and properties from the two peer ontologies 

are mapped to equivalent concepts/properties in the DO and then their semantic 

correspondence is inferred based on the existing semantic relationship between 

the DO elements. Figure 5.3 shows an overview of the approach for specifying 

the semantics of the correspondences between peer ontologies. In this overview, 

Oi:x ≡ DO:k and Oj:y ≡ DO:z. Since k is subsumed by z in the DO, it is inferred 

that the same relationship occurs between x and y. Then, it is concluded that x 

in Oi is subsumed by y in Oj, denoted by Oi.x  Oj.y. 

 

Figure 5.3. Specifying semantic correspondences between peer ontologies [Souza, 2009]. 

According to [Souza, 2009], a semantic correspondence can be one of the 

following expressions: 

1. Oi:x Oj:y, an isEquivalentTo correspondence 

2. Oi:x Oj:y, an  isSubConceptOf correspondence 

3. Oi:x Oj:y, an isSuperConceptOf correspondence 

4. Oi:x Oj:y, an isPartOf correspondence 

5. Oi:x Oj:y, an isWholeOf correspondence 

6. Oi:x Oj:y, an isCloseTo correspondence 

7. Oi:x Oj:y, an isDisjointWith correspondence 

where x and y are elements (i.e. concepts or properties) belonging to one 

ontology Oi and another ontology Oj respectively representing two semantic 

neighbor peer ontologies.  
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Considering the motivating scenario introduced in Section 5.2, in order to 

identify the semantic correspondences between Oi and Oj, first the semantic 

matcher finds out the equivalences between concepts of Oi and concepts in the 

DO, and the equivalences between concepts of Oj with their related ones in the 

DO. Then, the set of rules described in this section are applied. As a result, the 

set of semantic correspondences between Oi and Oj are identified. Examples of 

this set concerning the concept Faculty (from Oi) with some related concepts in 

Oj are presented in Table 5.1.  

Table 5.1. Some semantic correspondences between Oi and Oj. 

Correspondences for Oi:Faculty 

Oi:Faculty Oj:Faculty 
Oi:Faculty  Oj:Worker 
Oi:Faculty Oj:Professor 

Oi:Faculty  Oj:PostDoc 
Oi:Faculty  Oj:Assistant 
Oi:Faculty  Oj:AdministrativeStaff 

 
In this illustrative set, the equivalence correspondence between Faculty in 

Oi and Oj can be seen. Equivalence is an example of a commonly identified 

correspondence type in traditional ontology matching approaches. On the other 

hand, one can see that, taking into account the semantics underlying the DO, it 

is possible to identify other unusual correspondences. In this fragment, Faculty 

has been identified as: (i) sub-concept of Worker; (ii) super-concept of 

Professor and PostDoc; and (iii) close to Assistant and AdministrativeStaff. 

5.4 SemMatch: a Semantic-based Ontology Matching Process 
SemMatch is an ontology matching process that brings together a combination 

of already defined strategies with the semantic-based approach previously 

described. It is based on a composition strategy [Euzenat and Shvaiko, 2007] 

where linguistic-structural and semantic matchers are executed in parallel, and 

their individual similarity values are aggregated into combined similarity ones. 

As depicted in Figure 5.4, SemMatch receives as input two matching ontologies 

– Oi and Oj, as well as a domain ontology DO to be used as background 

knowledge. As output, it may produce one or two alignments (ACO and/or Aij), 

according to the following two possible objectives in the process instantiation:  

� Generating only the alignment ACO: this option corresponds to Phase 1. 

The global similarity measure is not calculated. Only the resulting set of 

correspondences identified by the linguistic-structural and semantic 

matchers is considered. In this set, a correspondence is defined between an 
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element e i ∈ Oi and some matching elements e1,…,ej ∈ Oj, considering the 

kind of semantic correspondence between them and its respective similarity 

value. Such alignment is useful for query processing purposes [Souza, 

2009]; 

� Calculating the global similarity measure: in this option, Phases 1 and 2 

are performed, i.e. both alignments ACO and Aij are generated. In order to 

generate Aij, the correspondences in ACO are ranked according to the 

combined similarity value and a filter strategy is applied to select the most 

suitable correspondences. Each correspondence in Aij is defined between an 

element ei ∈ Oi and its best matching element ej ∈ Oj, i.e. the element ej 

having the highest similarity value with ei. Based on the identified similarity 

value of each correspondence, the global measure is calculated. 

Linguistic-Structural
Matching

(any matcher)
ALS

Semantic
Rules

Application

Similarity
Combination

1

3

Semantic Matching

2

ASE

Weights

Correspondence
Ranking

4
Correspondence

Selection Aij

Ontology Oi

Ontology Oj

Domain Ontology

5
ACO

Phase 1 Phase 2
 

Figure 5.4. The general ontology matching process. 

The main steps carried out by the semantic-based ontology matching 

process are described in the following. 

Linguistic-Structural Matching 

Since there are many available linguistic and structural matchers, we 

assume that any existing ontology matching tool including such category of 

matchers can be used. In SemMatch, the linguistic and structural matchers are 

handled as a hybrid matcher, i.e. as a fixed combination of simple matchers. 

The combination of their similarity values depends on the composition strategy 

of the ontology matching tool that has been used. The alignment produced by 
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the hybrid matcher is denoted by ALS. A correspondence in ALS is a 3-tuple 

stated as �ei, ej, n�. Figure 5.5 illustrates the overall process instantiation for the 

two ontologies Oi and Oj described in Section 5.2. To simplify, only a limited 

number of linguistic-structural correspondences are shown in Figure 5.5a. 

Among them, for instance, the similarity value generated by the hybrid matcher 

for the pair of elements (UndergraduateStudent, Monitor) is 0.30. 

 

Figure 5.5. An example of the ontology matching process. 

Semantic Matching 

A new kind of semantic matcher is proposed. Basically, such matcher uses 

a domain ontology as background knowledge and applies a set of semantic rules 

to derive the type of semantic correspondence for Oi and Oj elements, as 

explained in Section 5.3. Each type of semantic correspondence is associated 

with a given weight which corresponds to the level of confidence of such 

correspondence. The alignment generated by the semantic matcher is denoted 

by ASE. A correspondence in ASE is a 4-tuple stated as �ei, ej, r, n�. Figure 5.5a 

illustrates some semantic correspondences for the two ontologies of our 

example. For instance, the semantic matcher has identified that the elements 

UndergraduateStudent and Monitor are related by the semantic correspondence 
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isSuperConceptOf. The semantic correspondences have received the following 

weights: isEquivalentTo (1.00), isSubConceptOf (0.80), isSuperConceptOf 

(0.80), isPartOf (0.30), isWholeOf (0.30), isCloseTo (0.70), and isDisjointWith 

(0.00). The weights are attributed according to the semantic relevance of each 

correspondence. For instance, the semantic similarity value of 

(UndergraduateStudent, Monitor) is 0.80. 

Similarity Combination 

For each correspondence, the individual similarity values produced by the 

hybrid matcher and the semantic matcher are associated in a combined 

similarity one. The combined value is obtained through a weighted average of 

the similarity values generated by the individual matchers. The weights are 

attributed according to the relevance of each matcher. The combined alignment 

set generated in this step is denoted by ACO. A correspondence in ACO is a 4-

tuple stated as �ei, ej, r, n�. 

A weighted average is used because matchers may produce opposing 

similarity values. For example, a linguistic matcher can find a low similarity 

value for two elements because their labels are completely different. On the 

other hand, a semantic matcher can detect that the same elements are related by 

a strong relationship (e.g. equivalence) and assign a high similarity value. 

Regarding our example, the similarity values generated by the hybrid and the 

semantic matchers for the pair of elements (UndergraduateStudent, Monitor) 

are 0.30 and 0.80, respectively. We assume that the weights associated to the 

hybrid and semantic matchers are 0.4 and 0.6, respectively. Thus, the combined 

similarity value produced for the pair (UndergraduateStudent, Monitor) is 0.60 

(Figure 5.5b). Since we are interested in obtaining the global measure, the 

matching example continues in the next steps. 

Correspondence Ranking 

The correspondences involving each element of Oi are ranked (in 

descending order) based on the combined similarity values. In Figure 5.5c, the 

Oi element UndergraduateStudent is ranked in descending order according to 

the Oj elements Monitor, GraduateStudent, and Student. 
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Correspondence Selection 

Finally, a filter strategy is applied to choose the most suitable 

correspondence for each Oi element. The strategy consists in selecting the 

correspondence with the highest combined similarity. Such decision represents 

the natural choice to guarantee at most one correspondence per Oi and Oj 

element. As a result of this step, an alignment Aij is generated. A 

correspondence in Aij is a 4-tuple: �ei, ej, r, n�. In Figure 5.5c, for the concept 

UndergraduateStudent, the correspondence (UndergraduateStudent, Student) is 

preferred instead of (UndergraduateStudent, Monitor) or 

(UndergraduateStudent, GraduateStudent) because the combined similarity 

value of the first (0.72) is higher than the combined similarity of the last two 

(0.60 and 0.28). A fragment of the alignment Aij is illustrated in Figure 5.5d. 

Steps 4 and 5 are needed to define correspondences which are used to 

measure the global similarity measure between Oi and Oj (to be explained in 

Section 5.5). Such steps are also executed in the opposite direction, i.e. from Oj 

to Oi. The elements of Oj are ranked according to the elements of Oi (Figure 

5.5c’) and the same filter strategy is applied (Figure 5.5d’). An alignment Aji is 

produced as output. Correspondences in Aji have the same format of the ones in 

Aij. 

For the final alignment set, an Oi and an Oj element are only accepted as a 

matching correspondence if they are identified as such in both directions. In 

other words, a correspondence is included in the final alignment set if the 

correspondence is contained in the alignment sets Aij and Aji. In the following 

section, we will present our method for determining the global similarity 

measure. 

5.5 Calculating the Global Similarity Measure 
The evaluation of the overall similarity between the two ontologies Oi and Oj is 

an additional step in the proposed ontology matching process. Such step uses 

the output of the Correspondence Selection step (Step 5 of Section 5.4) which 

produces the alignment sets Aij and Aji. Both alignment sets are taken as input 

to calculate an overall similarity value between Oi and Oj. Such value indicates 

the global similarity measure between the two input ontologies. 
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There are several similarity measures available in the literature which can 

be adapted in order to calculate the global similarity measure between Oi and Oj 

[Castano et al., 1998, Aumüller et al., 2005, David and Euzenat, 2008]: dice, 

weighted, and overlap. All of them take into account the size of the input 

ontologies. The dice measure is derived from the dice coefficient [Rijsbergen, 

1979]. It refers to the ratio between the number of matching elements of both 

alignments and the number of elements of the input ontologies. The weighted 

average measure refers to the ratio between the sums of the similarity values 

(n) of all matching elements of both alignments and the number of elements of 

the input ontologies. The overlap measure is derived from the overlap 

coefficient [Rijsbergen, 1979]. It refers to the ratio between the size of the 

intersection between both alignments and the number of elements of the 

shortest input ontology. In this work, the size of an ontology is determined by 

the number of its concepts and denoted by |O|. 

As opposed to the dice measure, the global similarity degree computed by 

the weighted average measure is influenced by the individual similarity values. 

Hence, the dice measure returns higher similarity values than the weighted 

average measure. With all element similarities set to 1.0, both measures return 

the same similarity. However, in general not all correspondences are evaluated 

to the maximum level of confidence (1.0). Regarding the overlap measure, it is 

mostly used when the input ontologies are close to each other and have similar 

sizes. In practice, it is common to match ontologies with different sizes. For 

these reasons, in this work we use the weighted average measure to evaluate the 

global similarity degree between Oi and Oj. In this sense, the selected measure 

is determined as follows: 
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In order to demonstrate how the global measure is computed, consider the 

two ontologies (O1 and O2) illustrated in Figure 5.6 as well as the 

corresponding alignments A12 and A21 between them produced by SemMatch. 
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Figure 5.6. The ontologies O1 and O2 as well as the alignments Ai j and Aji between them. 

The sizes of O1 and O2 are 6 and 7 (concepts), respectively. In this sense, 

the global similarity measure between them is calculated as follows: 

66.0
|7||6|
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+
+++++++++++=OOAverageWeighted  

Particularly, the global similarity measure between Semiport.owl and 

UnivBench.owl is 0.77. A complete description of the calculus considering the 

alignments Aij and Aji between them is available in the Appendix B. 

