

Universidade Federal de Pernambuco

Centro de Informática
Pós-Graduação em Ciência da Computação

“Ontology-based Clustering in a Peer
Data Management System”

Por

Carlos Eduardo Santos Pires

TESE DE DOUTORADO

Recife, Pernambuco, Brasil
Abril 2009

Universidade Federal de Pernambuco
Centro de Informática

Pós-Graduação em Ciência da Computação

Carlos Eduardo Santos Pires

“Ontology-based Clustering in a Peer
Data Management System”

Submitted in partial fulfillment of the
requirements for the degree of doctor of
Philosophy.

Supervisor: Ana Carolina Salgado (Docteur)

Recife, Pernambuco, Brasil
Abril 2009

Pires, Carlos Eduardo Santos
 Ontology-based clustering in a Peer Data
Management System / Carlos Eduardo Santos Pires -
Recife : O Autor, 2009.
 xix, 155 p. : il., fig., tab.

 Tese (doutorado) – Universidade Federal de
Pernambuco. CIn. Ciência da Computação, 2009.

 Inclui bibliografia, glossário e apêndice.

 1. Sistemas de gerenciamento de banco de dados.
2. Ontologia. 3. Cluster analysis. I. Título.

 005.74 CDD (22. ed.) MEI2009- 078

To my father Antonio Carlos and my mother Sonia Maria.

�

�

vii

ACKNOWLEDGMENTS

First of all, I would like to express my deepest gratitude to my scientific

advisor, Prof. Ana Carolina Salgado, for her continuous and caring help,

advice, and encouragement during the four years of my Ph.D. studies at UFPE.

Particularly, I am thankful for her teaching me how to be deep and precise, and

how to learn to think clearly. She has always been supportive and encouraging

when I have needed more inspiration. Without her help, I definitely would not

have come this far.

I am also very grateful to Prof. Mokrane Bouzeghoub and Prof. Zoubida

Kedad for their support and advice during my doctoral internship at the

Université de Versailles Saint-Quentin-en-Yvelines (UVSQ). Their impressive

experience in computer science has made me see research from a much wider

perspective. I could not forget my friends Sofiane Abbar and Juan Carlos for

the productive discussions and suggestions to my, at that time, under-

development work. In short, thanks a lot to all the PRiSM team. I hope I’ll be

back soon!

While in Paris, I was very lucky to meet Franceline Reynaud, Mariane

Lira, Ricardo Pimenta, and Carol Vimieiro who became my friends for life.

C'est sûr que la Maison du Brésil ne va pas être la même sans vous. Coucou!

Reveillez-vous! Good luck with your theses and let’s have our first wine

meeting after France.

I would also like to thank CAPES (Coordenação de Aperfeiçoamento de

Pessoal de Nível Superior) and FACEPE (Fundação de Amparo à Ciência e

Tecnologia do Estado de Pernambuco) for the financial support during the

development of this work.

Special thanks to my Brazilian colleagues Damires Yluska, Bernadette

Lóscio, and Rosalie Belian for many helpful discussions which have contributed

substantially to this thesis. They have created a friendly and joyful atmosphere,

which has been a great pleasure for me to work. I also would like to thank all

my friends from the Center for Informatics of UFPE Vaninha Vieira, Fábio

Avila, Guilherme Amorim, Rilson Nascimento, Paulo Roberto, and Adeline

�

viii

Sousa. Many thanks to Rocir Leite, Thiago Pacheco, Victor Alencar, and

Guilherme Souza. You helped me so much with the implementation issues.

I eternally thank all my family for their interminable support and

understanding: my parents Antonio Carlos and Sonia Maria, my brother Marco

Antonio, my sister in law Andreia Rosa as well as my little nephews Caio César

and Felipe Rosa. I am particularly thankful to my beloved fiancée, Vládia

Freire, without whom it would have been impossible to complete this thesis.

Thanks God!

�

ix

ABSTRACT

Peer Data Management Systems (PDMS) are advanced P2P applications which

enable users to transparently query several distributed, heterogeneous, and

autonomous data sources. Each peer represents a data source and exports its

entire data schema or only a portion of it. Such schema, named exported

schema, represents the data to be shared with the other peers of the system and

is commonly described by an ontology.

The most studied data management issues in PDMS are related to schema

mappings and query processing. These issues can be improved if peers are

efficiently disposed in the overlay network according to a semantic-based

approach. In this context, the notion of semantic community of peers is of great

importance since it aims at logically approximating peers with common

interests about a specific topic. However, due to the dynamic behavior of peers,

the creation and maintenance of semantic communities is a challenging issue in

the current stage of development of PDMS.

The main goal of this thesis is to propose an ontology-based process to

incrementally cluster semantically similar peers that compose communities of a

PDMS. In this process, peers are grouped according to their corresponding

exported schema (an ontology) and ontology management processes (e.g.

matching and summarization) are used to assist peer connection. A PDMS

architecture is proposed to facilitate the semantic organization of peers in the

overlay network. In order to obtain the semantic similarity between two peer

ontologies we propose a global similarity measure as output of an ontology

matching process. To optimize ontology matching an automatic process for

summarizing ontologies is also proposed. A simulator has been developed

resembling the architecture of the PDMS. The proposed ontology management

processes have also been developed and included in the simulator.

Experimentations of each application in the context of the PDMS as well as the

results obtained from these experiments are presented.

�

x

Keywords

Peer-to-Peer, Peer Data Management Systems, Semantic Community, Ontology

Matching, Ontology Summarization, Similarity Measure

�

xi

RESUMO

Os Sistemas P2P de Gerenciamento de Dados (PDMS) são aplicações P2P

avançadas que permitem aos usuários consultar, de forma transparente, várias

fontes de dados distribuídas, heterogêneas e autônomas. Cada peer representa

uma fonte de dados e exporta seu esquema de dados completo ou apenas uma

parte dele. Tal esquema, denominado esquema exportado, representa os dados a

serem compartilhados com outros peers no sistema e é comumente descrito por

uma ontologia.

Os dois aspectos mais estudados sobre gerenciamento de dados em PDMS

estão relacionados com mapeamentos entre esquemas e processamento de

consultas. Estes aspectos podem ser melhorados se os peers estiverem

eficientemente dispostos na rede overlay de acordo com uma abordagem

baseada em semântica. Nesse contexto, a noção de comunidade semântica de

peers é bastante importante visto que permite aproximar logicamente peers com

interesses comuns sobre um tópico específico. Entretanto, devido ao

comportamento dinâmico dos peers, a criação e manutenção de comunidades

semânticas é um aspecto desafiador no estágio atual de desenvolvimento dos

PDMS.

O objetivo principal desta tese é propor um processo baseado em

semântica para agrupar, de modo incremental, peers semanticamente similares

que compõem comunidades em um PDMS. Nesse processo, os peers são

agrupados de acordo com o respectivo esquema exportado (uma ontologia) e

processos de gerenciamento de ontologias (por exemplo, matching e

sumarização) são utilizados para auxiliar a conexão dos peers. Uma arquitetura

de PDMS é proposta para facilitar a organização semântica dos peers na rede

overlay. Para obter a similaridade semântica entre duas ontologias de peers,

propomos uma medida de similaridade global como saída de um processo de

ontology matching. Para otimizar o matching entre ontologias, um processo

automático para sumarização de ontologias também é proposto. Um simulador

foi desenvolvido de acordo com a arquitetura do PDMS. Os processos de

gerenciamento de ontologias propostos também foram desenvolvidos e

�

xii

incluídos no simulador. Experimentações de cada processo no contexto do

PDMS assim como os resultados obtidos a partir dos experimentos são

apresentadas.

Palavras-chave

Peer-to-Peer, Sistemas P2P de Gerenciamento de Dados, Comunidade
Semântica, Ontology Matching, Sumarização de Ontologias, Medida de
Similaridade

�

xiii

TABLE OF CONTENTS

Chapter 1... 1

Introduction ..1
1.1 Problem Definition ..2
1.2 Motivation ...3
1.3 Objectives..4
1.4 Expected Contributions ...5
1.5 Thesis Outline ...5

Chapter 2... 7

Background...7
2.1 Ontologies ...7

2.1.1 Types of Heterogeneity ..9
2.1.2 Ontology Matching...10
2.1.3 Ontology Merging ..19
2.1.4 Database Schema to Ontology Mapping ..20

2.2 Clustering ..22
2.2.1 Definition..23
2.2.2 Clustering Issues...24
2.2.3 Incremental Clustering Algorithms ..25
2.2.4 Cluster Validity ..27

2.3 Considerations ...31
Chapter 3... 32

Peer Data Management Systems ...32
3.1 PDMS Definition...32
3.2 Data Management Issues in PDMS...34

3.2.1 Schema Mappings...34
3.2.2 Query Processing..36

3.3 PDMS and Ontologies...38
3.4 Semantic-based Peer Grouping in PDMS ...39
3.5 Existing Semantic-based PDMS..41

3.5.1 Sunrise (University of Bologna) ...42
3.5.2 Helios (Università degli Studi di Milano)...44
3.5.3 OntSum (University of British Columbia)..46
3.5.4 Comparative Analysis...49

3.6 Considerations ...51
Chapter 4... 52

SPEED: a Semantic-based Peer Data Management System...52
4.1 Ontology-based PDMS..52
4.2 System Architecture ..54

4.2.1 Architecture Overview ...54
4.2.2 Architecture Formalization...56

4.3 Ontologies in SPEED ..57
4.4 Peer Internal Modules ...62
4.5 Architectural Considerations ...66
4.6 Schema Mapping...68
4.7 Query Processing...69
4.8 Comparative Analysis of SPEED and Related PDMS ..70
4.9 Considerations ...71

Chapter 5... 73

�

xiv

SemMatch: a Semantic-based Ontology Matching Process..73
5.1 Introduction ...74
5.2 A Motivating Scenario ..74
5.3 Using a Domain Ontology to Define Semantic Correspondences...76
5.4 SemMatch: a Semantic-based Ontology Matching Process ..78
5.5 Calculating the Global Similarity Measure ...82
5.6 Experiments and Results ...84
5.7 Related Work...87
5.8 Considerations ...88

Chapter 6... 89

Ontology Summarization...89
6.1 Introduction ...90
6.2 General Overview..90
6.3 Ontology Formalism..91
6.4 Relevance Measures ..92

6.4.1 The Centrality Measure ..92
6.4.2 The Frequency Measure ...93

6.5 Building an Ontology Summary..94
6.5.1 The Summarization Process ...95
6.5.2 The Ontology Summarization Algorithm ...99
6.5.3 An Example ..100

6.6 Generating Ontology Summaries ..101
6.6.1 Implementation...101
6.6.2 Case Study..101
6.6.3 Comparison with Expert Summaries ..102

6.7 Related Work...104
6.8 Considerations ...105

Chapter 7... 107

Ontology-based Peer Clustering in SPEED ...107
7.1 An Overview of SPEED’s Clustering Process ..107
7.2 Search for a Semantic Community..109
7.3 SPEED’s Clustering Process ...112
7.4 Clustering Algorithm...113

7.4.1 Search for Initial Cluster in Semantic Index...114
7.4.2 Search for the Most Similar Semantic Cluster..115
7.4.3 Connection of a Requesting Peer..117

7.5 Maintenance Considerations ...118
7.5.1 Disconnection of Participating Peers..119
7.5.2 Update of Cluster Neighborhood..119
7.5.3 Recalculation of Global Similarity Measure...119

7.6 Experiments...121
7.6.1 Implementation...121
7.6.2 Experimental Setting ..122
7.6.3 Validation ...122

7.7 Considerations ...127
Chapter 8... 129

Conclusions and Future Work ..129
8.1 Research Contributions ...129
8.2 Future Work ..131

References .. 135
Appendix A: Education Ontologies.. 148
Appendix B: Ontology Alignments... 151
Appendix C: SPEED Simulator ... 154

�

xv

LIST OF FIGURES

Figure 2.1. The ontology matching process [Euzenat and Shvaiko, 2007]................................. 10
Figure 2.2. Classifications of elementary matching approaches [Shvaiko and Euzenat, 2007]. 14
Figure 2.3. The sequential composition of matchers [Euzenat and Shvaiko, 2007]. 14
Figure 2.4. The parallel composition of matchers [Euzenat and Shvaiko, 2007]. 15
Figure 2.5. Ontology merging: from two matched ontologies Oi and Oj, resulting in an alignment
A’. This allows the creation of a new ontology Ok covering the matched ontologies [Shvaiko and
Euzenat, 2007]. ... 20
Figure 2.6. A taxonomy of classification types. ... 23
Figure 2.7. The leader algorithm is order-dependent [Jain et al., 1999]. 25
Figure 3.1. The different types of mappings in a PDMS. .. 34
Figure 3.2. Typical query processing in a PDMS. ... 36
Figure 3.3. Sample of network organization [Lodi et al., 2008]. .. 42
Figure 3.4. Example of aggregation of a semantic community [Castano and Montanelli, 2005].46
Figure 3.5. The network topology [Li and Vuong, 2007]. .. 47
Figure 4.1. An overview of the SPEED architecture. .. 55
Figure 4.2. The different types of ontologies used in SPEED... 58
Figure 4.3. A setting of a semantic community containing two clusters...................................... 59
Figure 4.4. Local ontologies of participating peers.. 60
Figure 4.5. The cluster ontologies of Cluster 1 and Cluster 2... 61
Figure 4.6. The summarized cluster ontologies of Cluster 1 and Cluster 2. 61
Figure 4.7. The internal modules of a data peer. .. 62
Figure 4.8. The internal modules of an integration peer. .. 64
Figure 4.9. The internal modules of a semantic peer.. 66
Figure 4.10. An example of query processing in SPEED. .. 69
Figure 5.1. A motivating scenario for matching ontologies in SPEED. 75
Figure 5.2. Excerpts from the ontologies of Oi, Oj, and DO. All of them belong to the Education
knowledge domain. ... 76
Figure 5.3. Specifying semantic correspondences between peer ontologies [Souza, 2009]. 77
Figure 5.4. The general ontology matching process. .. 79
Figure 5.5. An example of the ontology matching process. .. 80
Figure 5.6. The ontologies O1 and O2 as well as the alignments Aij and Aji between them. 84
Figure 5.7. The semantic matching tool interface. .. 85
Figure 5.8. Evaluation of resulting alignments. ... 86
Figure 6.1. An overview of the proposed ontology summarization process. 91
Figure 6.2. An example of concept mappings... 94
Figure 6.3. The several steps of the proposed summarization process. 95
Figure 6.4. The ontology summarization algorithm. .. 99

�

xvi

Figure 6.5. The networkA ontology and its corresponding summary.. 100
Figure 7.1. The several steps involved in the connection of a requesting peer........................ 108
Figure 7.2. The possible states of a requesting peer. ... 109
Figure 7.3. An instantiation of the SPEED’s DHT network. .. 111
Figure 7.4. Sequence diagram describing how a semantic community is found in SPEED’s DHT
network. ... 112
Figure 7.5. A semantic peer SPi determines the initial cluster of a requesting peer RPn. 115
Figure 7.6. An example of direct and indirect neighbors.. 116
Figure 7.7. A requesting peer RPn searches for a semantically similar cluster. 117
Figure 7.8. Cluster maintenance as a result of the cluster ontology evolution. 120
Figure 7.9. Clustering evaluation: external indices. .. 123
Figure 7.10. A comparison of search strategies using internal statistical indexes.................... 124
Figure 7.11. A comparison of search strategies considering the number of executions of
SemMatch. .. 125
Figure 7.12. A comparison of search strategies considering the number of messages
transmitted among peers... 125
Figure 7.13. Clustering validity: internal indices.. 126
Figure 7.14. Percentage of reached relevant peers for a given number of hops...................... 127
Figure A.1. The UnivBench ontology. Some statistics: #concepts=42 and #properties=28. 148
Figure A.2. The Semiport ontology. Some statistics: #concepts=41 and #properties=40. 149
Figure A.3. The UnivCSCMO ontology. Some Statistics: #concepts=77 and #properties=78. 150
Figure C.1. Local ontologies to be associated with requesting peers....................................... 154
Figure C.2. The SPEED’s simulator interface. .. 155
Figure C.3. The clustering result associated to a simulation test with 45 requesting peers. 155

�

xvii

LIST OF TABLES

Table 2.1. Matching techniques used by the different ontology matching tools [Euzenat and
Shvaiko, 2007]... 19
Table 3.1. A comparison of PDMS employing a semantic-based approach to organize peers in
the network. ... 49
Table 4.1. High-level requirements fulfilled by PDMS... 54
Table 4.2. A comparison of PDMS employing a semantic-based approach to organize peers in
the network (including SPEED). .. 70
Table 5.1. Some semantic correspondences between Oi and Oj. .. 78
Table 5.2. Oj target concepts obtained for the Oi concept FullProfessor. 86
Table 6.1. Ontology statistics. ... 102
Table 6.2. Comparison between the automatic summaries and the expert summaries. 103
Table 7.1. Drawbacks of the Leader algorithm and proposed adaptations to SPEED. 113
Table 8.1. The resources used in SPEED to satisfy the identified high-level requirements of an
OPDMS. .. 130

�

xviii

�

xix

GLOSSARY

API Application Programming Interface

DAG Directed Acyclic Graph

DHT Distributed Hash Table

PDMS Peer Data Management System

P2P Peer-to-Peer

OAEI Ontology Alignment Evaluation Initiative

OPDMS Ontology-based Peer Data Management System

OWL Ontology Web Language

RDF Resource Description Framework

SAT Propositional SATisfiability

SON Semantic Overlay Network

SWRL Semantic Web Rule Language

TTL Time-to-live

UML Unified Modeling Language

W3C World Wide Web Consortium

XML Extensible Markup Language

�

�

 1

����� ����� �� ����� �� ����� �� ����� �				����

� ���
� ��
��� ���
� ��
��� ���
� ��
��� ���
� ��
�� ����

“Never in the field of human conflict was so much owed by so many to so few”

Winston Churchill

In the last few years, there has been a growing interest in the Peer-to-Peer

(P2P) computing paradigm, primarily boosted by the popular file-sharing

applications that enable massive data sharing among millions of users [Kantere

et al., 2008]. The P2P paradigm is characterized by a fully distributed and

cooperative network design, where peers collectively form a system without

any supervision [Rocha et al., 2004].

In a P2P system, peers communicate through an overlay network, i.e. a

virtual (logical) network which runs as an overlay on top of a physical network

[Doval and O'Mahony, 2003]. According to the overlay topology employed,

P2P systems are categorized into three kinds [Sung et al., 2005]: (i)

unstructured, where a peer may join and leave the network without any

notification and may connect to any other peer it wishes [Freenet, 2009]; (ii)

structured, where peers are organized into a rigid structure and connections

between peers are fixed according to a certain protocol, e.g. Chord [Stoica et

al., 2001]; and (iii) hybrid, where data sharing is decentralized but a centralized

directory is available [Milojicic et al., 2002]. Particularly, some works

[Fiorano, 2003; Sung et al., 2005] also include the super-peer category, where a

centralized topology is embedded in a decentralized one [Yang and Garcia-

Molina, 2003].

�� � �� � � �	�
��� � �
�� �� �
� �

2

Among several P2P applications that have been proposed, Peer Data

Management Systems (PDMS) [Halevy et al., 2003b; Lenzerini, 2004; Tatarinov

and Halevy, 2004; Valduriez and Pacitti, 2004; Halevy et al., 2006; Mandreoli

et al., 2007; Kantere et al., 2008; Lodi et al., 2008] play a leading role in

sharing semantically rich information. In a PDMS, each peer is an autonomous

source that makes available an exported schema [Sung et al., 2005]. Sources

store and manage their data locally, revealing part of their schemas to the other

peers. Due to the lack of a single global schema [Aberer et al., 2002], each peer

expresses and answers queries based on its exported schema.

Peers also perform local coordination with their acquaintees, i.e. their

one-distance neighbors in the overlay network [Bernstein et al., 2002]. During

an acquaintance, two peers exchange information about their exported schemas

and create schema mappings. Query processing in a PDMS consists in

propagating the query, submitted in any of the peers, on paths of limited depth

in the corresponding overlay network [Ng et al., 2003]. At each routing step,

the query is reformulated to the exported schema of its new host based on the

respective schema mappings [Tatarinov and Halevy, 2004].

1.1 Problem Definition
In a PDMS, the connection of a new peer requires the definition of the peer’s

neighbors in the overlay network. Although less dynamic than in traditional

P2P file sharing systems, peer connection is of great importance, especially

because peers can share content belonging to distinct knowledge domains. In

this sense, an arbitrary approach to connect peers is considered inefficient

regarding query processing, since peers sharing different content can become

neighbors [Löser et al., 2003]. Consequently, “poor” quality schema mappings

are established between them [Heese et al., 2005] and incorrect and/or

inconsistent results can be obtained [Aberer et al., 2002].

Another problem caused by the arbitrary connection of peers in a PDMS is

concerned with query processing. Such problem occurs if semantically similar

peers are logically positioned far from each other in the overlay network

[Castano et al., 2003]. As a consequence, the overall query processing task is

affected. For instance, a query may have to be reformulated several times from

peer to peer until it reaches relevant peers, i.e. peers that are able to answer the

�� � �� � � �	�
��� � �
�� �� �
� �

3

query [Kantere et al., 2008]. During query routing, many irrelevant peers can be

contacted. As a result, query processing time is increased and an excessive

number of inconsistent query results may be returned by the involved peers. In

some cases, an arbitrary approach to connect peers in the overlay network can

cause a complete isolation of peers sharing semantically similar content

[Castano et al., 2003]. Relevant peers cannot contribute with important data

because queries do not reach them.

1.2 Motivation
Data retrieval in a PDMS can be improved if peers are efficiently disposed in

the overlay network according to some kind of organization such as, for

example, a semantic-based approach [Castano and Montanelli, 2005; Li and

Vuong, 2007]. In this context, the notion of semantic community of peers

(community, for short) is of great importance, since it aims at logically

approximating peers with common interests about a specific topic [Castano and

Montanelli, 2005]. In a semantic community, when a query is posed at a peer

the query is transmitted only among the other peers of that community. In short,

semantic communities enforce sharing of distributed resources and semantic

collaboration in an effective way [Li and Vuong, 2005].

PDMS that employ the notion of semantic communities can obtain several

benefits. For instance, schema mappings are established between semantically

similar peers. Since the scope of a query is restricted to the community where it

has originally been posed, the query is answered only by a few (but relevant)

peers [Castano and Montanelli, 2005]. Thus, query processing tends to be

improved in a PDMS. Such kind of peer organization can offer other benefits:

(i) increase system scalability as the number of messages transmitted through

the network is minimized; and (ii) avoid unnecessary processing effort and

storage space in participating peers.

Due to the dynamic behavior of peers, the creation and maintenance of

semantic communities is a challenging issue in the current stage of development

of PDMS [Castano and Montanelli, 2005]. The availability of advanced

techniques for query propagation on a semantic basis is another relevant issue.

In this sense, ontologies are more and more employed for describing the

knowledge shared by peers [Nejdl et al., 2002; Castano et al., 2003; Xiao,

�� � �� � � �	�
��� � �
�� �� �
� �

4

2006; Li and Vuong, 2007]. As a result, ontology matching techniques

[Giunchiglia et al., 2004; Hai, 2005; Castano et al., 2006; Hu and Qu, 2008] are

required to deal with the different concept meanings in the ontology-based

schemas provided by different peers.

1.3 Objectives
Our main assumption in this work is that the establishment of schema mappings

and consequently query processing can be improved if semantically similar

peers are logically grouped in a PDMS overlay network. In this sense, the main

goal of this thesis is to propose a process for clustering peers in a PMDS. To

achieve this objective, we propose a PDMS architecture which is designed to

facilitate the connection of peers according to their corresponding exported

schema (i.e. an ontology).

Peer connection in the proposed PDMS is mainly an incremental

clustering process. When a new peer arrives, it searches for a community where

peers share schemas (ontologies) belonging to the same knowledge domain.

Then, within a community, the new peer joins an existing semantic cluster

(cluster, for short) where peers share similar schemas. A semantic cluster is

represented by a cluster ontology which describes the schemas of the peers

within the cluster. In addition, each cluster maintains a link to its semantic

neighbors in the overlay network, i.e. to other semantically similar clusters.

Before a new peer joins a semantic cluster it is necessary to determine the

similarity between them. To this end, we propose a global similarity measure

that indicates the similarity degree between the ontology of the new peer and a

cluster ontology. Such measure is obtained from an ontology matching process

which also produces an ontology alignment between the elements of the

matching ontologies.

In order to avoid the matching against all existing clusters, an initial

cluster is provided to each new peer. From such initial cluster, the search for a

semantically similar cluster is started by following the semantic neighbors of

the initial cluster in the overlay network. The initial cluster is provided from a

semantic index where each entry corresponds to a summary of a cluster

ontology. Thus, in this thesis, we also propose an automatic process for

summarizing cluster ontologies.

�� � �� � � �	�
��� � �
�� �� �
� �

5

1.4 Expected Contributions
This thesis presents the following contributions:

� The specification of a semantic-based architecture for a Peer Data

Management System (PDMS);

� The specification, implementation, and validation of an ontology matching

process that considers, besides the traditional terminological and structural

matching techniques, a semantic-based one;

� The specification, implementation, and validation of an automatic process to

summarize ontologies;

� The specification, implementation, and validation of an incremental process

for clustering peers in the proposed PDMS.

1.5 Thesis Outline
The reminder of this thesis is organized as follows.

� Chapter 2 is divided into two distinct parts which are essential to the

comprehension of this thesis. The first part describes ontologies and some

related processes such as ontology matching, ontology merging, and

database schema to ontology mapping. The second part offers an overview

of clustering and discusses incremental clustering algorithms. In addition, it

presents the commonly used criteria to evaluate a clustering result;

� Chapter 3 discusses Peer Data Management Systems (PDMS) and its main

data management issues: schema mappings and query processing. It

emphasizes the importance of organizing peers according to a semantic-

based approach and presents the mains challenges to achieve this goal. The

chapter also describes some existing PDMS that propose a semantic-based

approach to organize peers in an overlay network. Finally, it presents a

comparative analysis of such PDMS;

� Chapter 4 describes the importance of using ontologies in PDMS. It also

presents the specification our Ontology-based PDMS (OPDMS), whose

overlay network is mainly designed to assist the organization of peers

according to their exported schema. Such specification comprises a detailed

description of the system’s architecture, the distinct types of peers, as well

as their internal modules, and the different types of ontologies used in the

�� � �� � � �	�
��� � �
�� �� �
� �

6

system. Moreover, the specification describes how schema mappings and

query processing are handled in the proposed PDMS;

� Chapter 5 describes a semantic-based ontology matching process in which

the resulting correspondences are generated as a combination of linguistic,

structural and semantic matching algorithms. The correspondences are used

to compute a global similarity measure between two (peer) ontologies which

is used for clustering semantically similar peers in the proposed PDMS.

Particularly, the semantic matcher is described including the rules that are

applied to identify the semantic relationships between ontology elements.

To clarify matters, it presents a case study illustrating how the global

measure is used. An experimentation of the ontology matching process with

some obtained results is also provided;

� Chapter 6 presents an automatic process to summarize cluster ontologies.

Firstly, an overview of the proposed summarization process and a notation

to represent ontologies are provided. Then, the two measures (centrality and

frequency) used to determine the relevance of ontology concepts are

described. Next, the chapter presents the proposed process to summarize

ontologies, the summarization algorithm, and an illustrative example. The

results of applying the proposed process to real world ontologies according

to different criteria are exposed. Finally, related work is discussed.

� Chapter 7 presents an ontology-based process for clustering peers in the

proposed PDMS. It describes how a new peer searches for a particular

semantic community in the overlay network. Besides, it presents the main

requirements for clustering peers within a semantic community and the

incremental clustering algorithm used to manage semantic clusters. The

main steps to connect a new peer and disconnect a participating peer are

detailed. Considerations about maintaining the semantic clusters are also

presented. Finally, experimental results are shown and discussed.

� Chapter 8 concludes the thesis stating our research contributions and some

future works.

�

 7

����� ����� �� ����� �� ����� �� ����� ���������

������� � ��� �
��� � ��� �
��� � ��� �
��� � ��� �
����

“Childhood is measured by sounds, smells and sights,

before the dark hour of reason grows”

John Betjeman

This chapter offers an overview of ontologies and clustering, two essential

issues that are needed to understand this thesis. Basically, the chapter is divided

into two parts. The first one describes ontologies and its main elements (e.g.

concepts and properties). Heterogeneity problems between distinct ontologies

are discussed as well as some related ontology management processes, e.g.

ontology matching, ontology merging, and database schema to ontology

mapping. The second part of this chapter offers a definition of clustering and

discusses some important clustering issues such as object set availability and

sensitivity to input order. It also describes some incremental clustering

algorithms. Finally, the chapter presents classical criteria to evaluate the results

of a given clustering algorithm.

2.1 Ontologies
The most quoted definition of ontology is “an explicit specification of a

conceptualization” [Gruber, 1993]. A conceptualization is an abstract model

that describes objects, concepts, and other elements, particular to some (usually

restricted) domain, as well as relationships that hold between these elements.