5.6 Experiments and Results 
An ontology matching tool implementing the semantic-based process was 

developed in Java. In order to provide ontology manipulation and reasoning, we 

used Jena [Jena, 2009]. In this current version, H-Match [Castano et al., 2006] 

was used as the hybrid matcher and we restricted the correspondence 

identification to concepts (not including properties). Figure 5.7 shows a 

screenshot of the tool’s main window that is split into three areas: (i) one for 

choosing the matching ontologies; (ii) another for depicting the resulting 

semantic correspondences and their respective weights; and (iii) the other one 

for executing the main options, concerned with identifying the semantic 

correspondences, generating the ACO alignment, and calculating the global 

similarity measure. 

The goal of our experiments is twofold. First, we want to show that the 

use of background knowledge allows producing semantically richer 

correspondences between two matching ontologies than using only a linguistic-
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syntactic approach. Also, we want to investigate if we can obtain a higher 

precision/recall [Rijsbergen, 1979] considering our process which is a 

combination of some existing approach (linguistic-syntactic) with our semantic 

one. Consider that R is a reference alignment and A is an alignment produced 

by an ontology matching tool. In our work, precision and recall are defined as 

the ratio of the number of true positive (|R ∩ A|) and retrieved correspondences 

(|A|) or those to be retrieved (|R|), respectively. 

 

Figure 5.7. The semantic matching tool interface. 

Our experiments were conducted considering the ontologies introduced in 

Section 5.2. To verify the first mentioned goal, we matched Oi against Oj using 

only the H-Match and then using the DO as background knowledge. As a result, 

regarding the Oi concept FullProfessor, H-Match has produced 41 

correspondences (1:n) to target Oj concepts. Most of them have been stated with 

similarity measures around 0.5, what is meaningless in terms of trying to 

identify the semantics underlying them. Only three of them have been stated 

with measures higher than 0.8, meaning some kind of subsumption or 

equivalence, although this result is not made explicitly. Still regarding 

FullProfessor, our semantic matcher produced five semantic correspondences. 
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Table 5.2 depicts some of the correspondences identified by H-Match and all 

the ones found out by the proposed semantic matcher. 

Table 5.2. Oj target concepts obtained for the Oi concept FullProfessor. 

H-Match Semantic Matcher 
Target Concept Measure Target Concept Correspondence Type 
FullProfessor 1.00 FullProfessor isEquivalentTo (1.00) 
VisitingProfessor 0.82 VisitingProfessor isCloseTo (0.70) 
Student 0.50 Professor isSubConceptOf (0.80) 
Faculty 0.50 AssociateProfessor isDisjointWith (0.0) 
Manual 0.50 ResearchProject isPartOf (0.30) 

 
In order to check the second mentioned goal, we invited two expert users, 

which are knowledgeable about the Education domain, to produce a manual 

alignment between Oi and Oj. This “gold standard” alignment was used against 

our produced alignments. We used the ontology matching tools COMA++, H-

Match, and Falcon-AO, discussed in Chapter 2, to match the ontologies 

Semiport.owl and UnivBench.owl. Afterwards, we calculated recall and 

precision to determine the agreement between the resulting alignments and the 

manual alignment. Next, we combined the (linguistic-structural) alignments 

produced by each matching tool with the semantic alignments produced by our 

matching tool. Again, recall and precision were used to measure the agreement 

between the resulting alignments and the manual alignment. 

For both comparisons, we used the filter strategy which consists in 

selecting, for each concept of Oi, the correspondence with the highest combined 

similarity. The comparison results are illustrated in Figure 5.8. 
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Figure 5.8. Evaluation of resulting alignments. 

According to the results, we can see that when the semantic matcher is 

applied both measures (recall and precision) are increased. The reason for such 

improvement is that incorrect correspondences are removed from the resulting 
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alignments while missing but still relevant correspondences are introduced. For 

instance, none of the three ontology matching tools (COMA++, H-Match, and 

Falcon-AO) was capable of identifying a candidate element in Oi for the 

element AssociateProfessor of Oj. Differently, SemMatch has identified that 

AssociateProfessor has a certain degree of similarity with ResearchProject in 

Oi. Our tool has identified that both elements are related by an isPartOf 

semantic relationship. 

In addition, H-Match and COMA++ has incorrectly identified that the 

elements worker (Oi) and work (Oj) are equivalent. In fact, these tools make 

strong use of linguistic matchers and, since the strings describing both elements 

are similar to each other, a correspondence between the elements has been 

detected. During our tests with SemMatch, the semantic matcher did not detect 

such correspondence. Since we have given more importance to the semantic 

matcher than to the hybrid matcher (matcher weights: hybrid = 0.4; semantic = 

0.6), the correspondence was not well evaluated and, consequently, has not 

been included in the resulting alignment. 

5.7 Related Work 
 Most of the work dealing with ontology similarity (or distance) [Mädche and 

Staab, 2002; Hu et al., 2006] is in reality concerned with concept similarities 

(or distances). However, there are many situations where it is useful to know if 

two ontologies are close to each other or not, or what is the closest ontology to 

another one. For instance, in semantic P2P systems, it would be easier to find 

information if queries can be sent to peers using similar ontologies because 

query transformation will miss less information [Ehrig et al., 2005]. 

The work of Castano and her group [Castano et al., 1998] proposes a kind 

of global similarity measure, but concerned with ER schemas. COMA++ 

[Aumüller et al., 2005] is a tool which argues that calculates a global measure 

between schemas, but, considering the version we had performed our tests, we 

were not able to find out such feature explicitly. Recently, [David and Euzenat, 

2008] have presented a review of several concept and ontology distance 

measures as well as an evaluation of their qualities. Basically, the authors have 

analyzed the speed of distance computation and the accuracy with regard to 

asserted similarity. Our work provides a global similarity measure as an 
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additional feature in a semantic-based ontology matching process. The global 

measure produced by the matching process is used for clustering semantically 

similar peers in a PDMS. 

5.8 Considerations 
This chapter presented an ontology matching process which tries to overcome 

the limitations of traditional approaches by using a combination of linguistic, 

structural, and semantic matchers. Particularly, the semantic matcher is capable 

of identifying, besides the traditional types of correspondences (equivalence 

and subsumption), some other ones (e.g. closeness and disjointness). 

Furthermore, as a result of the overall process, we introduced the determination 

of a global similarity measure between the matching ontologies which is 

calculated considering the identified similarity value of each correspondence. 

Such measure is used for clustering semantically similar peers in SPEED. 

Experiments carried out has shown that the combination of the proposed 

semantic matcher with linguistic-structural matchers can improve the 

alignments produced by existing ontology matching tools, by taking out 

incorrect or meaningless correspondences and including some relevant ones. 

These additional correspondences are useful for query answering and for the 

determination of the global measure. 
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“Mestre não é quem sempre ensina, mas quem de repente aprende” 

Guimarães Rosa 

In this chapter, we propose an automatic process to summarize ontologies 

representing an individual schema or multiple schemas. An ontology summary 

is defined as a subontology of the initial ontology under a specific size. 

Particularly, in SPEED, the process is used to summarize cluster ontologies. 

The structure of the chapter is described as follows. First, we present an 

overview of the proposed summarization process and our formalism to represent 

an ontology. Next, we describe centrality [Freeman, 1979; Mika, 2007], the 

main criterion used to determine the relevance of concepts in an ontology. It is 

measured considering the relationships of a concept with other ones in an 

ontology. Particularly, if an ontology represents multiple schemas, as in 

SPEED, then frequency (i.e. the number of occurrences of a concept in local 

ontologies) is also used as another criterion to measure the relevance of 

concepts. Afterwards, we describe the proposed process to summarize 

ontologies, the summarization algorithm, and an illustrative example. We also 

expose the results of applying the proposed process to real world ontologies 

according to different criteria and discuss some related work. 
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6.1 Introduction 
In the peer clustering process proposed for SPEED (Chapter 7), cluster 

ontologies are used by requesting peers to identify other semantically similar 

peers and, consequently, join a cluster. Such identification is assisted by an 

ontology matching process between a requesting peer’s local ontology and (a 

subset of) the current cluster ontologies. As more requesting peers join a 

cluster, new elements are introduced in the corresponding cluster ontology 

which can reach a size that overburdens development and quality control 

procedures. In this sense, schema summarization techniques [Castano et al., 

1998; Moody and Filtman, 1999; Yu and Jagadish, 2006] can be used to 

produce succinct versions of cluster ontologies. These summarized ontologies 

can be of great help since not all elements shared inside a cluster need to be 

considered during the ontology matching process used for peer clustering. 

An ontology summary provides a succinct overview of the entire ontology, 

making it possible to explore only the relevant elements [Zhang et al., 2007]. 

However, creating a good summary is a non-trivial task. Ideally, the summary 

should be concise enough for requesting peers to comprehend the initial 

ontology quickly, yet it needs to convey enough information for requesting 

peers to obtain a decent understanding of the whole ontology. Manual ontology 

summarization is labor-intensive and impractical especially in situations where 

a high number of ontologies need to be summarized as in PDMS. In addition, 

leaving summary generation to a manual process let open the possibility that 

the summary will not be updated when the cluster ontology evolves, resulting in 

a supposed summary that is actually outdated and misleading [Yu and Jagadish, 

2006]. In a PDMS context, the need for automatic tools to summarize cluster 

ontologies is mainly due to scalability and consistency reasons. 

6.2 General Overview 
As illustrated in Figure 6.1, the proposed summarization process consists in, 

given an ontology O, generating an abridged version of O, named ontology 

summary (denoted OS) [Pires et al., 2009a]. The relevant concepts of O 

(depicted in grey) are initially identified and OS corresponds to the subontology 

of O concentrating the maximum number of relevant concepts. Since relevant 

concepts can be non-adjacent in O, non-relevant concepts (white color) may be 
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also introduced in an OS. Such “undesired” concepts are needed to maintain the 

original relationships among relevant concepts. If the relevant concepts are 

simply identified and added to an ontology summary (ignoring their 

relationships), then a human intervention would be necessary to (re)link them. 

Therefore, OS also corresponds to the subontology of O containing the 

minimum number of non-relevant concepts. 

 

Figure 6.1. An overview of the proposed ontology summarization process. 

Although we focus on ontological schemas, the proposed summarization 

process can be adapted to other kinds of schemas (e.g. XML and relational), 

considering that the schema can be mapped onto a graph representation. 

Therefore, most of the principles presented here are applicable to a wide variety 

of schemas. 

6.3 Ontology Formalism 
According to OWL syntax, an ontology can contain different constructs such as 

classes (i.e. concepts), properties, instances, and axioms of atomic class 

(property). In this work, we assume that terms at conceptual level (concepts and 

properties) are enough to provide an understandable ontology summary. OWL 

constructs such as ontology header and instances are ignored during ontology 

summarization. 

The proposed graph formalism to represent an OWL ontology enables us 

to focus only on the OWL constructs which are important to the summarization 

process. In this light, an ontology O is modeled as a connected directed labeled 

graph O = (C, R), where C = {c1,...,cn} is a finite set of vertices (concepts) and 

R = {r1,...,rn} is a finite set of edges (relationships between concepts). 

A relationship rk ∈ R represents a directed relation between two adjacent 

concepts ci and cj ∈ C; i.e. rk = (ci×cj). Two concepts ci, cj ∈ C are adjacent in 

O if ∃ rk ∈ R / rk = (ci×cj) or rk = (cj×ci). A directed labeled edge is defined 
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from ci to cj if ci is a direct subconcept of c j. Similarly, if ci is a domain concept 

and cj its range concept then a directed labeled edge is added from ci to cj. The 

number of concepts in C indicates the size of an ontology O, denoted |O|. 

Particularly, we assume that in O there are no self-references or multiple edges 

between two distinct concepts. Edges from a concept vertice to its datatype 

property vertices and from each subproperty to its superproperty are ignored. 

Similarly, we define an ontology summary OS as a proper subgraph of O since 

OS ⊂ O (or O is a supergraph of OS). Notice that OS � O, otherwise OS is not a 

summary of O. Since OS is a subgraph of O, the same formalism is valid for 

OS. Formally, OS = (CS, RS), where CS ⊂ C and RS ⊂ R. 