An explicit specification means that the elements and relationships in the

�� � �� � � ���
��� �� � �
� � ���

8

abstract model are given explicit names and semantics, expressed in some

formal language. In practice, this usually means a logic-based language, as it

allows for automated reasoning [Noy, 2004a]. Ontologies were developed by

the Artificial Intelligence community to facilitate knowledge sharing and reuse

[Guarino, 1998]. They have been used as a fundamental concept in the Semantic

Web1 [Berners-Lee et al., 2001; Staab and Stuckenschmidt, 2006]. Carrying

semantics for particular domains, ontologies are largely used for representing

domain knowledge2.

Ontologies are expressed in an ontology language. There is a large variety

of languages for describing ontologies [Staab and Studer, 2004], including:

DAML+OIL, RDF, and OWL. Most of these languages share the same kinds of

elements, often with different names but comparable interpretations. For

instance, OWL [Smith et al., 2004] is a semantic markup language for

publishing and sharing ontologies on the Web. In the last years, it has become

the most recommended ontology language for representing knowledge in the

Semantic Web. Basically, OWL deals with the following kinds of elements

[Smith et al., 2004]:

� Concepts or Classes are the main elements of an ontology. These are

interpreted as a set of individuals in the domain. They are introduced in

OWL by the owl:Class construct;

� Individuals or objects or instances are interpreted as a particular

individual of a domain. These are introduced in OWL by the owl:Thing

construct;

� Relations are the ideal notion of a relation independently to what it applies.

Relations are interpreted as a subset of the cartesian product of the domain.

These are introduced in OWL by the owl:ObjectProperty or

owl:DatatypeProperty constructs;

� Datatypes are particular parts of the domain that specify values as opposed

to individuals. However, values do not have identities. String and Integer

are examples of datatypes;

� Data values are simple values.

1 The Semantic Web W3C Initiative, http://www.w3.org/2001/sw/
2 The National Cancer Institute Ontology, http://www.mindswap.org/2003/CancerOntology/nciOncology.owl

�� � �� � � ���
��� �� � �
� � ���

9

Moreover, in OWL, elements can be connected by various kinds of

relations, including:

� Specialization between two classes or two properties is interpreted as the

inclusion of their interpretations. Specialization is introduced in OWL by

the rdfs:subClassOf or rdfs:subPropertyOf constructs;

� Exclusion between two classes or two properties is interpreted as the

exclusion of their interpretations, i.e. when their intersection is empty.

Exclusion is introduced in OWL by the owl:disjointWith construct;

� Instantiation or typing between individuals and classes, property instances

and properties, values and datatypes is interpreted as membership.

Instantiation is expressed in OWL with the rdf:type construct.

Ontology interpretation is not left to the users that read the diagrams or to

the knowledge management systems implementing them, it is specified

explicitly [Euzenat and Shvaiko, 2007]. The semantics provides the rules for

interpreting the syntax which do not provide the meaning directly but constrains

the possible interpretations of what is declared. The semantics of ontologies can

be constrained by additional axioms.

2.1.1 Types of Heterogeneity

Over the last years, ontologies have become one of the most common ways of

expressing knowledge in different distributed and opened applications [Euzenat

and Shvaiko, 2008], e.g. semantic P2P systems and multi-agent systems. In

such systems, the content shared by the actors is commonly described by

ontologies. Since actors have different interests, use different pieces of

knowledge, and, most often, reason at different levels of detail, heterogeneity in

such systems cannot be avoided. These characteristics lead to diverse kinds of

heterogeneity (even in the same knowledge domain) and, therefore, should be

carefully taken into consideration.

Heterogeneity does not lie solely in the differences between goals of the

applications according to which they have been designed or in the expression

formalisms in which ontologies have been encoded. Some of the most obvious

types of heterogeneity include: (i) syntactic heterogeneity: occurs when two

ontologies are not expressed in the same ontology language; (ii) terminological

heterogeneity: occurs due to variations in names when referring to the same

�� � �� � � ���
��� �� � �
� � ���

10

elements in different ontologies; and (iii) conceptual heterogeneity: also called

semantic heterogeneity [Euzenat, 2001], stands for the differences in modeling

the same domain of interest. This can happen due to the use of different axioms

for defining concepts or due to the use of totally different concepts.

In the literature, there have been many different classifications to types of

heterogeneity [Batini et al., 1986; Kashyap and Sheth, 1998; Euzenat, 2001].

To deal with such types of heterogeneity between ontologies is the goal of

ontology matching.

2.1.2 Ontology Matching

There have been several definitions for the expression ontology matching [Doan

et al., 2003; Zhdanova and Shvaiko, 2006; Ehrig, 2007; Euzenat and Shvaiko,

2007; Zhang et al., 2008]. According to [Euzenat and Shvaiko, 2007], ontology

matching is the process of finding relationships or correspondences between

elements of two distinct ontologies (denoted Oi and Oj), generally describing

the same or similar domains.

The output of such process is called ontology alignment (alignment, for

short) and is denoted by A’. An ontology alignment A’ contains a set of

correspondences indicating which elements of the two ontologies logically

correspond to each other (i.e. match). An overview of the ontology matching

process is illustrated in Figure 2.1. Optionally, some other parameters can be

introduced into the matching process: an input alignment, A, which is to be

completed by the process; matching parameters, P, e.g. weights and thresholds;

and external resources, R, used during the matching process, e.g. common

knowledge or domain specific thesauri.

Figure 2.1. The ontology matching process [Euzenat and Shvaiko, 2007].

�� � �� � � ���
��� �� � �
� � ���

11

The correspondences can be produced by one or more matching algorithms

(or matchers) which are executed sequentially or in parallel. The

correspondences are expressed as relationships (e.g. equivalence, subsumption,

and disjointness) as well as similarity values between 0 (strong dissimilarity)

and 1 (strong similarity). Similarity values (or level of confidence) can be

viewed as a measure of trust in the case that the correspondence holds.

Alignments are used for various tasks, including ontology merging, query

processing, and data translation.

Formally, each correspondence of an alignment A’ can be defined as a 5-

tuple: �id, ei, ej, r, n�, where id is a unique identifier of the given

correspondence; ei and ej are the two matched elements (with ei ∈ Oi and ej ∈

Oj); r is the relationship holding between ei and e j; and n expresses the level of

confidence underlying such correspondence [Euzenat and Shvaiko, 2007].

Although ontology elements can be related by different types of

relationships (e.g. equivalence, subsumption, or disjointness) most of the

ontology matching algorithms mainly consider the equivalence relationship (≡),

meaning that the matched elements are the same. As a result, the relationship

type is commonly omitted (equivalence is assumed) and correspondences are

frequently resumed to a 4-tuple: �id, ei, ej, n�.

Ontology Matching Techniques

In order to solve the matching problem, several matching techniques have been

proposed [Batini et al., 1986; Larson et al., 1989; Kashyap and Sheth, 1996;

Parent and Spaccapietra, 1998; Rahm and Bernstein, 2001; Wache et al., 2001].

These works address the matching problem from different perspectives, e.g.

Artificial Intelligence, Information Systems, and Databases. [Shvaiko and

Euzenat, 2007] have attempted to consider the above mentioned works together

in order to provide a general classification of matching techniques, focusing on

schema-based matching methods.

The classification distinguishes between elementary (or basic) matching

techniques and composition of techniques. Elementary techniques comprise:

� String-based techniques: consider the names and name descriptions of

ontology elements;

�� � �� � � ���
��� �� � �
� � ���

12

� Language-based techniques: consider names as words in some natural

language, e.g. French;

� Constraint-based techniques: consider the internal constraints being

applied to the definitions of elements, e.g. types, cardinality of attributes,

and keys;

� Alignment reuse: represent an alternative way of exploiting external

resources, which record alignments of previously matched ontologies;

� Upper level and domain specific formal ontologies: upper level ontologies

can be used as external sources of common knowledge, while domain

specific formal ontologies can be used as external sources of background

knowledge;

� Graph-based techniques: consider the ontology elements or their instances

to compare their relationships with other elements or their instances;

� Taxonomy-based techniques: are also graph algorithms which consider

only the specialization relationship;

� Repository of structures: unlike alignment reuse, it stores only similarities

between ontologies in order to avoid the matching operation over dissimilar

ontologies;

� Model-based techniques: handle the input based on its semantic

interpretation;

� Data analysis and statistics techniques: take advantage of a representative

sample of a population in order to find similarities and discrepancies.

For classifying the elementary techniques, [Shvaiko and Euzenat, 2007]

have introduced two synthetic classifications: (i) Granularity/Input

Interpretation, is based on the matcher granularity (element-level or structure-

level) and on how the techniques generally interpret the input information; and

(ii) Kind of Input, is based on the kind of input which is used by the elementary

matching techniques.

In the Granularity/Input Interpretation classification, elementary

techniques are distinguished according to the following classification criteria:

� Element-level vs. structure-level: element-level matching techniques

compute correspondences by analyzing elements or instances of those

elements in isolation, ignoring their relations with other entities or their

�� � �� � � ���
��� �� � �
� � ���

13

instances. Structure-level techniques compute correspondences by analyzing

how elements or their instances appear together in a structure;

� Syntactic vs. external vs. semantic: the key characteristic of syntactic

techniques is that they interpret the input with regard to its sole structure

following some clearly stated algorithm. External are the techniques

exploiting auxiliary (external) resources of a domain and common

knowledge in order to interpret the input. These resources may be human

input or some thesaurus expressing the relationships between terms.

Semantic techniques use some formal semantics to interpret the input and

justify their results.

The Kind of Input classification is concerned with the type of input

considered by a particular technique:

� The first level is categorized depending on which kind of data the

algorithms work on: strings (terminological), structure (structural), models

(semantics), or data instances (extensional). The two first ones are found in

the ontology descriptions. The third one requires some semantic

interpretation of the ontology and usually uses some semantically compliant

reasoner to deduce the correspondences. The last one constitutes the actual

population of an ontology;

� The second level of this classification decomposes further these categories if

necessary: terminological methods can be string-based (considering the

terms as sequences of characters) or based on the interpretation of these

terms as linguistic objects (linguistic). The structural methods category is

split into two types of methods: those which consider the internal structure

of entities, e.g., attributes and their types (internal), and those which

consider the relationship of entities with other entities (relational).

The overall classification of Figure 2.2 can be read both in descending

(focusing on how the techniques interpret the input information) and ascending

(focusing on the kinds of manipulated objects) manner in order to reach the

Basic Techniques layer.

�� � �� � � ���
��� �� � �
� � ���

14

Figure 2.2. Classifications of elementary matching approaches [Shvaiko and Euzenat, 2007].

Matching Composition

The elementary matching techniques are the building blocks on which a

matching solution is built. Once the similarity between ontology elements is

available, the alignment remains to be computed. Thus, building a matching

system involves some aspects such as (i) organising the combination of various

similarities or matching algorithms; and (ii) aggregating the results of the basic

methods in order to compute a combined similarity value between elements.

So far, we have presented the matching process as producing an alignment

between two ontologies (Figure 2.1). A natural way of composing the basic

matchers consists of improving the matching through the use of sequential

composition (Figure 2.3). For instance, one might like to first use a matcher

based on labels before running a semantic matcher.

Figure 2.3. The sequential composition of matchers [Euzenat and Shvaiko, 2007].

�� � �� � � ���
��� �� � �
� � ���

15

Another way to combine matchers consists of running several different

algorithms independently and aggregating their results: this is called parallel

composition (Figure 2.4). Aggregation techniques can be very different: it can

correspond to choosing one of the results on some criterion or merging their

results through some operator. For instance, it can consist of running several

matching algorithms in parallel and selecting the correspondences which are in

all of them (intersection is then used as an aggregation operator) or selecting all

the correspondences with their highest confidence.

Figure 2.4. The parallel composition of matchers [Euzenat and Shvaiko, 2007].

Combined similarity is concerned with the aggregation of individual

similarity values. Ontology elements such as classes are very often involved in

many different relationships. For instance, computing the similarity between

two classes requires the aggregation, in a single similarity measure, of the

similarity obtained from their names, the similarity of their superclasses, as

well as the similarity of their instances and that of their properties. In this

sense, to calculate a combined similarity it is common to apply aggregation

operators on the individual similarity values, e.g. maximum, minimum, average,

and weighted sum [Aumüller et al., 2005].

Matching Tools

Several ontology matching tools have emerged during the last years. Each one

exploits a particular matching technique or a combination of them. A

comparison of matching systems can be found in [Rahm and Bernstein, 2001;

�� � �� � � ���
��� �� � �
� � ���

16

Noy, 2004b; Doan and Halevy, 2005]. Particularly, a comparison of ontology

matching tools is presented in [Euzenat and Shvaiko, 2007].

The increasing number of systems available for ontology matching has

created a need to establish a consensus for evaluation of these systems. In 2006,

the Ontology Alignment Evaluation Initiative3 (OAEI) was created with the goal

of organizing evaluation campaigns aiming at evaluating ontology matching

systems. OAEI campaigns consist of applying matching systems to ontology

pairs and evaluating their results. A systematic benchmark series has been

produced in order to identify the areas in which each ontology matching

algorithm is strong or weak. Anyone developing ontology matchers can

participate by evaluating their systems and sending the results to the organizers.

In this section, our purpose is not to compare ontology matching tools in

full detail, but rather to demonstrate how the matching techniques have been

exploited. To this end, we summarize some of the most prominent tools:

COMA/COMA++ [Do and Rahm, 2002; Aumüller et al., 2005; Hai, 2005], H-

Match [Castano et al., 2006], Falcon-OA [Hu and Qu, 2008], and S-Match

[Giunchiglia and Shvaiko, 2003; Giunchiglia et al., 2004].

COMA/COMA++ (University of Leipzig)

COMA (COmbination of Match Algorithms) [Do and Rahm, 2002] is a

schema matching system supporting different applications and multiple schema

formats, e.g. ontologies and relational schemas. It provides an extensible library

of ontology matching algorithms which are executed in parallel and combined

according to different strategies. Most of them implement string-based

techniques. A matcher implements a thesaurus look-up (table of synonyms).

The reuse-oriented matcher tries to reuse previously obtained correspondences

for entire new schemas or for their fragments. The tool can be used as an

evaluation platform to systematically examine and compare the effectiveness of

different matchers and combination of matchers. COMA presumes interaction

with users who approve obtained matches and mismatches to gradually refine

and improve the accuracy of the match. COMA++ [Aumüller et al., 2005; Hai,

2005] is implemented on top of COMA by elaborating in more detail the

3 http://oaei.ontologymatching.org/

�� � �� � � ���
��� �� � �
� � ���

17

alignment reuse operation. The tool offers a more efficient implementation of

the COMA matching algorithms and a repository of alignments. Also, it

provides a generic data model to uniformly support ontologies expressed in

different languages.

H-Match (Università degli Studi di Milano)

H-Match [Castano et al., 2006] is an ontology matching algorithm for

dynamically matching distributed ontologies. The semantic affinity between

ontology concepts is evaluated by exploiting both the linguistic features of the

concepts (linguistic affinity) and semantic relationships among them in an

ontology (contextual affinity). The evaluation of the linguistic features is based

on a thesaurus which is built by exploiting WordNet [Miller, 1995]. The

meaning of each term used as a name of a concept or a property depends on the

set of terminological relationships that it has with other terms in the thesaurus.

Moreover, the meaning of a concept also depends on its properties and semantic

relationships with other concepts in the ontologies. A weighted function is used

to combine linguistic and contextual similarity values and thus produce a

combined semantic affinity. By exploiting ontology descriptions, H-Match

offers four different matching models: (i) surface matching: consider only the

names of concepts; (ii) shallow matching: consider both concept names and

concept properties; (iii) deep matching: consider concept names and the whole

context of concepts (relationships); and (iv) intensive matching: consider, in

addition to the features of the deep model, also property values.

Falcon-AO (China Southwest University)

Falcon-AO [Hu and Qu, 2008] is an automatic ontology matching system

that helps realizing interoperability between (Semantic) Web applications that

use different but related ontologies. It supplies a library of linguistic and

structural matchers, and provides a robust combination of their alignments. One

of the matchers implements a divide-and-conquer strategy to find block

mappings between large-scale ontologies. The ontologies are adjusted before

executing the matchers. In this sense, coordination rules are used to eliminate

superfluous axioms and reduce structural heterogeneity between the ontologies

to be matched. A similarity combination approach is used to gradually tune up

the thresholds based on the measures of both the linguistic and the structural

�� � �� � � ���
��� �� � �
� � ���

18

comparability. Linguistic matchers are first used for assessing the similarity

between ontology concepts on the basis of their name and text annotations. If

the result has a high confidence, then it is directly returned for extracting an

alignment. Otherwise, the result is used as input for the structural matcher that

tries to find an alignment on the basis of the relationships between concepts.

S-Match (University of Trento)

S-Match is a semantic-based matching tool which implements the idea of

semantic matching as initially described in [Giunchiglia and Shvaiko, 2003]. A

first version of the S-Match system is proposed in [Giunchiglia et al., 2004].

Later the system has undergone several evolutions, including extensions of

libraries of element- and structure-level matchers, adding alignment

explanations as well as iterative semantic matching [Giunchiglia et al., 2005;

Giunchiglia et al., 2006; Giunchiglia et al., 2007]. S-Match takes as input two

tree-like structures (e.g. classifications, XML schemas, and ontologies), and for

each pair of nodes from the two trees, it returns a logic relationship (e.g.

equivalence or subsumption), which is supposed to hold between the two nodes

of the graphs. The relationships are determined by (i) expressing the ontology

elements as logical formulas, and (ii) reducing the matching problem to a

propositional validity problem. The elements are translated into propositional

formulas which explicitly express the concept descriptions as encoded in the

ontology structure and in external resources, such as WordNet [Miller, 1995].

Comparative Analysis

Table 2.1 is an excerpt from a comparison table presented in [Euzenat and

Shvaiko, 2007]. It summarizes how the discussed ontology matching tools cover

the matching techniques included in the Kind of Input classification discussed

at the beginning of this section. Only the techniques which consider the

conceptual part of an ontology are considered, i.e. linguistic, structural, and

semantic. External resources are the methods used by linguistic matchers to

interpret ontology descriptions. From such comparison, we can state some

important remarks: (i) in general, each individual matching tool innovates on a

particular aspect; (ii) matching techniques are not used in isolation; (iii) most

tools employ a combination of the linguistic and structural matching

techniques; and (iv) semantic techniques are rarely exploited.

�� � �� � � ���
��� �� � �
� � ���

19

Table 2.1. Matching techniques used by the different ontology matching tools [Euzenat and Shvaiko,
2007].

 Terminological External Resource Structural Semantic
COMA /
COMA++

String-based,
Language-based,
Data types

Dictionary of
synonyms and
Abbreviation
tables, Alignment
reuse, Repository
of structures

DAG (tree) -

H-Match Domain
compatibility,
Language-based,
Domains and
ranges

Thesaurus Matching of
neighbors
(thesaurus),
Relationships

-

Falcon-AO String-based WordNet Structural
affinity

-

S-Match String-based,
Language-based

WordNet - Propositional
SAT

2.1.3 Ontology Merging

Ontology merging is a first natural use of ontology matching [Noy and Musen,

2000; Davies et al., 2006; Euzenat and Shvaiko, 2007]. Other uses include

ontology transformation, data translation, mediation, and reasoning. The notion

of ontology merging is closely related to that of schema integration in

databases.

As depicted in Figure 2.5, the merging process consists in obtaining a new

ontology Ok from two, possibly overlapping, source ontologies Oi and Oj. The

matched entities in the source ontologies are related as prescribed by the

alignment A’ generated as a result of an ontology matching process. The source

ontologies remain unaltered, along with ontology mappings between each

source ontology and the merged ontology. Different kinds of ontology

mappings can be defined between a merged ontology and the source ontologies,

e.g. concept mappings and property mappings. The merged ontology contains

the knowledge of the source ontologies. Merging can be presented as the

following operator: Merge (Oi, Oj, A’) = Ok.

When the source ontologies are expressed in the same language, merging

often involves putting the ontologies together and generating bridge axioms.

Such constructs correspond to formulas, in an ontology language, that express

the alignments so that it is possible to integrate the elements of an ontology

within one another. Merging does not usually require a total alignment: those

elements which have no corresponding element in the other ontology will

�� � �� � � ���
��� �� � �
� � ���

20

remain unchanged in the merged ontology. Ontology merging is especially used

when it is necessary to carry out reasoning involving several ontologies.

Protégé [Noy and Musen, 2003; Noy, 2004b] and Rondo [Melnik et al.,

2003] are tools that offer independent operators for ontology merging.

OntoMerge [Dou et al., 2005] takes bridge rules expressed in predicate calculus

and can merge ontologies in OWL. The Alignment API [Euzenat, 2004] can

generate axioms in the languages OWL or SWRL for merging ontologies. Other

systems are able to match ontologies and merge them directly: FCA-merge

[Stumme and Mädche, 2001], SKAT [Mitra et al., 1999], and DIKE [Palopoli et

al., 2003]. OntoBuilder [Modica et al., 2001] uses ontology merging as an

internal operation: the system creates an ontology that is mapped to query

forms. This ontology is merged with a global ontology so that queries can be

directly answered from such global ontology.

Figure 2.5. Ontology merging: from two matched ontologies O i and O j, resulting in an

alignment A’. This allows the creation of a new ontology Ok covering the matched ontologies

[Shvaiko and Euzenat, 2007].

2.1.4 Database Schema to Ontology Mapping

The popularity of ontologies is rapidly growing since the emergence of the

Semantic Web [Berners-Lee et al., 2001]. To date, the amount of available Web

ontologies continues increasing at a phenomenal rate. However, most of the

data sources available on the Web still store their data in other types of data

�� � �� � � ���
��� �� � �
� � ���

21

sources, e.g. relational databases, XML documents, and web pages. Therefore,

in order to achieve an efficient interoperability between heterogeneous data

sources, an effective way is to discover mappings between relational database

schemas and ontologies which can better express the semantic of data sources

[Ghawi and Cullot, 2007].

Database to ontology mapping is the process whereby a database schema

and an ontology are semantically related at a conceptual level, i.e.

correspondences are established between the database schema elements and the

ontology elements [Ghawi and Cullot, 2007]. Such process is considered an

interdisciplinary research in both Database and Semantic Web communities [Hu

and Qu, 2007]. Currently, there are many approaches and tools to deal with

database to ontology mapping. Basically, they can be classified into two main

categories: (i) approaches for creating a new ontology from a database [Nyulas

et al., 2007]; and (ii) approaches for mapping a database to an already existing

ontology [Ghawi and Cullot, 2007].

In the first category, an ontology model is initially created from a

relational database model and then the contents of the database are migrated to

the generated ontology. The mappings are simply the correspondences between

each created ontology element (e.g. concept and property) and its original

database schema element (e.g. table and column). In these approaches, the

database model and the generated ontology are very similar. Mappings are quite

direct and complex mapping situations do not usually appear. The creation of

the ontology structure may be straightforward, involving direct transformations

of database tables to ontology concepts and columns into properties. This type

of direct mapping is not sufficient for expressing the full semantics of the

database domain. The creation of the ontology structure may require the

discovery of additional semantic relations between database elements (like the

referential constraints) and take them into account while constructing ontology

concepts and relations between them. In the first category, we can note some

relevant projects: DataMaster [Nyulas et al., 2007], a Protégé plug-in that

allows to automatically import schema definition and data into Protégé; and

Relational.OWL [de Laborda and Conrad, 2005], an OWL ontology representing

abstract schema elements of relational databases.

�� � �� � � ���
��� �� � �
� � ���

22

The approaches for mapping a database to an already existing ontology

consider that an ontology and a legacy database already exist. The goal is to

create mapping between them, and/or populate the ontology by the database

contents. Mappings here are more complex than those in the previous case

because different levels of overlap between the database domain and the

ontology’s one can be found, and those domains do not always coincide because

the modeling criteria used for designing databases are different from those used

for designing ontology models [Barrasa et al., 2004]. In this category, several

languages have been proposed to formally express database to ontology

mappings: D2R map [Bizer, 2003], a declarative XML-based language to

describe mappings between relational database models and ontologies

implemented in RDFS; and R2O [Barrasa et al., 2004], another declarative

language that describes mappings between database schemas and ontologies.

Besides languages, mapping approaches include some tools like KAON

Reverse4, a prototype for mapping relational database content to ontologies;

Vis-A-Vis [Fuxman et al., 2006], a Protégé plug-in that allows the mapping of

relational databases to existing Protégé ontologies; DB2OWL [Cullot et al.,

2007], a tool that automatically generates ontologies from database schemas as

well as mappings that relate the ontologies to the information sources; and

RDBToOnto [Cerbah, 2008], a user oriented tool that supports the complete

transitioning process from access to the input databases to generation of

populated ontologies. A complete comparison of database to ontology matching

approaches can be found in [Ghawi and Cullot, 2007].

2.2 Clustering
In the following sections, we present an overview of clustering starting with its

definition and the similarities with the classification problem. We also describe

object set availability and sensitivity to input order, two clustering issues which

are associated to the main problem dealt in this thesis: clustering peers in a

PDMS. Then, incremental clustering algorithms are discussed. Finally, we

describe some of the most commonly used criteria to evaluate and assess the

results of a clustering algorithm: external and internal criteria.

4 http://kaon.semanticweb.org/alphaworld/reverse/view

�� � �� � � ���
��� �� � �
� � ���

23

2.2.1 Definition

Classification is the process of organizing and categorizing objects (or data) in

distinct classes [Xu and Wunsch, 2005]. In classical object classification, a

collection of labeled (possibly pre-classified) objects is provided and the

problem is to label a newly encountered, yet unlabeled, object. Typically, the

given labeled objects are used to learn the descriptions of classes which in turn

are used to label a new object. In general, classical object classification is based

on some general principles: (i) a model is initially created based on object

distribution; (ii) the model is then used to classify new objects; and (iii) given

the model, a class can be predicted for new objects.

As illustrated in Figure 2.6, classification problems can be subdivided into

two different categories: non-exclusive or exclusive. In a non-exclusive

classification, an object can be assigned to several classes. Differently, in an

exclusive classification, an object is assigned to exactly one class. Furthermore,

an exclusive classification can be subdivided into supervised or unsupervised.

In the former, the class labels and the number of classes are known in advance

whereas in the latter such information is not available.

Figure 2.6. A taxonomy of classification types.

Clustering [Theodoridis and Koutroumbas, 2003; Gan et al., 2007] is a

type of exclusive and unsupervised classification. It is an automatic process of

partitioning a finite set of objects in a set of meaningful sub-classes, called

clusters. A cluster is a collection of objects that are “similar” to one other and

thus can be treated collectively as one group [Berkhin, 2002]. The problem of

clustering is to group a given collection of unlabeled objects into meaningful

clusters. In a sense, labels are also associated with clusters, but these categories

of labels are object-driven, i.e. they are obtained solely from the objects.

Clustering helps users to understand the natural grouping or structure in

an object set. A good clustering method will produce high quality clusters in

Classification

Non-exclusive Exclusive

Supervised Unsupervised

�� � �� � � ���
��� �� � �
� � ���

24

which the intra-class (i.e. intra-cluster) similarity is high and the inter-class

similarity is low. The quality of a clustering result depends on the similarity or

distance measure used by the method and its implementation. When

implementing a clustering algorithm on a computer, attention must be paid to

questions related to computational efficiency.

In the last decades, clustering techniques have been extensively studied in

different research areas, e.g. statistics, machine learning, and data mining.

Many clustering algorithms have been proposed in the literature. In general,

such algorithms can be classified into several clustering categories: partitioned

[Hartigan and Wong, 1979], hierarchical [Jain et al., 1999], density-based

[Ester et al., 1996], grid-based [Wang et al., 1997], and model-based

[Cheeseman and Stutz, 1996]. An excellent survey of these clustering

categories can be found in [Jain et al., 1999]. Some advances in clustering are

presented in [Kotsiantis and Pintelas, 2004].

2.2.2 Clustering Issues

The importance of clustering issues varies according to the area of study and

the type of problem to be solved. For example, in data mining some of the main

explored issues are: scalability to large datasets, time complexity, and

interpretability of results [Berkhin, 2002]. For the purpose of clustering peers in

a PDMS some important clustering issues that have to be considered are: object

set availability and sensitivity to input order.

The first issue is related to the availability of the objects in an object set.

Basically, there are two main approaches to perform clustering. The first one is

to consider the object set as a whole and begin to organize it into meaningful

clusters. This is called batch approach. The second approach is based on the

assumption that it is possible to add one object from the object set at a time to

the clustering space. This is called incremental approach or online approach or

single-pass approach.

Sensitivity to input order is one of the major issues in incremental

clustering [Fisher et al., 1992]. An incremental algorithm is order-independent

if it generates the same partition for any order in which the data is presented.

Otherwise, it is order-dependent. This property is illustrated in Figure 2.7

where there are 6 two-dimensional objects labeled 1 to 6. If these objects are

�� � �� � � ���
��� �� � �
� � ���

25

presented to an incremental clustering algorithm such as the Leader algorithm

[Hartigan, 1975] in the order 2, 1, 3, 5, 4, 6 then the two clusters obtained are

shown by ellipses. If the order is 1, 2, 6, 4, 5, 3, then two clusters are generated

as shown by the triangles.

Since in PDMS peers arrive one at a time, incremental clustering

algorithms are the main basis for the peer clustering approach proposed in this

thesis. Thus, in the next section, we characterize some of the most popular

incremental clustering algorithms available in the literature.

Figure 2.7. The leader algorithm is order-dependent [Jain et al., 1999].

2.2.3 Incremental Clustering Algorithms

Incremental clustering algorithms are based on the assumption that it is possible

to consider objects one at a time to existing clusters. A new object is assigned

to a cluster without significantly affecting the existing clusters. Basically,

incremental clustering algorithms follow the high level description described as

follows [Jain et al., 1999].

(1) Assign the first object to a cluster.
(2) Consider the next object. Either assign this object to one of the
existing clusters or to a new cluster. This assignment is done based on
some criterion, e.g. the similarity between the new object and the existing
cluster centroids; and a threshold.
(3) Repeat step 2 until all the objects are clustered.

The number of comparisons of incremental clustering for n objects is

O(n2). In the worst case, each object creates a new cluster so each object must

be compared to all the others. If the number of clusters is m, the number of

comparisons time is O(nm), and if m is bounded by a constant, O(n).

Some important issues have to be considered concerning incremental

algorithms. The first one is the selection of the threshold value. In some cases,

�� � �� � � ���
��� �� � �
� � ���

26

it defines the range around the cluster centroid5 in which objects have to rely

for being integrated into a cluster. This is comparable to the problem of the

user-specified number of clusters in non-incremental methods such as the k-

means algorithm [Hartigan and Wong, 1979]. The second issue is the sensitivity

to the input order. Typically, clustering results differ significantly for objects

presented in different sequences. The third issue is the information loss due to

the abstraction model chosen to summarize a cluster. Finally, the last issue is

related to efficiency. In many incremental algorithms, including the high level

description contained in [Jain et al., 1999], before a new object is allocated to a

cluster it is compared with all existing clusters. In some cases, it can be

unacceptable in terms of scalability and performance.

Over the last years, several incremental clustering algorithms have been

proposed in the literature: Leader [Hartigan, 1975], BIRCH [Zhang et al.,

1997], Bubble and Bubble-FM [Ganti et al., 1999], COBWEB [Fisher, 1987],

and CLASSIT [Gennari et al., 1989]. A high level description of the Leader

algorithm [Hartigan, 1975] is described as follows.

(1) Let s be a similarity threshold.
(2) Let the first object assigned to cluster C1 be the defining object, c1
(3) For each object ci+1

(3.1) Find the closest cluster, Cj
(3.2) If dist(ci+1,Cj) > d, add ci+1 to Cj
(3.3) Otherwise, create a new cluster with the defining object ci+1.

BIRCH [Zhang et al., 1997] uses a hierarchical data structure called CF-

tree for partitioning the incoming data points in an incremental and dynamic

manner. BIRCH can typically find a good clustering with a single scan of the

data and improve the quality further with a few additional scans. BIRCH is

order-dependent as it may generate different clusters for different orders of the

same input data. Bubble and Bubble-FM [Ganti et al., 1999] clustering

algorithms are extensions of BIRCH to general metric spaces (categorical

values in attributes).

COBWEB [Fisher, 1987] is a popular hierarchical clustering algorithm for

categorical data. It dynamically builds a classification tree by processing one

data point at a time. Each cluster is associated with conditional probabilities for

categorical attribute-values pairs. During the classification tree construction,

5 The object which represents the central point of a cluster.

�� � �� � � ���
��� �� � �
� � ���

27

every new data point is descended along the tree and the tree is potentially

updated. Decisions are based on an analysis of a category utility. There is a

similar incremental hierarchical algorithm for all numerical attributes called

CLASSIT [Gennari et al., 1989]. CLASSIT associates normal distributions with

cluster nodes. Both algorithms can result in highly unbalanced trees.

All the above discussed algorithms are order-dependent. Except for the

Leader algorithm all the other algorithms reconsider the existing clusters after a

new object is inserted. However, to this end, they necessarily use some kind of

centralized data structure (e.g. a tree) which offers a detailed and up-to-date

view of all existing clusters at a certain moment. Unfortunately, due to many

different reasons (e.g. scalability and performance), this kind of assumption

cannot be considered in dynamic environments such as PDMS. Next, we

describe some commonly used criteria to evaluate and assess the results of a

clustering algorithm.

2.2.4 Cluster Validity

Clustering is an unsupervised process since there are no predefined classes and

no examples that would indicate grouping properties in the data set [Jain et al.,

1999; Theodoridis and Koutroumbas, 2003]. The majority of the clustering

algorithms behave differently depending on the features of the data set and the

initial assumptions for defining clusters. Thus, in most applications the

resulting clustering scheme requires some sort of evaluation regarding its

validity. Evaluating and assessing the results of a clustering algorithm is the

main subject of cluster validity [Batistakis et al., 2002a; Batistakis et al.,

2002b]. In this section, we present the fundamental concepts of clustering

validity. More specifically, we discuss the cluster validity approaches based on

the classical external and internal criteria [Halkidi et al., 2001; Toledo, 2005].

Fundamental Concepts

Let C denote the clustering structure resulting from the application of a

clustering algorithm r on a data set X. Also, let N be the size of X, i.e. N = |X|.

C may be a hierarchy of clusters, as is the case with the hierarchical algorithms,

or a flat set of clusters. Cluster validity can be approached in two possible

directions. First, we may evaluate C in terms of an independently drawn

structure, which is imposed on X a priori and reflects our intuition about the

�� � �� � � ���
��� �� � �
� � ���

28

clustering structure of X. The criteria used for the evaluation of this kind are

called external criteria. In addition, external criteria may be used to measure

the degree to which the available data confirm a pre-specified structure, without

applying any clustering algorithm to X. Second, we may evaluate C in terms of

quantities that involve the objects of X themselves, for example, the similarity

matrix. The criteria used for this kind of evaluation are called internal criteria.

Next, we present the fundamental considerations and the representative indices

for the external and internal criteria.

External Criteria Measures

External criteria is used for the comparison of a clustering structure C,

produced by a clustering algorithm, with a partition P of X drawn independently

from C. In the following, we consider the validation task concerning a

clustering structure, C, resulting from a specific clustering algorithm, in terms

of an independently drawn partition P of X. Let C = {C1,…,Cm} and P =

{P1,…,Ps}. Note that the number of clusters in C need not be the same as the

number of groups in P. Our goal is to define appropriate statistical indices to be

used for the hypothesis test.

Let nij, denote the number of objects that belong to Ci and Pj. Consider a

pair of objects (xv, xu). We refer to it as (a) SS if both objects belong to the

same cluster in C and to the same group in P; (b) DD if both objects belong to

different clusters in C and to different groups in P; (c) SD if the objects belong

to the same cluster in C and to different groups in P; and (d) DS if the objects

belong to different clusters in C and to the same group in P. Let a, b, c, and d

be the number of SS, SD, DS, and DD pairs of objects of X, respectively. Then,

a + b + c + d = M, where M is the total number of possible pairs in X, i.e. M =

N * (N – 1) / 2.

Let m1 = a + b be the number of pairs of objects that belong to the same

cluster in C and m2 = a + c be the number of pairs of objects that belong to the

same group in P. Using the preceding definitions, statistical indices (statistics,

for short) can be defined in order to measure the degree to which C matches P.

Such statistical indices are:

Rand Index [Theodoridis and Koutroumbas, 2003]: measures the fraction of

the total number of pairs that are either in the same cluster and in the same

�� � �� � � ���
��� �� � �
� � ���

29

partition, or in different clusters and in different partitions. The Rand index is

defined as

M
daR += (1)

Jaccard Coefficient [Batistakis et al., 2002a]: measures the proportion of pairs

that are in the same cluster and in the same partition from those that are either

in the same cluster or in the same partition. The coefficient is defined as

c)b(a
aJ ++= (2)

Fowlkes-Mallows (FM) Index [Fowlkes and Mallows, 1983]: corresponds to

the probability that two random objects are in the same cluster given they are in

the same group, and the probability that two random objects are in the same

group given they are in the same cluster. The FM Index is defined as

21mm
a

ca
a

ba
aFM =

++
= (3)

The values of these statistical indices are between 0 and 1. However, a

requirement for achieving the maximum value is to have the same number of

partitions and clusters (m = s), which, in general, is not always possible. For all

the above defined indices, it is clear that the larger their value (1) the higher the

agreement between C and P.

Another popular statistic that is frequently used in conjunction with

external criteria is the Hubert’s Γ statistic [Batistakis et al., 2002b]. It measures

the correlation between two matrices, X and Y, of dimension N x N, drawn

independently of each other, where X(i,j) and Y(i,j) are the (i,j) elements of the

matrices X and Y, respectively. High values of Γ indicate close agreement

between X and Y. The normalized Hubert’s Γ statistic is defined as

c))(ab))(M(ac)(Mb)(a(a

c)b)(a(aMa
�^

+−+−++
++−= (4)

Internal Criteria Measures

In this approach, the goal is to verify whether the clustering structure produced

by a clustering algorithm fits the data, using only information inherent in the

data set. In this sense, one of the most used indices is the Silhouette Index

[Rousseeuw, 1987]. Such index is useful when it is seeking compact and clearly

separated clusters.

�� � �� � � ���
��� �� � �
� � ���

30

In order to construct silhouettes we need a partition of some clustering

algorithm, and the similarity matrix containing all the similarities between

objects. For a given cluster, this method assigns to each object of the cluster a

quantitative measure s(i), known as the silhouette width. The silhouette width

indicates the membership of object i in the cluster it has been assigned. Let i be

any object in the data set, and denote by Cj the cluster to which object i has

been assigned. Let a(i) the average dissimilarity between i and all the other

objects in cluster Cj. Consider any cluster Ck different to cluster Cj, and

compute b(i) = min Ck ≠ Cj d(i, Ck) (k = 1, 2,..., c; k ≠ j). Then, the silhouette

width is defined as

b(i)}max{a(i),
a(i)b(i)

s(i)
−= (5)

A neighbor of object i is the cluster Ck for which the minimum is obtained,

that is, d(i,Ck) = b(i). Cluster Ck represents the second best choice for object i.

From the equation (5) we can see that −1 ≤ s(i) ≤ 1. A value of s(i) close to 1 is

obtained when the dissimilarity a(i) is much smaller than the smallest between

dissimilarity b(i). Therefore we can say that object i is well clustered. On the

other hand, if s(i) take values close to −1 implies that a(i) is much larger than

b(i). In this case, we can say that object i has been misclassified, so object i

may be reassigned. If a(i) and b(i) have similar values then s(i) is about zero. In

this situation, object i lies equally far away from both cluster Cj and Ck. If the

data consist of similarities and a’(i) and d’(i,C) represent the corresponding

average similarities, then b’(i) = maxC≠A d’(i,C). The interpretation is in the

same way as before. In this case, the silhouette width is defined as

b'(i)}max{a'(i),
b'(i)a'(i)

s(i)
−= (6)

It is also possible to calculate a cluster silhouette Sj, called average

silhouette width, which represents the heterogeneity of cluster Cj. This

quantitative measure can be obtained using:

�
=

=
m

i

j is
m

S
1

)(
1

 (7)

We can also consider an overall or global silhouette width denoted by GSu,

and define as:

�� � �� � � ���
��� �� � �
� � ���

31

�
=

=
c

j

ju S
c

GS
1

1
 (8)

where U is any partition, U ↔ C : Ci ∪ C2 ∪ ... ∪ Cc.

2.3 Considerations
In this chapter, we have presented an overview of ontology and clustering. Both

concepts form the main basis of this work. Ontologies are mainly used to

describe the content exported by peers in a PDMS. Clustering techniques are

used to organize peers in an overlay network according to their exported

ontology. We have also discussed two classical criteria used to evaluate the

results of a given clustering algorithm: external and internal. Both criteria are

based on statistical indices and aim at measuring the degree to which a data set

confirms a previously specified structure. Although a high computational cost is

required to compute the statistical indices, the produced results are suitable for

quantitative evaluation of a clustering result. In this sense, external and internal

criteria are used to evaluate the peer clustering process proposed in this thesis.

In the following chapter, we describe Peer Data Management Systems (PDMS)

and emphasize the importance of clustering peers according to their semantics.

�

 32

����� ����� �� ����� �� ����� �� ����� ���������

������� ���� ���� ���� �

���������������������� �� ���� ���� �� ���� ���� �� ���� ���� �� ���� ������� ������ ������ ������ ���������

“No verão, um balde de água faz uma colher de lama; no outono, uma colher de água

faz um balde de lama”

Provérbio ucraniano

The increasing use of computers and the development of communication

infrastructures have led to a wide range of data sources being available through

networks such as Peer Data Management Systems (PDMS) [Halevy et al.,

2003a; Halevy et al., 2003b]. This setting is characterized by having a diversity

of perspectives, dynamic data, and the possibility of intermittent participation.

It is generally composed of a set of autonomous and heterogeneous data sources

(i.e. peers) which are linked by means of mappings or correspondences.

In this chapter, we characterize PDMS and discuss their main data

management issues: schema mappings and query processing. Besides, we

discuss the importance of organizing peers in an overlay network based on their

semantics and discuss the main challenges to achieve this goal. Afterwards, we

describe some existing PDMS that propose a semantic-based approach to

organize peers in the overlay network. Finally, we present a comparative

analysis of such PDMS.

3.1 PDMS Definition
A Peer Data Management System (PDMS) [Ng et al., 2003; Tatarinov et al.,

2003; Ruzzi, 2004; Valduriez and Pacitti, 2004; Halevy et al., 2006; Pires et

�� � �� � � ���
��� � � ��� � � ��� � � � � �� � � ��� �� � ���

33

al., 2006; Mandreoli et al., 2007; Lodi et al., 2008] is an advanced P2P

application which enables users to transparently query several distributed,

heterogeneous, and autonomous data sources. Differently from the traditional

P2P file sharing systems, PDMS deal with more semantically rich structures

(e.g. XML documents, relational tables, and ontology concepts). Therefore, in

such systems peers use a more complex specification of their contents, e.g.

database schemas [Bernstein et al., 2002] and formal ontologies [Rousset et al.,

2006], than the classical P2P file sharing systems [Leibowitz et al., 2003].

PDMS are considered the result of blending the benefits of P2P systems,

such as lack of a centralized authority, with the richer semantics of databases.

In general, PDMS are rather useful when sources have overlapping structured or

semi-structured data and users want to access additional related information

stored in other peers. PDMS may be used for data exchanging, query answering,

and information sharing in almost every application domain, for example

scientific research and educational systems.

Due to the intrinsic characteristics of the P2P computing paradigm

[Walkerdine et al., 2002], the assumption that all participating peers rely on a

single global schema, such as in traditional data integration systems

[Wiederhold, 1992], cannot be made [Aberer et al., 2002]. Otherwise, the

global schema may need to be updated every time the system evolves

[Giunchiglia and Zaihrayeu, 2002; Young, 2004]. Instead, each peer represents

an autonomous data source and provides an exported schema (or peer schema)

to be shared with the other peers of the system.

Among those exported schemas, schema mappings, i.e. correspondences

between schema elements, are generated. Schema mappings are needed to

establish (meaningful) information exchange between peers. The peers with

which a particular peer P maintains schema mappings are commonly called the

neighbors of P. Consequently, these peers form the neighborhood of P. Query

processing in a PDMS is accomplished by traversing the schema mappings,

reformulating the queries, executing them on the peers, and gathering the

results at the peer that requested the data.

Sharing data in a PDMS is made easier, because each peer can map its

schema to the most convenient peers in the system rather than to a mediated

�� � �� � � ���
��� � � ��� � � ��� � � � � �� � � ��� �� � ���

34

schema. In addition, peers can query the system using their own schema rather

than using a mediated schema that may be foreign to them.

3.2 Data Management Issues in PDMS
The most studied data management issues in PDMS are probably related to

schema mappings [Madhavan and Halevy, 2003; Tatarinov et al., 2003; Hai,

2005] and query processing [Katchaounov, 2003; Ng et al., 2003; Castano et

al., 2004; Tatarinov and Halevy, 2004; Mandreoli et al., 2006a; Hose et al.,

2007; Souza, 2007; Montanelli and Castano, 2008; Kantere et al., 2009]. In this

section, we offer an overview of such issues and describe some of the

techniques commonly applied by well-known PDMS.

3.2.1 Schema Mappings

As illustrated in Figure 3.1, two types of mappings are commonly used in

PDMS [Sung et al., 2005]: local mappings and schema mappings. Since data

sources can be heterogeneous in a PDMS, a common data model is needed to

describe exported schemas using a uniform conceptual notation. Thus, local

mappings are used to define correspondences between the elements available in

the data source and a peer’s exported schema. Moreover, since exported

schemas can use different names or formalisms to represent the same data,

schema mappings are needed to define (semantic) correspondences between the

elements (e.g. relations and attributes) in two exported schemas for the purpose

of sharing and integrating data [Madhavan and Halevy, 2003]. As with

traditional distributed databases, the reason behind integrating data using

schema mappings in PDMS is to provide a uniform querying environment that

hides the heterogeneity and distribution of the data sources.

Figure 3.1. The different types of mappings in a PDMS.

�� � �� � � ���
��� � � ��� � � ��� � � � � �� � � ��� �� � ���

35

Most P2P systems assume the existence of schema mappings among peers,

but do not specify how these mappings are determined. However, the definition

of the schema mappings is probably one of the hardest aspects of the data

sharing process. It is considered an expensive process that in some cases

requires human intervention [Rousse and Berman, 2006]. In traditional data

integration systems, schema mapping is typically specified manually and at

design time. Differently, in PDMS peers need to coordinate their data sources

on-the-fly, therefore ultimately requiring run time schema mapping. [Rahm and

Bernstein, 2001] propose an approach for determining schema mappings

automatically.

Basically, schema mappings can be categorized in one of three groups:

pair mappings, peer-mediated mappings, and super-peer mediated mappings

[Sung et al., 2005]. Pair mappings are the simplest approach to define schema

mappings in PDMS. As illustrated in Figure 3.1, schema mappings are defined

between pairs of peers. The mappings are stored at the peer interested in

accessing the other peer’s data. For example, the Local Relational Model

(LRM) follows this approach to schema integration [Bernstein et al., 2002]. In

the LRM proposal, a peer specifies translation rules and coordination formulas

that define how its exported schema relates to an exported schema on another

peer. Such agreement between two peers is referred to as an acquaintance

[Kantere et al., 2003]. A semantic network is then defined by the acquaintance

links between peers.

In peer-mediated mappings, a peer can define a schema mapping that

relates two or more peers. Hence, these mappings are a generalization of pair

mappings. Piazza [Tatarinov et al., 2003] and PeerDB [Ng et al., 2003] are

systems that follow this approach for integration. Super-peer mediated

mappings can be defined when peers are organized according to a super-peer

topology [Yang and Garcia-Molina, 2003]. In such systems, mediated schemas

are defined at the super-peer level. Super-peer to peer mediated schemas

contain the mappings for all the regular peers associated to the super-peer.

Schemas between super-peers, called super-peer to super-peer mediated

schemas, are also defined to implement data sharing between peers associated

to different super-peers.

�� � �� � � ���
��� � � ��� � � ��� � � � � �� � � ��� �� � ���

36

3.2.2 Query Processing

In PDMS, where frequent changes in schemas or in source availability are

common, decentralized techniques for query processing need to be applied. The

suitability of these techniques has been demonstrated by the success of early

P2P file sharing systems. In such systems, queries are routed to peers with the

goal of locating files. However, in systems sharing structured data such as

PDMS, queries are more expressive. Therefore, query processing should follow

more traditional optimization, plan generation, and execution stages.

Query processing in a PDMS can be described as illustrated in Figure 3.2.

Suppose that a query Q is formulated at an initial peer (P4) according to its

respective exported schema. The first step consists in identifying the relevant

peers (i.e. the peers that can answer Q and, consequently, the peers to which Q

should be sent) among the neighbors of P4. In order to determine the relevant

peers, several techniques have been proposed, e.g. semantic routing indexes

[Mandreoli et al., 2006b; Mandreoli et al., 2007], expertise tables [Faye et al.,

2007], and routing tables [Li and Vuong, 2007]. In general, such techniques are

based on query type and query specifications such as required attributes,

predicates, and data filters.

Figure 3.2. Typical query processing in a PDMS.

In the example, assume that P3 is a relevant peer. Once the relevant peers

are identified, Q is reformulated according to the corresponding schema

mappings and distributed among relevant peers. At each relevant peer the same

process is repeated so that Q can reach other peers in the network (in the

�� � �� � � ���
��� � � ��� � � ��� � � � � �� � � ��� �� � ���

37

example, P1, P2, and P5). Due to scalability reasons, query distribution can be

possibly restricted to a certain limit, e.g. time-to-live (TTL). Processing and

filtering of results is done incrementally by visited peers as Q is distributed.

The results are sent from the visited peers to P4 where the combination of

results is normally done.

In this scenario, incomplete and approximate answers are acceptable, as

long as they are good enough for a PDMS application. This is because some

schema mappings involved in query answering may become temporarily

unavailable or invalid. Moreover, a query may have to be reformulated several

times from peer to peer until it reaches peers that are able to answer it.

Successive query reformulation produces query versions that can deviate from

the original query. Obviously, if the chain of schema mappings used for the

reformulating is “poor” in information relevance to the query (i.e. query parts

cannot be reformulated accurately), this can result in fast degradation within a

few hops [Kantere et al., 2009].

In the PeerDB system [Ng et al., 2003], queries are executed in two steps:

in the first step, peers are selected based on the amount of metadata intersection

between query terms and peer schemas; in the second step, queries are

submitted to the selected peers and results are sent back to the query initiator.

In PeerDB, users are involved in the selection of potentially promising peers

from the set of peers obtained in the first step of query execution.

Concerning query reformulation, in the Local Relational Model [Bernstein

et al., 2002], a Query Manager component located at each peer, uses data

translation rules and semantic dependencies to reformulate queries submitted at

a peer to match the schemas of other peers. In the Piazza system [Halevy et al.,

2003a], storage mappings are used to associate queries with suitable data

relations, while description mappings are used to associate query results at one

peer to results at other peers. Based on these description mappings, a

reformulation algorithm is capable of producing query expressions which are

equivalent to a given query. In [Souza et al., 2009], the authors propose a

semantic-based approach for reformulating queries in a PDMS in which queries

are semantically enriched with additional elements obtained from a domain

ontology.

�� � �� � � ���
��� � � ��� � � ��� � � � � �� � � ��� �� � ���

38

3.3 PDMS and Ontologies
Since peers in a PDMS can store heterogeneous data sources, a common

metadata model is needed to describe the exported schemas using a uniform

conceptual notation. The use of a common model facilitates the definition of

schema mappings and, consequently, improves query processing. Some

examples of commonly used metadata models include relational schemas, XML

schemas, RDF schemas, and OWL ontologies. Among such metadata models,

ontologies turn out to be the most elaborate form [Euzenat and Shvaiko, 2007].

The distinctive feature of ontologies is that their interpretation is not left to the

knowledge management systems implementing them, but is specified explicitly.

Due to its rich expressiveness, ontologies have been considered as a basis for

making explicit the content of data sources and, consequently, as a means for

promoting interoperability in PDMS [Nejdl et al., 2002; Castano et al., 2003;

Xiao, 2006; Li and Vuong, 2007].

Particularly, [Xiao, 2006] has introduced a new definition for the blending

of PDMS and Ontologies’ researches. In his work, such blending has lead to the

emergence of Ontology-based Peer Data Management Systems (OPDMS). The

main goal of such systems is to provide semantic interoperability between

peers. According to [Xiao, 2006], in an OPDMS ontologies are used not only as

a uniform conceptual notation to represent exported schemas, but also to

describe schema mappings between peers. Particularly, in OPDMS the terms

ontology mappings or semantic mappings are used interchangeably to refer to

schema mappings [Wicaksana and Yétongnon, 2006].

When exported schemas are represented by ontologies, the identification

of ontology mappings can be assisted by an ontology matching process. Once

the correspondences between ontology elements are identified, they can be used

for the purpose of query answering. In a PDMS, the ontologies representing

exported schemas are designed and developed independently. Thus, even if

ontologies are used as a uniform conceptual notation, users still may follow

diverse modeling principles and patterns to encode the same real-world object.

Moreover, since peers are meant to be totally autonomous, users may use

different terminologies in order to represent their data, even if they refer to the

same domain of interest. Ontology matching is somewhat similar to database

schema matching, but it has many particularities due to the structural and

�� � �� � � ���
��� � � ��� � � ��� � � � � �� � � ��� �� � ���

39

conceptual differences between ontologies and database schemas [Uschold and

Gruninger, 2004]. Ideally, the ontology matching processes used in PDMS

should deal with the heterogeneity problems discussed in Section 2.2.

3.4 Semantic-based Peer Grouping in PDMS
One of the first solutions for semantic-based peer grouping was proposed for

P2P file sharing systems [Yang and Garcia-Molina, 2003]. In this work, peer

grouping is treated as a supervised process which is guided by a predetermined

semantic classification. The files shared by peers are classified into categories

and peers are allocated into Semantic Overlay Networks (SONs) according to

such classification. Clearly, this strategy can be applied when the data shared

by peers do not differ in terms of structure and vocabulary. However, in PDMS,

as each peer represents an individual organization, different peers can adopt

distinct exported schemas. Therefore, peer grouping should be considered an

unsupervised process and semantic communities should be formed as a result of

a common agreement among peers [Castano and Montanelli, 2005; Kantere et

al., 2008; Lodi et al., 2008].

Several solutions have already been proposed for the dynamic formation

and maintenance of semantic communities of peers in PDMS. Some solutions

[Ramaswamy et al., 2003; Castano and Montanelli, 2005; Doulkeridis et al.,

2006; Kantere et al., 2008] assume that the network is already populated with a

predetermined number of peers and then the participating peers start the

formation of semantic communities in an ad-hoc manner. In such systems,

semantic communities are autonomously emerging [Castano and Montanelli,

2005]. Communities originate from a declaration of interest of a peer and group

those peers which spontaneously agree with the declaration, since they can offer

relevant resources for the community.

Only a few solutions [Li and Vuong, 2005; Lodi et al., 2008] consider the

problem of forming semantic communities from scratch. In such solutions, the

network is initially empty and new peers are added to related semantic

communities as they join the network. If an interesting semantic community is

not found then a new one is formed. Moreover, some systems [Kantere et al.,

2008; Lodi et al., 2008] enable peer participation in multiple communities

�� � �� � � ���
��� � � ��� � � ��� � � � � �� � � ��� �� � ���

40

while others are more restrictive in the sense that each peer can take part in

only one community [Li and Vuong, 2007].

Several distinct semantic communities can coexist in a PDMS. Within

each community peers can be organized according to some existing P2P

network topology, e.g. unstructured [Leibowitz et al., 2003], structured [Stoica

et al., 2001; Ratnasamy et al., 2001], or super-peer [Yang and Garcia-Molina,

2003]. Particularly, concerning the super-peer topology peers also need to be

organized in a more specific level within the community, i.e. the clusters. Thus,

an approach to insert peers into appropriate clusters is essential.

The task of dynamically forming and maintaining semantic communities

of peers in a PDMS imposes several important challenges. Next, we enumerate

some of these challenges and succinctly define each one.

Similarity (or distance) measurement

A semantic community should contain only semantically similar peers. In order

to determine if two peers are semantically similar (or dissimilar) it is necessary

to measure their semantic similarity (or distance) [David and Euzenat, 2008]. In

this sense, peer exported schemas are commonly used to calculate the similarity

(or distance) measure between peers.

Neighborhood search

All peers in a semantic community share content associated to the same

knowledge domain. However, a peer can be more semantically related to some

particular peers in a community than to others. Therefore, even after a new peer

joins a semantic community it is still necessary to determine the peer’s

neighborhood inside the community [Lodi et al., 2008]. In this sense, an

efficient strategy for routing peers to other related peers should be available.

Such strategy can be associated to the type of network topology (e.g.

unstructured, structured, or super-peer) adopted to organize peers within the

community.

Neighborhood selection

During the definition of a peer’s neighborhood several possible candidate peers

can be identified in a semantic community. Therefore, the new peer needs to

choose a subset of the identified peers in order to determine its neighborhood.

�� � �� � � ���
��� � � ��� � � ��� � � � � �� � � ��� �� � ���

41

Range-based [Lodi et al., 2008] and threshold-based [Castano and Montanelli,

2005] techniques can be used to select the most similar peers. However, such

techniques are not very restrictive in the sense that a high number of peers can

be chosen to form a peer’s neighborhood. Since the physical capacity (e.g.

network bandwidth) of a peer is limited it could be necessary to limit the

number of neighbors in order to avoid the consuming of all peer resources

[Ramanathan et al., 2002; Zhuang at al., 2004].

Neighborhood maintenance

Due to the dynamicity of peer participation in a PDMS it is necessary to adjust

the neighborhood of each peer as new peers join the system or participating

peers leave the system. For instance, such adjustment can be done periodically

(e.g. network stabilization) [Xu and Srimani, 2005] or by monitoring peer’s

answers during query processing [Ramanathan et al., 2002; Ng et al., 2003].

3.5 Existing Semantic-based PDMS
Several PDMS have been proposed in the literature: Piazza [Halevy et al.,

2003a; Halevy et al., 2003b; Tatarinov et al., 2003], PeerDB [Ng et al., 2003;

Ooi et al., 2003], Hyperion [Arenas et al., 2003], APPA [Valduriez and Pacitti,

2004], and Xpeer [Bellahsène and Roantree, 2004]. In general, such initial

systems propose solutions to problems associated with schema mappings and

query processing.