6.4 Relevance Measures 
The relevance of an ontology concept cn is measured considering the 

relationships of cn with other concepts in an ontology O (centrality) and the 

occurrences of cn in local ontologies O1,…,On that compose O (frequency). In 

our approach, centrality is used to capture the importance of a given concept 

within an ontology, while frequency is used when an ontology results from an 

integration process and captures the importance of this concept in the set of 

underlying local ontologies. In the following, we detail these two relevance 

measures. 

6.4.1 The Centrality Measure 

Centrality [Freeman, 1979] is one of the most important and widely used ways 

for identifying relevant vertices within a graph. The notion of relevance is 

subjective since it depends on what is considered important for a vertice. In 

[Freeman, 1979], the authors categorized centrality measures into three basic 

categories (degree, closeness, and betweenness) and presented canonical 

measures for each category. As a result, these measures have come to dominate 

empirical usage, along with the eigenvector-based measure [Bonacich, 1972]. 

The degree centrality [Mika, 2007] is based on the idea that a vertice v 

with a large number of links to other vertices has wider and more efficient 

access to the other vertices in the graph. The eigenvector centrality [Zhang et 

al., 2007] acknowledges that the centrality of a vertice v does not only depend 

on the number of its links to other vertices, but also on their value of centrality. 
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The other two centrality measures are based on the notion of graph paths 

[Diestel, 2005]. A path in a graph is a sequence of consecutive edges. A 

geodesic path is the shortest path, in terms of number of edges traversed, 

between two vertices. The closeness centrality [Mika, 2007] of a vertice v 

means the geodesic distance between v and all its reachable vertices. The 

betweenness centrality [Mika, 2007] of a vertice v is the number of geodesic 

paths between other vertices that v falls on. 

In this work, we extend the original definition of the degree centrality 

measure not only to consider the number of relationships between ontology 

concepts but also the types of relationships between them. In this light, two 

types of relationships are identified: standard (e.g. is-a, part-of, and same-as) 

and user-defined (e.g. hasItems and authorOf). The normalized formula for the 

extended degree centrality is: 

1|C|
max

wn
max

wn
nr

)(ccentrality ud

udud

s

ss

n
−

�
�

�
�
�

	 ×+××
=  

where ns and nud are respectively the number of standard and user-defined 

relationships maintained by an ontology concept cn. ws and wud are respectively 

the weights of the standard and user-defined relationships. maxs and maxud 

indicate respectively the maximum number of standard and user-defined 

relationships maintained by a particular concept in O. nr represents the number 

of distinct concepts with which a concept cn maintains relationships. In 

addition, (i) centrality(cn) ∈ [0,1]; (ii) ws + wud = 1; and (iii) ns + nud = nr. 

6.4.2 The Frequency Measure 

Frequency is a measure that can be used when the ontology to be summarized is 

a cluster ontology obtained as a result of merging several local ontologies 

LO1,…,LOn. Ontology merging [Noy and Musen, 2000] is the process in which 

two (or more) local ontologies are merged into one target ontology. In general, 

the local ontologies remain, along with ontology mappings between each local 

ontology and the merged ontology. Different types of ontology mappings can be 

defined between a target ontology and local ontologies, e.g. concept mappings 

and property mappings. Figure 6.2 represents an excerpt from an XML file 

describing concept mappings in a cluster of peers of SPEED [Pires, 2007b]. For 
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instance, the concept faculty contained in the target ontology CLO1 is mapped 

to the concepts phd, professor, and lecturer located at the local ontologies LO1, 

LO2, and LO3, respectively. 
<?xml version=”1.0” encoding=”ISO-8859-1”?> 
<TARGET clo=”CLO1”> 
<TARGETCLASS> 
<LABEL>faculty</LABEL>  

<LOCALCLASS> 
<LABEL>phd</LABEL> 
<LOCAL>L01</LOCAL> 

</LOCALCLASS> 
<LOCALCLASS> 

<LABEL>professor</LABEL>  
<LOCAL>L02</LOCAL>  

</LOCALCLASS> 
<LOCALCLASS> 

<LABEL>lecturer</LABEL>  
<LOCAL>L03</LOCAL> 

</LOCALCLASS> 
</TARGETCLASS> 
... 
</TARGET> 

Figure 6.2. An example of concept mappings. 

In the proposed summarization process, we assume that O can be a merged 

ontology. Thus, a concept cn ∈ C can be mapped to one or more concepts 

contained in O1,…,On. In this sense, the frequency of cn is defined as the ratio 

between the number of concept mappings involving cn (denoted |mappings(cn)|) 

and the number of distinct local ontologies (denoted |O1,…,On|). Both 

information can be extracted from the ontology mappings. Formally, 

|,...,O|O
)|c|mappings(

)cfrequency(
n1

n
n =  

where frequency(cn) ∈ [0,1]. For instance, given the concept mappings 

illustrated in Figure 6.2, the concept faculty is involved in three concept 

mappings. Assuming that the number of distinct local ontologies is also three 

then frequency(faculty) = 1.0. 

6.5 Building an Ontology Summary 
In this section, we offer a detailed description of the proposed ontology 

summarization process including its several steps and input parameters. Then, 

we present the summarization algorithm and illustrate the process with an 

example. 
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6.5.1 The Summarization Process 

The main steps of the ontology summarization process are: (i) calculate the 

relevance of ontology concepts; (ii) determine the relevant concepts; (iii) group 

adjacent relevant concepts; (iv) identify paths between groups of concepts; (v) 

analyze the identified paths; and (vi) determine the ontology summary. Figure 

6.3 corresponds to an UML activity diagram [Booch et al., 2005] depicting all 

the steps involved in the summarization process. Next, we provide a detailed 

description of each step. 

 

Figure 6.3. The several steps of the proposed summarization process. 

Step 1: Calculate relevance of concept 

Centrality and frequency are two criteria inherently different. It is 

certainly possible to find two distinct ontology summaries where one has more 

centrality but the other has better frequency. In fact, the most relevant measure 

depends on the application needs. However, in some occasions both measures 

need to be considered together. Our proposal to combine centrality and 

frequency consists in using a weighted formula in which the weights are 

defined by a user according to the importance of each measure to the 

application purposes (�: centrality weight; �: frequency weight). This formula 

is used to calculate the relevance of an individual concept cn in an ontology O: 

)cfrequency(�)(ccentrality�)crelevance( nnn ×+×=  

where relevance(cn) ∈ [0,1] and λ + β = 1. 
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Step 2: Determine relevant concepts 

This step consists in identifying the set of relevant concepts (denoted RC, 

where RC ⊆ C) of an ontology O. Ideally, the concepts in the identified set 

should be contained in the ontology summary OS. Several options can be used 

to determine RC. The first one considers that RC has a fixed size which is 

determined by the user (suggested size). In this light, all concepts are firstly 

classified in descending order according to their respective relevance. 

Afterwards, the top k concepts are selected, where k corresponds to suggested 

size. In general, suggested size is defined as a percentage of the ontology size 

(|C|). 

The second option assumes that RC can have a variable size. The concepts 

to be included in RC are those concepts whose relevance is above a relevance 

threshold which is also informed by the user. Formally, 

RCcthresholdrelevance)crelevance(ifC,c nnn ∈
≥∈∀  

Finally, the third option also enables RC to assume a variable size. 

However, it determines RC automatically. In order to select the concepts to be 

included in RC, the average relevance (AR) of all individual concepts in C is 

calculated: 

�
=

=
n

1i |C|
)crelevance(

AR(C)
i  

The most relevant concepts are those concepts in which the individual 

relevance is higher than or equal to the average relevance. Formally, 

RCc(C)AR)crelevance(ifC,c nnn ∈
≥∈∀  

The last two options to determine RC should be carefully used. For 

instance, if relevance threshold is configured to a small value or if each concept 

maintains relationships with the majority of concepts in O, a high number of 

relevant concepts can be included in RC. 

Step 3: Group adjacent relevant concepts 

This step consists in forming groups of concepts containing only relevant 

concepts which are adjacent in the initial ontology O. A group of concepts 
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corresponds to a subontology of O. Such groups are created in order to facilitate 

the identification of paths between relevant concepts (Step 4). 

When building groups of concepts the following situations can occur: (i) 

each group is formed by a single relevant concept: this means that all relevant 

concepts are non-adjacent in O; (ii) several groups are formed, and at least one 

of the groups has more than one relevant concept: this means that some relevant 

concepts are not adjacent in O; (iii) only one group is formed, containing all the 

relevant concepts: this means that each relevant concept has at least one distinct 

relevant concept that is adjacent in O. In the first two situations, the ontology 

summarization process proceeds with Steps 4, 5, and 6. Differently, in the last 

situation, the summarization process finishes and the ontology summary 

corresponds to the group of concepts that is formed. 

Step 4: Identify paths between groups of concepts 

This step is executed if there are at least two groups of concepts which are 

not adjacent in the initial ontology O (situations i and ii of Step 3). It consists 

in detecting all paths (denoted OSn) between groups of concepts in O. For such 

task each group of concepts is treated as a single concept. Similarly to a group 

of concepts, a path OSn also corresponds to a subontology in O. Multiple paths 

between two groups of concepts can be detected. In order to minimize 

computation efforts, only paths with the requested summary size (i.e. |RC|) 

should be considered. However, notice that this step is executed if at least two 

relevant concepts are separated by a non-relevant concept. Thus, none of the 

identified paths can contain the entire set of relevant concepts RC. 

Groups of concepts can be separated by both a large or a few number of 

non-relevant concepts in O. In the first case, discarding some relevant concepts 

(e.g. a relevant concept that is far from a group of concepts) would allow the 

identification of a path containing only relevant concepts. In the second case, 

introducing only some non-relevant concepts to a path (e.g. adding a non-

relevant concept which separates two groups of concepts) would allow the 

identification of a path including all relevant concepts. 

Both cases can only be satisfied if the requested size for an ontology 

summary (initially defined as |RC|) can be relaxed, i.e. if summary size can vary 

in a specific interval. Such interval is determined by a size variation denoted by 
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∆. For example, assuming a summary size and a size variation of 6 and 2 

respectively, then all paths whose size is between 4 and 8 are considered as 

candidate summaries. Formally, 

�sizesummary|OS|�sizesummary n +≤≤−  

Step 5: Analyze identified paths 

Since multiple paths between relevant concepts (and groups of concepts) 

can be identified, it is necessary to analyze each path individually. The classical 

metrics recall and precision, commonly used in Information Retrieval [Baeza-

Yates and Ribeiro-Neto, 1999], are used to determine the level of coverage and 

conciseness of each path OSn, respectively. Recall means that a path should be 

an extraction of O reflecting as many relevant concepts as possible. Precision 

determines if a path is succinct enough to facilitate the analysis of the entire 

ontology O. Formally, 

|RC|
RC||OS

Recall
n ∩=   

||OS
RC||OS

Precision
n

n ∩=  

Paths cannot be compared based solely on precision and recall. The path 

which has high recall may have a low precision and vice-versa. For this 

purpose, F-measure [Baeza-Yates and Ribeiro-Neto, 1999] is used to aggregate 

precision and recall. 

Recall�Precision�)(1
RecallPrecision

measureF
×+×−

×=−  

Notice that, if � = 1, then the F-measure is equal to precision and if � = 0, 

the F-measure is equal to recall. In between, the higher the value of �, the more 

importance is given to precision. 

Step 6: Determine the ontology summary 

Among the identified candidate paths (OSn), the selection of an ontology 

summary is determined by choosing the best candidate path. In this sense, the 

selection occurs according to the following priority order: 



�� � �� � � ���
�
� � 
� 
� � ��� ��� � �� � � �
� �

99 

(i) F-measure: the path should be the one having the maximum number of 

relevant concepts and the minimum number of non-relevant concepts. In other 

words, the path with the highest value of F-measure should be selected; 

(ii) Average relevance: since it is possible to find two distinct paths with 

the same value of F-measure, a second criterion is needed. In this case, the path 

with highest average relevance should be chosen. The average relevance of a 

path corresponds to the ratio between the sum of the individual concept 

relevance in a path and the number of concepts in a path; 

If multiple candidate paths have identical F-measure and average 

relevance values, other strategies can be used to select a path: choose randomly 

one of the paths or select the one leading to the summary with the smallest size 

(considering that ∆ > 0). 