In the last few years, research on PDMS has focused on semantic-based

techniques to overcome the main limitations of initial PDMS, especially those

limitations related to query processing. In this light, several PDMS have been

proposed employing some kind of semantic-based approach to organize peers in

the network: Sunrise [Lodi et al., 2008], Helios [Castano et al., 2004], and

OntSum [Li and Vuong, 2007]. In this section, we offer a more detailed

description of such PDMS focusing on the way that semantic communities are

formed and maintained. These PDMS were chosen because they propose

solutions to the challenges related to semantic community management

discussed in Section 3.4. At the end of the section, we also present a

comparative analysis of such PDMS.

�� � �� � � ���
��� � � ��� � � ��� � � � � �� � � ��� �� � ���

42

3.5.1 Sunrise (University of Bologna)

[Lodi et al., 2008] propose a solution for the creation and maintenance of a

flexible network organization for PDMS that clusters together heterogeneous

peers which are semantically related. Each peer in the network is represented by

a set of concepts describing its main topics of interest. The representation of

each peer derives from the peer’s exported schema as it describes the semantic

content of the underlying data. The network is organized in a set of Semantic

Overlay Networks (SONs) [Crespo and Garcia-Molina, 2002] in such a way to

assist each new peer in the selection of the semantically closest peers as its

neighbors. A SON is a group of semantically related peers locally connected

through a link structure. Peers are assigned to one or more SONs on the basis of

their exported set of concepts. A sample of network made up by two SONs

supporting a web of research-related data is shown in Figure 3.3. The network

includes various peers. Some of them, such as the EDBT Association (EDBT

Ass.) and the University of Rome (URome) are monothematic, i.e. they only deal

with publications and university people, respectively. Other peers, instead, are

concerned with both themes, e.g. Stanford.

Figure 3.3. Sample of network organization [Lodi et al., 2008].

Similarity between peers is captured by a distance function d considering

their exported sets of concepts. The function quantifies the distance between

two given concepts by comparing their WordNet [Miller, 2005] hypernymy

hierarchies. Two variants of linguistic distances are considered. The first

distance is obtained by computing the depths of the concepts in the WordNet

�� � �� � � ���
��� � � ��� � � ��� � � � � �� � � ��� �� � ���

43

hypernymy hierarchy and the length of the path connecting them. The other

distance considers the number of links connecting the two given concepts in the

hypernymy hierarchy as well as the height of the hierarchy (16 in WordNet).

The approach for organizing peers is inspired on incremental clustering

algorithms. The network evolves incrementally to assimilate new peers. When a

peer joins the system, it first performs a coarse-grained neighbor selection by

accessing the Access Point Structure (APS). APS is a centralized structure

which maintains a summarized representation of each SON available in the

network. The APS helps new peers to decide which SONs to join or whether to

form new SONs by providing useful information such as the most

representative concepts of each SON. Such representative concepts are

compared to the new peer’s concepts.

When a new peer has chosen its semantically closest SONs, it navigates

the link structure within each selected SON with the aim of searching for its

preferred neighbors, i.e. the semantically nearest peers. In particular, two types

of neighbor selection are supported: each peer is allowed to select either the k

semantically nearest peers (k-NN selection) or the peers in the SON for which

the distance between their SON’s concepts and the peer SON’s concepts are

below a given threshold (range-based selection). The topology of the network

is strongly influenced by the type of neighbor selection. A k-NN selection

limits the number of neighbors and thus controls the degree of connectivity.

This is not possible in a range-based selection where it is only possible to

provide an estimation of the number of neighbors based on the SON statistics

maintained at the APS level.

Adopting a broadcast-based approach to search neighbors could imply

wasting precious resources. Therefore, the authors propose that the neighbor

selection process to be guided by a distributed index mechanism which

maintains at each node specifically devised indices named Semantic Clustering

Indices (SCIs) [Mandreoli et al., 2006a; Mandreoli et al., 2006b]. The

collection of SCIs distributed across the peers that the new peer visits, drives

its navigation towards the peers in the same SON containing the concepts

nearest to its concepts. The Sunrise semantic framework is presented in

[Mandreoli et al., 2007].�

�� � �� � � ���
��� � � ��� � � ��� � � � � �� � � ��� �� � ���

44

3.5.2 Helios (Università degli Studi di Milano)

Helios [Castano et al., 2003] is a system for ontology-based knowledge

discovery and sharing in peer-based open distributed systems. It addresses the

problem of forming semantic communities of peers in a P2P system. Each peer

provides an ontology representing the resources it exposes to the network.

Ontologies are represented in the H-Model [Castano et al., 2004], a language

independent ontology model capable of describing a number of ontology

specification formalisms (e.g. OWL, RDF(S), and UML). Each peer implements

a Semantic Matchmaker component for matching ontologies in order to find

which concepts match in different ontologies and at which level. The Semantic

Matchmaker is based on the H-Match algorithm [Castano et al., 2004] and

performs dynamic ontology matching by taking into account both linguistic and

contextual features of the concepts. H-Match performs ontology matching at

different levels of depth, implementing four different matching models: surface,

shallow, deep, and intensive [Castano et al., 2006].

In Helios, a semantic community of peers is identified by a unique

Community Identifier (CID), and a subject category or topic area of interest

called community Identity Card (ICard), defined as an ontology [Castano and

Montanelli, 2005]. The semantic community formation process is addressed

under certain assumptions: (i) each peer can be member of multiple

communities; (ii) no centralized authority (e.g. super-peer) is expected to

coordinate the community discovery and formation process; and (iii) the choice

of joining an emergent community depends on the matching results. A semantic

community of peers emerges when a peer, called community founder, invokes a

semantic handshake process which is composed of the following tasks:

ICard advertisement. The founder Pf defines a CID and an ICard

describing the topic area of interest of the emerging community, along with a

set of commitment constraints specifying the conditions required for the

community establishment (e.g. minimum number of members). Then, Pf

composes an Invitation Message containing the CID and the ICard created, as

well as a TTL parameter defining the maximum number of hops allowed for the

invitation propagation, the matching model to be used for affinity evaluation,

and the matching threshold t specifying the minimum semantic affinity value

required to consider a concept of the ICard and a concept of a peer ontology as

�� � �� � � ���
��� � � ��� � � ��� � � � � �� � � ��� �� � ���

45

matching concepts. Then, the invitation message is sent to all Pf neighbors in

order to advertise the new community.

Member identification. Each invited peer Pi invokes the Semantic

Matchmaker in order to compare the incoming ICard with its peer ontology. Pi

is relevant for the community if the Semantic Matchmaker identifies concepts

in the peer ontology with a semantic affinity higher than the specified threshold

t with respect to the ICard. In this case Pi replies to Pf with an Interest Message

reporting the portion of its peer ontology related to the matching concepts

found to be relevant for the community by the Semantic Matchmaker.

Independently from the matching results and if TTL � 0, Pi forwards the

invitation message to all its neighbors.

Request approval. Once the interest messages are received, Pf has to

evaluate which peers are admitted in the community. For this reason, Pf invokes

its Semantic Matchmaker and compares each peer ontology portion received by

the interested peers with its peer ontology. For each candidate peer, the goal of

this comparison is to evaluate whether the provided knowledge matches the

knowledge of Pf, and then to assess whether they share a common perspective

of the community interests. If the matching results are higher than t, Pf admits

the peer in the community and sends an Approval Message to the admitted peer.

Community commitment. Once the Request approval phase is completed,

Pf verifies if the commitment constraints are satisfied. In this case, a

Commitment Message is sent to all the admitted peers and the semantic

community is effectively established. If the committed constraints are not

satisfied, Pf stops the community formation. In this case, the admitted peers

wait for the commitment message until a predefined timeout expires.

Figure 3.4 illustrates an example where the handshake algorithm is applied

to a P2P network and the community founder (Pf), represented by a double

hoop, sets an initial TTL = 2. Dashed lines represent random P2P connections

and the path followed by the invitation message (continuous line) defines a tree

structure where the root is identified by Pf and the leafs are represented by the

invited peer with TTL = 0. Each invited peer negotiates its participation in the

community directly with Pf. Once it is admitted, the peer exploits the tree

structure and communicates within the community through its community

neighbors. The authors define the community neighbors of a community

�� � �� � � ���
��� � � ��� � � ��� � � � � �� � � ��� �� � ���

46

member Pm as the peer that invited Pm in the community (i.e. Pm predecessor)

and the peers that Pm invited in the community (i.e. Pm successors). An invited

peer not interested in the community or discarded by Pf is to be pruned from the

tree structure of the community. For this reason, after the approval phase, each

community member Pm notifies to its predecessor Pp of its presence in the

community. If Pp is not member of the community, it forwards the Pm

notification to its predecessor Pg and notifies Pm that Pg is its new predecessor.

As an example, consider peer E in Figure 3.4. The community members peer H

and peer K notify peer E of their participation. Peer E has not joined the

community and is to be pruned from the community tree. Then, peer E forwards

the notification to peer B and notifies peer H and peer K that peer B is the new

predecessor of peers H and K.

Figure 3.4. Example of aggregation of a semantic community [Castano and Montanelli,

2005].

3.5.3 OntSum (University of British Columbia)

OntSum [Li and Vuong, 2007] is a PDMS which uses an ontology-based

approach to address the routing issues of expressive queries. Peers use

ontologies to describe their shared content. A metric to measure peers’ ontology

similarity is used to organize peers according to their semantic properties. The

network topology is reconfigured with respect to peer’s ontological similarity,

so that peers with similar ontologies are close to each other. As proposed in

Description Logics [Baader et al., 2003], the system divides a peer’s ontology

into two parts: (i) taxonomical box (T-Box): stores conceptual knowledge; and

(ii) assertion box (A-Box): represents the concrete knowledge about individuals.

A peer’s T-Box concepts are indexed into a vector (ontological signature

�� � �� � � ���
��� � � ��� � � ��� � � � � �� � � ��� �� � ���

47

vector). The semantic similarity between two peers A and B is defined as the

cardinality obtained from the intersection between V(A) and V(B) divided by the

cardinality of V(A), where V(A) and V(B) are the ontology signature vectors of

peers A and B. Two peers are semantically similar if their similarity is beyond a

similarity threshold.

Figure 3.5 illustrates a high level view of the network topology. Peers

form multi-layered clusters reflecting the semantic locality: peers with similar

ontological topics form a big domain; inside the domain, peers may create

smaller clusters if they share the same ontology. For instance, all peers in the

medical domain are interested in medically related information. They may be

interested in different aspects of the medical resources, and they may use

different ontologies to describe their contents, but since they share the similar

interests (medicine), they connect with each other through some links. Peers N1,

N2, N5, and N8 use the same ontology: ont1, so they form a same-ontology

cluster. The term “domain” is used to represent a group of clusters sharing

similar ontological topics while the term “cluster” is used to denote the same-

ontology cluster. Clusters and domains do not have fixed boundaries; they are

formed by randomly connecting relevant peers.

Figure 3.5. The network topology [Li and Vuong, 2007].

To form this multi-level structured network a peer distinguishes three

kinds of neighbors based on their semantic similarity. Two peers A and B can

be neighbors at different levels: (i) zero-distance neighbor (or same-ontology

neighbor, intra-cluster neighbor), if sim(A,B) = 1; (ii) short-distance neighbor

(or semantically related neighbor) if sim(A,B) � t (0 < t < 1 is A’s semantic

threshold); and (iii) Long-distance neighbor (or semantically unrelated

�� � �� � � ���
��� � � ��� � � ��� � � � � �� � � ��� �� � ���

48

neighbor) if sim(A,B) < t. A peer always tries to find as many close neighbors

as possible, but it also keeps some long distance neighbors to reach out to other

ontological clusters.

Peers in the system may pose two types of queries: neighbor-discovery

query and resource-discovery query. The neighbor-discovery query is used to

construct the ontology-based network topology. When a new peer joins the

network, it issues neighbor-discovery query to find semantically related

neighbors, so that it can join their domain and cluster by connecting to them.

The resource-discovery query is used to locate desirable resources in the

network. To efficiently route queries, two routing schemes are proposed: inter-

cluster routing and intra-cluster routing. The former quickly locates

semantically related clusters; while the latter efficiently finds desirable

resources satisfying the query constraints. Related with the two routing

schemes, two routing tables are maintained at each node: (i) inter-cluster

routing table: stores the abstract semantic knowledge of its neighboring clusters

(short-distance and long-distance neighbors, their semantic similarities to the

peer, and their semantic signature vector); and (ii) intra-cluster routing table:

used to forward queries inside a cluster.

A peer joins the network by connecting to one or more bootstrapping

neighbors. Then the joining peer issues a neighbor-discovery query, and

forwards the query to the network through its bootstrapping neighbors. The

neighbor-discovery query is routed mainly according to the inter-cluster routing

table. A neighbor-discovery query message includes several parts: (i) the

querying peer’s ontology signature vector; (ii) a similarity threshold which is a

criteria to determine if a peer is semantically related to the query; (iii) a query

TTL to decide how far the query should be propagated; and (iv) a list of

clusters the query has passed through, so that the query would not be forwarded

to the same cluster. When a peer N receives a neighbor-discovery query Q

which tries to find neighbors for a new joining peer X, N computes the semantic

similarity between X and itself; if N is semantically related to X, N will send a

Neighbor Found reply. If the query’s TTL does not expire, N computes the

semantic similarity between X and each of its neighbors, and forwards the

query to semantically similar neighbors. If no semantically similar neighbors

are found, the query will be forwarded to N’s long-distance neighbors.

�� � �� � � ���
��� � � ��� � � ��� � � � � �� � � ��� �� � ���

49

3.5.4 Comparative Analysis

Table 3.1 presents a comparative analysis of the previously discussed PDMS.

All of them employ a semantic-based approach to organize peers in the overlay

network. The comparative criteria were chosen according to the main interest of

our work. They indicate how the PDMS deal with the challenges related to

forming and maintaining semantic communities discussed in Section 3.4. The

criteria are described as follows.

� Schema representation: refers to the metadata model that is used to

represent peer exported schemas;

� Network topology: indicates the P2P topology that is used to organize peers

in the network;

� Network population: indicates the network population status at the moment

communities start being formed;

� Domains: indicates if semantic communities are originated spontaneously

from the peers or if predefined semantic communities are initially available;

� Multiple communities: indicates if a peer can participate in multiple

communities (or clusters);

� Neighborhood search: refers to the strategy that is used by new peers to find

other semantically similar peers in a community;

� Semantic similarity measure: corresponds to the measure used to calculate

the (semantic) similarity between peers;

� Neighborhood selection: refers to the method used to determine the semantic

neighborhood of a peer in a community (or cluster).

Table 3.1. A comparison of PDMS employing a semantic-based approach to organize peers in the
network.

PDMS Schema
represent.

Network
topology

Network
population Domains Multiple

communities
Neighborhood
search

Semantic
similarity
measure

Neighborhood
selection

OntSum Ontologies Unstructured Not empty
Predefined
semantic
domains

No

Flooding; first
short-distance
links, then
long-distance
links; inter-
cluster table

Semantic
similarity
measure
(ontology
matching)

Threshold

Sunrise

Generic
(Ontologies,
Relational,
XML)

Unstructured Empty
Non
existing
domains

Yes

Centralized
Access Point
Structure
(APS)
followed by
SCI

Semantic
distance
between
concepts
(clustroids)

Range-based
and kNN-
based
algorithms

Helios Ontologies Unstructured Not empty
Non
existing
domains

Yes Flooding Ontology
matching Threshold

�� � �� � � ���
��� � � ��� � � ��� � � � � �� � � ��� �� � ���

50

Concerning OntSum, the authors do not mention anything about the

ontology matching algorithm used in the system. A very simple and asymmetric

global measure is used to compute the semantic similarity between two peers’

ontologies. Moreover, it is hard to accept that peers in a PDMS share exactly

the same ontology, especially when the authors assume that peers’ ontologies

can differ in terms of structure and vocabulary. In this work, we propose a

symmetric global measure to determine the similarity between peer schemas

(ontologies). The measure is obtained as a result of an ontology matching

process which uses linguistic, structural, and semantics matchers.

Sunrise concentrates all efforts related to peer grouping in a centralized

structure called Access Point Structure (APS). The APS is an index structure in

which each entry contains the most representative concepts of a SON. Such

concepts are obtained from the peers that participate in the SON. In this sense,

the APS maintains a summarized representation of each SON available in the

network. Each time a new peer joins a SON, if it has at least one concept that is

not listed in the most representative concepts of the SON, then the APS needs

to be updated. The same occurs if a participating peer leaves the system. Thus,

the frequency of updates in the APS can be intense and consequently bring

scalability problems to the system.

A distinguishing feature of Helios with respect to the other PDMS is that

semantic communities are formed in an ad-hoc manner after peers are

connected to the system. Such approach enables the formation of dynamic

communities since no classification or set of semantic domains needs to be

available a priori. However, since the initial neighborhood of peers is defined

randomly then unrelated peers may become neighbors in the network.

Therefore, during the process of community formation many unrelated peers

can be accessed and unnecessary ontology matching comparisons may be

executed. The complete absence of any kind of centralized control does not

enable a community founder to verify the existing communities before starting

the formation of a new one. Thus, it is possible to coexist multiple communities

dealing with the same topic. To avoid these problems, we consider the use of

predefined semantic communities. Each community is initially empty and new

peers are added to the community as they join the system.

�� � �� � � ���
��� � � ��� � � ��� � � � � �� � � ��� �� � ���

51

3.6 Considerations
In this chapter, we have described Peer Data Management Systems (PDMS) and

two of its data management issues: schema mappings and query processing. We

have shown the importance of organizing peers in a PDMS overlay network

according to their semantics and the main challenges to achieve this goal. A

description of existing PDMS and a comparative analysis of them were also

provided. According to such comparison, we conclude that (i) none of the

discussed systems take advantage of the benefits provided by the mixed use of

P2P network topologies to facilitate the formation of semantic communities;

and (ii) ontologies are mostly used to represent peer exported schemas. In the

next chapter, we propose a PDMS in which ontologies are used in a broader

way to improve some of its main services. The overlay network of the proposed

PDMS is mainly designed to assist the connection of peers according to their

exported schema (i.e. an ontology).

�

 52

����� ����� �� ����� �� ����� �� ����� ���������

����
�����
�����
�����
��������������������� �
����� �
����� �
����� �
���������
�����
�����
�����
�������� ���� ���� ���� �

���������������������� �� ���� ���� �� ���� ���� �� ���� ���� �� ���� ������� ����� ����� ����� ��������

“The problems that exist in the world today cannot be solved

by the level of thinking that created them”

Albert Einstein

In this chapter we discuss how ontologies can be employed in a PDMS to

improve its main services. We describe an Ontology-based PDMS (OPDMS)

whose overlay network is mainly designed to assist the organization of peers

according to their exported schema (i.e. an ontology). Such description includes

an overview of the system’s architecture, the distinct types of peers as well as

their internal modules, and the different types of ontologies used in the system.

We also describe how schema mappings and query processing are handled in

the proposed OPDMS.

4.1 Ontology-based PDMS
An ontology typically provides a vocabulary describing a domain of interest

and a specification of the meaning of terms in that vocabulary. Ontologies are

viewed as the “silver bullet” for many applications [Fensel, 2004] such as, for

example, database integration, P2P systems, e-commerce, semantic web

services, and social networks.

�� � �� � � ���
���� � ���� ��� �� � � ��
�� �� ���� � � ��� � � ��� � � � � �� � � ��� �� � ��

53

Xiao [Xiao, 2006] has introduced the concept of OPDMS through two

important issues: (i) ontologies are used in local sources as a uniform

conceptual metadata representation; and (ii) ontology mappings are established

between peers’ ontologies to allow query processing. In this thesis, we argue

that ontologies may be used in a broader way to enhance PDMS services.

Considering that, we propose an extension to the original OPDMS description.

We define an OPDMS as a PDMS which is conceived for supporting dynamic

ontology-based knowledge sharing, and this knowledge must be employed to

improve its services [Pires et al., 2008]. Moreover, based on our analysis of the

state-of-the-art on PDMS presented in Chapter 3, we have identified a set of

high-level requirements that an OPDMS should fulfill:

R1) Exported schema representation: peer’s metadata should be mapped onto

an ontology description, using a common model;

R2) Global conceptualization: an ontology should represent a high-level view

over a set of heterogeneous peer exported schemas;

R3) Support for correspondences identification: an ontology may also be used

to assist the identification of correspondences between peer exported schemas,

i.e. between ontologies;

R4) Support for query processing: query answering in a PDMS may use a global

ontology in a twofold way: a) as a high-level view of the sources; and b) as a

terms’ reference for query reformulation between peers. The former is

concerned with query formulation, i.e. the user can formulate a query using the

global ontology without specific knowledge of the different data sources stored

in the peers. The latter is concerned with query reformulation, i.e. the query is

reformulated into a target query over other connected peers, according to the

defined correspondences among them;

R5) Semantic index: a semantic index can be built according to the main terms

or categories referring to a set of ontologies. Such index must enable efficient

location of peers;

R6) Semantic matching capabilities: a semantic matching component is needed

for matching ontologies in order to find out which concepts match in different

ontologies and (possibly) at which level. Such capability can be used for the

organization of peers in the network and the definition of semantic

correspondences between peers.

�� � �� � � ���
���� � ���� ��� �� � � ��
�� �� ���� � � ��� � � ��� � � � � �� � � ��� �� � ��

54

A system should take into account the previous requirements not only to

be considered an OPDMS, but also to take full advantage of using ontologies

for semantic enrichment. Table 4.1 illustrates the requirements fulfilled by the

three PDMS discussed in Chapter 3 (OntSum, Sunrise, and Helios). None of

them satisfies all the identified requirements. In this sense, we propose a new

OPDMS architecture satisfying all the requirements. Particularly, how the

requirements R1, R2, R3, R5, and R6 are satisfied by the OPDMS are discussed

throughout this work, while R4 is treated in more details in [Souza, 2009]. In

the following sections, we describe the proposed OPDMS.

Table 4.1. High-level requirements fulfilled by PDMS.

PDMS R1 R2 R3 R4 R5 R6

OntSum � � � � � �

Sunrise � � � � � �

Helios � � � � � �

SPEED � � � � � �

4.2 System Architecture
In this section, we propose an OPDMS, named SPEED (Semantic PEEr-to-Peer

Data Management System) [Pires, 2007a]. The system utilizes a mixed P2P

network topology: DHT [Stoica et al., 2001], super-peer [Yang and Garcia-

Molina, 2003], and unstructured [Freenet, 2009]. The strengths of such

topologies are exploited in order to assist peer organization in the network

according to their exported schemas. SPEED’s main goal is to cluster

semantically similar peers in order to facilitate the establishment of semantic

mappings between peers and, consequently, improve query processing on a

large number of data sources [Pires et al., 2009c]. Next, we present an overview

of the SPEED’s architecture.

4.2.1 Architecture Overview

A DHT network is used to link particular peers that represent a certain

knowledge domain. Peers are grouped according to their knowledge domain

(e.g. education and health), forming a semantic community. When a new peer

�� � �� � � ���
���� � ���� ��� �� � � ��
�� �� ���� � � ��� � � ��� � � � � �� � � ��� �� � ��

55

wishes to join the system, it has to find its corresponding knowledge domain.

Within a semantic community, peers are organized in a finer grouping level, i.e.

clusters. In other words, semantically similar peers are clustered in a super-peer

network considering their exported schemas.

As illustrated in Figure 4.1, three distinct types of peers are considered in

the proposed system: data peers, integration peers, and semantic peers. A data

peer is a simple computer or a server storing an autonomous data source. DPij1,

DPij2, and DPijk are examples of data peers.

Data peers are logically organized in a super-peer network. In this sense,

semantic clusters are formed according to data peers’ exported schema. Each

semantic cluster has a special type of peer named integration peer. In fact, an

integration peer is a data peer with higher computational capacity. It is

responsible for defining and maintaining schema mappings as well as for

managing query processing and data peer’s metadata. For instance, IPij is the

integration peer of the cluster formed by the data peers DPij1, DPij2, and DPijk.

Figure 4.1. An overview of the SPEED architecture.

A set of clusters sharing content belonging to a common knowledge

domain forms a semantic community. Each semantic community has a special

type of peer named semantic peer. SPi is an example of a semantic peer.

Semantic peers are connected through a DHT network, while integration peers

are connected through an unstructured network. Our approach assumes that an

�� � �� � � ���
���� � ���� ��� �� � � ��
�� �� ���� � � ��� � � ��� � � � � �� � � ��� �� � ��

56

integration peer names its respective cluster, while a semantic peer names its

corresponding semantic community (e.g. semantic cluster IPij and semantic

community SPi). The semantic community SPi is formed by the clusters IPi1,

IPi2, and IPij.

4.2.2 Architecture Formalization

In this section, we provide a formalization of some important concepts and

terminologies which are necessary to a complete understanding of the SPEED’s

architecture. Other important definitions are presented in Section 4.3.

Definition 1 (Data Peer). A data peer DPijk is a simple computer or a server

storing an autonomous data source, e.g. a relational database. The content

shared by a data peer is accessed through an exported schema. Such schema

provides access to the entire content available in its data source or only to a

portion of it.

Definition 2 (Integration Peer). An integration peer IPij is a distinguishing

data peer offering better computational resources in terms of availability,

network bandwidth, processing power, and storage capacity. Therefore, an IPij

is responsible for managing important tasks in the proposed PDMS, e.g. query

processing and data integration.

Definition 3 (Requesting Peer). A requesting peer RPn is a peer wishing to

join the system. To this end, a RPn must provide an exported schema. Once

connected, a RPn assumes the role of a data peer or an integration peer.

Definition 4 (Semantic Cluster). A semantic cluster CLij (cluster, for short)

corresponds to a logical set of data peers sharing semantically similar exported

schemas. One of the data peers in a semantic cluster CLij is necessarily an

integration peer IPij. A data peer DPijk participates in only one semantic cluster

CLij. Formally, CLij = {IPij, (DPij1,…,DPijk)}, where k is the number of data

peers in CLij; with k ≥ 0. If k = 0, then a semantic cluster CLij contains only an

integration peer IPij. For instance, at the moment a cluster is created.

Definition 5 (Semantic Community). A semantic community CMi (community,

for short) is a logical set of semantic clusters sharing content associated to a

common knowledge domain, e.g. education and health. Formally, CMi = {SPi,

(CLi1,…,CLij)}, where j is the number of semantic clusters in a semantic

community CMi; with j ≥ 1.

�� � �� � � ���
���� � ���� ��� �� � � ��
�� �� ���� � � ��� � � ��� � � � � �� � � ��� �� � ��

57

Definition 6 (Semantic Peer). A semantic peer SPi is a special type of peer

associated to a semantic community CMi. It acts as an entry point for its

semantic community. A SPi is responsible for forwarding a requesting peer to

an initial semantic cluster CLij. Such initial cluster is obtained from a semantic

index. Only one semantic peer is allowed per semantic community.

Definition 7 (Semantic Index). A semantic index is a structure located at a

semantic peer SPi describing the content available in the clusters (CLi1,…,CLij)

of a semantic community CMi. Each index entry represents an individual cluster

CLij and contains a pointer to the corresponding cluster. In short, a semantic

index stores the following information: (i) cluster summary: a summarized

representation of the schemas shared by the peers of a particular cluster CLij;

and (ii) cluster address: the network address of the corresponding integration

peer IPij. A semantic index is used to assist the connection of requesting peers.

Such process is detailed in Chapter 7.

Definition 8 (SPEED). SPEED is a Semantic-based PDMS composed of

multiple semantic communities. Formally, SPEED = {CM1,…,CMi}, where i is

the number of semantic communities; with i ≥ 1.

Definition 9 (Semantic Neighbor). Two distinct clusters CLij and CLik are

considered semantic neighbors (neighbors, for short) if they (i) belong to the

same community CMi; (ii) share semantically similar content; and (iii) are one-

distance neighbors in CMi’s overlay network. Particularly, the item (ii) is better

detailed in Chapter 7.

Definition 10 (Semantic Neighborhood). The set of semantic neighbors of a

cluster CLij composes the semantic neighborhood (neighborhood, for short) of

CLij and is denoted by Nij.

Definition 11 (Relevant Peer). Given that a query Q is being processed at an

integration peer IPij, each semantic neighbor of IPij or each data peer DPijk in

the corresponding cluster CLij that is capable of answering Q (integrally or

partially) is considered a relevant peer.

4.3 Ontologies in SPEED
In SPEED, ontologies are employed in many different ways. The semantic

knowledge, expressed by ontologies, is used as a way to enrich some important

PDMS services and provide users with more complete results. Since peers can

�� � �� � � ���
���� � ���� ��� �� � � ��
�� �� ���� � � ��� � � ��� � � � � �� � � ��� �� � ��

58

store heterogeneous data sources, ontologies are used as the system’s common

data model. Moreover, considering a cluster of semantically similar peers, an

ontology is used as a conceptual representation of the cluster to provide a

shared understanding of the terms that are being shared. Particularly, in this

work our main interest is in demonstrating how ontologies can be employed to

assist peer organization in the proposed OPDMS network.

In this sense, four distinct types of ontologies are employed (Figure 4.2):

(i) local ontologies, resembling the schema of the data sources stored in data

peers and integration peers; (ii) cluster ontologies, representing the schemas of

the peers in the semantic clusters; (iii) summarized cluster ontologies,

representing a cluster ontology in a succinct way; and (iv) community

ontologies, containing concepts and properties of a particular knowledge

domain. Next, we provide a formal definition of these types of ontologies.

Figure 4.2. The different types of ontologies used in SPEED.

Definition 12 (Local Ontology). A local ontology LOijk corresponds to the

exported schema describing the content shared by a data peer DPijk, an

integration peer IPij, or a requesting peer RPn.