6.5.2 The Ontology Summarization Algorithm 

Figure 6.4 illustrates the proposed summarization algorithm. It accepts as input 

the ontology to be summarized (mandatory), a set of ontology mappings 

(optional), and a set of parameter values supplied by the user (mandatory), e.g. 

suggested size. If ontology mappings are not informed, only the centrality 

measure is used to calculate the relevance of concepts. An ontology summary is 

generated as output. In order to meet diverse user requirements, the algorithm 

can accept various types of parameters. Depending on the parameter values 

provided, different ontology summaries OS can be generated for the same 

ontology O. 

SummarizeOntology (in: Ontology; in: Mappings; in: Parameters; out: Ontology) 
{ 
CalculateConceptRelevance(Ontology, λ, β, centrality measure); 
RC ← DetermineRelevantConcepts(Ontology, relevance criteria); 
Ontology ← GroupAdjacentRelevantConcepts(Ontology); 
If Ontology.Groups = 1 and RC ⊆ Ontology.Groups[1].Concepts then 
 OntologySummary ← Ontology.Groups[1]; 
Else 
 Paths ← IdentifyPaths(Ontology, ∆); 
 AnalyzePaths(Paths, α); 
 OntologySummary ← GetBestPath(Paths); 
End if 
Return(OntologySummary); 
} 

Figure 6.4. The ontology summarization algorithm. 
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6.5.3 An Example 

Our example considers a public ontology10 describing nodes in a local area 

network (Figure 6.5). Assume that an ontology summary containing 6 concepts 

(i.e., suggested size = 6) with size variation of 1 (∆ = 1) must be generated. To 

simplify matters, only centrality is used to determine the relevance of concepts. 

Moreover, assume that recall and precision have the same importance (α =0.5). 

In this sense, RC = {ServerSoftware (0.231), NetworkNode (0.192), 

SwitchEquipment (0.192), Computer (0.192), Software (0.192), Cable (0.192)}. 

The first five concepts are adjacent in the NetworkA ontology. Thus, they are 

combined into the group of concepts Group1. The other group of concepts 

(Group2) is composed solely by Cable. Since more than one group of concepts 

has been identified, the summarization process proceeds. All paths between 

Group1 and Group2 are identified. There are only two paths whose size is in the 

interval defined by ∆. The first path (Path1) is: Group1 � Equipment � 

Group2. The second path (Path2) is: Group1 � NodePair � Group2. The value 

of F-measure is identical for both paths (92.5). However, the average relevance 

of Path1 (0.187) is higher than the average relevance of Path2 (0.181). As a 

result, Path1 is chosen as the ontology summary. The summary is shown in the 

left lower part of Figure 6.5. 

 

Figure 6.5. The networkA ontology and its corresponding summary. 

                                                
 
10 http://www.atl.lmco.com/projects/ontology/ontologies/network/networkA.owl 
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6.6 Generating Ontology Summaries 
In this section, we present an evaluation of the proposed ontology 

summarization process. Basically, we asked expert users, which are 

knowledgeable about specific ontologies, to produce manual summaries. This 

created a “gold standard” set of summaries against which our automatic 

summaries can be compared and analyzed. 

6.6.1 Implementation 

We have developed an ontology summarization tool to produce automatic 

summaries of OWL ontologies. The tool is implemented in Java [Java, 2009] 

and uses the OWL API [OWL API, 2009] to manipulate ontologies. A first 

version of the summarization tool is available for download11. The tool can be 

invoked at command line and accepts a set of input parameters, e.g. 

owl_filename and owl_summarized_filename. The parameters can be initialized 

at the summary.properties file. After each successful execution, a log file is 

generated. The log file contains processing information produced by the tool 

during an execution, e.g. elapsed time and identified candidate paths. Such 

information can be useful for users in order to adjust the initialization 

parameters. 

6.6.2 Case Study 

We have selected four OWL ontologies belonging to distinct knowledge 

domains as test cases: a conference ontology12, a network ontology (Section 

6.5), an office ontology13, and an university ontology14. The conference 

ontology is an ontology draft for events and, specifically, conferences. The 

office ontology models an office environment. The university ontology 

describes a computer science academic department. All of them are public 

ontologies which are available for download. The four ontologies are selected 

as test case since they are rather small and can be reviewed by human to 

produce “gold standards”. Some statistical data of the chosen ontologies are 

illustrated in Table 6.1, including the number of concepts and properties. 

                                                
 
11 The Ontology Summarizer site, http://www.cin.ufpe.br/~speed/OWLSummarizer/ 
12 http://ebiquity.umbc.edu/ontology/conference.owl 
13 http://ise.icu.ac.kr/Ontologies/office-env2.owl 
14 http://www.cs.toronto.edu/semanticweb/maponto/MapontoExamples/univ-cs.owl 
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Table 6.1. Ontology statistics. 

 conference.owl networkA.owl office-env2.owl univ-cs.owl 

# Concepts 18 27 35 53 

# Properties 18 06 08 25 

 

6.6.3 Comparison with Expert Summaries 

We invited three expert users to generate “gold standard” summaries for the 

conference, network, office, and university ontologies. Summaries of different 

sizes were requested: 4, 8, and 12 concepts. No size variation was allowed. 

Experts were oriented to produce summaries containing only adjacent concepts. 

Correspondingly, we generated automatic summaries at the same sizes and 

measured the agreement between the automatic summaries and the expert 

summaries. Since frequency is not an intrinsic characteristic of ontologies, in 

order to be comparable with expert summaries only centrality was considered 

when generating the automatic summaries. The agreement between two 

ontology summaries is defined as the percentage of the number of concepts 

selected by both the expert users and the summarization tool over the requested 

summary size. An agreement summary of a particular summary size is 

generated by combining all expert summaries and retaining only the concepts 

selected by a majority of the experts (in this case, at least two experts). We 

have also compared the expert summaries against the summaries produced by 

OntoSum15, a demo tool for summarizing small ontologies in real-time on the 

Web. Particularly, for OntoSum, we have used the Weighted PageRank measure 

since in [Zhang et al., 2007] the authors affirm that have obtained the best 

evaluation for ontology summaries. 

Table 6.2 illustrates the results of our experiments. Summaries containing 

12 concepts were not generated for the conference and network ontologies. In 

our opinion, this size is too high to represent a summary for the two ontologies. 

Except for the office ontology, our system was in reasonable consonance with 

human experts. The results for the office ontology are explained because a high 

relevant concept was positioned far from the other relevant concepts. 

Consequently, candidate summaries containing this concept were very well 

                                                
 
15 http://iws.seu.edu.cn/services/falcon-f/ontosum/ 
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evaluated (F-measure), even with some non-relevant concepts. Obviously, such 

non-relevant concepts were not chosen by the expert users. Experts do not 

always agree on what is the best summary. In general, the percentage of 

agreement between expert summaries and automatic summaries increases as the 

summary size augments. Briefly, Table 6.2 shows that the automated 

summarization tool was able to produce summaries at different sizes that appear 

to be similar to what an expert may have produced. 

Table 6.2. Comparison between the automatic summaries and the expert summaries. 

conference.owl 4-Concept 8-Concept 12-Concept 
Expert 1 against Automatic 75% 88% - 
Expert 2 against Automatic 50% 75% - 
Expert 3 against Automatic 75% 75% - 
User agreement against Automatic 75% 75% - 
User agreement against OntoSum 50% 50% - 
networkA.owl 4-Concept 8-Concept 12-Concept 
Expert 1 against Automatic 50% 100% - 
Expert 2 against Automatic 50% 75% - 
Expert 3 against Automatic 50% 50% - 
User agreement against Automatic 50% 75% - 
User agreement against OntoSum 75% 75% - 
office-env2.owl 4-Concept 8-Concept 12-Concept 
Expert 1 against Automatic 100% 75% 67% 
Expert 2 against Automatic 75% 63% 58% 
Expert 3 against Automatic 75% 63% 58% 
User agreement against Automatic 100% 63% 58% 
User agreement against OntoSum 50% 50% 75% 
univ-cs.owl 4-Concept 8-Concept 12-Concept 
Expert 1 against Automatic - 75% 92% 
Expert 2 against Automatic - 88% 83% 
Expert 3 against Automatic - 50% 67% 
User agreement against Automatic - 75% 92% 
User agreement against OntoSum - 63% 75% 

 
During the experiments with the summarization tool, we have observed 

some particular situations which are important to be stated: (i) as the summary 

size increases, the probability of forming only one group of concepts containing 

all relevant concepts is also increased. Consequently, the possibility of 

introducing non-relevant concepts in the summary decreases; (ii) at most one 

group of concepts was formed for the chosen ontologies; and (iii) in general, 

the use of a fixed summary size (∆ = 0) does not allow the identification of the 

best summary. For a certain summary size, there were cases in which no 

summary was identified, e.g. a 4-Concept summary for the university ontology 

(Table 6.2). We believe that better summaries could have been obtained if a 

variable summary size had been used (∆ > 0). 
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6.7 Related Work 
The first studies on schema summarization have focused on entity-relationship 

(ER) model abstraction. In such model, since data is not available, only the 

structural characteristics of ER diagrams are exploited [Castano et al., 1998; 

Moody and Filtman, 1999]. The authors of [Castano et al., 1998] use clustering 

techniques to produce a summarized version of an ER diagram. They present an 

algorithm for performing schema clustering, and then discuss criteria for 

representing clusters by means of abstract elements and for abstracting links 

between elements. The technique rely heavily on the semantics embedded in the 

relationships to guide the process and is therefore not truly automated. The 

amount of human effort required is significant, especially to define links 

between abstract elements. In [Yu and Jagadish, 2006], a summarization 

process for relational and XML schemas is proposed. The authors demonstrate 

that while schema structure is of vital importance in summarization, data 

distribution often provides important insights that significantly improve the 

summary quality. One consequence of using data distributions is that a 

generated summary may evolve when a database is updated even though the 

schema stays the same. 

We have also analyzed other summarization processes in which ontologies 

do not represent schemas. In [Zhang et al., 2007], the authors propose a novel 

process to automatic ontology summarization based on RDF Sentence Graph. 

Summaries are customizable, i.e. users can specify the length of summaries and 

their navigational preferences. A notion of RDF sentence is proposed as the 

basic unit of summarization. An RDF Sentence Graph is proposed to 

characterize the links between RDF sentences derived from a given ontology. 

The salience of each RDF sentence is assessed in terms of its centrality in the 

graph. An ontology is summarized by extracting a set of salient RDF sentences 

according to a re-ranking strategy. 

In [Stuckenschmidt and Klein, 2004], an automatic method for structure-

based ontology partitioning is proposed. The method is applicable to large 

ontologies and consists in dividing an ontology into smaller and disjoint 

modules based solely on the structural properties of the ontology. Each module 

contains information about a coherent subtopic of the ontology and can be used 

independently of the other modules. Concepts inside each module are stronger 
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related among them than with concepts outside the module. The output 

produced by the method is a connected graph where each node corresponds to a 

subtopic (or module) of the overall ontology. Although the set of modules can 

be considered as a summary for a given ontology, some important 

considerations must be made: (i) a module is not a concept; (ii) since the 

modules are not too close to each other in the graph, no information is provided 

to explicit the kind of relationship between them; thus, the result is considered 

a set of independent modules; (iii) the number of modules is arbitrarily 

predefined, as if the number of relevant concepts was; and (iv) the semantics of 

the relationships is not exploited in order to determine the level of dependency 

between concepts during the partitioning process. In [Schlicht and 

Stuckenschmidt, 2008], the authors present a tool for partitioning OWL 

ontologies that implement the described process. 

Some notion of centrality is used to calculate the relevance of concepts in 

all the discussed works. However, none of them exploits the type of 

relationships between concepts. Although the works of [Yu and Jagadish, 2006; 

Zhang et al., 2007] affirm that their summarization process is fully automatic, 

the size of summaries is still manually provided. In [Stuckenschmidt and Klein, 

2004], the number and the size of modules also need to be informed. Moreover, 

using frequency as a criterion for determining relevant concepts to be included 

in a summary is not considered by any of the presented works. The main reason 

for that is because existing solutions do not consider merged ontologies in the 

summarization processes. 

6.8 Considerations 
In this chapter, we proposed an automatic process to summarize cluster 

ontologies representing multiple local schemas. To determine the relevance of 

concepts a combination of two measures was used. Centrality is calculated 

using an extended definition of the degree centrality measure. Frequency is 

used as a distinguishing criterion when the ontologies to be summarized are 

merged ontologies. A detailed description of the summarization process was 

presented as well as an algorithm for ontology summarization. Experiments 

have shown that the summarization process is able to find good summaries 

compared to the ones manually generated by expert users. 
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In the next chapter, we propose an ontology-based process for clustering 

peers in SPEED. To this end, the clustering process makes use of the ontology 

matching process described in Chapter 5 and the automatic process for 

summarizing ontologies described in this chapter. 
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“Words build bridges to unexplored regions” 

Adolf Hitler 

In this chapter, we describe an ontology-based process for clustering peers in 

SPEED. Although the proposed process aims to cluster peers in a PDMS, it can 

be applied to a data integration system or any other distributed system in which 

data sources communicate via some network protocol. In this sense, first an 

overview of the clustering process is introduced. Next, a demonstration of how 

a requesting peer searches for a corresponding semantic community in the DHT 

network is shown. Also, the main clustering characteristics and the algorithm 

for inserting a requesting peer into a semantically similar cluster are presented. 

The steps to connect a requesting peer to an existing cluster and to create a new 

cluster are detailed. Considerations about the maintenance of semantic clusters 

are also provided. Finally, experimental results are presented and discussed. 

7.1 An Overview of SPEED’s Clustering Process 
In SPEED, the connection of a requesting peer is performed in a twofold way 

(Figure 7.1). First, a corresponding semantic community is searched in the DHT 

network. If the community is found, then a semantically similar cluster is 

searched in the unstructured network of the identified community. In both 
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cases, the requesting peer’s local ontology is of great importance since it is 

used to associate the requesting peer to an appropriate community as well as to 

a semantically similar cluster. 

 

Figure 7.1. The several steps involved in the connection of a requesting peer. 

Assuming that a community has been found by a requesting peer, the 

search for a semantically similar cluster begins when an initial cluster is 

provided to the requesting peer. Such initial cluster is obtained from the 

semantic index of the identified community. The search for a semantically 

similar cluster starts at the initial cluster and continues by visiting the semantic 

neighbors of the initial cluster located in the unstructured network. 

At each visited cluster, the semantic similarity between the cluster and the 

requesting peer is computed. To this end, the ontology matching function 

SemMatch described in Chapter 6 is used. SemMatch takes as arguments two 

peer ontologies (i.e. a cluster ontology CLOij and a local ontology LOn) and 

returns a global similarity measure which indicates the degree of similarity 

between the two ontologies. 
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Two peers are semantically similar if the global similarity measure 

between their ontologies is above a certain threshold, called cluster threshold 

(denoted ct). The integration peer of each visited cluster returns a global 

similarity measure to the requesting peer RPn. If RPn identifies a semantically 

similar cluster among the visited clusters, then RPn joins that cluster. 

Otherwise, RPn creates a new cluster. In both cases the requesting peer RPn is 

connected to the community. 

Once a requesting peer RPn is connected, it can assume different roles in 

the system. For instance, if RPn joins an existing cluster, it is connected as a 

data peer. Otherwise, if RPn creates a new cluster, then it is connected as an 

integration peer. Figure 7.2 is an UML statechart diagram illustrating the two 

possible states of a requesting peer. 

 

Figure 7.2. The possible states of a requesting peer. 

In the following sections, we detail each step of the proposed ontology-

based process for clustering peers in SPEED. We begin describing how a 

semantic community is searched in the DHT network. 

7.2 Search for a Semantic Community 
SPEED’s DHT network is composed of multiple semantic peers. Each semantic 

peer represents a particular community and therefore a distinct knowledge 

domain. A semantic community is described by a set of keywords associated to 

its corresponding knowledge domain. For instance, the set of keywords related 

to the education knowledge domain can be education, university, and professor. 

Such keywords are defined by a system administrator and are used to locate a 

semantic community in the DHT network. 

A semantic community is created when a group of peers wish to share data 

about a specific knowledge domain that is not available in the DHT network 
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yet. For instance, different universities are interested in sharing data about their 

research projects as well as in producing more complete results that involve 

data located at other universities. In this case, the creation of an education 

community would fulfill such need. 

SPEED’s DHT network can be built according to any structured P2P 

protocol, e.g. Chord [Stoica et al., 2001]. Particularly, if Chord is chosen then 

consistent hashing [Karger et al., 1997] is used to map semantic peers and their 

corresponding keywords onto an identifier circle. An identifier is associated to 

each semantic peer and keyword. Each semantic peer implements a successor 

function. The successor of a semantic peer (or keyword) is the next semantic 

peer in the identifier circle. 

Each semantic peer maintains a routing table called finger table. This 

table stores information about some other semantic peers in the DHT network. 

Basically, each entry in the finger table contains a semantic peer identifier and 

its network address. When a new semantic peer joins the network it must 

initialize its finger table. As a consequence, existing semantic peers are notified 

about this event and must also update their finger table to reflect the existence 

of the new semantic peer. 

The management of semantic communities is not the main focus of the 

proposed clustering process. In fact, we are interested in discovering an 

appropriate community to insert a requesting peer. Therefore, in this thesis we 

assume the existence of a predefined DHT network representing multiple 

semantic communities. Figure 7.3 illustrates a Chord network formed by five 

semantic peers representing the following knowledge domains: chemistry, 

geography, education, philosophy, and engineering. The DHT network was 

generated by the SPEED’s simulator. The simulator was used during our 

experiments and is better described in Section 7.6 and in the Appendix C. 

In order to search for a semantic community, a requesting peer RPn must 

first provide an interest theme, i.e. an abstract description of the requesting 

peer’s knowledge domain. An interest theme corresponds to a keyword that can 

either be extracted automatically from the requesting peer’s local ontology or 

manually informed by the user. Education, health, and bioinformatics are 

examples of interest themes. 
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Figure 7.3. An instantiation of the SPEED’s DHT network. 

Consistent hashing is also used to map an interest theme onto an identifier 

i which is sent to an arbitrary semantic peer in the DHT network. The search for 

a semantic peer is done progressively: at each step the successor of a semantic 

peer is identified until the closest semantic peer is found. As seen in the UML 

sequence diagram of Figure 7.4, a search for the successor of an identifier i 

(interest theme) initiated at the semantic peer SP1, begins by determining if i is 

between SP1 and the immediate successor of SP1 (i.e. SP2). If so, the search 

terminates and the successor of SP1 is returned. Otherwise, SP1 forwards the 

search request to the latest semantic peer (in its finger table) that precedes i (in 

Figure 7.4, SPi). The procedure is repeated by SPi until the search terminates. 

According to such search strategy, if the provided interest theme i is 

contained in the set of keywords of a semantic community then the 

corresponding semantic peer will necessarily be found. In this case, a message 

containing the corresponding semantic peer’s address is sent back to the 

requesting peer (Figure 7.4). If the interest theme is not found, it probably 

means that the referred community does not exist in the DHT network or the 

provided interest theme is not used to describe any semantic community. In this 

case, the requesting peer should try another interest theme. In SPEED’s current 
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version, a peer is able to participate in only one community. Besides, we 

assume that a keyword cannot be used to describe more than one community. 

 

Figure 7.4. Sequence diagram describing how a semantic community is found in SPEED’s 

DHT network. 

In the following sections, we describe the steps to insert a requesting peer 

into a semantically similar cluster. It is assumed that a requesting peer has 

already discovered a corresponding semantic community in the DHT network. 

7.3 SPEED’s Clustering Process 
Basically, the problem we are interested in can be sketched as follows: how to 

form semantic clusters in a semantic community considering as much as 

possible the semantics of the peers? Since it is not possible to predict the nature 

and the semantics of requesting peers, the clusters cannot be formed a priori. 

Moreover, due to the dynamism of participating peers it is not possible to 

assume a static disposal of the semantic clusters in the unstructured network. In 

short, the main goal of the clustering process is to minimize the semantic 

similarity between peers attached to distinct clusters and to maximize the 

semantic similarity between peers located in each cluster. 

The SPEED’s clustering process has the following characteristics: 

� Incremental insertion: peers arrive one at a time; 

� Unique assignment: peers are allocated in only one cluster (exclusive); 

� Ontology-based representation: peers are represented by ontologies which, 

in turn, are represented by a collection of concepts and properties. Each 
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cluster is represented by a cluster ontology which corresponds to the 

integration of the local ontologies of the peers that compose it; 

� Parameterization: The parameters that need to be provided are similarity 

function, cluster threshold, neighbor threshold, and connect TTL. In this 

work, SemMatch is used as a similarity function between two ontologies 

however any other function that returns a global measure is supported. 

Particularly, the last two parameters are explained in Section 7.4.2. 

In the next section, we discuss the algorithm for inserting a requesting 

peer into a semantically similar cluster and describe its main steps. 

7.4 Clustering Algorithm 
In SPEED, clustering is mainly an incremental process. Peers are added to 

semantic clusters one at a time depending on some criterion, e.g. semantic 

similarity between a requesting peer and current clusters. In this sense, our 

clustering process is inspired in the Leader algorithm [Hartigan, 1975] 

described in Chapter 2 since it supports all the stated clustering characteristics. 

However, the Leader algorithm presents some drawbacks when applied to a P2P 

environment such as SPEED. Such drawbacks are listed in Table 7.1 as well as 

the proposed adaptations made in SPEED. 

Table 7.1. Drawbacks of the Leader algorithm and proposed adaptations to SPEED. 

Drawbacks of the Leader algorithm Introduced adaptations 

Assume that a centralized view of the 

clusters is available. 

The clusters of each community are connected in an 

unstructured P2P network and should be searched 

accordingly. Thus, flooding is used to find clusters in a 

community. 

Clusters are isolated, i.e. there are no 

links between them. 

The clusters are connected through semantic 

correspondences which are needed to enable query 

processing. In this sense, we consider the definition of 

semantic neighbors to link clusters only with the most 

similar ones. 

Since clusters are searched in a fixed 

order, the initial clusters tend to 

concentrate a high number of peers. 

An initial cluster is indicated at each time a requesting 

peer is to be inserted. The initial cluster is obtained from 

a semantic index. 

The comparison with all clusters may 

cause scalability and/or performance 

problems. 

We limit the number of clusters to be searched in the 

unstructured network. Besides the initial cluster, the other 

clusters to be searched include the semantic neighbors of 

the initial cluster. 
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The introduction of the proposed adaptations results in a new clustering 

algorithm whose pseudo-code is described as follows. Similarly to the Leader 

algorithm, the proposed algorithm is also order-dependent. 

Let ct (cluster threshold) be a similarity threshold 

Let connectTTL be a search bound 

Let the first requesting peer RP1 be assigned to cluster CL1 

For each requesting peer RPn+1 

Search for initial cluster in Semantic Index 

Start at the initial cluster and while connectTTL > 0 do 

simClust � Search for most similar semantic cluster 

connectTTL � connectTTL – 1 

maxSim � GetMaximumSimilarity(simClust) 

If maxSim ≥ ct, connect RPi+1 to the corresponding cluster CLj 

Else, connect RPi+1 to a new cluster CLk 

Determine the semantic neighbors of CLj (or CLk) 

In the following subsections, we describe how semantic clusters are 

handled in a semantic community as requesting peers arrive. Each step of the 

algorithm is detailed. 

7.4.1 Search for Initial Cluster in Semantic Index 

In SPEED, the connection of requesting peers is continuous and unlimited. 

Matching a requesting peer’s local ontology LOn against all cluster ontologies 

CLOij of a semantic community CMi is a costly and time-consuming task and 

therefore should be avoided. The main reasons for that are: (i) the size of 

cluster ontologies can be large since they integrate multiple local ontologies; 

and (ii) the number of clusters varies and cannot be predicted. 

In order to provide an initial cluster to RPn, we have a semantic index 

located at each semantic peer SPi. In this semantic index, each cluster CLij of a 

corresponding community CMi is represented by its summarized cluster 

ontology OSij. 

When a requesting peer RPn finds a semantic community CMi, its local 

ontology LOn is sent to the corresponding semantic peer SPi. The search in the 

semantic index is done by matching LOn against the summarized cluster 

ontologies OSij (Figure 7.5). For each index entry a global similarity measure 

between OSij and LOn is produced by the ontology matching function 

SemMatch. Afterwards, SPi determines the initial cluster by ranking in 
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descending order the computed global similarity measures. The initial cluster 

will be the one associated with the highest global measure. Finally, the 

corresponding integration peer’s address is returned to RPn. Particularly, if no 

initial cluster is identified (for example, if the semantic community is empty) 

then RPn creates a new cluster. In this case, RPn connects as an integration peer. 