Definition 13 (Cluster Ontology). A cluster ontology CLOij describes the

content available in a semantic cluster CLij. A CLOij is obtained by merging the

local ontologies (LOij1,...,LOijk) of the data peers in a semantic cluster CLij. It is

stored in an integration peer IPij which also maintains its local ontology LOij.

Definition 14 (Community Ontology). A community ontology CMOi is an

ontology describing the knowledge domain associated to a semantic community

CMi. A CMOi is stored at a semantic peer SPi.

�� � �� � � ���
���� � ���� ��� �� � � ��
�� �� ���� � � ��� � � ��� � � � � �� � � ��� �� � ��

59

Definition 15 (Summarized Cluster Ontology). A summarized cluster

ontology OSij corresponds to an abridged version of a cluster ontology CLOij.

An OSij is a subontology of CLOij containing the most relevant elements of

CLOij. The process of summarizing a cluster ontology is described in Chapter 6.

In order to describe the different types of ontologies employed in SPEED,

consider the setting illustrated in Figure 4.3 in which a semantic community is

composed of two clusters. Each cluster contains an integration peer and two

data peers. The setting is considered until the end of this chapter to explain the

main ontology management processes used in SPEED.

Figure 4.3. A setting of a semantic community containing two clusters.

In the described setting, the participating peers store content related to the

education knowledge domain and wish to share data about universities and the

corresponding activities occurring at them, e.g. given courses and publications.

Thus, assume that each participating peer shares an exported schema as follows:

Cluster 1 (CL11) Cluster 2 (CL12)
Integration Peer IP11 (Object-Relational Model)
Publication (Title, PublicationDate, isAuthoredBy)
Author (Name, EmailAddress, isAuthorOf)
Article (Pages) isA Publication

Integration Peer IP12 (Object-Oriented Model)
Student (StudName, EmailAddress)
GraduateStudent (advisor) isA Student
UndergraduateStudent (ConclusionYear) isA Student
Professor (ProfName, EmailAddress, advices)

Data Peer DP111 (Relational Model)
Researcher (ResID, FirstName, LastName, University)
Publication (PubID, Title, PubDate, Area, ResID)
Article (ArtID, FullPaper, PubID)
Book (BookID, ISBN, Chapters, Publisher, PubID)
Journal (PubID, Volume)
PublicationResearcher (PubID, ResID)

Data Peer DP121 (Object-Relational Model)
Course (CourseName) isA Work
Faculty (FacultyName, EmailAddress, isTeacherOf)
Student (StudentName, EmailAddress, takesCourse)
GraduateCourse (University) isA Course
Work (Manager)

Data Peer DP112 (Object-Oriented Model)
Proceedings (ProceedingName, hasPublication)
Author (AuthorName, EmailAddress, isAuthorOf)
Publication (Title, Pages, isAuthoredBy)
Conference (Name, Year, Area, hasProceeding)

Data Peer DP122 (Relational Model)
University (UnivID, UnivName, Homepage)
Faculty (FacID, FirstName, LastName, UnivID)
Student (StudID, StudentName, EmailAddress, UnivID,
FacID)

�� � �� � � ���
���� � ���� ��� �� � � ��
�� �� ���� � � ��� � � ��� � � � � �� � � ��� �� � ��

60

Moreover, consider that, before joining the system, the participating peers

have built an ontological description resembling the structure of their exported

schemas. In other words, each peer has translated its exported schema,

originally described in its data source metadata model, onto a Local Ontology

(LO). Such translation is needed because data sources can be heterogeneous.

For the sake of correct query processing, the translation must preserve the

structure and the integrity constraints (e.g. relational foreign keys) originally

expressed on the exported schemas.

Figure 4.4 depicts the local ontologies of participating peers. All

ontologies in this section are represented in OWL [Smith et al., 2004] and

depicted using the OntoViz (Protégé plug-in) notation6. In order to simplify the

example, properties are not exhibited.

Figure 4.4. Local ontologies of participating peers.

In SPEED domain ontologies are used as a semantic reference at the

community level. A Community Ontology (CMO) is a domain ontology

offered by a semantic peer which is used as a semantic reference by all current

clusters within the corresponding community. In our setting, we have

considered the community ontology (UnivCSCMO.owl) described in the

Appendix A.

6 http://protege.cim3.net/cgi-bin/wiki.pl?OntoViz#nid6CS

�� � �� � � ���
���� � ���� ��� �� � � ��
�� �� ���� � � ��� � � ��� � � � � �� � � ��� �� � ��

61

A Cluster Ontology (CLO) is obtained by merging the local ontologies of

the peers participating in a particular cluster. In fact, a cluster ontology acts as

a shared vocabulary inside a semantic cluster, inter-relating semantically

similar ontological concepts. In our setting, considering the local ontologies of

participating peers (Figure 4.4), we have the following two cluster ontologies

diagrammed in Figure 4.5.

Figure 4.5. The cluster ontologies of Cluster 1 and Cluster 2.

To assist the connection of requesting peers, each cluster ontology is

represented as a Summarized Cluster Ontology (OS). The summaries are kept

at the semantic index of a semantic peer. Figure 4.6 depicts the summarized

cluster ontologies corresponding to the cluster ontologies of our example.

Figure 4.6. The summarized cluster ontologies of Cluster 1 and Cluster 2.

Ontologies are handled by appropriate modules located at the peers. In the

following section, we detail the internal modules of each type of peer.

�� � �� � � ���
���� � ���� ��� �� � � ��
�� �� ���� � � ��� � � ��� � � � � �� � � ��� �� � ��

62

4.4 Peer Internal Modules
In the previous sections, we have seen that three types of peers are considered

in SPEED: data peers, integration peers, and semantic peers. Since they can

assume distinguishing roles in the system, they have different internal modules.

Moreover, each module can be subdivided into several components as described

in what follows.

4.4.1 Data Peer

A data peer is presumed to be any kind of peer (e.g. a simple computer or a

server) which can frequently connect and disconnect from the P2P network. In

fact, a data peer corresponds to a data source whose content is shared with other

data peers through the establishment of semantic mappings. As illustrated in

Figure 4.7, a data peer is composed of several modules and components.

Figure 4.7. The internal modules of a data peer.

� Peer-to-Peer Layer: used for communication with an integration peer;

� User Interface / Data Management API: represents an interface for users to

submit queries according to their exported schema;

� Connectivity Manager: responsible for managing data peer connectivity in

the system. In a data peer, this module is composed of only one component:

�� � �� � � ���
���� � ���� ��� �� � � ��
�� �� ���� � � ��� � � ��� � � � � �� � � ��� �� � ��

63

� Ontology Translator: translates the exported schema originally described

using the data source metadata model to an ontology metadata model. As

output, this component produces a local ontology along with local

correspondences between elements of the exported schema and the local

ontology.

� Data Manager: provides access to the content available in a data source

through the exported schema. This module is subdivided into two

components:

� Wrapper: translates user queries from the common query language to the

data source query language, and vice-versa. Such component is also

responsible for translating query results from the source data model to

the common data model adopted in the system, i.e. to an ontology

metadata model;

� Data Source: a data repository containing the content available in a data

peer, e.g. a relational database. Only the content described by the

exported schema can be accessed by the other peers in the network.

� Query Manager: responsible for managing user queries (i) submitted at the

data peer or (ii) received from an integration peer. The participation of a

data peer in query processing is discussed in Section 4.7. In a data peer, the

query manager module is composed of only one component:

� Query Processor: processes user queries at the data peer.

� Knowledge Base: stores an exported schema, a local ontology, and the local

correspondences between them. Also, it maintains information (e.g. network

address) used for communicating with its corresponding integration peer.

4.4.2 Integration Peer

The internal modules of data peers and integration peers are basically the same.

However, when a peer acts as a data peer, some modules (those associated to an

integration peer) are disabled. Since an integration peer is also a data peer, it

may also store a data source. Thereby, its shared content is also considered

during query processing. The internal modules of an integration peer are

depicted in Figure 4.8.

In addition to the specific modules of a data peer described previously, the

other modules of an integration peer include:

�� � �� � � ���
���� � ���� ��� �� � � ��
�� �� ���� � � ��� � � ��� � � � � �� � � ��� �� � ��

64

� Peer-to-Peer Layer: provides communication with (i) data peers in the same

cluster; (ii) other integration peers in the same community; (iii) its

corresponding semantic peer; and (iv) requesting peers;

Figure 4.8. The internal modules of an integration peer.

� Knowledge Base: stores a cluster ontology, an exported schema, a local

ontology, and the local correspondences. Besides, it contains semantic

mappings which are essential for query processing. The knowledge base also

maintains information (e.g. network address) for communicating with data

peers, integration peers (i.e. the semantic neighbors), semantic peer, and

requesting peers;

� Query Manager: responsible for managing user queries formulated (i) at an

integration peer; (ii) received from the data peers; or (iii) received from

other integration peers. The participation of an integration peer in query

processing is discussed in Section 4.7. In an integration peer, the query

manager module is subdivided into the following components:

� Query Processor: processes user queries at the integration peer. It also

determines the relevant peers to which a query must be sent;

�� � �� � � ���
���� � ���� ��� �� � � ��
�� �� ���� � � ��� � � ��� � � � � �� � � ��� �� � ��

65

� Query Reformulator: reformulates a user query in such a way that the

same query can be executed in data peers and other integration peers

according to the terminology of their respective ontologies;

� Data Integrator: integrates query results returned from data peers and

other integration peers;

� Cache Manager: maintains the local data cache of an integration peer.

� Connectivity Manager: manages integration peer connectivity in the

network. It is responsible for assisting the connection of requesting peers

and the disconnection of participating data peers. Since exported schemas

are represented as ontologies peer connectivity is assisted by ontology

processes, e.g. matching and merging. Thus, in an integration peer, this

module is subdivided into the following components:

� Ontology Matcher: automatically matches two peer ontologies and

returns (i) an ontology alignment and (ii) a semantic similarity measure

between the two (peer) ontologies. The matched ontologies can be a

cluster ontology and a requesting peer’s local ontology. In this case, the

matching process determines if a requesting peer is able to join a cluster.

The matched ontologies can also be two cluster ontologies. In this case,

the matching process determines if two clusters are (still) semantic

neighbors in the network. This component is detailed in Chapter 5;

� Ontology Merger: takes as input an ontology alignment as well as the

associated ontologies. As a result, it automatically produces a merged

ontology containing the elements of both input ontologies as well as

semantic correspondences between them;

� Ontology Summarizer: automatically produces a summarized version of a

cluster ontology. This component is invoked whenever a cluster ontology

is modified. For instance, when a requesting peer joins a cluster. Its

specification and implementation is detailed in Chapter 6;

� Ontology Manager: updates a cluster ontology whenever a data peer

disconnects from a cluster. The component removes from the cluster

ontology the elements which were shared only by the disconnected data

peer. Moreover, it eliminates the associated semantic correspondences.

Considering that a data peer can reconnect to the same cluster, the

�� � �� � � ���
���� � ���� ��� �� � � ��
�� �� ���� � � ��� � � ��� � � � � �� � � ��� �� � ��

66

information is logically deleted. Physical deletion only occurs after a

certain time interval.

4.4.3 Semantic Peer

A semantic peer acts as a knowledge (ontologies and metadata) server in the

peer hierarchy offering a community ontology. Since a semantic peer does not

store a data source, it does not participate in query processing. As illustrated in

Figure 4.9, a semantic peer is composed of several modules and components

described as follows.

Figure 4.9. The internal modules of a semantic peer.

� Peer-to-Peer Layer: used for communication with (i) integration peers in the

same community; (ii) other semantic peers; and (iii) requesting peers;

� Knowledge Base: stores a community ontology and a semantic index. Both

structures are used as auxiliary information during the connection of

requesting peers;

� Connectivity Manager: responsible for assisting the connection of

requesting peers and updating the semantic index. In a semantic peer, this

module is composed of a single component:

� Ontology Matcher: matches a requesting peer’s local ontology against

the summarized cluster ontologies available at the semantic index.

4.5 Architectural Considerations
In SPEED, the connection of requesting peers starts by the DHT network. Such

network is used to facilitate resource discovery by assisting requesting peers to

�� � �� � � ���
���� � ���� ��� �� � � ��
�� �� ���� � � ��� � � ��� � � � � �� � � ��� �� � ��

67

“easily” find a semantically related community. DHT networks are

characterized by efficient searches and sensibility to changes in their structure.

They usually work with some kind of pointer tables, pointing to peers “closer”

to the desired data. These pointer tables need to be updated at each connection

and disconnection of a peer. Thus, SPEED’s DHT network is only composed of

semantic peers, i.e. peers with high reliability, network bandwidth, and

availability. Excluding dynamic peers from the DHT network avoids

unnecessary maintenance costs. In addition, the DHT network helps to forward

requesting peers to corresponding communities which are more likely to be

achieved with a smaller number of hops.

In cluster-based architectures, if a peer participates in more than one

cluster, inefficiencies can be introduced [Vdovjak et al., 2006]. For example, a

query can be answered by all the clusters that include the (redundant) peer,

resulting in duplication of query results and in an increase of communication

effort. Therefore, in SPEED a peer takes part in only one cluster of a given

semantic community.

If unrelated peers are neighbors in the network then semantic mappings

can be incorrect or inconsistent. Clustering peers according to their exported

schema (i.e. local ontology) provides an environment that is better suited to the

establishment of schema mappings. Besides, as each integration peer maintains

a description of its attached data peers, query routing is easily carried out.

Furthermore, the physical heterogeneity of participating peers is also exploited

in the selection of integration peers.

The construction of semantic clusters representing multiple data peers

allows queries to navigate only among cluster ontologies, i.e. integrated

schemas. A query received by an integration peer is processed in the relevant

data peers inside the corresponding cluster. In this way, query results are more

precise, since they come from semantically similar peers. Moreover, these peers

receive a query version that has not been successively reformulated multiple

times, and most importantly, through a cluster ontology that is as lossless as

possible in terms of semantics. Therefore, the query that the integration peers

receive is not degraded so much as it is through multiple successive

reformulations [Tatarinov and Halevy, 2004; Kantere et al., 2009].

�� � �� � � ���
���� � ���� ��� �� � � ��
�� �� ���� � � ��� � � ��� � � � � �� � � ��� �� � ��

68

Due to the different (and possibly numerous) cluster ontologies available

in a semantic community, starting the search for a semantically similar cluster

in an ad-hoc manner can be too costly in terms of time and network bandwidth.

Ideally, the search should begin at a promising cluster and continue through

other semantically similar clusters until a certain limit is reached. This strategy

increases the probability that a requesting peer will quickly find a semantically

similar cluster. In this sense, the basic idea is to search for the cluster that is

probably more semantically similar to the requesting peer. To this end, a

summarized version of each cluster ontology is used as an entry in a semantic

index. We assume that a summary does not represent a cluster ontology in its

entirety. Therefore, an initial cluster does not necessarily means the cluster to

which a requesting peer will be connected. In the following sections, we

describe how schema mappings and query processing are handled in SPEED.

4.6 Schema Mapping
Since exported schemas are represented by ontologies, schema mappings in

SPEED are also named semantic mappings or ontology mappings. Semantic

mappings describe the correspondences between elements of two distinct

ontologies. According to the type of ontologies, semantic mappings can be

subdivided into cluster-to-local mappings and cluster-to-cluster mappings.

Cluster-to-local mappings are semantic mappings between a cluster

ontology and a local ontology. They are created when a requesting peer joins a

cluster as a data peer and are removed when a data peer disconnects from a

cluster. These mappings are stored at integration peers.

Cluster-to-cluster mappings are semantic mappings between the cluster

ontology of two integration peers (semantic neighbors). They are created when

a new cluster is formed. In this case, cluster-to-cluster mappings are defined

between the new cluster and its corresponding semantic neighbors. They are

updated when a cluster ontology is modified. In general, a cluster ontology is

modified when a data peer joins a cluster, or a data peer (or integration peer)

leaves the cluster. Such modification is needed to reflect the content shared in

the referred cluster. Cluster-to-cluster mappings between any two clusters are

stored at both integration peers.

�� � �� � � ���
���� � ���� ��� �� � � ��
�� �� ���� � � ��� � � ��� � � � � �� � � ��� �� � ��

69

4.7 Query Processing
In SPEED, queries can be posed and answered by data peers and integration

peers. They are formulated according to the peer’s exported schema and

internally translated into the common query model. A query is disseminated

only among the clusters of the semantic community where it was posed.

Semantic peers do not participate in query processing. Consequently, if a query

is submitted at a particular semantic community the query is not forwarded to

other communities. During the navigation, a query is reformulated according to

previously established semantic mappings. Integration peers are responsible for

integrating query results received from its data peers and other integration

peers.

To better explain how query processing is handled in SPEED, consider

again the setting described in Figure 4.3 containing one semantic community

and two clusters. Assume that queries and exported schemas are represented in

a common data model. Suppose that a query Q1 is submitted at the data peer

DP111 (Figure 4.10). In this case, Q1 is translated into a query Q1’ described in

the common query model. Afterwards, Q1’ is sent to its corresponding

integration peer IP11 in order to be propagated in the community. In parallel, Q1

is executed at the data peer DP111 and the query result (R1) is sent to the

integration peer IP11 to be integrated with other query results possibly received

from other clusters.

Figure 4.10. An example of query processing in SPEED.

Once the integration peer IP11 receives Q1’, it uses its semantic mappings

to identify relevant peers for Q1’. In the example, assume that the relevant peers

are the data peer DP112 as well as the integration peers IP11 and IP12. Thus, Q1’

�� � �� � � ���
���� � ���� ��� �� � � ��
�� �� ���� � � ��� � � ��� � � � � �� � � ��� �� � ��

70

is reformulated into the queries Q2 and Q3 and forwarded to IP12 and DP112,

respectively. Particularly, Q1’ is executed at IP11 where the corresponding query

result will be integrated with the ones obtained from DP111, DP112, and IP12.

Assume that IP12 has identified DP122 and IP12 as relevant peers (DP121 is not

relevant). Thus, Q2 is reformulated into Q4 and forwarded only to DP122.

When the reformulated query Q3 arrives at the data peer DP112, Q3 is

executed at the data source and the query result (R3) is returned to the

integration peer IP11 for data integration. Similarly, the data peer DP122

executes Q4 in its local data source and returns its query result (R4) to the

integration peer IP12. At IP12, the query result R3 is integrated with the one of

IP12 and returned to IP11.

At the integration peer IP11, the query results R1’, R2, and R3 are

integrated. The final query result (R) is then returned to the data peer DP111

where the initial query Q1 was posed. At DP111, the integrated query result is

finally presented to the user who has formulated Q1.

4.8 Comparative Analysis of SPEED and Related PDMS
In this section, we present a comparative analysis between SPEED and the three

PDMS discussed in Chapter 3 (OntSum, Sunrise, and Helios). Similarly to

SPEED, all of them employ a semantic-based approach to organize peers in

their corresponding network. The comparison is illustrated in Table 4.2 which

extends Table 3.1 with new a line summarizing SPEED.

Table 4.2. A comparison of PDMS employing a semantic-based approach to organize peers in the
network (including SPEED).

PDMS Schema
Repres.

Network
Topology

Network
Population Domains

Multiple
Communities
or Clusters

Neighborhood
Search

Semantic
Similarity
Measure

Neighborhood
Selection

OntSum Ontologies Unstructured Not empty
Predefined
semantic
domains

No

Flooding; first
short-distance
links, then long-
distance links;
inter-cluster
table

Semantic
similarity
measure
(ontology
matching)

Threshold

Sunrise

Generic
(Ontologies,
Relational,
XML)

Unstructured Empty
Non
existing
domains

Yes

Centralized
Access Point
Structure (APS)
followed by SCI

Semantic
distance
between
concepts
(clustroids)

Range-based
and kNN-
based
algorithms

Helios Ontologies Unstructured Not empty
Non
existing
domains

Yes Flooding Ontology
matching Threshold

SPEED Ontologies

Mixed
(DHT,
unstructured
and super-
peer)

Empty
Predefined
semantic
domains

No

Mixed
(semantic
index and
flooding)

Ontology
matching Threshold

�� � �� � � ���
���� � ���� ��� �� � � ��
�� �� ���� � � ��� � � ��� � � � � �� � � ��� �� � ��

71

Except for Sunrise in which semantic similar peers are discovered through

a centralized index (APS), all the other systems use a flooding strategy for such

task. Particularly, the flooding strategy of OntSum first tries to find out similar

peers using short-distance links and then long-distance links. In SPEED, a

mixed search strategy is used to discover semantically similar peers. First,

requesting peers search for a corresponding community in a DHT network. If

such community is found, then a semantic index is used to forward a requesting

peer to an initial cluster where a flooding strategy is employed to discover a

semantically similar cluster (if it exists). The search strategy used in SPEED is

detailed in Chapter 7. Differently from Sunrise, the semantic index proposed in

SPEED cannot be seen as a structure that fully controls peer connectivity in the

system. Instead, its goal is only to provide a promising initial cluster to a

requesting peer. Moreover, in SPEED the frequency of index updates is

minimized since summarized cluster ontologies contain the most frequent

concepts of a cluster which are not constantly modified.

In Sunrise, the similarity between peers is calculated using the peer’s

representative concepts. Differently, the other two systems (Helios and

OntSum) use ontology matching functions for the same task. Particularly, the

ontology matching algorithm of Helios (H-Match) does not produce a global

similarity measure between two (peer) ontologies. Besides, only a fragment of

the peers’ ontologies is considered during the member identification phase.

Concerning OntSum, although a global similarity measure is employed, such

measure is obtained through a simple and asymmetric function. Similarly to

OntSum, SPEED uses an ontology matching function to produce a symmetric

global similarity measure. Such function considers the complete peers’

ontologies as well as the linguistic, structural, and semantic characteristics of

the ontology elements. The ontology matching function used in SPEED is

detailed in Chapter 5.

4.9 Considerations
In this chapter, we have proposed SPEED, a semantic-based PDMS whose

overlay network is mainly designed to assist peer connection. We have also

described the three types of peers (data peers, integration peers, and semantic

�� � �� � � ���
���� � ���� ��� �� � � ��
�� �� ���� � � ��� � � ��� � � � � �� � � ��� �� � ��

72

peers), their internal modules, and the different types of ontologies used in the

system (local ontologies, cluster ontologies, and community ontologies).

In the following chapters we detail the SPEED features specified in this

work. In Chapter 5, we propose a global similarity measure between ontologies.

The measure is obtained as a result of a semantic-based ontology matching

process and is used to determine the similarity between peers in SPEED. In

Chapter 6, we propose an automatic process to summarize cluster ontologies.

The summaries are used to improve the ontology matching process. Instead of

matching local ontologies against cluster ontologies which can be large in terms

of the quantity of concepts, we match against their corresponding summaries. In

Chapter 7, we propose an incremental process for clustering requesting peers

into semantic clusters. The basic idea is to put together in the overlay network

peers sharing semantically similar schemas. The clustering process makes use

of the matching and summarization processes.

�

 73

����� ����� �� ����� �� ����� �� ����� ���������

�������������������������������� ������������������������ �
����� �
����� �
����� �
���������
�����
�����
�����
�

����� ����� � �� ����� � �� ����� � �� ����� � ���������
� �����
� �����
� �����
� � ������������������������������������

“Do not add days to your life but life to your days”

Harry Benjamin

In this chapter, we present SemMatch, a semantic-based ontology matching

process [Pires et al., 2009b]. Basically, the process takes as input two (peer)

ontologies and returns an ontology alignment as well as a global similarity

measure between them. The resulting correspondences are generated as a

combination of linguistic, structural and semantic alignments produced by

existing ontology matching tools. Each correspondence in the resulting

alignment is associated with (i) a combined similarity value which expresses the

level of confidence between the elements; and (ii) the semantic relationship

(e.g. equivalence and subsumption) between them.

In a PDMS such as SPEED in which peers are organized within semantic

clusters according to their local ontologies, a global measure is needed for

clustering semantically similar peers. Such global measure represents the

overall similarity degree between two peer ontologies (and not only between

their elements!). The measure is computed using the correspondences generated

by our ontology matching process. To clarify matters, in this chapter we present

a case study illustrating how the measure can be used. We also provide an

experimentation of the ontology matching process with some obtained results.

�� � �� � � ���
��� ��� � �� ��� ��� �� � � ��
�� �� ��
� �
�
� � ��� � �� �� � ���
�� ����

74

5.1 Introduction
Traditional approaches to ontology matching mainly rely on linguistic and/or

structural techniques. As a result, over the last years a high number of tools that

employ a combination of these approaches have been developed [Aumüller et

al., 2005; Castano et al., 2006; Hu and Qu, 2008]. However, there are cases in

which linguistic and structural approaches fail to figure out relevant

correspondences between ontology elements. In such cases, these approaches

can be complemented by the semantic approach [Reynaud and Safar, 2007].

Besides producing a similarity value for each correspondence, semantic

matching techniques are capable of identifying the semantic relationship (e.g.

equivalence and subsumption) between ontology elements. To this end, they

employ different kinds of solutions, e.g. a domain ontology or a thesaurus.

Although semantic matching techniques can improve an ontology matching

process they are still rarely exploited in the literature and thus only a few tools

[Giunchiglia et al., 2004] implement semantic matchers.

In this work, in order to determine the correspondences between ontology

elements we use the semantic matcher proposed in [Souza, 2009]. Such matcher

has been developed as part of the SPEED’s project and therefore its description

is useful to understand the proposed ontology matching process. Basically, in

such matcher, the identification of correspondences between the elements of a

source ontology with elements of a target one is assisted by a domain ontology

which is used as background knowledge [Sabou et al., 2006]. The basic idea is

to first align the elements from both input ontologies with the corresponding

domain ontology and then use the existing relationships of such domain

ontology in order to derive semantic correspondences between the source and

target ontologies’ elements.

5.2 A Motivating Scenario
In SPEED, the task of clustering peers consists in grouping semantically similar

peers into a semantic community and then into semantic cluster. To this end, a

global similarity measure between peer ontologies is useful in several situations

that characterize peer clustering. For instance, a global measure is needed to

indicate (i) the initial cluster for a requesting peer from which it will start the

�� � �� � � ���
��� ��� � �� ��� ��� �� � � ��
�� �� ��
� �
�
� � ��� � �� �� � ���
�� ����

75

search for a similar cluster; (ii) the semantic similarity between a requesting

peer and a cluster; and (iii) the semantic neighbors of a cluster.

Considering such situations, we introduce a motivating scenario that

reproduces the situation (ii) enumerated above. The scenario is used throughout

the chapter and considers three peers: Pi, Pj, and Pk (Figure 5.1). All peers

belong to the Education knowledge domain. Assume that Pi is an integration

peer and Pj is a requesting peer. Moreover, consider that Pi and Pj have

complementary data about academic people and their works (e.g. Research)

from different institutions. The integration peer Pi is described by the cluster

ontology Oi (Semiport.owl). The requesting peer Pj is described by the local

ontology Oj (UnivBench.owl). Both are public ontologies which are available

for download on the Web7,8. In addition, assume that Pk is a semantic peer

offering a Domain Ontology (DO) as background knowledge. The domain

ontology corresponds to a community ontology and is named UnivCSCMO.owl.

Figure 5.1. A motivating scenario for matching ontologies in SPEED.

Figure 5.2 shows excerpts from the three ontologies using OWLViz9, a

Protégé plug-in. A description of the ontologies UnivBench.owl, Semiport.owl,

and UnivCSCMO.owl is provided in the Appendix A. Given the motivating

scenario, we are interested in obtaining the semantic similarity between Pi and

Pj in order to determine if Pj should join Pi’s cluster. To this end, the ontologies

7 http://ontoware.org/frs/download.php/18/semiport.owl
8 http://www.lehigh.edu/~zhp2/2004/0401/univ-bench.owl
9 http://www.co-ode.org/downloads/owlviz/

�� � �� � � ���
��� ��� � �� ��� ��� �� � � ��
�� �� ��
� �
�
� � ��� � �� �� � ���
�� ����

76

Oi (cluster ontology), Oj (local ontology), and DO (domain ontology) are

considered.

Figure 5.2. Excerpts from the ontologies of O i, Oj, and DO. All of them belong to the

Education knowledge domain.

To simplify matters, we assume that both ontologies Oi and Oj have been

normalized [Rahm and Bernstein, 2001] to a uniform representation format

according to the terms of the DO. In other words, element names from Oi and Oj

have been adjusted to become compatible with the element names found in the

DO. For instance, the concept GraduateStudent in the ontology Oj has been

obtained from the original concept label (GradStud).

In the following section, we provide an overview of the semantic matcher

used in the proposed ontology matching process. Basically, we enumerate the

rules that can be applied to identify the semantic correspondences between

ontology elements. The semantic matcher is not a contribution of this work and

is described to facilitate the understanding of the proposed ontology matching

process.

5.3 Using a Domain Ontology to Define Semantic
Correspondences

Domain Ontologies (DO) contain concepts and properties of a particular

knowledge domain and may be used as background knowledge in some

important tasks. Particularly, we consider DO as reliable references that are

available on the Web. In our scenario, a DO is used to bridge the conceptual

�� � �� � � ���
��� ��� � �� ��� ��� �� � � ��
�� �� ��
� �
�
� � ��� � �� �� � ���
�� ����

77

differences or similarities between ontologies belonging to an integration peer

(cluster ontology) and a requesting peer (local ontology).