The steps required to connect a requesting peer as an integration peer will be 

described in the Section 7.4.3. 

 

Figure 7.5. A semantic peer SP i determines the initial cluster of a requesting peer RPn. 

7.4.2 Search for the Most Similar Semantic Cluster 

Given an initial cluster, the problem now is to determine the clusters in the 

community CMi that should be visited in order to search for a semantically 

similar cluster. To this end, the semantics of the involved peers is taken into 

account by extending the definition of semantic neighbors presented in Chapter 

4. According to such definition, one of the conditions to consider two distinct 

clusters CLij and CLik as semantic neighbors is that they must share similar 

content, i.e. cluster ontologies. In this sense, a cluster CLij is a semantic 

neighbor of CLik, if the global similarity measure between CLOij and CLOik is 

above a certain threshold called neighbor threshold (denoted nt). Thus, given a 

semantic cluster CLij and its semantic neighborhood Nij, a semantic cluster CLik 

∈ Nij is such that SemMatch(CLOij, CLOik) ≥ nt. 

In addition, given the neighborhood Nij = {CLi1, CLi2,…,CLik} of a cluster 

CLij, all the clusters in Nij are considered direct neighbors of CLij. If a cluster 

CLin is not included in Nij but is contained in Nik (i.e. the neighborhood of CLik) 
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then we say that CLin is an indirect neighbor of CLij. In Figure 7.6, CLi3 and 

CLi4 are direct neighbors of CLi2 and indirect neighbors of CLi1. 

 

Figure 7.6.  An example of direct and indirect neighbors. 

Based on the extended definition of semantic neighbors, several possible 

search strategies can be derived in order to limit the number of clusters to be 

searched. All of them can be controlled by a TTL limit (denoted connect TTL). 

For instance, if: 

� connect TTL = 1, the search scope is resumed to the initial cluster; 

� connect TTL = 2, the search scope includes the initial cluster and its direct 

semantic neighbor(s); 

� connect TTL ≥ 3, the search scope includes the initial cluster as well as its 

direct and indirect semantic neighbor(s). 

The search is started when RPn sends its local ontology LOn to the 

integration peer corresponding to the initial cluster. At the integration peer, 

SemMatch is executed by taking as arguments the current cluster ontology and 

LOn. The resulting global similarity measure is returned to RPn. According to 

the defined search strategy, LOn can be propagated to the direct and/or indirect 

semantic neighbors of the initial cluster. At each visited cluster, connect TTL is 

decreased and the search process continues. The search finishes when connect 

TTL reaches zero. To avoid waiting indefinitely for matching results a timeout 

is set by RPn when RPn sends its LOn to the initial cluster. 
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Figure 7.7 is the UML sequence diagram representing the community 

instantiation of Figure 7.6. Since connect TTL is set to 3, the four clusters 

(CLi1, CLi2, CLi3, and CLi4) are visited in order to determine the most similar 

cluster for the requesting peer RPn. The clusters CLi1, CLi2, CLi3, and CLi4 are 

represented by their corresponding integration peers IPi1, IPi2, IPi3, and IPi4, 

respectively. The first visited integration peer is IPi1 that corresponds to the 

initial cluster provided by the semantic peer SPi. The search scope comprises 

the direct (IPi2) and indirect (IPi3 and IPi4) semantic neighbors of IPi1. The 

global similarity measures returned to RPn are: 0.5 (IP1), 0.6 (IP2), 0.2 (IP3), 

and 0.3 (IP4). These measures are used by RPn to decide whether to join one of 

the visited clusters or create a new one (in this case, CLi5). Such process is 

described in the next section. 

 

Figure 7.7. A requesting peer RPn searches for a semantically similar cluster. 

7.4.3 Connection of a Requesting Peer 

Once RPn receives the global similarity measures from the visited clusters, RPn 

must select the highest global similarity measure. In this case, two possible 

cases can occur: 

Case 1 

If the selected measure is equal or higher than cluster threshold (ct), then 

RPn joins the corresponding cluster as a data peer. In this case, a new version of 

CLOij is produced by merging the current CLOij and the local ontology LOn of 
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the new data peer. To this end, an ontology merging process Merge is 

considered. Merge takes as arguments the two peer ontologies and the ontology 

alignment between them. Such alignment was produced by SemMatch when 

both ontologies were matched during the search process. As a result, Merge 

builds a new version of CLOij as well as a set of semantic correspondences 

between CLOij and LOn which are needed for query processing. The new CLOij 

includes all the elements contained in both input ontologies. In addition, a new 

summary of CLOij (OSij) is built and the semantic index is updated accordingly. 

Case 2 

If the selected measure is lower than cluster threshold (ct), RPn creates a 

new cluster and joins that cluster as an integration peer. In this case, the cluster 

ontology CLOij of the new cluster corresponds to the local ontology LOn 

describing RPn. The semantic neighborhood of the new cluster is composed of 

all the visited clusters CLik such that nt ≤ SemMatch(CLOij, CLOik) < ct. A 

summarized version of CLOij (OSij) is built and a new entry is added to the 

semantic index. In Figure 7.7, neighbor threshold (nt) and cluster threshold (ct) 

are set to 0.4 and 0.7, respectively. Since the highest global similarity measure 

returned by the searched clusters (i.e. 0.6, returned by CLi2) is lower than ct, 

the requesting peer RPn will create a new cluster (CLi5). The semantic 

neighborhood of CLi5 is defined as Ni5 = {CLi1, CLi2}. Next, we make some 

considerations about cluster maintenance. 

7.5 Maintenance Considerations 
Although cluster maintenance is not the main focus of this work, it is necessary 

to make some important considerations about this issue. In order to reflect the 

content available in a semantic cluster, cluster ontologies should be created and 

maintained dynamically and in an automatic way [Haase and Stojanovic, 2005; 

Konstantinidis et al., 2008]. They should be adaptable to the changes in the 

semantics of the peers that participate in the cluster. A cluster ontology should 

be able to evolve not only when a requesting peer joins the cluster (as seen in 

Section 7.4.3) but also when a participating peer leaves it. In this section, we 

present some considerations about peer disconnection, another event that 

requests a cluster ontology to be updated. In addition, we discuss what might 

happen in the system when a cluster ontology evolves. 
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7.5.1 Disconnection of Participating Peers 

The disconnection of a data peer DPijk implies in updating the cluster ontology 

CLOij of its corresponding cluster CLij. The elements that are shared only by 

DPijk are logically removed from CLOij, along with the associated semantic 

correspondences. Logical deletion is preferred because DPijk can reconnect to 

the same cluster CLij in a near future. Physical deletion occurs only after a 

certain time interval. Once CLOij is updated, a new summary of it (OSij) is built 

and the semantic index is updated accordingly. 

The procedure to update CLOij as the result of an integration peer 

disconnection is basically the same. However, the disconnection of IPij requires 

an additional effort: the selection of a new integration peer for the 

corresponding cluster. Next, we present two consequences of evolving a cluster 

ontology. 

7.5.2 Update of Cluster Neighborhood 

When a cluster ontology evolves, there might be some changes in the 

neighborhood Nij of a cluster CLij. Thus, the global similarity measures between 

CLOij and each cluster ontology in Nij needs to be recomputed. If the global 

similarity measure between CLOij and a cluster ontology CLOik ∈ Nij decreases 

to a value that is below neighbor threshold (nt), then the cluster CLik is 

removed from Nij. On the other hand, if the similarity value increases and 

becomes higher than or equal to cluster threshold (ct), then the two (neighbor) 

clusters CLij and CLik need to be transformed into a single cluster. 

7.5.3 Recalculation of Global Similarity Measure 

Another consequence of a cluster ontology evolution is described as follows. 

Assume that a requesting peer RPn has joined a cluster CLij as the data peer 

DPijk. Thus, its LOn is now referred as to LOijk. During the interval DPijk 

remains connected to CLij, CLOij may evolve in such a way that the similarity 

between CLOij and LOijk can be increased or decreased. In this sense, the 

assumption that, given a semantic cluster CLij, each data peer DPijk in CLij is 

such that SemMatch(CLOij, LOijk) ≥ ct can only be considered when a 

requesting peer joins a cluster. 

The similarity increases when data peers sharing some dissimilar content 

to DPijk leave CLij. In this case, no cluster maintenance is needed and DPijk 
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should continue attached to CLij. Otherwise, if the global similarity measure 

between CLOij and LOijk decreases then some cluster maintenance is needed. 

The similarity decreases when data peers sharing some additional (dissimilar) 

content join CLij after DPijk. For example, this can be caused if the cluster 

threshold (ct) is initialized to a low value. 

For instance, consider the scenario described in Figure 7.8. It illustrates a 

cluster CLij containing one integration peer (IPij) and two data peers (DPij1 and 

DPij3). The values in the tables represent the global similarity measures between 

each distinct pair of ontologies in CLij. Particularly, in SPEED the measure 

between a CLOij and a local ontology LOijk is computed before a data peer joins 

a cluster CLij. The other measures (between the local ontologies) are not 

calculated during the clustering process and are presented only to illustrate the 

example. The table of Figure 7.8a shows that the data peers DPij1 and DPij3 

share a high similar content since the global similarity measure between their 

local ontologies (LOij1 and LOij3) is 0.9. 

 

Figure 7.8. Cluster maintenance as a result of the cluster ontology evolution. 

In Figure 7.8b, a new data peer (DPij2) joins CLij. DPij2 not only shares 

similar content with DPij1 and DPij3 but also has some additional content that is 

not available in the other two data peers. As a result, new ontology elements are 

introduced in CLOij and the similarities between CLOij and DPij1 as well as 

between CLOij and DPij3 are decreased. In this case, cluster maintenance can be 

performed in two ways: (i) the most dissimilar data peer in CLij (in this case, 
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DPij1) must move to a more semantically similar cluster; or (ii) CLij must be 

split into two new clusters. 

7.6 Experiments 
In this section we discuss implementation issues and provide a selection of the 

experiments that we have performed to verify the effectiveness of the proposed 

clustering process. 

7.6.1 Implementation 

For our experiments we have developed a simulator through which we were 

able to reproduce the main conditions characterizing the SPEED’s environment. 

The simulator was implemented in Java [Java, 2009] using the Eclipse 

Integrated Development Environment (IDE) [Eclipse, 2009]. Through the 

simulator we were able to generate scenarios corresponding to networks of 

peers, each with its own schema describing a particular reality. In the simulator, 

we assume that there exists a communication facility among the peers that 

enables sending and receiving information, i.e. queries, data, and schema 

information. A more detailed description of the simulator is provided in the 

Appendix C. In this current version, the tool is able to simulate requesting peer 

connection and the formation of clusters in a given semantic community. 

Concerning the maintenance considerations discussed in Section 7.5, only the 

update of a cluster neighborhood is implemented. 

In order to execute the experiments, we included in the simulator the 

ontology management tools (ontology matching and ontology summarization) 

previously described. 

Concerning ontology merging, we have not found any automatic tool that 

could be integrated with the simulator. Therefore, we also had to develop a new 

one. The merging tool was also developed in Java and the OWL API [OWL 

API, 2009] was used to handle ontologies. Basically, the tool can be invoked 

from command line and accepts as input two OWL ontologies. As a result, the 

merging tool generates a new OWL ontology containing all elements (concepts 

and properties) of the input ontologies. Repeated elements are not included. 
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7.6.2 Experimental Setting 

Our simulation tests were conducted considering the education knowledge 

domain. Therefore, we have built an ontology library containing dozens of local 

ontologies to be used by requesting peers during the tests. Each local ontology 

contains about six concepts on average. The local ontologies were derived from 

the real-world ontology UnivCSCMO.owl illustrated in the Appendix A. The 

UnivCSCMO.owl ontology describes a computer science academic department 

and was also used as the community ontology. During our tests, we have 

assumed that the element names of the local ontologies were normalized 

according to the element names of the chosen community ontology. 

7.6.3 Validation 

All tests were performed in an Intel Pentium M 1.60GHz, 1GB of RAM. The 

operating system was Windows XP®. In our experiments, the SPEED’s DHT 

network was first created with some semantic peers. Afterwards, we started the 

connection of requesting peers one at a time. Each requesting peer has searched 

for a corresponding semantic community (education) in the DHT network and 

then for a semantically similar cluster in the unstructured network of the 

discovered community. 