In this sense, first concepts and properties from the two peer ontologies

are mapped to equivalent concepts/properties in the DO and then their semantic

correspondence is inferred based on the existing semantic relationship between

the DO elements. Figure 5.3 shows an overview of the approach for specifying

the semantics of the correspondences between peer ontologies. In this overview,

Oi:x ≡ DO:k and Oj:y ≡ DO:z. Since k is subsumed by z in the DO, it is inferred

that the same relationship occurs between x and y. Then, it is concluded that x

in Oi is subsumed by y in Oj, denoted by Oi.x Oj.y.

Figure 5.3. Specifying semantic correspondences between peer ontologies [Souza, 2009].

According to [Souza, 2009], a semantic correspondence can be one of the

following expressions:

1. Oi:x Oj:y, an isEquivalentTo correspondence

2. Oi:x Oj:y, an isSubConceptOf correspondence

3. Oi:x Oj:y, an isSuperConceptOf correspondence

4. Oi:x Oj:y, an isPartOf correspondence

5. Oi:x Oj:y, an isWholeOf correspondence

6. Oi:x Oj:y, an isCloseTo correspondence

7. Oi:x Oj:y, an isDisjointWith correspondence

where x and y are elements (i.e. concepts or properties) belonging to one

ontology Oi and another ontology Oj respectively representing two semantic

neighbor peer ontologies.

�� � �� � � ���
��� ��� � �� ��� ��� �� � � ��
�� �� ��
� �
�
� � ��� � �� �� � ���
�� ����

78

Considering the motivating scenario introduced in Section 5.2, in order to

identify the semantic correspondences between Oi and Oj, first the semantic

matcher finds out the equivalences between concepts of Oi and concepts in the

DO, and the equivalences between concepts of Oj with their related ones in the

DO. Then, the set of rules described in this section are applied. As a result, the

set of semantic correspondences between Oi and Oj are identified. Examples of

this set concerning the concept Faculty (from Oi) with some related concepts in

Oj are presented in Table 5.1.

Table 5.1. Some semantic correspondences between Oi and Oj.

Correspondences for Oi:Faculty

Oi:Faculty Oj:Faculty
Oi:Faculty Oj:Worker
Oi:Faculty Oj:Professor

Oi:Faculty Oj:PostDoc
Oi:Faculty Oj:Assistant
Oi:Faculty Oj:AdministrativeStaff

In this illustrative set, the equivalence correspondence between Faculty in

Oi and Oj can be seen. Equivalence is an example of a commonly identified

correspondence type in traditional ontology matching approaches. On the other

hand, one can see that, taking into account the semantics underlying the DO, it

is possible to identify other unusual correspondences. In this fragment, Faculty

has been identified as: (i) sub-concept of Worker; (ii) super-concept of

Professor and PostDoc; and (iii) close to Assistant and AdministrativeStaff.

5.4 SemMatch: a Semantic-based Ontology Matching Process
SemMatch is an ontology matching process that brings together a combination

of already defined strategies with the semantic-based approach previously

described. It is based on a composition strategy [Euzenat and Shvaiko, 2007]

where linguistic-structural and semantic matchers are executed in parallel, and

their individual similarity values are aggregated into combined similarity ones.

As depicted in Figure 5.4, SemMatch receives as input two matching ontologies

– Oi and Oj, as well as a domain ontology DO to be used as background

knowledge. As output, it may produce one or two alignments (ACO and/or Aij),

according to the following two possible objectives in the process instantiation:

� Generating only the alignment ACO: this option corresponds to Phase 1.

The global similarity measure is not calculated. Only the resulting set of

correspondences identified by the linguistic-structural and semantic

matchers is considered. In this set, a correspondence is defined between an

�� � �� � � ���
��� ��� � �� ��� ��� �� � � ��
�� �� ��
� �
�
� � ��� � �� �� � ���
�� ����

79

element e i ∈ Oi and some matching elements e1,…,ej ∈ Oj, considering the

kind of semantic correspondence between them and its respective similarity

value. Such alignment is useful for query processing purposes [Souza,

2009];

� Calculating the global similarity measure: in this option, Phases 1 and 2

are performed, i.e. both alignments ACO and Aij are generated. In order to

generate Aij, the correspondences in ACO are ranked according to the

combined similarity value and a filter strategy is applied to select the most

suitable correspondences. Each correspondence in Aij is defined between an

element ei ∈ Oi and its best matching element ej ∈ Oj, i.e. the element ej

having the highest similarity value with ei. Based on the identified similarity

value of each correspondence, the global measure is calculated.

Linguistic-Structural
Matching

(any matcher)
ALS

Semantic
Rules

Application

Similarity
Combination

1

3

Semantic Matching

2

ASE

Weights

Correspondence
Ranking

4
Correspondence

Selection Aij

Ontology Oi

Ontology Oj

Domain Ontology

5
ACO

Phase 1 Phase 2

Figure 5.4. The general ontology matching process.

The main steps carried out by the semantic-based ontology matching

process are described in the following.

Linguistic-Structural Matching

Since there are many available linguistic and structural matchers, we

assume that any existing ontology matching tool including such category of

matchers can be used. In SemMatch, the linguistic and structural matchers are

handled as a hybrid matcher, i.e. as a fixed combination of simple matchers.

The combination of their similarity values depends on the composition strategy

of the ontology matching tool that has been used. The alignment produced by

�� � �� � � ���
��� ��� � �� ��� ��� �� � � ��
�� �� ��
� �
�
� � ��� � �� �� � ���
�� ����

80

the hybrid matcher is denoted by ALS. A correspondence in ALS is a 3-tuple

stated as �ei, ej, n�. Figure 5.5 illustrates the overall process instantiation for the

two ontologies Oi and Oj described in Section 5.2. To simplify, only a limited

number of linguistic-structural correspondences are shown in Figure 5.5a.

Among them, for instance, the similarity value generated by the hybrid matcher

for the pair of elements (UndergraduateStudent, Monitor) is 0.30.

Figure 5.5. An example of the ontology matching process.

Semantic Matching

A new kind of semantic matcher is proposed. Basically, such matcher uses

a domain ontology as background knowledge and applies a set of semantic rules

to derive the type of semantic correspondence for Oi and Oj elements, as

explained in Section 5.3. Each type of semantic correspondence is associated

with a given weight which corresponds to the level of confidence of such

correspondence. The alignment generated by the semantic matcher is denoted

by ASE. A correspondence in ASE is a 4-tuple stated as �ei, ej, r, n�. Figure 5.5a

illustrates some semantic correspondences for the two ontologies of our

example. For instance, the semantic matcher has identified that the elements

UndergraduateStudent and Monitor are related by the semantic correspondence

�� � �� � � ���
��� ��� � �� ��� ��� �� � � ��
�� �� ��
� �
�
� � ��� � �� �� � ���
�� ����

81

isSuperConceptOf. The semantic correspondences have received the following

weights: isEquivalentTo (1.00), isSubConceptOf (0.80), isSuperConceptOf

(0.80), isPartOf (0.30), isWholeOf (0.30), isCloseTo (0.70), and isDisjointWith

(0.00). The weights are attributed according to the semantic relevance of each

correspondence. For instance, the semantic similarity value of

(UndergraduateStudent, Monitor) is 0.80.

Similarity Combination

For each correspondence, the individual similarity values produced by the

hybrid matcher and the semantic matcher are associated in a combined

similarity one. The combined value is obtained through a weighted average of

the similarity values generated by the individual matchers. The weights are

attributed according to the relevance of each matcher. The combined alignment

set generated in this step is denoted by ACO. A correspondence in ACO is a 4-

tuple stated as �ei, ej, r, n�.

A weighted average is used because matchers may produce opposing

similarity values. For example, a linguistic matcher can find a low similarity

value for two elements because their labels are completely different. On the

other hand, a semantic matcher can detect that the same elements are related by

a strong relationship (e.g. equivalence) and assign a high similarity value.

Regarding our example, the similarity values generated by the hybrid and the

semantic matchers for the pair of elements (UndergraduateStudent, Monitor)

are 0.30 and 0.80, respectively. We assume that the weights associated to the

hybrid and semantic matchers are 0.4 and 0.6, respectively. Thus, the combined

similarity value produced for the pair (UndergraduateStudent, Monitor) is 0.60

(Figure 5.5b). Since we are interested in obtaining the global measure, the

matching example continues in the next steps.

Correspondence Ranking

The correspondences involving each element of Oi are ranked (in

descending order) based on the combined similarity values. In Figure 5.5c, the

Oi element UndergraduateStudent is ranked in descending order according to

the Oj elements Monitor, GraduateStudent, and Student.

�� � �� � � ���
��� ��� � �� ��� ��� �� � � ��
�� �� ��
� �
�
� � ��� � �� �� � ���
�� ����

82

Correspondence Selection

Finally, a filter strategy is applied to choose the most suitable

correspondence for each Oi element. The strategy consists in selecting the

correspondence with the highest combined similarity. Such decision represents

the natural choice to guarantee at most one correspondence per Oi and Oj

element. As a result of this step, an alignment Aij is generated. A

correspondence in Aij is a 4-tuple: �ei, ej, r, n�. In Figure 5.5c, for the concept

UndergraduateStudent, the correspondence (UndergraduateStudent, Student) is

preferred instead of (UndergraduateStudent, Monitor) or

(UndergraduateStudent, GraduateStudent) because the combined similarity

value of the first (0.72) is higher than the combined similarity of the last two

(0.60 and 0.28). A fragment of the alignment Aij is illustrated in Figure 5.5d.

Steps 4 and 5 are needed to define correspondences which are used to

measure the global similarity measure between Oi and Oj (to be explained in

Section 5.5). Such steps are also executed in the opposite direction, i.e. from Oj

to Oi. The elements of Oj are ranked according to the elements of Oi (Figure

5.5c’) and the same filter strategy is applied (Figure 5.5d’). An alignment Aji is

produced as output. Correspondences in Aji have the same format of the ones in

Aij.

For the final alignment set, an Oi and an Oj element are only accepted as a

matching correspondence if they are identified as such in both directions. In

other words, a correspondence is included in the final alignment set if the

correspondence is contained in the alignment sets Aij and Aji. In the following

section, we will present our method for determining the global similarity

measure.

5.5 Calculating the Global Similarity Measure
The evaluation of the overall similarity between the two ontologies Oi and Oj is

an additional step in the proposed ontology matching process. Such step uses

the output of the Correspondence Selection step (Step 5 of Section 5.4) which

produces the alignment sets Aij and Aji. Both alignment sets are taken as input

to calculate an overall similarity value between Oi and Oj. Such value indicates

the global similarity measure between the two input ontologies.

�� � �� � � ���
��� ��� � �� ��� ��� �� � � ��
�� �� ��
� �
�
� � ��� � �� �� � ���
�� ����

83

There are several similarity measures available in the literature which can

be adapted in order to calculate the global similarity measure between Oi and Oj

[Castano et al., 1998, Aumüller et al., 2005, David and Euzenat, 2008]: dice,

weighted, and overlap. All of them take into account the size of the input

ontologies. The dice measure is derived from the dice coefficient [Rijsbergen,

1979]. It refers to the ratio between the number of matching elements of both

alignments and the number of elements of the input ontologies. The weighted

average measure refers to the ratio between the sums of the similarity values

(n) of all matching elements of both alignments and the number of elements of

the input ontologies. The overlap measure is derived from the overlap

coefficient [Rijsbergen, 1979]. It refers to the ratio between the size of the

intersection between both alignments and the number of elements of the

shortest input ontology. In this work, the size of an ontology is determined by

the number of its concepts and denoted by |O|.

As opposed to the dice measure, the global similarity degree computed by

the weighted average measure is influenced by the individual similarity values.

Hence, the dice measure returns higher similarity values than the weighted

average measure. With all element similarities set to 1.0, both measures return

the same similarity. However, in general not all correspondences are evaluated

to the maximum level of confidence (1.0). Regarding the overlap measure, it is

mostly used when the input ontologies are close to each other and have similar

sizes. In practice, it is common to match ontologies with different sizes. For

these reasons, in this work we use the weighted average measure to evaluate the

global similarity degree between Oi and Oj. In this sense, the selected measure

is determined as follows:

||||
),(

||

1

||

1

OjOi

nn
OjOiAverageWeighted

Aji

j

Aij

i

+

+
=

��
==

In order to demonstrate how the global measure is computed, consider the

two ontologies (O1 and O2) illustrated in Figure 5.6 as well as the

corresponding alignments A12 and A21 between them produced by SemMatch.

�� � �� � � ���
��� ��� � �� ��� ��� �� � � ��
�� �� ��
� �
�
� � ��� � �� �� � ���
�� ����

84

Figure 5.6. The ontologies O1 and O2 as well as the alignments Ai j and Aji between them.

The sizes of O1 and O2 are 6 and 7 (concepts), respectively. In this sense,

the global similarity measure between them is calculated as follows:

66.0
|7||6|

)8.08.00.08.03.00.10.1()8.08.03.00.10.1(
),(21 =

+
+++++++++++=OOAverageWeighted

Particularly, the global similarity measure between Semiport.owl and

UnivBench.owl is 0.77. A complete description of the calculus considering the

alignments Aij and Aji between them is available in the Appendix B.

5.6 Experiments and Results
An ontology matching tool implementing the semantic-based process was

developed in Java. In order to provide ontology manipulation and reasoning, we

used Jena [Jena, 2009]. In this current version, H-Match [Castano et al., 2006]

was used as the hybrid matcher and we restricted the correspondence

identification to concepts (not including properties). Figure 5.7 shows a

screenshot of the tool’s main window that is split into three areas: (i) one for

choosing the matching ontologies; (ii) another for depicting the resulting

semantic correspondences and their respective weights; and (iii) the other one

for executing the main options, concerned with identifying the semantic

correspondences, generating the ACO alignment, and calculating the global

similarity measure.

The goal of our experiments is twofold. First, we want to show that the

use of background knowledge allows producing semantically richer

correspondences between two matching ontologies than using only a linguistic-

�� � �� � � ���
��� ��� � �� ��� ��� �� � � ��
�� �� ��
� �
�
� � ��� � �� �� � ���
�� ����

85

syntactic approach. Also, we want to investigate if we can obtain a higher

precision/recall [Rijsbergen, 1979] considering our process which is a

combination of some existing approach (linguistic-syntactic) with our semantic

one. Consider that R is a reference alignment and A is an alignment produced

by an ontology matching tool. In our work, precision and recall are defined as

the ratio of the number of true positive (|R ∩ A|) and retrieved correspondences

(|A|) or those to be retrieved (|R|), respectively.

Figure 5.7. The semantic matching tool interface.

Our experiments were conducted considering the ontologies introduced in

Section 5.2. To verify the first mentioned goal, we matched Oi against Oj using

only the H-Match and then using the DO as background knowledge. As a result,

regarding the Oi concept FullProfessor, H-Match has produced 41

correspondences (1:n) to target Oj concepts. Most of them have been stated with

similarity measures around 0.5, what is meaningless in terms of trying to

identify the semantics underlying them. Only three of them have been stated

with measures higher than 0.8, meaning some kind of subsumption or

equivalence, although this result is not made explicitly. Still regarding

FullProfessor, our semantic matcher produced five semantic correspondences.

�� � �� � � ���
��� ��� � �� ��� ��� �� � � ��
�� �� ��
� �
�
� � ��� � �� �� � ���
�� ����

86

Table 5.2 depicts some of the correspondences identified by H-Match and all

the ones found out by the proposed semantic matcher.

Table 5.2. Oj target concepts obtained for the Oi concept FullProfessor.

H-Match Semantic Matcher
Target Concept Measure Target Concept Correspondence Type
FullProfessor 1.00 FullProfessor isEquivalentTo (1.00)
VisitingProfessor 0.82 VisitingProfessor isCloseTo (0.70)
Student 0.50 Professor isSubConceptOf (0.80)
Faculty 0.50 AssociateProfessor isDisjointWith (0.0)
Manual 0.50 ResearchProject isPartOf (0.30)

In order to check the second mentioned goal, we invited two expert users,

which are knowledgeable about the Education domain, to produce a manual

alignment between Oi and Oj. This “gold standard” alignment was used against

our produced alignments. We used the ontology matching tools COMA++, H-

Match, and Falcon-AO, discussed in Chapter 2, to match the ontologies

Semiport.owl and UnivBench.owl. Afterwards, we calculated recall and

precision to determine the agreement between the resulting alignments and the

manual alignment. Next, we combined the (linguistic-structural) alignments

produced by each matching tool with the semantic alignments produced by our

matching tool. Again, recall and precision were used to measure the agreement

between the resulting alignments and the manual alignment.

For both comparisons, we used the filter strategy which consists in

selecting, for each concept of Oi, the correspondence with the highest combined

similarity. The comparison results are illustrated in Figure 5.8.

Recall

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

COMA++ H-Match Falcon-AO

Linguistic + Structural Linguistic + Structural + Semantic

Precision

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

COMA++ H-Match Falcon-AO

Linguistic + Structural Linguistic + Structural + Semantic

Figure 5.8. Evaluation of resulting alignments.

According to the results, we can see that when the semantic matcher is

applied both measures (recall and precision) are increased. The reason for such

improvement is that incorrect correspondences are removed from the resulting

�� � �� � � ���
��� ��� � �� ��� ��� �� � � ��
�� �� ��
� �
�
� � ��� � �� �� � ���
�� ����

87

alignments while missing but still relevant correspondences are introduced. For

instance, none of the three ontology matching tools (COMA++, H-Match, and

Falcon-AO) was capable of identifying a candidate element in Oi for the

element AssociateProfessor of Oj. Differently, SemMatch has identified that

AssociateProfessor has a certain degree of similarity with ResearchProject in

Oi. Our tool has identified that both elements are related by an isPartOf

semantic relationship.

In addition, H-Match and COMA++ has incorrectly identified that the

elements worker (Oi) and work (Oj) are equivalent. In fact, these tools make

strong use of linguistic matchers and, since the strings describing both elements

are similar to each other, a correspondence between the elements has been

detected. During our tests with SemMatch, the semantic matcher did not detect

such correspondence. Since we have given more importance to the semantic

matcher than to the hybrid matcher (matcher weights: hybrid = 0.4; semantic =

0.6), the correspondence was not well evaluated and, consequently, has not

been included in the resulting alignment.

5.7 Related Work
 Most of the work dealing with ontology similarity (or distance) [Mädche and

Staab, 2002; Hu et al., 2006] is in reality concerned with concept similarities

(or distances). However, there are many situations where it is useful to know if

two ontologies are close to each other or not, or what is the closest ontology to

another one. For instance, in semantic P2P systems, it would be easier to find

information if queries can be sent to peers using similar ontologies because

query transformation will miss less information [Ehrig et al., 2005].

The work of Castano and her group [Castano et al., 1998] proposes a kind

of global similarity measure, but concerned with ER schemas. COMA++

[Aumüller et al., 2005] is a tool which argues that calculates a global measure

between schemas, but, considering the version we had performed our tests, we

were not able to find out such feature explicitly. Recently, [David and Euzenat,

2008] have presented a review of several concept and ontology distance

measures as well as an evaluation of their qualities. Basically, the authors have

analyzed the speed of distance computation and the accuracy with regard to

asserted similarity. Our work provides a global similarity measure as an

�� � �� � � ���
��� ��� � �� ��� ��� �� � � ��
�� �� ��
� �
�
� � ��� � �� �� � ���
�� ����

88

additional feature in a semantic-based ontology matching process. The global

measure produced by the matching process is used for clustering semantically

similar peers in a PDMS.

5.8 Considerations
This chapter presented an ontology matching process which tries to overcome

the limitations of traditional approaches by using a combination of linguistic,

structural, and semantic matchers. Particularly, the semantic matcher is capable

of identifying, besides the traditional types of correspondences (equivalence

and subsumption), some other ones (e.g. closeness and disjointness).

Furthermore, as a result of the overall process, we introduced the determination

of a global similarity measure between the matching ontologies which is

calculated considering the identified similarity value of each correspondence.

Such measure is used for clustering semantically similar peers in SPEED.

Experiments carried out has shown that the combination of the proposed

semantic matcher with linguistic-structural matchers can improve the

alignments produced by existing ontology matching tools, by taking out

incorrect or meaningless correspondences and including some relevant ones.

These additional correspondences are useful for query answering and for the

determination of the global measure.

�

 89

����� ����� �� ����� �� ����� �� ����� ���������

����� ����� � �� ����� � �� ����� � �� ����� � ������ ����
���
��� ����
���
��� ����
���
��� ����
���
�� ����

“Mestre não é quem sempre ensina, mas quem de repente aprende”

Guimarães Rosa

In this chapter, we propose an automatic process to summarize ontologies

representing an individual schema or multiple schemas. An ontology summary

is defined as a subontology of the initial ontology under a specific size.

Particularly, in SPEED, the process is used to summarize cluster ontologies.

The structure of the chapter is described as follows. First, we present an

overview of the proposed summarization process and our formalism to represent

an ontology. Next, we describe centrality [Freeman, 1979; Mika, 2007], the

main criterion used to determine the relevance of concepts in an ontology. It is

measured considering the relationships of a concept with other ones in an

ontology. Particularly, if an ontology represents multiple schemas, as in

SPEED, then frequency (i.e. the number of occurrences of a concept in local

ontologies) is also used as another criterion to measure the relevance of

concepts. Afterwards, we describe the proposed process to summarize

ontologies, the summarization algorithm, and an illustrative example. We also

expose the results of applying the proposed process to real world ontologies

according to different criteria and discuss some related work.

�� � �� � � ���
�
� �
�
� � ��� ��� � �� � � �
� �

90

6.1 Introduction
In the peer clustering process proposed for SPEED (Chapter 7), cluster

ontologies are used by requesting peers to identify other semantically similar

peers and, consequently, join a cluster. Such identification is assisted by an

ontology matching process between a requesting peer’s local ontology and (a

subset of) the current cluster ontologies. As more requesting peers join a

cluster, new elements are introduced in the corresponding cluster ontology

which can reach a size that overburdens development and quality control

procedures. In this sense, schema summarization techniques [Castano et al.,

1998; Moody and Filtman, 1999; Yu and Jagadish, 2006] can be used to

produce succinct versions of cluster ontologies. These summarized ontologies

can be of great help since not all elements shared inside a cluster need to be

considered during the ontology matching process used for peer clustering.

An ontology summary provides a succinct overview of the entire ontology,

making it possible to explore only the relevant elements [Zhang et al., 2007].

However, creating a good summary is a non-trivial task. Ideally, the summary

should be concise enough for requesting peers to comprehend the initial

ontology quickly, yet it needs to convey enough information for requesting

peers to obtain a decent understanding of the whole ontology. Manual ontology

summarization is labor-intensive and impractical especially in situations where

a high number of ontologies need to be summarized as in PDMS. In addition,

leaving summary generation to a manual process let open the possibility that

the summary will not be updated when the cluster ontology evolves, resulting in

a supposed summary that is actually outdated and misleading [Yu and Jagadish,

2006]. In a PDMS context, the need for automatic tools to summarize cluster

ontologies is mainly due to scalability and consistency reasons.

6.2 General Overview
As illustrated in Figure 6.1, the proposed summarization process consists in,

given an ontology O, generating an abridged version of O, named ontology

summary (denoted OS) [Pires et al., 2009a]. The relevant concepts of O

(depicted in grey) are initially identified and OS corresponds to the subontology

of O concentrating the maximum number of relevant concepts. Since relevant

concepts can be non-adjacent in O, non-relevant concepts (white color) may be

�� � �� � � ���
�
� �
�
� � ��� ��� � �� � � �
� �

91

also introduced in an OS. Such “undesired” concepts are needed to maintain the

original relationships among relevant concepts. If the relevant concepts are

simply identified and added to an ontology summary (ignoring their

relationships), then a human intervention would be necessary to (re)link them.

Therefore, OS also corresponds to the subontology of O containing the

minimum number of non-relevant concepts.

Figure 6.1. An overview of the proposed ontology summarization process.

Although we focus on ontological schemas, the proposed summarization

process can be adapted to other kinds of schemas (e.g. XML and relational),

considering that the schema can be mapped onto a graph representation.

Therefore, most of the principles presented here are applicable to a wide variety

of schemas.

6.3 Ontology Formalism
According to OWL syntax, an ontology can contain different constructs such as

classes (i.e. concepts), properties, instances, and axioms of atomic class

(property). In this work, we assume that terms at conceptual level (concepts and

properties) are enough to provide an understandable ontology summary. OWL

constructs such as ontology header and instances are ignored during ontology

summarization.

The proposed graph formalism to represent an OWL ontology enables us

to focus only on the OWL constructs which are important to the summarization

process. In this light, an ontology O is modeled as a connected directed labeled

graph O = (C, R), where C = {c1,...,cn} is a finite set of vertices (concepts) and

R = {r1,...,rn} is a finite set of edges (relationships between concepts).

A relationship rk ∈ R represents a directed relation between two adjacent

concepts ci and cj ∈ C; i.e. rk = (ci×cj). Two concepts ci, cj ∈ C are adjacent in

O if ∃ rk ∈ R / rk = (ci×cj) or rk = (cj×ci). A directed labeled edge is defined

�� � �� � � ���
�
� �
�
� � ��� ��� � �� � � �
� �

92

from ci to cj if ci is a direct subconcept of c j. Similarly, if ci is a domain concept

and cj its range concept then a directed labeled edge is added from ci to cj. The

number of concepts in C indicates the size of an ontology O, denoted |O|.

Particularly, we assume that in O there are no self-references or multiple edges

between two distinct concepts. Edges from a concept vertice to its datatype

property vertices and from each subproperty to its superproperty are ignored.

Similarly, we define an ontology summary OS as a proper subgraph of O since

OS ⊂ O (or O is a supergraph of OS). Notice that OS � O, otherwise OS is not a

summary of O. Since OS is a subgraph of O, the same formalism is valid for

OS. Formally, OS = (CS, RS), where CS ⊂ C and RS ⊂ R.

6.4 Relevance Measures
The relevance of an ontology concept cn is measured considering the

relationships of cn with other concepts in an ontology O (centrality) and the

occurrences of cn in local ontologies O1,…,On that compose O (frequency). In

our approach, centrality is used to capture the importance of a given concept

within an ontology, while frequency is used when an ontology results from an

integration process and captures the importance of this concept in the set of

underlying local ontologies. In the following, we detail these two relevance

measures.

6.4.1 The Centrality Measure

Centrality [Freeman, 1979] is one of the most important and widely used ways

for identifying relevant vertices within a graph. The notion of relevance is

subjective since it depends on what is considered important for a vertice. In

[Freeman, 1979], the authors categorized centrality measures into three basic

categories (degree, closeness, and betweenness) and presented canonical

measures for each category. As a result, these measures have come to dominate

empirical usage, along with the eigenvector-based measure [Bonacich, 1972].

The degree centrality [Mika, 2007] is based on the idea that a vertice v

with a large number of links to other vertices has wider and more efficient

access to the other vertices in the graph. The eigenvector centrality [Zhang et

al., 2007] acknowledges that the centrality of a vertice v does not only depend

on the number of its links to other vertices, but also on their value of centrality.

�� � �� � � ���
�
� �
�
� � ��� ��� � �� � � �
� �

93

The other two centrality measures are based on the notion of graph paths

[Diestel, 2005]. A path in a graph is a sequence of consecutive edges. A

geodesic path is the shortest path, in terms of number of edges traversed,

between two vertices. The closeness centrality [Mika, 2007] of a vertice v

means the geodesic distance between v and all its reachable vertices. The

betweenness centrality [Mika, 2007] of a vertice v is the number of geodesic

paths between other vertices that v falls on.

In this work, we extend the original definition of the degree centrality

measure not only to consider the number of relationships between ontology

concepts but also the types of relationships between them. In this light, two

types of relationships are identified: standard (e.g. is-a, part-of, and same-as)

and user-defined (e.g. hasItems and authorOf). The normalized formula for the

extended degree centrality is:

1|C|
max

wn
max

wn
nr

)(ccentrality ud

udud

s

ss

n
−

�
�

�
�
�

	 ×+××
=

where ns and nud are respectively the number of standard and user-defined

relationships maintained by an ontology concept cn. ws and wud are respectively

the weights of the standard and user-defined relationships. maxs and maxud

indicate respectively the maximum number of standard and user-defined

relationships maintained by a particular concept in O. nr represents the number

of distinct concepts with which a concept cn maintains relationships. In

addition, (i) centrality(cn) ∈ [0,1]; (ii) ws + wud = 1; and (iii) ns + nud = nr.

6.4.2 The Frequency Measure

Frequency is a measure that can be used when the ontology to be summarized is

a cluster ontology obtained as a result of merging several local ontologies

LO1,…,LOn. Ontology merging [Noy and Musen, 2000] is the process in which

two (or more) local ontologies are merged into one target ontology. In general,

the local ontologies remain, along with ontology mappings between each local

ontology and the merged ontology. Different types of ontology mappings can be

defined between a target ontology and local ontologies, e.g. concept mappings

and property mappings. Figure 6.2 represents an excerpt from an XML file

describing concept mappings in a cluster of peers of SPEED [Pires, 2007b]. For

�� � �� � � ���
�
� �
�
� � ��� ��� � �� � � �
� �

94

instance, the concept faculty contained in the target ontology CLO1 is mapped

to the concepts phd, professor, and lecturer located at the local ontologies LO1,

LO2, and LO3, respectively.
<?xml version=”1.0” encoding=”ISO-8859-1”?>
<TARGET clo=”CLO1”>
<TARGETCLASS>
<LABEL>faculty</LABEL>

<LOCALCLASS>
<LABEL>phd</LABEL>
<LOCAL>L01</LOCAL>

</LOCALCLASS>
<LOCALCLASS>

<LABEL>professor</LABEL>
<LOCAL>L02</LOCAL>

</LOCALCLASS>
<LOCALCLASS>

<LABEL>lecturer</LABEL>
<LOCAL>L03</LOCAL>

</LOCALCLASS>
</TARGETCLASS>
...
</TARGET>

Figure 6.2. An example of concept mappings.

In the proposed summarization process, we assume that O can be a merged

ontology. Thus, a concept cn ∈ C can be mapped to one or more concepts

contained in O1,…,On. In this sense, the frequency of cn is defined as the ratio

between the number of concept mappings involving cn (denoted |mappings(cn)|)

and the number of distinct local ontologies (denoted |O1,…,On|). Both

information can be extracted from the ontology mappings. Formally,

|,...,O|O
)|c|mappings(

)cfrequency(
n1

n
n =

where frequency(cn) ∈ [0,1]. For instance, given the concept mappings

illustrated in Figure 6.2, the concept faculty is involved in three concept

mappings. Assuming that the number of distinct local ontologies is also three

then frequency(faculty) = 1.0.

6.5 Building an Ontology Summary
In this section, we offer a detailed description of the proposed ontology

summarization process including its several steps and input parameters. Then,

we present the summarization algorithm and illustrate the process with an

example.

�� � �� � � ���
�
� �
�
� � ��� ��� � �� � � �
� �

95

6.5.1 The Summarization Process

The main steps of the ontology summarization process are: (i) calculate the

relevance of ontology concepts; (ii) determine the relevant concepts; (iii) group

adjacent relevant concepts; (iv) identify paths between groups of concepts; (v)

analyze the identified paths; and (vi) determine the ontology summary. Figure

6.3 corresponds to an UML activity diagram [Booch et al., 2005] depicting all

the steps involved in the summarization process. Next, we provide a detailed

description of each step.

Figure 6.3. The several steps of the proposed summarization process.

Step 1: Calculate relevance of concept

Centrality and frequency are two criteria inherently different. It is

certainly possible to find two distinct ontology summaries where one has more

centrality but the other has better frequency. In fact, the most relevant measure

depends on the application needs. However, in some occasions both measures

need to be considered together. Our proposal to combine centrality and

frequency consists in using a weighted formula in which the weights are

defined by a user according to the importance of each measure to the

application purposes (�: centrality weight; �: frequency weight). This formula

is used to calculate the relevance of an individual concept cn in an ontology O:

)cfrequency(�)(ccentrality�)crelevance(nnn ×+×=

where relevance(cn) ∈ [0,1] and λ + β = 1.

�� � �� � � ���
�
� �
�
� � ��� ��� � �� � � �
� �

96

Step 2: Determine relevant concepts

This step consists in identifying the set of relevant concepts (denoted RC,

where RC ⊆ C) of an ontology O. Ideally, the concepts in the identified set

should be contained in the ontology summary OS. Several options can be used

to determine RC. The first one considers that RC has a fixed size which is

determined by the user (suggested size). In this light, all concepts are firstly

classified in descending order according to their respective relevance.

Afterwards, the top k concepts are selected, where k corresponds to suggested

size. In general, suggested size is defined as a percentage of the ontology size

(|C|).

The second option assumes that RC can have a variable size. The concepts

to be included in RC are those concepts whose relevance is above a relevance

threshold which is also informed by the user. Formally,

RCcthresholdrelevance)crelevance(ifC,c nnn ∈
≥∈∀

Finally, the third option also enables RC to assume a variable size.

However, it determines RC automatically. In order to select the concepts to be

included in RC, the average relevance (AR) of all individual concepts in C is

calculated:

�
=

=
n

1i |C|
)crelevance(

AR(C)
i

The most relevant concepts are those concepts in which the individual

relevance is higher than or equal to the average relevance. Formally,

RCc(C)AR)crelevance(ifC,c nnn ∈
≥∈∀

The last two options to determine RC should be carefully used. For

instance, if relevance threshold is configured to a small value or if each concept

maintains relationships with the majority of concepts in O, a high number of

relevant concepts can be included in RC.

Step 3: Group adjacent relevant concepts

This step consists in forming groups of concepts containing only relevant

concepts which are adjacent in the initial ontology O. A group of concepts

�� � �� � � ���
�
� �
�
� � ��� ��� � �� � � �
� �

97

corresponds to a subontology of O. Such groups are created in order to facilitate

the identification of paths between relevant concepts (Step 4).

When building groups of concepts the following situations can occur: (i)

each group is formed by a single relevant concept: this means that all relevant

concepts are non-adjacent in O; (ii) several groups are formed, and at least one

of the groups has more than one relevant concept: this means that some relevant

concepts are not adjacent in O; (iii) only one group is formed, containing all the

relevant concepts: this means that each relevant concept has at least one distinct

relevant concept that is adjacent in O. In the first two situations, the ontology

summarization process proceeds with Steps 4, 5, and 6. Differently, in the last

situation, the summarization process finishes and the ontology summary

corresponds to the group of concepts that is formed.

Step 4: Identify paths between groups of concepts

This step is executed if there are at least two groups of concepts which are

not adjacent in the initial ontology O (situations i and ii of Step 3). It consists

in detecting all paths (denoted OSn) between groups of concepts in O. For such

task each group of concepts is treated as a single concept. Similarly to a group

of concepts, a path OSn also corresponds to a subontology in O. Multiple paths

between two groups of concepts can be detected. In order to minimize

computation efforts, only paths with the requested summary size (i.e. |RC|)

should be considered. However, notice that this step is executed if at least two

relevant concepts are separated by a non-relevant concept. Thus, none of the

identified paths can contain the entire set of relevant concepts RC.

Groups of concepts can be separated by both a large or a few number of

non-relevant concepts in O. In the first case, discarding some relevant concepts

(e.g. a relevant concept that is far from a group of concepts) would allow the

identification of a path containing only relevant concepts. In the second case,

introducing only some non-relevant concepts to a path (e.g. adding a non-

relevant concept which separates two groups of concepts) would allow the

identification of a path including all relevant concepts.

Both cases can only be satisfied if the requested size for an ontology

summary (initially defined as |RC|) can be relaxed, i.e. if summary size can vary

in a specific interval. Such interval is determined by a size variation denoted by

�� � �� � � ���
�
� �
�
� � ��� ��� � �� � � �
� �

98

∆. For example, assuming a summary size and a size variation of 6 and 2

respectively, then all paths whose size is between 4 and 8 are considered as

candidate summaries. Formally,

�sizesummary|OS|�sizesummary n +≤≤−

Step 5: Analyze identified paths

Since multiple paths between relevant concepts (and groups of concepts)

can be identified, it is necessary to analyze each path individually. The classical

metrics recall and precision, commonly used in Information Retrieval [Baeza-

Yates and Ribeiro-Neto, 1999], are used to determine the level of coverage and

conciseness of each path OSn, respectively. Recall means that a path should be

an extraction of O reflecting as many relevant concepts as possible. Precision

determines if a path is succinct enough to facilitate the analysis of the entire

ontology O. Formally,

|RC|
RC||OS

Recall
n ∩=

||OS
RC||OS

Precision
n

n ∩=

Paths cannot be compared based solely on precision and recall. The path

which has high recall may have a low precision and vice-versa. For this

purpose, F-measure [Baeza-Yates and Ribeiro-Neto, 1999] is used to aggregate

precision and recall.

Recall�Precision�)(1
RecallPrecision

measureF
×+×−

×=−

Notice that, if � = 1, then the F-measure is equal to precision and if � = 0,

the F-measure is equal to recall. In between, the higher the value of �, the more

importance is given to precision.

Step 6: Determine the ontology summary

Among the identified candidate paths (OSn), the selection of an ontology

summary is determined by choosing the best candidate path. In this sense, the

selection occurs according to the following priority order:

�� � �� � � ���
�
� �
�
� � ��� ��� � �� � � �
� �

99

(i) F-measure: the path should be the one having the maximum number of

relevant concepts and the minimum number of non-relevant concepts. In other

words, the path with the highest value of F-measure should be selected;

(ii) Average relevance: since it is possible to find two distinct paths with

the same value of F-measure, a second criterion is needed. In this case, the path

with highest average relevance should be chosen. The average relevance of a

path corresponds to the ratio between the sum of the individual concept

relevance in a path and the number of concepts in a path;

If multiple candidate paths have identical F-measure and average

relevance values, other strategies can be used to select a path: choose randomly

one of the paths or select the one leading to the summary with the smallest size

(considering that ∆ > 0).

6.5.2 The Ontology Summarization Algorithm

Figure 6.4 illustrates the proposed summarization algorithm. It accepts as input

the ontology to be summarized (mandatory), a set of ontology mappings

(optional), and a set of parameter values supplied by the user (mandatory), e.g.

suggested size. If ontology mappings are not informed, only the centrality

measure is used to calculate the relevance of concepts. An ontology summary is

generated as output. In order to meet diverse user requirements, the algorithm

can accept various types of parameters. Depending on the parameter values

provided, different ontology summaries OS can be generated for the same

ontology O.

SummarizeOntology (in: Ontology; in: Mappings; in: Parameters; out: Ontology)
{
CalculateConceptRelevance(Ontology, λ, β, centrality measure);
RC ← DetermineRelevantConcepts(Ontology, relevance criteria);
Ontology ← GroupAdjacentRelevantConcepts(Ontology);
If Ontology.Groups = 1 and RC ⊆ Ontology.Groups[1].Concepts then
 OntologySummary ← Ontology.Groups[1];
Else
 Paths ← IdentifyPaths(Ontology, ∆);
 AnalyzePaths(Paths, α);
 OntologySummary ← GetBestPath(Paths);
End if
Return(OntologySummary);
}

Figure 6.4. The ontology summarization algorithm.

�� � �� � � ���
�
� �
�
� � ��� ��� � �� � � �
� �

100

6.5.3 An Example

Our example considers a public ontology10 describing nodes in a local area

network (Figure 6.5). Assume that an ontology summary containing 6 concepts

(i.e., suggested size = 6) with size variation of 1 (∆ = 1) must be generated. To

simplify matters, only centrality is used to determine the relevance of concepts.

Moreover, assume that recall and precision have the same importance (α =0.5).

In this sense, RC = {ServerSoftware (0.231), NetworkNode (0.192),

SwitchEquipment (0.192), Computer (0.192), Software (0.192), Cable (0.192)}.

The first five concepts are adjacent in the NetworkA ontology. Thus, they are

combined into the group of concepts Group1. The other group of concepts

(Group2) is composed solely by Cable. Since more than one group of concepts

has been identified, the summarization process proceeds. All paths between

Group1 and Group2 are identified. There are only two paths whose size is in the

interval defined by ∆. The first path (Path1) is: Group1 � Equipment �

Group2. The second path (Path2) is: Group1 � NodePair � Group2. The value

of F-measure is identical for both paths (92.5). However, the average relevance

of Path1 (0.187) is higher than the average relevance of Path2 (0.181). As a

result, Path1 is chosen as the ontology summary. The summary is shown in the

left lower part of Figure 6.5.

Figure 6.5. The networkA ontology and its corresponding summary.

10 http://www.atl.lmco.com/projects/ontology/ontologies/network/networkA.owl

�� � �� � � ���
�
� �
�
� � ��� ��� � �� � � �
� �

101

6.6 Generating Ontology Summaries
In this section, we present an evaluation of the proposed ontology

summarization process. Basically, we asked expert users, which are

knowledgeable about specific ontologies, to produce manual summaries. This

created a “gold standard” set of summaries against which our automatic

summaries can be compared and analyzed.

6.6.1 Implementation

We have developed an ontology summarization tool to produce automatic

summaries of OWL ontologies. The tool is implemented in Java [Java, 2009]

and uses the OWL API [OWL API, 2009] to manipulate ontologies. A first

version of the summarization tool is available for download11. The tool can be

invoked at command line and accepts a set of input parameters, e.g.

owl_filename and owl_summarized_filename. The parameters can be initialized

at the summary.properties file. After each successful execution, a log file is

generated. The log file contains processing information produced by the tool

during an execution, e.g. elapsed time and identified candidate paths. Such

information can be useful for users in order to adjust the initialization

parameters.

6.6.2 Case Study

We have selected four OWL ontologies belonging to distinct knowledge

domains as test cases: a conference ontology12, a network ontology (Section

6.5), an office ontology13, and an university ontology14. The conference

ontology is an ontology draft for events and, specifically, conferences. The

office ontology models an office environment. The university ontology

describes a computer science academic department. All of them are public

ontologies which are available for download. The four ontologies are selected

as test case since they are rather small and can be reviewed by human to

produce “gold standards”. Some statistical data of the chosen ontologies are

illustrated in Table 6.1, including the number of concepts and properties.

11 The Ontology Summarizer site, http://www.cin.ufpe.br/~speed/OWLSummarizer/
12 http://ebiquity.umbc.edu/ontology/conference.owl
13 http://ise.icu.ac.kr/Ontologies/office-env2.owl
14 http://www.cs.toronto.edu/semanticweb/maponto/MapontoExamples/univ-cs.owl

�� � �� � � ���
�
� �
�
� � ��� ��� � �� � � �
� �

102

Table 6.1. Ontology statistics.

 conference.owl networkA.owl office-env2.owl univ-cs.owl

Concepts 18 27 35 53

Properties 18 06 08 25

6.6.3 Comparison with Expert Summaries

We invited three expert users to generate “gold standard” summaries for the

conference, network, office, and university ontologies. Summaries of different

sizes were requested: 4, 8, and 12 concepts. No size variation was allowed.

Experts were oriented to produce summaries containing only adjacent concepts.

Correspondingly, we generated automatic summaries at the same sizes and

measured the agreement between the automatic summaries and the expert

summaries. Since frequency is not an intrinsic characteristic of ontologies, in

order to be comparable with expert summaries only centrality was considered

when generating the automatic summaries. The agreement between two

ontology summaries is defined as the percentage of the number of concepts

selected by both the expert users and the summarization tool over the requested

summary size. An agreement summary of a particular summary size is

generated by combining all expert summaries and retaining only the concepts

selected by a majority of the experts (in this case, at least two experts). We

have also compared the expert summaries against the summaries produced by

OntoSum15, a demo tool for summarizing small ontologies in real-time on the

Web. Particularly, for OntoSum, we have used the Weighted PageRank measure

since in [Zhang et al., 2007] the authors affirm that have obtained the best

evaluation for ontology summaries.

Table 6.2 illustrates the results of our experiments. Summaries containing

12 concepts were not generated for the conference and network ontologies. In

our opinion, this size is too high to represent a summary for the two ontologies.

Except for the office ontology, our system was in reasonable consonance with

human experts. The results for the office ontology are explained because a high

relevant concept was positioned far from the other relevant concepts.

Consequently, candidate summaries containing this concept were very well

15 http://iws.seu.edu.cn/services/falcon-f/ontosum/

�� � �� � � ���
�
� �
�
� � ��� ��� � �� � � �
� �

103

evaluated (F-measure), even with some non-relevant concepts. Obviously, such

non-relevant concepts were not chosen by the expert users. Experts do not

always agree on what is the best summary. In general, the percentage of

agreement between expert summaries and automatic summaries increases as the

summary size augments. Briefly, Table 6.2 shows that the automated

summarization tool was able to produce summaries at different sizes that appear

to be similar to what an expert may have produced.

Table 6.2. Comparison between the automatic summaries and the expert summaries.

conference.owl 4-Concept 8-Concept 12-Concept
Expert 1 against Automatic 75% 88% -
Expert 2 against Automatic 50% 75% -
Expert 3 against Automatic 75% 75% -
User agreement against Automatic 75% 75% -
User agreement against OntoSum 50% 50% -
networkA.owl 4-Concept 8-Concept 12-Concept
Expert 1 against Automatic 50% 100% -
Expert 2 against Automatic 50% 75% -
Expert 3 against Automatic 50% 50% -
User agreement against Automatic 50% 75% -
User agreement against OntoSum 75% 75% -
office-env2.owl 4-Concept 8-Concept 12-Concept
Expert 1 against Automatic 100% 75% 67%
Expert 2 against Automatic 75% 63% 58%
Expert 3 against Automatic 75% 63% 58%
User agreement against Automatic 100% 63% 58%
User agreement against OntoSum 50% 50% 75%
univ-cs.owl 4-Concept 8-Concept 12-Concept
Expert 1 against Automatic - 75% 92%
Expert 2 against Automatic - 88% 83%
Expert 3 against Automatic - 50% 67%
User agreement against Automatic - 75% 92%
User agreement against OntoSum - 63% 75%

During the experiments with the summarization tool, we have observed

some particular situations which are important to be stated: (i) as the summary

size increases, the probability of forming only one group of concepts containing

all relevant concepts is also increased. Consequently, the possibility of

introducing non-relevant concepts in the summary decreases; (ii) at most one

group of concepts was formed for the chosen ontologies; and (iii) in general,

the use of a fixed summary size (∆ = 0) does not allow the identification of the

best summary. For a certain summary size, there were cases in which no

summary was identified, e.g. a 4-Concept summary for the university ontology

(Table 6.2). We believe that better summaries could have been obtained if a

variable summary size had been used (∆ > 0).

�� � �� � � ���
�
� �
�
� � ��� ��� � �� � � �
� �

104

6.7 Related Work
The first studies on schema summarization have focused on entity-relationship

(ER) model abstraction. In such model, since data is not available, only the

structural characteristics of ER diagrams are exploited [Castano et al., 1998;

Moody and Filtman, 1999]. The authors of [Castano et al., 1998] use clustering

techniques to produce a summarized version of an ER diagram. They present an

algorithm for performing schema clustering, and then discuss criteria for

representing clusters by means of abstract elements and for abstracting links

between elements. The technique rely heavily on the semantics embedded in the

relationships to guide the process and is therefore not truly automated. The

amount of human effort required is significant, especially to define links

between abstract elements. In [Yu and Jagadish, 2006], a summarization

process for relational and XML schemas is proposed. The authors demonstrate

that while schema structure is of vital importance in summarization, data

distribution often provides important insights that significantly improve the

summary quality. One consequence of using data distributions is that a

generated summary may evolve when a database is updated even though the

schema stays the same.

We have also analyzed other summarization processes in which ontologies

do not represent schemas. In [Zhang et al., 2007], the authors propose a novel

process to automatic ontology summarization based on RDF Sentence Graph.

Summaries are customizable, i.e. users can specify the length of summaries and

their navigational preferences. A notion of RDF sentence is proposed as the

basic unit of summarization. An RDF Sentence Graph is proposed to

characterize the links between RDF sentences derived from a given ontology.

The salience of each RDF sentence is assessed in terms of its centrality in the

graph. An ontology is summarized by extracting a set of salient RDF sentences

according to a re-ranking strategy.

In [Stuckenschmidt and Klein, 2004], an automatic method for structure-

based ontology partitioning is proposed. The method is applicable to large

ontologies and consists in dividing an ontology into smaller and disjoint

modules based solely on the structural properties of the ontology. Each module

contains information about a coherent subtopic of the ontology and can be used

independently of the other modules. Concepts inside each module are stronger

�� � �� � � ���
�
� �
�
� � ��� ��� � �� � � �
� �

105

related among them than with concepts outside the module. The output

produced by the method is a connected graph where each node corresponds to a

subtopic (or module) of the overall ontology. Although the set of modules can

be considered as a summary for a given ontology, some important

considerations must be made: (i) a module is not a concept; (ii) since the

modules are not too close to each other in the graph, no information is provided

to explicit the kind of relationship between them; thus, the result is considered

a set of independent modules; (iii) the number of modules is arbitrarily

predefined, as if the number of relevant concepts was; and (iv) the semantics of

the relationships is not exploited in order to determine the level of dependency

between concepts during the partitioning process. In [Schlicht and

Stuckenschmidt, 2008], the authors present a tool for partitioning OWL

ontologies that implement the described process.

Some notion of centrality is used to calculate the relevance of concepts in

all the discussed works. However, none of them exploits the type of

relationships between concepts. Although the works of [Yu and Jagadish, 2006;

Zhang et al., 2007] affirm that their summarization process is fully automatic,

the size of summaries is still manually provided. In [Stuckenschmidt and Klein,

2004], the number and the size of modules also need to be informed. Moreover,

using frequency as a criterion for determining relevant concepts to be included

in a summary is not considered by any of the presented works. The main reason

for that is because existing solutions do not consider merged ontologies in the

summarization processes.

6.8 Considerations
In this chapter, we proposed an automatic process to summarize cluster

ontologies representing multiple local schemas. To determine the relevance of

concepts a combination of two measures was used. Centrality is calculated

using an extended definition of the degree centrality measure. Frequency is

used as a distinguishing criterion when the ontologies to be summarized are

merged ontologies. A detailed description of the summarization process was

presented as well as an algorithm for ontology summarization. Experiments

have shown that the summarization process is able to find good summaries

compared to the ones manually generated by expert users.

�� � �� � � ���
�
� �
�
� � ��� ��� � �� � � �
� �

106

In the next chapter, we propose an ontology-based process for clustering

peers in SPEED. To this end, the clustering process makes use of the ontology

matching process described in Chapter 5 and the automatic process for

summarizing ontologies described in this chapter.

�

 107

����� ����� �� ����� �� ����� �� ����� ���������

����� ����� �� ����� �� ����� �� ����� � ��������
����
����
����
����������� ���� ���� ���� ������� ����� ����� ����� ����
� ��
� ��
� ��
� � ����

� �
� �
� �
� �����
����
����
����
����

“Words build bridges to unexplored regions”

Adolf Hitler

In this chapter, we describe an ontology-based process for clustering peers in

SPEED. Although the proposed process aims to cluster peers in a PDMS, it can

be applied to a data integration system or any other distributed system in which

data sources communicate via some network protocol. In this sense, first an

overview of the clustering process is introduced. Next, a demonstration of how

a requesting peer searches for a corresponding semantic community in the DHT

network is shown. Also, the main clustering characteristics and the algorithm

for inserting a requesting peer into a semantically similar cluster are presented.

The steps to connect a requesting peer to an existing cluster and to create a new

cluster are detailed. Considerations about the maintenance of semantic clusters

are also provided. Finally, experimental results are presented and discussed.

7.1 An Overview of SPEED’s Clustering Process
In SPEED, the connection of a requesting peer is performed in a twofold way

(Figure 7.1). First, a corresponding semantic community is searched in the DHT

network. If the community is found, then a semantically similar cluster is

searched in the unstructured network of the identified community. In both

�� � �� � � ���
�
� �
�
� �
�� �� ���� � � ��� � �� � � �� � ��� ���� � ��

108

cases, the requesting peer’s local ontology is of great importance since it is

used to associate the requesting peer to an appropriate community as well as to

a semantically similar cluster.

Figure 7.1. The several steps involved in the connection of a requesting peer.

Assuming that a community has been found by a requesting peer, the

search for a semantically similar cluster begins when an initial cluster is

provided to the requesting peer. Such initial cluster is obtained from the

semantic index of the identified community. The search for a semantically

similar cluster starts at the initial cluster and continues by visiting the semantic

neighbors of the initial cluster located in the unstructured network.

At each visited cluster, the semantic similarity between the cluster and the

requesting peer is computed. To this end, the ontology matching function

SemMatch described in Chapter 6 is used. SemMatch takes as arguments two

peer ontologies (i.e. a cluster ontology CLOij and a local ontology LOn) and

returns a global similarity measure which indicates the degree of similarity

between the two ontologies.

�� � �� � � ���
�
� �
�
� �
�� �� ���� � � ��� � �� � � �� � ��� ���� � ��

109

Two peers are semantically similar if the global similarity measure

between their ontologies is above a certain threshold, called cluster threshold

(denoted ct). The integration peer of each visited cluster returns a global

similarity measure to the requesting peer RPn. If RPn identifies a semantically

similar cluster among the visited clusters, then RPn joins that cluster.

Otherwise, RPn creates a new cluster. In both cases the requesting peer RPn is

connected to the community.

Once a requesting peer RPn is connected, it can assume different roles in

the system. For instance, if RPn joins an existing cluster, it is connected as a

data peer. Otherwise, if RPn creates a new cluster, then it is connected as an

integration peer. Figure 7.2 is an UML statechart diagram illustrating the two

possible states of a requesting peer.

Figure 7.2. The possible states of a requesting peer.

In the following sections, we detail each step of the proposed ontology-

based process for clustering peers in SPEED. We begin describing how a

semantic community is searched in the DHT network.

7.2 Search for a Semantic Community
SPEED’s DHT network is composed of multiple semantic peers. Each semantic

peer represents a particular community and therefore a distinct knowledge

domain. A semantic community is described by a set of keywords associated to

its corresponding knowledge domain. For instance, the set of keywords related

to the education knowledge domain can be education, university, and professor.

Such keywords are defined by a system administrator and are used to locate a

semantic community in the DHT network.

A semantic community is created when a group of peers wish to share data

about a specific knowledge domain that is not available in the DHT network

�� � �� � � ���
�
� �
�
� �
�� �� ���� � � ��� � �� � � �� � ��� ���� � ��

110

yet. For instance, different universities are interested in sharing data about their

research projects as well as in producing more complete results that involve

data located at other universities. In this case, the creation of an education

community would fulfill such need.

SPEED’s DHT network can be built according to any structured P2P

protocol, e.g. Chord [Stoica et al., 2001]. Particularly, if Chord is chosen then

consistent hashing [Karger et al., 1997] is used to map semantic peers and their

corresponding keywords onto an identifier circle. An identifier is associated to

each semantic peer and keyword. Each semantic peer implements a successor

function. The successor of a semantic peer (or keyword) is the next semantic

peer in the identifier circle.

Each semantic peer maintains a routing table called finger table. This

table stores information about some other semantic peers in the DHT network.

Basically, each entry in the finger table contains a semantic peer identifier and

its network address. When a new semantic peer joins the network it must

initialize its finger table. As a consequence, existing semantic peers are notified

about this event and must also update their finger table to reflect the existence

of the new semantic peer.

The management of semantic communities is not the main focus of the

proposed clustering process. In fact, we are interested in discovering an

appropriate community to insert a requesting peer. Therefore, in this thesis we

assume the existence of a predefined DHT network representing multiple

semantic communities. Figure 7.3 illustrates a Chord network formed by five

semantic peers representing the following knowledge domains: chemistry,

geography, education, philosophy, and engineering. The DHT network was

generated by the SPEED’s simulator. The simulator was used during our

experiments and is better described in Section 7.6 and in the Appendix C.

In order to search for a semantic community, a requesting peer RPn must

first provide an interest theme, i.e. an abstract description of the requesting

peer’s knowledge domain. An interest theme corresponds to a keyword that can

either be extracted automatically from the requesting peer’s local ontology or

manually informed by the user. Education, health, and bioinformatics are

examples of interest themes.

�� � �� � � ���
�
� �
�
� �
�� �� ���� � � ��� � �� � � �� � ��� ���� � ��

111

Figure 7.3. An instantiation of the SPEED’s DHT network.

Consistent hashing is also used to map an interest theme onto an identifier

i which is sent to an arbitrary semantic peer in the DHT network. The search for

a semantic peer is done progressively: at each step the successor of a semantic

peer is identified until the closest semantic peer is found. As seen in the UML

sequence diagram of Figure 7.4, a search for the successor of an identifier i

(interest theme) initiated at the semantic peer SP1, begins by determining if i is

between SP1 and the immediate successor of SP1 (i.e. SP2). If so, the search

terminates and the successor of SP1 is returned. Otherwise, SP1 forwards the

search request to the latest semantic peer (in its finger table) that precedes i (in

Figure 7.4, SPi). The procedure is repeated by SPi until the search terminates.

According to such search strategy, if the provided interest theme i is

contained in the set of keywords of a semantic community then the

corresponding semantic peer will necessarily be found. In this case, a message

containing the corresponding semantic peer’s address is sent back to the

requesting peer (Figure 7.4). If the interest theme is not found, it probably

means that the referred community does not exist in the DHT network or the

provided interest theme is not used to describe any semantic community. In this

case, the requesting peer should try another interest theme. In SPEED’s current

�� � �� � � ���
�
� �
�
� �
�� �� ���� � � ��� � �� � � �� � ��� ���� � ��

112

version, a peer is able to participate in only one community. Besides, we

assume that a keyword cannot be used to describe more than one community.

Figure 7.4. Sequence diagram describing how a semantic community is found in SPEED’s

DHT network.

In the following sections, we describe the steps to insert a requesting peer

into a semantically similar cluster. It is assumed that a requesting peer has

already discovered a corresponding semantic community in the DHT network.

7.3 SPEED’s Clustering Process
Basically, the problem we are interested in can be sketched as follows: how to

form semantic clusters in a semantic community considering as much as

possible the semantics of the peers? Since it is not possible to predict the nature

and the semantics of requesting peers, the clusters cannot be formed a priori.

Moreover, due to the dynamism of participating peers it is not possible to

assume a static disposal of the semantic clusters in the unstructured network. In

short, the main goal of the clustering process is to minimize the semantic

similarity between peers attached to distinct clusters and to maximize the

semantic similarity between peers located in each cluster.