In the following, we demonstrate the effectiveness of the proposed 

clustering process from two different points of view. First, we measure the 

generation of semantic clusters using the clustering indices presented in 

Chapter 2. Afterwards, we evaluate the resulting network by executing query 

processing simulations. 

Clustering Indices 

We have evaluated the clustering results using the classical external and 

internal cluster validity approaches (Chapter 2). External validity was measured 

using the classical statistical indices: Rand Index [Theodoridis and 

Koutroumbas, 2003], Jaccard Coefficient [Batistakis et al., 2002a], Fowlkes-

Mallows (FM) Index [Fowlkes and Mallows, 1983], and Hubert’s statistic 

[Batistakis et al., 2002b]. The indices were computed through a comparison 

between the clustering results obtained from the simulator against an ideal one 

generated by a hierarchical clustering algorithm [Jain et al., 1999]. The 

hierarchical algorithm follows the batch approach (Chapter 2) for clustering a 
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set of peers. In other words, it considers the set as a whole and begins to 

organize peers into meaningful clusters. 

SPEED’s clustering algorithm is incremental and order-dependent. 

Particularly, due to the second characteristic, the indices were calculated 

multiple times considering different orders of requesting peers. Then, for each 

of the statistical indices an average of the index results was calculated. 

The values of these statistical indices are between 0 and 1. However, a 

requirement for achieving the maximum value is to have the same number of 

clusters in both clustering results, which, as we observed, is not always 

possible. For all the used indices, the larger their value the higher the 

agreement between the two clustering results. 

Two types of experiments were performed. In the first one, we considered 

the search strategy proposed in SPEED (denoted limitedClusters). According to 

such strategy, a requesting peer receives an initial cluster and visits only a 

limited number of clusters, i.e. the direct and indirect semantic neighbors of the 

initial cluster. In the second experiment (denoted allClusters), we considered a 

different search strategy. Each requesting peer visits all current clusters before 

connecting to the system. In this case, the semantic index is discarded. 

For the limitedClusters strategy, the following parameters (with respective 

values) were considered: summary size (6), neighbor threshold (0.10), and 

connectTTL (3). Figure 7.9 depicts the index results for different values of 

cluster threshold. 
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Figure 7.9. Clustering evaluation: external indices. 
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The results indicate that the agreement between the clustering result 

produced by the simulator and the ideal one is degraded as the value of cluster 

threshold increases. For the set of local ontologies used in the tests, the highest 

agreement has been obtained when cluster threshold was adjusted to 0.35. The 

highest agreement could have been obtained for a different value of cluster 

threshold if a distinct set of local ontologies had been used. 

For the allClusters strategy, the clustering result was also compared with 

the ideal one. To guarantee that all clusters were visited we have modified the 

parameters connectTTL (999) and neighbor threshold (0). Summary size 

remained unaltered. Afterwards, we compared the obtained index results against 

the best ones of limitedClusters, i.e. when cluster threshold was set to 0.35. 

Naturally, allClusters tends to produce better index results than limitedClusters. 

However, we have obtained similar index results (Figure 7.10) with fewer 

executions of SemMatch (Figure 7.11) and less number of messages transmitted 

among peers in the simulated network (Figure 7.12). 
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Figure 7.10. A comparison of search strategies using internal statistical indexes. 

Such decrease is explained because when a requesting peer arrives at a 

semantic community, only a limited number of clusters are visited in order to 

determine the most similar cluster for the requesting peer. Consequently, the 

number of ontology matching executions is minimized. The numbers available 

in Figure 7.11 indicate a reduction of 27% of matchings involving local 

ontologies and cluster ontologies, and a reduction of 25% of matchings between 

cluster ontologies. 
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Figure 7.11. A comparison of search strategies considering the number of executions of 

SemMatch. 

Since a requesting peer’s local ontology is propagated only among a 

limited number of semantic neighbors of the initial cluster, the quantity of 

messages transmitted among integration peers is also decreased. The numbers 

illustrated in Figure 7.12 indicate a reduction of 22%. 
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Figure 7.12. A comparison of search strategies considering the number of messages 

transmitted among peers. 

Internal validity was evaluated using the Silhouette indices [Rousseeuw, 

1987]. Such indices are useful when it is seeking compact and clearly separated 

clusters. In this case, there are two interesting issues to be analyzed in a 

clustering result: the homogeneity of each cluster and the degree of separation 

between the obtained clusters. The higher their homogeneity and the separation 

the better is the clustering result. Both aspects can be captured in a global 
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Silhouette value between –1 (bad clustering) and 1 (very good clustering). 

Figure 7.13 illustrates the global Silhouette values for different values of 

cluster threshold. Again, the best clustering result (0.505) for limitedClusters 

has been obtained when cluster threshold was set to 0.35. 
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Figure 7.13. Clustering validity: internal indices. 

Query Processing 

In order to evaluate the impact of the proposed clustering process on query 

answering, we simulated query routing on the networks produced by the 

proposed clustering algorithm. Basically, query routing was simulated by 

posing five different queries on randomly selected peers. Each query was a 

combination of small number of predicates specifying conditions on concepts. 

The set of relevant peers in the network that were able to answer each query 

was previously identified manually, considering as a relevant peer a peer that 

can answer a query integrally. We quantified the advantages on query 

processing by propagating each query until a stopping condition was reached, 

i.e., a TTL. Queries were propagated among semantic neighbor clusters. In this 

sense, we evaluated the effectiveness improvement by measuring the percentage 

of relevant peers that were reached for different number of hops. 

The results illustrated in Figure 7.14 correspond to the network generated 

when cluster threshold was configured to 0.35. In this network, the 45 

requesting peers were clustered into seven clusters in the education community 

and each cluster contained six peers on average. The results indicate that one 
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hop was needed to reach 17% of the relevant peers. This means routing a query 

to relevant peers participating in the same cluster of the peer in which the query 

was posed. In addition, three hops were necessary to reach almost all relevant 

peers. This means routing a query to the direct and indirect neighbors (three at 

maximum) of the cluster in which the query was posed. 
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Figure 7.14. Percentage of reached relevant peers for a given number of hops. 

7.7 Considerations 
The proposed clustering process can bring several benefits to the organization 

of peers in a PDMS. Semantically similar peers are clustered according to their 

knowledge domain (communities) and local ontologies (clusters). If a semantic 

cluster is discovered by a requesting peer, several semantic similar peers are 

also found. By using a semantic index the search for a semantic cluster is not 

started randomly in a community. Thus, the probability of finding a 

semantically similar cluster for RPn increases. Furthermore, since the search for 

clusters is guided by the semantics of the participating peers, irrelevant 

semantic clusters are discarded. If there is a semantic cluster which is similar to 

RPn, then such cluster can be found by RPn in a shorter number of hops. 

Our experimental evaluation has shown the effectiveness of the proposed 

clustering process. We are aware that limiting the number of clusters to be 

visited when requesting peer arrives can lead to situations in which the most 

semantically similar cluster is not found. However, the use of a semantic index 

has shown that satisfactory clustering results can be obtained. In addition, 
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limiting the number of visited clusters minimizes the number of ontology 

matching executions as well as the number of messages transmitted in the 

network. Finally, queries posed at peers can reach relevant peers in a few hops. 

In the next chapter, we present our conclusions and suggestions for future work. 
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“When we think we know all the answers, life comes and changes all the questions” 

Anonymous 

In this thesis, we have proposed an incremental process to cluster semantically 

similar peers in a PDMS. Peers are organized in the network according to a 

mixed P2P topology (DHT, unstructured, and super-peer). Ontologies are 

employed in the PDMS to improve some of its main services, e.g. to represent 

the exported schema shared by (a set of) peers. Exported schemas (ontologies) 

are used to group semantically similar peers into communities and clusters. 

Peer clustering is assisted by two other processes: ontology matching and 

ontology summarization. An ontology matching process produces a global 

measure which is mainly used to determine the similarity between peers. An 

ontology summarization process produces summaries of clusters ontologies. 

The summaries are used as a semantic index to indicate an initial cluster for 

requesting peers. The initial cluster serves as a starting point in order to locate 

other semantically similar peers. 

8.1 Research Contributions 
The main contributions of this work are summarized as follows. 

PDMS Architecture 

We have extended the original definition of OPDMS arguing that ontologies 

can be used in a broader way to enhance PDMS services. Based on our analysis 
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of the state-of-the-art on PDMS, we have identified six high-level requirements 

that an OPDMS should fulfill in order to take advantage of using ontologies to 

enhance its services: R1) Exported schema representation; R2) Global 

conceptualization; R3) Support for correspondences identification; R4) Support 

for query processing; R5) Semantic index; and R6) Semantic matching 

capabilities. None of the discussed PMDS (OntSum, Sunrise, and Helios) 

satisfied the requirements completely. In this sense, we have proposed a 

semantic-based PDMS which fulfills all the identified requirements. Table 8.1 

illustrates the different components of SPEED which are used to satisfy each 

one of the requirements. 

Table 8.1. The resources used in SPEED to satisfy the identified high-level requirements of an OPDMS. 

R1 R2 R3 R4 R5 R6 

Ontology 

Translator; 

Local 

Ontologies 

Ontology 

Merger; 

Cluster and 

Community 

Ontologies 

Community 

Ontologies 

Cluster 

Ontologies 

Ontology 

Summarizer; 

Summarized 

Cluster 

Ontologies 

Ontology 

Matcher 

(SemMatch) 

The internal modules of the three types of peers used in SPEED (data 

peers, integration peers, and semantic peers) have been described as well as the 

different types of ontologies used in the system (local ontologies, cluster 

ontologies, and community ontologies). A simulator has been developed 

through which we were able to reproduce the main conditions characterizing the 

SPEED’s environment. 

Ontology Matching Process 

We have proposed a semantic-based ontology matching process (SemMatch). 

Differently from other matching processes, SemMatch produces, besides an 

ontology alignment between two ontologies, a global similarity measure 

representing the overall similarity degree between them (and not only between 

their elements!). Particularly, in SPEED, a global measure is needed in many 

situations, e.g. to determine the similarity between a requesting peer and an 

existing cluster. We have developed a tool implementing the semantic-based 

ontology matching process. The tool has been submitted to experimental 

evaluation and integrated to our PDMS simulator. Experimental results have 
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shown that the combination of linguistic, structural and semantic matchers can 

improve ontology alignments. 

Ontology Summarization Process 

We have proposed an automatic process for building summaries of cluster 

ontologies. The process is divided into several steps and is based on the notions 

of centrality and frequency. Particularly, the use of frequency has not been 

investigated before in other works. In this thesis, the use is motivated by the 

fact that a cluster ontology is obtained by merging several different local 

ontologies. The use of frequency as a measure to determine the relevance of 

concepts of an ontology minimizes the need to update the semantic index. If the 

most frequent concepts are included in the summary that represents a cluster, 

when the associated cluster ontology evolves the most relevant concepts tends 

to remain unaltered. Consequently, there is no need to generate a new summary. 

The main contributions of this topic include a preliminary implementation and 

evaluation of an ontology summarization tool which has also been integrated to 

the PDMS simulator. 

Peer Clustering Process 

We have proposed an incremental process for clustering peers in a PDMS. 

According to the clustering process, peers are first grouped into a 

corresponding semantic community and then into a semantically similar cluster. 

Instead of visiting all current clusters when a requesting peer arrives at the 

semantic community, the basic idea is to start at a promising cluster and visit 

only a subset of the clusters. The proposed process was implemented in the 

simulator and submitted to experimental evaluation. Validation has been 

performed using clustering indices and by executing query processing 

simulations. The results have shown that homogeneous and well-separated 

clusters can be generated if an ontology-based clustering process is used to 

organize peers as soon as they connect to the system. 

8.2 Future Work 
This work has raised a large spectrum of new problems to be solved, which are 

listed as follows. The problems are organized according to each one of the 

research contributions. Although not directly related to this work, other types of 

problems are also indicated, e.g. load balancing and fault tolerance. 
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Ontology Matching Process 

As further work, the ontology matching tool can be extended by considering the 

properties of the concepts both in the correspondences identification and in the 

determination of the global similarity measure. Furthermore, new global 

similarity measures between ontologies can be proposed as well as other 

existing ones can be implemented. 

Ontology Summarization Process 

There are a number of ongoing research issues concerned with the proposed 

summarization process which will be the goal of our future activity. An issue to 

be studied in deep detail regards the application of transitivity rules to 

identified paths in order to eliminate non-relevant concepts. In some situations, 

instead of adding non-relevant concepts in the summary, some relationships 

between relevant concepts could be inferred. The main idea is to automatically 

derive new relationships between relevant concepts which are separated by a 

non-relevant concept, and then remove the non-relevant concept and its 

relationships. 

Another research activity is devoted to executing experiments with the 

other types of centrality measures (closeness, betweenness, and eigenvector). 

We think that more accurate sets of relevant concepts can be produced if 

different centrality measures are applied. 

Peer Clustering Process 

Regarding the ontology-based clustering process, there are some interesting 

issues that can be the goal of future research. For instance, during the clustering 

process, the fact that participating peers can leave the system may be 

considered. In this case, the Ontology Manager component, located at the 

integration peers, needs to be implemented. The component is responsible for 

updating a cluster ontology whenever a data peer leaves the cluster, reflecting 

the current content shared inside a cluster. Also, the simulator can be adapted to 

consider parallel connection and disconnection of peers. This modification will 

probably require the use of threads [Oaks and Wong, 2004]. 

Clearly, the search for an initial cluster in a semantic index needs to be 

improved. The basic idea is to avoid full index scans and minimize the number 

of matching between a local ontology (requesting peer) and the summarized 
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cluster ontologies. To this end, the summaries should be organized in such a 

way that the initial cluster (i.e. the one with the highest global measure) should 

be determined with as few matching as possible. 

Load Balancing 

The dynamic behavior of data peers and integration peers can lead to situations 

where the overlay network of a community may need to be reorganized. For 

instance, if most of the connected peers are integration peers, the system is 

more like an unstructured P2P network and several peers will participate in 

query processing. On the other hand, if too few integration peers are available, 

the system is more like a centralized network. 

In this sense, a graph-based clustering algorithm [Steiner and Biersack, 

2005; Hammouda and Kamel, 2007] can be used to avoid the previously 

mentioned situations. Such algorithm can be adapted to periodically balance 

current clusters and still maintain the semantic organization of peers in the 

overlay network. Clearly, some operations to be considered in the algorithm 

are: (i) the redistribution of data peers between the semantic neighbors of an 

overloaded cluster; and (ii) the merging of two clusters or the split of an 

existing cluster into two new clusters. 

Fault Tolerance 

When an integration peer fails or disconnects, a fault tolerance approach must 

be available in order to maintain the corresponding data peers connected. A 

pro-active solution can be used in such a way that one of the data peers of a 

particular cluster should be previously elected as a candidate integration peer. 

In this case, the candidate acts as a redundant integration peer and keeps a copy 

of the actual integration peer’s knowledge base. The knowledge base needs to 

be periodically replicated from the actual integration peer to the candidate 

integration peer. If the actual integration peer fails, then the candidate 

integration peer assumes its role and another data peer is chosen as candidate 

integration peer. 

Since integration peers are responsible for executing important issues 

within a cluster, several characteristics need to be considered so a data peer can 

become an integration peer candidate. Such characteristics include physical 

resources available such as physical memory, disk space, CPU powerfulness, 
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and network bandwidth. Additionally, the behavior of a data peer, while it is 

connected to the system, should be an essential factor when determining an 

integration peer candidate. Thus, subjective characteristics are also taken into 

account, for example, availability, accuracy, response time, completeness, and 

amount of data. 
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A1. Ontology: UnivBench.owl 

 

 

Figure A.1. The UnivBench ontology. Some statistics: #concepts=42 and #properties=28. 
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A2. Ontology: Semiport.owl 

 

 

Figure A.2. The Semiport ontology. Some statistics: #concepts=41 and #properties=40. 
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A3. Ontology: UnivCMOCS.owl 

 

Figure A.3. The UnivCSCMO ontology. Some Statistics: #concepts=77 and #properties=78.
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B1. Alignments (Aij) between Semiport.owl and UnivBench.owl 
Id Semiport concept UnivBench concept Semantic relationship Similarity value 

1 Student Student isEquivalentTo 1.00 

2 ResearchProject ResearchProject isEquivalentTo 1.00 

3 Person Person isEquivalentTo 1.00 

4 DevelopmentProject ResearchProject isCloseTo 0.75 

5 Product Software isSuperConceptOf 0.68 

6 ResearchGroup ResearchGroup isEquivalentTo 1.00 

7 Project ResearchProject isSuperConceptOf 0.84 

8 UnofficialPublication UnofficialPublication isEquivalentTo 1.00 

9 TechnicalStaff Worker isSubConceptOf 0.68 

10 ClericalStaff ClericalStaff isEquivalentTo 1.00 

11 Publication Publication isEquivalentTo 1.00 

12 Worker Worker isEquivalentTo 1.00 

13 Organization Organization isEquivalentTo 1.00 

14 SystemsStaff SystemsStaff isEquivalentTo 1.00 

15 Department Department isEquivalentTo 1.00 

16 Proceedings Publication isSubConceptOf 0.68 

17 UndergraduateStudent UndergraduateStudent isEquivalentTo 1.00 

18 AdministrativeStaff AdministrativeStaff isEquivalentTo 1.00 

19 Thesis Publication isSubConceptOf 0.69 

20 TechnicalReport TechnicalReport isEquivalentTo 1.00 

21 University University isEquivalentTo 1.00 

22 Article Article isEquivalentTo 1.00 

23 AssistantProfessor AssistantProfessor isEquivalentTo 1.00 

24 SoftwareComponent Software isPartOf 0.48 

25 PhDStudent GraduateStudent isSubConceptOf 0.81 

26 Lecturer Lecturer isEquivalentTo 1.00 

27 Book Book isEquivalentTo 1.00 

28 FullProfessor FullProfessor isEquivalentTo 1.00 

29 Faculty Faculty isEquivalentTo 1.00 

30 Manual Manual isEquivalentTo 1.00 

31 SoftwareProject ResearchProject isCloseTo 0.75 

32 GraduateStudent GraduateStudent isEquivalentTo 1.00 

   Sum 29.36 
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B2. Alignments (Aji) between Semiport.owl and UnivBench.owl 
Id UnivBench concept Semiport concept Semantic relationship Similarity value 

1 Institute Organization isSuperConceptOf 0.68 

2 Book Book isEquivalentTo 1.00 

3 AdministrativeStaff AdministrativeStaff isEquivalentTo 1.00 

4 FullProfessor FullProfessor isEquivalentTo 1.00 

5 Article Article isEquivalentTo 1.00 

6 UndergraduateStudent UndergraduateStudent isEquivalentTo 1.00 

7 Work Project isSuperConceptOf 0.68 

8 Student Student isEquivalentTo 1.00 

9 GraduateStudent GraduateStudent isEquivalentTo 1.00 

10 Department Department isEquivalentTo 1.00 

11 Organization Organization isEquivalentTo 1.00 

12 ResearchProject ResearchProject isEquivalentTo 1.00 

13 Lecturer Lecturer isEquivalentTo 1.00 

14 GraduateCourse GraduateStudent isWholeOf 0.52 

15 VisitingProfessor AssistantProfessor isCloseTo 0.75 

16 Chair AdministrativeStaff isSubConceptOf 0.68 

17 Worker Worker isEquivalentTo 1.00 

18 University University isEquivalentTo 1.00 

19 Course GraduateStudent isWholeOf 0.42 

20 Director AdministrativeStaff isSubConceptOf 0.68 

21 UnofficialPublication UnofficialPublication isEquivalentTo 1.00 

22 TechnicalReport TechnicalReport isEquivalentTo 1.00 

23 AssociateProfessor ResearchProject isPartOf 0.39 

24 JournalArticle Article isSubConceptOf 0.84 

25 Publication Publication isEquivalentTo 1.00 

26 Professor AssistantProfessor isSuperConceptOf 0.84 

27 AssistantProfessor AssistantProfessor isEquivalentTo 1.00 

28 SystemsStaff SystemsStaff isEquivalentTo 1.00 

29 Manual Manual isEquivalentTo 1.00 

30 Dean AdministrativeStaff isSubConceptOf 0.68 

31 Program Organization  isSubConceptOf 0.71 

32 PostDoc Faculty  isSubConceptOf 0.68 

33 ResearchGroup ResearchGroup isEquivalentTo 1.00 

34 ConferencePaper Article isSubConceptOf 0.68 

35 Faculty Faculty isEquivalentTo 1.00 

36 Specification Publication isSubConceptOf 0.68 

37 Assistant Worker isSubConceptOf 0.68 

38 Software Publication isSubConceptOf 0.69 

39 College Organization isSubConceptOf 0.71 

40 Person Person isEquivalentTo 1.00 
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41 ClericalStaff ClericalStaff isEquivalentTo 1.00 

   Sum 34.99 

B3. Global Similarity Measure between Semiport.owl and 
UnivBench.owl 

77.0
4241

99.3436.29
),( =

+
+=UnivBenchSemiportAverageWeighted  
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In order to execute a clustering test, first it is necessary to provide the order in 

which requesting peers will be connected. This can be done through an input 

file named input.txt. In fact, this file contains the name of the local ontologies 

to be associated with requesting peers. For instance, considering the ontologies 

depicted in Figure C.1 the first requesting peer is associated with the local 

ontology LO05-Education.owl, the following with LO02-Education.owl, and so 

on. The parameters cluster threshold and neighbor threshold are informed at the 

simulator interface. 

LO05-Education.owl 
LO02-Education.owl 
LO10-Education.owl 
LO15-Education.owl 
LO01-Education.owl 
… 

Figure C.1. Local ontologies to be associated with requesting peers. 

After a successful execution of a simulation test, the network is exhibited 

in the screen (Figure C.2). For this part of the implementation we have used the 

graphical visualization tool Prefuse [Prefuse, 2009]. Due to the performance 

reasons, the interface can be omitted for tests with a high number of requesting 

peers in which the user is interested only in the clustering result. 

The simulator also produces a log file named output.txt. The file provides 

the clustering result and contains information such as: (i) the number of clusters 

that were created; (ii) the number of peers in each cluster; (iii) the semantic 

neighbors of each cluster; and (iv) the cluster to which a requesting peer has 

been associated with. In fact, such information describes the network status 

after all requesting peers are connected. The file also contains the connection 

log of each requesting peer. Thus, it is possible to verify all the steps followed 

by a requesting peer before it joins a current cluster or creates a new one. 

Figure C.3 depicts the fragment of a log file created after a simulation with 45 

requesting peers. 

An option to calculate the statistical indices Rand Index, Jaccard 

Coefficient, Fowlkes-Mallows (FM) Index, Hubert’s statistic, and Silhouette 
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indexes is available. For the first four indices, the clustering result produced by 

the simulator must be compared with another clustering result that can be either 

provided manually or generated by another cluster algorithm. 

 

Figure C.2. The SPEED’s simulator interface. 

Tue Mar 24 18:18:45 GMT-03:00 2009 
 
RP45 is now connecting... 
RP45 is now a Integration Peer with out semantic neighbors 
Semantic Index:  
<<Cluster: 45>> 
  Exhibition(1) Event(1) Conference(1) Workshop(1) 
Network: 
Domain: education (represented by SP: 100) 
   Cluster45(RP45) 
… 
Network: 
Domain: education (represented by SP: 100) 
   Cluster45(RP45, RP13, RP36, RP29, RP42) 
   Cluster08(RP08, RP20, RP02, RP05, RP06, RP27, RP26, RP16, RP30) 
   Cluster44(RP44, RP38, RP39, RP41, RP22, RP33) 
   Cluster37(RP37, RP32, RP19, RP40) 
   Cluster15(RP15, RP11, RP31, RP21, RP07, RP17, RP18, RP03) 
   Cluster24(RP24, RP14, RP34, RP43) 
   Cluster28(RP28, RP01, RP23, RP35, RP12, RP04, RP09, RP25, RP10) 
 
Total number of messages: 561 
#matchings between OS and LO: 251 
#matchings between CLOs: 42 
#matchings between CLO and LO: 42 
Simulation time: 1161 seconds 
External indices: RandIndex=0.942 JaccardCoefficiet=0.646 FMIndex=0.785 Hubbert=0.752 

Figure C.3. The clustering result associated to a simulation test with 45 requesting peers.
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