The SPEED’s clustering process has the following characteristics:

� Incremental insertion: peers arrive one at a time;

� Unique assignment: peers are allocated in only one cluster (exclusive);

� Ontology-based representation: peers are represented by ontologies which,

in turn, are represented by a collection of concepts and properties. Each

�� � �� � � ���
�
� �
�
� �
�� �� ���� � � ��� � �� � � �� � ��� ���� � ��

113

cluster is represented by a cluster ontology which corresponds to the

integration of the local ontologies of the peers that compose it;

� Parameterization: The parameters that need to be provided are similarity

function, cluster threshold, neighbor threshold, and connect TTL. In this

work, SemMatch is used as a similarity function between two ontologies

however any other function that returns a global measure is supported.

Particularly, the last two parameters are explained in Section 7.4.2.

In the next section, we discuss the algorithm for inserting a requesting

peer into a semantically similar cluster and describe its main steps.

7.4 Clustering Algorithm
In SPEED, clustering is mainly an incremental process. Peers are added to

semantic clusters one at a time depending on some criterion, e.g. semantic

similarity between a requesting peer and current clusters. In this sense, our

clustering process is inspired in the Leader algorithm [Hartigan, 1975]

described in Chapter 2 since it supports all the stated clustering characteristics.

However, the Leader algorithm presents some drawbacks when applied to a P2P

environment such as SPEED. Such drawbacks are listed in Table 7.1 as well as

the proposed adaptations made in SPEED.

Table 7.1. Drawbacks of the Leader algorithm and proposed adaptations to SPEED.

Drawbacks of the Leader algorithm Introduced adaptations

Assume that a centralized view of the

clusters is available.

The clusters of each community are connected in an

unstructured P2P network and should be searched

accordingly. Thus, flooding is used to find clusters in a

community.

Clusters are isolated, i.e. there are no

links between them.

The clusters are connected through semantic

correspondences which are needed to enable query

processing. In this sense, we consider the definition of

semantic neighbors to link clusters only with the most

similar ones.

Since clusters are searched in a fixed

order, the initial clusters tend to

concentrate a high number of peers.

An initial cluster is indicated at each time a requesting

peer is to be inserted. The initial cluster is obtained from

a semantic index.

The comparison with all clusters may

cause scalability and/or performance

problems.

We limit the number of clusters to be searched in the

unstructured network. Besides the initial cluster, the other

clusters to be searched include the semantic neighbors of

the initial cluster.

�� � �� � � ���
�
� �
�
� �
�� �� ���� � � ��� � �� � � �� � ��� ���� � ��

114

The introduction of the proposed adaptations results in a new clustering

algorithm whose pseudo-code is described as follows. Similarly to the Leader

algorithm, the proposed algorithm is also order-dependent.

Let ct (cluster threshold) be a similarity threshold

Let connectTTL be a search bound

Let the first requesting peer RP1 be assigned to cluster CL1

For each requesting peer RPn+1

Search for initial cluster in Semantic Index

Start at the initial cluster and while connectTTL > 0 do

simClust � Search for most similar semantic cluster

connectTTL � connectTTL – 1

maxSim � GetMaximumSimilarity(simClust)

If maxSim ≥ ct, connect RPi+1 to the corresponding cluster CLj

Else, connect RPi+1 to a new cluster CLk

Determine the semantic neighbors of CLj (or CLk)

In the following subsections, we describe how semantic clusters are

handled in a semantic community as requesting peers arrive. Each step of the

algorithm is detailed.

7.4.1 Search for Initial Cluster in Semantic Index

In SPEED, the connection of requesting peers is continuous and unlimited.

Matching a requesting peer’s local ontology LOn against all cluster ontologies

CLOij of a semantic community CMi is a costly and time-consuming task and

therefore should be avoided. The main reasons for that are: (i) the size of

cluster ontologies can be large since they integrate multiple local ontologies;

and (ii) the number of clusters varies and cannot be predicted.

In order to provide an initial cluster to RPn, we have a semantic index

located at each semantic peer SPi. In this semantic index, each cluster CLij of a

corresponding community CMi is represented by its summarized cluster

ontology OSij.

When a requesting peer RPn finds a semantic community CMi, its local

ontology LOn is sent to the corresponding semantic peer SPi. The search in the

semantic index is done by matching LOn against the summarized cluster

ontologies OSij (Figure 7.5). For each index entry a global similarity measure

between OSij and LOn is produced by the ontology matching function

SemMatch. Afterwards, SPi determines the initial cluster by ranking in

�� � �� � � ���
�
� �
�
� �
�� �� ���� � � ��� � �� � � �� � ��� ���� � ��

115

descending order the computed global similarity measures. The initial cluster

will be the one associated with the highest global measure. Finally, the

corresponding integration peer’s address is returned to RPn. Particularly, if no

initial cluster is identified (for example, if the semantic community is empty)

then RPn creates a new cluster. In this case, RPn connects as an integration peer.

The steps required to connect a requesting peer as an integration peer will be

described in the Section 7.4.3.

Figure 7.5. A semantic peer SP i determines the initial cluster of a requesting peer RPn.

7.4.2 Search for the Most Similar Semantic Cluster

Given an initial cluster, the problem now is to determine the clusters in the

community CMi that should be visited in order to search for a semantically

similar cluster. To this end, the semantics of the involved peers is taken into

account by extending the definition of semantic neighbors presented in Chapter

4. According to such definition, one of the conditions to consider two distinct

clusters CLij and CLik as semantic neighbors is that they must share similar

content, i.e. cluster ontologies. In this sense, a cluster CLij is a semantic

neighbor of CLik, if the global similarity measure between CLOij and CLOik is

above a certain threshold called neighbor threshold (denoted nt). Thus, given a

semantic cluster CLij and its semantic neighborhood Nij, a semantic cluster CLik

∈ Nij is such that SemMatch(CLOij, CLOik) ≥ nt.

In addition, given the neighborhood Nij = {CLi1, CLi2,…,CLik} of a cluster

CLij, all the clusters in Nij are considered direct neighbors of CLij. If a cluster

CLin is not included in Nij but is contained in Nik (i.e. the neighborhood of CLik)

�� � �� � � ���
�
� �
�
� �
�� �� ���� � � ��� � �� � � �� � ��� ���� � ��

116

then we say that CLin is an indirect neighbor of CLij. In Figure 7.6, CLi3 and

CLi4 are direct neighbors of CLi2 and indirect neighbors of CLi1.

Figure 7.6. An example of direct and indirect neighbors.

Based on the extended definition of semantic neighbors, several possible

search strategies can be derived in order to limit the number of clusters to be

searched. All of them can be controlled by a TTL limit (denoted connect TTL).

For instance, if:

� connect TTL = 1, the search scope is resumed to the initial cluster;

� connect TTL = 2, the search scope includes the initial cluster and its direct

semantic neighbor(s);

� connect TTL ≥ 3, the search scope includes the initial cluster as well as its

direct and indirect semantic neighbor(s).

The search is started when RPn sends its local ontology LOn to the

integration peer corresponding to the initial cluster. At the integration peer,

SemMatch is executed by taking as arguments the current cluster ontology and

LOn. The resulting global similarity measure is returned to RPn. According to

the defined search strategy, LOn can be propagated to the direct and/or indirect

semantic neighbors of the initial cluster. At each visited cluster, connect TTL is

decreased and the search process continues. The search finishes when connect

TTL reaches zero. To avoid waiting indefinitely for matching results a timeout

is set by RPn when RPn sends its LOn to the initial cluster.

�� � �� � � ���
�
� �
�
� �
�� �� ���� � � ��� � �� � � �� � ��� ���� � ��

117

Figure 7.7 is the UML sequence diagram representing the community

instantiation of Figure 7.6. Since connect TTL is set to 3, the four clusters

(CLi1, CLi2, CLi3, and CLi4) are visited in order to determine the most similar

cluster for the requesting peer RPn. The clusters CLi1, CLi2, CLi3, and CLi4 are

represented by their corresponding integration peers IPi1, IPi2, IPi3, and IPi4,

respectively. The first visited integration peer is IPi1 that corresponds to the

initial cluster provided by the semantic peer SPi. The search scope comprises

the direct (IPi2) and indirect (IPi3 and IPi4) semantic neighbors of IPi1. The

global similarity measures returned to RPn are: 0.5 (IP1), 0.6 (IP2), 0.2 (IP3),

and 0.3 (IP4). These measures are used by RPn to decide whether to join one of

the visited clusters or create a new one (in this case, CLi5). Such process is

described in the next section.

Figure 7.7. A requesting peer RPn searches for a semantically similar cluster.

7.4.3 Connection of a Requesting Peer

Once RPn receives the global similarity measures from the visited clusters, RPn

must select the highest global similarity measure. In this case, two possible

cases can occur:

Case 1

If the selected measure is equal or higher than cluster threshold (ct), then

RPn joins the corresponding cluster as a data peer. In this case, a new version of

CLOij is produced by merging the current CLOij and the local ontology LOn of

�� � �� � � ���
�
� �
�
� �
�� �� ���� � � ��� � �� � � �� � ��� ���� � ��

118

the new data peer. To this end, an ontology merging process Merge is

considered. Merge takes as arguments the two peer ontologies and the ontology

alignment between them. Such alignment was produced by SemMatch when

both ontologies were matched during the search process. As a result, Merge

builds a new version of CLOij as well as a set of semantic correspondences

between CLOij and LOn which are needed for query processing. The new CLOij

includes all the elements contained in both input ontologies. In addition, a new

summary of CLOij (OSij) is built and the semantic index is updated accordingly.

Case 2

If the selected measure is lower than cluster threshold (ct), RPn creates a

new cluster and joins that cluster as an integration peer. In this case, the cluster

ontology CLOij of the new cluster corresponds to the local ontology LOn

describing RPn. The semantic neighborhood of the new cluster is composed of

all the visited clusters CLik such that nt ≤ SemMatch(CLOij, CLOik) < ct. A

summarized version of CLOij (OSij) is built and a new entry is added to the

semantic index. In Figure 7.7, neighbor threshold (nt) and cluster threshold (ct)

are set to 0.4 and 0.7, respectively. Since the highest global similarity measure

returned by the searched clusters (i.e. 0.6, returned by CLi2) is lower than ct,

the requesting peer RPn will create a new cluster (CLi5). The semantic

neighborhood of CLi5 is defined as Ni5 = {CLi1, CLi2}. Next, we make some

considerations about cluster maintenance.

7.5 Maintenance Considerations
Although cluster maintenance is not the main focus of this work, it is necessary

to make some important considerations about this issue. In order to reflect the

content available in a semantic cluster, cluster ontologies should be created and

maintained dynamically and in an automatic way [Haase and Stojanovic, 2005;

Konstantinidis et al., 2008]. They should be adaptable to the changes in the

semantics of the peers that participate in the cluster. A cluster ontology should

be able to evolve not only when a requesting peer joins the cluster (as seen in

Section 7.4.3) but also when a participating peer leaves it. In this section, we

present some considerations about peer disconnection, another event that

requests a cluster ontology to be updated. In addition, we discuss what might

happen in the system when a cluster ontology evolves.

�� � �� � � ���
�
� �
�
� �
�� �� ���� � � ��� � �� � � �� � ��� ���� � ��

119

7.5.1 Disconnection of Participating Peers

The disconnection of a data peer DPijk implies in updating the cluster ontology

CLOij of its corresponding cluster CLij. The elements that are shared only by

DPijk are logically removed from CLOij, along with the associated semantic

correspondences. Logical deletion is preferred because DPijk can reconnect to

the same cluster CLij in a near future. Physical deletion occurs only after a

certain time interval. Once CLOij is updated, a new summary of it (OSij) is built

and the semantic index is updated accordingly.

The procedure to update CLOij as the result of an integration peer

disconnection is basically the same. However, the disconnection of IPij requires

an additional effort: the selection of a new integration peer for the

corresponding cluster. Next, we present two consequences of evolving a cluster

ontology.

7.5.2 Update of Cluster Neighborhood

When a cluster ontology evolves, there might be some changes in the

neighborhood Nij of a cluster CLij. Thus, the global similarity measures between

CLOij and each cluster ontology in Nij needs to be recomputed. If the global

similarity measure between CLOij and a cluster ontology CLOik ∈ Nij decreases

to a value that is below neighbor threshold (nt), then the cluster CLik is

removed from Nij. On the other hand, if the similarity value increases and

becomes higher than or equal to cluster threshold (ct), then the two (neighbor)

clusters CLij and CLik need to be transformed into a single cluster.

7.5.3 Recalculation of Global Similarity Measure

Another consequence of a cluster ontology evolution is described as follows.

Assume that a requesting peer RPn has joined a cluster CLij as the data peer

DPijk. Thus, its LOn is now referred as to LOijk. During the interval DPijk

remains connected to CLij, CLOij may evolve in such a way that the similarity

between CLOij and LOijk can be increased or decreased. In this sense, the

assumption that, given a semantic cluster CLij, each data peer DPijk in CLij is

such that SemMatch(CLOij, LOijk) ≥ ct can only be considered when a

requesting peer joins a cluster.

The similarity increases when data peers sharing some dissimilar content

to DPijk leave CLij. In this case, no cluster maintenance is needed and DPijk

�� � �� � � ���
�
� �
�
� �
�� �� ���� � � ��� � �� � � �� � ��� ���� � ��

120

should continue attached to CLij. Otherwise, if the global similarity measure

between CLOij and LOijk decreases then some cluster maintenance is needed.

The similarity decreases when data peers sharing some additional (dissimilar)

content join CLij after DPijk. For example, this can be caused if the cluster

threshold (ct) is initialized to a low value.

For instance, consider the scenario described in Figure 7.8. It illustrates a

cluster CLij containing one integration peer (IPij) and two data peers (DPij1 and

DPij3). The values in the tables represent the global similarity measures between

each distinct pair of ontologies in CLij. Particularly, in SPEED the measure

between a CLOij and a local ontology LOijk is computed before a data peer joins

a cluster CLij. The other measures (between the local ontologies) are not

calculated during the clustering process and are presented only to illustrate the

example. The table of Figure 7.8a shows that the data peers DPij1 and DPij3

share a high similar content since the global similarity measure between their

local ontologies (LOij1 and LOij3) is 0.9.

Figure 7.8. Cluster maintenance as a result of the cluster ontology evolution.

In Figure 7.8b, a new data peer (DPij2) joins CLij. DPij2 not only shares

similar content with DPij1 and DPij3 but also has some additional content that is

not available in the other two data peers. As a result, new ontology elements are

introduced in CLOij and the similarities between CLOij and DPij1 as well as

between CLOij and DPij3 are decreased. In this case, cluster maintenance can be

performed in two ways: (i) the most dissimilar data peer in CLij (in this case,

�� � �� � � ���
�
� �
�
� �
�� �� ���� � � ��� � �� � � �� � ��� ���� � ��

121

DPij1) must move to a more semantically similar cluster; or (ii) CLij must be

split into two new clusters.

7.6 Experiments
In this section we discuss implementation issues and provide a selection of the

experiments that we have performed to verify the effectiveness of the proposed

clustering process.

7.6.1 Implementation

For our experiments we have developed a simulator through which we were

able to reproduce the main conditions characterizing the SPEED’s environment.

The simulator was implemented in Java [Java, 2009] using the Eclipse

Integrated Development Environment (IDE) [Eclipse, 2009]. Through the

simulator we were able to generate scenarios corresponding to networks of

peers, each with its own schema describing a particular reality. In the simulator,

we assume that there exists a communication facility among the peers that

enables sending and receiving information, i.e. queries, data, and schema

information. A more detailed description of the simulator is provided in the

Appendix C. In this current version, the tool is able to simulate requesting peer

connection and the formation of clusters in a given semantic community.

Concerning the maintenance considerations discussed in Section 7.5, only the

update of a cluster neighborhood is implemented.

In order to execute the experiments, we included in the simulator the

ontology management tools (ontology matching and ontology summarization)

previously described.

Concerning ontology merging, we have not found any automatic tool that

could be integrated with the simulator. Therefore, we also had to develop a new

one. The merging tool was also developed in Java and the OWL API [OWL

API, 2009] was used to handle ontologies. Basically, the tool can be invoked

from command line and accepts as input two OWL ontologies. As a result, the

merging tool generates a new OWL ontology containing all elements (concepts

and properties) of the input ontologies. Repeated elements are not included.

�� � �� � � ���
�
� �
�
� �
�� �� ���� � � ��� � �� � � �� � ��� ���� � ��

122

7.6.2 Experimental Setting

Our simulation tests were conducted considering the education knowledge

domain. Therefore, we have built an ontology library containing dozens of local

ontologies to be used by requesting peers during the tests. Each local ontology

contains about six concepts on average. The local ontologies were derived from

the real-world ontology UnivCSCMO.owl illustrated in the Appendix A. The

UnivCSCMO.owl ontology describes a computer science academic department

and was also used as the community ontology. During our tests, we have

assumed that the element names of the local ontologies were normalized

according to the element names of the chosen community ontology.

7.6.3 Validation

All tests were performed in an Intel Pentium M 1.60GHz, 1GB of RAM. The

operating system was Windows XP®. In our experiments, the SPEED’s DHT

network was first created with some semantic peers. Afterwards, we started the

connection of requesting peers one at a time. Each requesting peer has searched

for a corresponding semantic community (education) in the DHT network and

then for a semantically similar cluster in the unstructured network of the

discovered community.

In the following, we demonstrate the effectiveness of the proposed

clustering process from two different points of view. First, we measure the

generation of semantic clusters using the clustering indices presented in

Chapter 2. Afterwards, we evaluate the resulting network by executing query

processing simulations.

Clustering Indices

We have evaluated the clustering results using the classical external and

internal cluster validity approaches (Chapter 2). External validity was measured

using the classical statistical indices: Rand Index [Theodoridis and

Koutroumbas, 2003], Jaccard Coefficient [Batistakis et al., 2002a], Fowlkes-

Mallows (FM) Index [Fowlkes and Mallows, 1983], and Hubert’s statistic

[Batistakis et al., 2002b]. The indices were computed through a comparison

between the clustering results obtained from the simulator against an ideal one

generated by a hierarchical clustering algorithm [Jain et al., 1999]. The

hierarchical algorithm follows the batch approach (Chapter 2) for clustering a

�� � �� � � ���
�
� �
�
� �
�� �� ���� � � ��� � �� � � �� � ��� ���� � ��

123

set of peers. In other words, it considers the set as a whole and begins to

organize peers into meaningful clusters.

SPEED’s clustering algorithm is incremental and order-dependent.

Particularly, due to the second characteristic, the indices were calculated

multiple times considering different orders of requesting peers. Then, for each

of the statistical indices an average of the index results was calculated.

The values of these statistical indices are between 0 and 1. However, a

requirement for achieving the maximum value is to have the same number of

clusters in both clustering results, which, as we observed, is not always

possible. For all the used indices, the larger their value the higher the

agreement between the two clustering results.

Two types of experiments were performed. In the first one, we considered

the search strategy proposed in SPEED (denoted limitedClusters). According to

such strategy, a requesting peer receives an initial cluster and visits only a

limited number of clusters, i.e. the direct and indirect semantic neighbors of the

initial cluster. In the second experiment (denoted allClusters), we considered a

different search strategy. Each requesting peer visits all current clusters before

connecting to the system. In this case, the semantic index is discarded.

For the limitedClusters strategy, the following parameters (with respective

values) were considered: summary size (6), neighbor threshold (0.10), and

connectTTL (3). Figure 7.9 depicts the index results for different values of

cluster threshold.

0,0
0,1
0,2
0,3
0,4
0,5
0,6
0,7
0,8
0,9
1,0

Cluster Threshold

In
de

x
In

te
rv

al

Rand Index 0,928 0,942 0,935 0,928 0,901

Jaccard Coefficient 0,629 0,649 0,530 0,454 0,246

Fowlkes-Mallows Index 0,785 0,788 0,713 0,664 0,486

Hubert's Statistic 0,748 0,755 0,682 0,636 0,458

0,25 0,35 0,45 0,55 0,65

Figure 7.9. Clustering evaluation: external indices.

�� � �� � � ���
�
� �
�
� �
�� �� ���� � � ��� � �� � � �� � ��� ���� � ��

124

The results indicate that the agreement between the clustering result

produced by the simulator and the ideal one is degraded as the value of cluster

threshold increases. For the set of local ontologies used in the tests, the highest

agreement has been obtained when cluster threshold was adjusted to 0.35. The

highest agreement could have been obtained for a different value of cluster

threshold if a distinct set of local ontologies had been used.

For the allClusters strategy, the clustering result was also compared with

the ideal one. To guarantee that all clusters were visited we have modified the

parameters connectTTL (999) and neighbor threshold (0). Summary size

remained unaltered. Afterwards, we compared the obtained index results against

the best ones of limitedClusters, i.e. when cluster threshold was set to 0.35.

Naturally, allClusters tends to produce better index results than limitedClusters.

However, we have obtained similar index results (Figure 7.10) with fewer

executions of SemMatch (Figure 7.11) and less number of messages transmitted

among peers in the simulated network (Figure 7.12).

0,0
0,1
0,2
0,3
0,4
0,5
0,6
0,7
0,8
0,9
1,0

In
de

x
In

te
rv

al

allClusters 0,970 0,675 0,794 0,778

limitedClusters 0,942 0,649 0,788 0,755

Rand Index Jaccard
Coefficient

Fowlkes-
Mallows Index

Hubert's
Statistic

Figure 7.10. A comparison of search strategies using internal statistical indexes.

Such decrease is explained because when a requesting peer arrives at a

semantic community, only a limited number of clusters are visited in order to

determine the most similar cluster for the requesting peer. Consequently, the

number of ontology matching executions is minimized. The numbers available

in Figure 7.11 indicate a reduction of 27% of matchings involving local

ontologies and cluster ontologies, and a reduction of 25% of matchings between

cluster ontologies.

�� � �� � � ���
�
� �
�
� �
�� �� ���� � � ��� � �� � � �� � ��� ���� � ��

125

0

50

100

150

200

250

300

#E
xe

cu
tio

ns
 o

f S
em

M
at

ch

allClusters 122 212 0

limitedClusters 91 155 271

SemMatch (CLO,CLO) SemMatch (CLO,LO) SemMatch (OS,LO)

LO = Local Ontology CLO = Cluster Ontology OS = Ontology Summary

Figure 7.11. A comparison of search strategies considering the number of executions of

SemMatch.

Since a requesting peer’s local ontology is propagated only among a

limited number of semantic neighbors of the initial cluster, the quantity of

messages transmitted among integration peers is also decreased. The numbers

illustrated in Figure 7.12 indicate a reduction of 22%.

0

500

1000

1500

2000

2500

3000

#M
es

sa
ge

s

allClusters 2509

limitedClusters 1962

Figure 7.12. A comparison of search strategies considering the number of messages

transmitted among peers.

Internal validity was evaluated using the Silhouette indices [Rousseeuw,

1987]. Such indices are useful when it is seeking compact and clearly separated

clusters. In this case, there are two interesting issues to be analyzed in a

clustering result: the homogeneity of each cluster and the degree of separation

between the obtained clusters. The higher their homogeneity and the separation

the better is the clustering result. Both aspects can be captured in a global

�� � �� � � ���
�
� �
�
� �
�� �� ���� � � ��� � �� � � �� � ��� ���� � ��

126

Silhouette value between –1 (bad clustering) and 1 (very good clustering).

Figure 7.13 illustrates the global Silhouette values for different values of

cluster threshold. Again, the best clustering result (0.505) for limitedClusters

has been obtained when cluster threshold was set to 0.35.

-1,0

-0,8

-0,6

-0,4

-0,2

0,0

0,2

0,4

0,6

0,8

1,0

Cluster Threshold

G
lo

ba
l S

ilh
ou

et
te

 V
al

ue
s

Global Silhouette 0,479 0,505 0,336 0,307 0,304

0,25 0,35 0,45 0,55 0,65

Figure 7.13. Clustering validity: internal indices.

Query Processing

In order to evaluate the impact of the proposed clustering process on query

answering, we simulated query routing on the networks produced by the

proposed clustering algorithm. Basically, query routing was simulated by

posing five different queries on randomly selected peers. Each query was a

combination of small number of predicates specifying conditions on concepts.

The set of relevant peers in the network that were able to answer each query

was previously identified manually, considering as a relevant peer a peer that

can answer a query integrally. We quantified the advantages on query

processing by propagating each query until a stopping condition was reached,

i.e., a TTL. Queries were propagated among semantic neighbor clusters. In this

sense, we evaluated the effectiveness improvement by measuring the percentage

of relevant peers that were reached for different number of hops.

The results illustrated in Figure 7.14 correspond to the network generated

when cluster threshold was configured to 0.35. In this network, the 45

requesting peers were clustered into seven clusters in the education community

and each cluster contained six peers on average. The results indicate that one

�� � �� � � ���
�
� �
�
� �
�� �� ���� � � ��� � �� � � �� � ��� ���� � ��

127

hop was needed to reach 17% of the relevant peers. This means routing a query

to relevant peers participating in the same cluster of the peer in which the query

was posed. In addition, three hops were necessary to reach almost all relevant

peers. This means routing a query to the direct and indirect neighbors (three at

maximum) of the cluster in which the query was posed.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Number of hops

R
ea

ch
ed

 R
el

ev
an

t P
ee

rs
 (%

)

ReachedRelevantPeers 16,4% 51,7% 94,8% 100,0%

1 2 3 4

Figure 7.14. Percentage of reached relevant peers for a given number of hops.

7.7 Considerations
The proposed clustering process can bring several benefits to the organization

of peers in a PDMS. Semantically similar peers are clustered according to their

knowledge domain (communities) and local ontologies (clusters). If a semantic

cluster is discovered by a requesting peer, several semantic similar peers are

also found. By using a semantic index the search for a semantic cluster is not

started randomly in a community. Thus, the probability of finding a

semantically similar cluster for RPn increases. Furthermore, since the search for

clusters is guided by the semantics of the participating peers, irrelevant

semantic clusters are discarded. If there is a semantic cluster which is similar to

RPn, then such cluster can be found by RPn in a shorter number of hops.

Our experimental evaluation has shown the effectiveness of the proposed

clustering process. We are aware that limiting the number of clusters to be

visited when requesting peer arrives can lead to situations in which the most

semantically similar cluster is not found. However, the use of a semantic index

has shown that satisfactory clustering results can be obtained. In addition,

�� � �� � � ���
�
� �
�
� �
�� �� ���� � � ��� � �� � � �� � ��� ���� � ��

128

limiting the number of visited clusters minimizes the number of ontology

matching executions as well as the number of messages transmitted in the

network. Finally, queries posed at peers can reach relevant peers in a few hops.

In the next chapter, we present our conclusions and suggestions for future work.

�

 129

����� ����� �� ����� �� ����� �� ����� ���������

������ ��� �
�� ����
��� ��� �
�� ����
��� ��� �
�� ����
��� ��� �
�� ����
� � �� ���� �� ���� �� ���� �� ���!!!!������������ ����

“When we think we know all the answers, life comes and changes all the questions”

Anonymous

In this thesis, we have proposed an incremental process to cluster semantically

similar peers in a PDMS. Peers are organized in the network according to a

mixed P2P topology (DHT, unstructured, and super-peer). Ontologies are

employed in the PDMS to improve some of its main services, e.g. to represent

the exported schema shared by (a set of) peers. Exported schemas (ontologies)

are used to group semantically similar peers into communities and clusters.

Peer clustering is assisted by two other processes: ontology matching and

ontology summarization. An ontology matching process produces a global

measure which is mainly used to determine the similarity between peers. An

ontology summarization process produces summaries of clusters ontologies.

The summaries are used as a semantic index to indicate an initial cluster for

requesting peers. The initial cluster serves as a starting point in order to locate

other semantically similar peers.

8.1 Research Contributions
The main contributions of this work are summarized as follows.

PDMS Architecture

We have extended the original definition of OPDMS arguing that ontologies

can be used in a broader way to enhance PDMS services. Based on our analysis

�� � �� � � ���
��
� �� � ��
� ��� � �� � � � � � �!
� � �

130

of the state-of-the-art on PDMS, we have identified six high-level requirements

that an OPDMS should fulfill in order to take advantage of using ontologies to

enhance its services: R1) Exported schema representation; R2) Global

conceptualization; R3) Support for correspondences identification; R4) Support

for query processing; R5) Semantic index; and R6) Semantic matching

capabilities. None of the discussed PMDS (OntSum, Sunrise, and Helios)

satisfied the requirements completely. In this sense, we have proposed a

semantic-based PDMS which fulfills all the identified requirements. Table 8.1

illustrates the different components of SPEED which are used to satisfy each

one of the requirements.

Table 8.1. The resources used in SPEED to satisfy the identified high-level requirements of an OPDMS.

R1 R2 R3 R4 R5 R6

Ontology

Translator;

Local

Ontologies

Ontology

Merger;

Cluster and

Community

Ontologies

Community

Ontologies

Cluster

Ontologies

Ontology

Summarizer;

Summarized

Cluster

Ontologies

Ontology

Matcher

(SemMatch)

The internal modules of the three types of peers used in SPEED (data

peers, integration peers, and semantic peers) have been described as well as the

different types of ontologies used in the system (local ontologies, cluster

ontologies, and community ontologies). A simulator has been developed

through which we were able to reproduce the main conditions characterizing the

SPEED’s environment.

Ontology Matching Process

We have proposed a semantic-based ontology matching process (SemMatch).

Differently from other matching processes, SemMatch produces, besides an

ontology alignment between two ontologies, a global similarity measure

representing the overall similarity degree between them (and not only between

their elements!). Particularly, in SPEED, a global measure is needed in many

situations, e.g. to determine the similarity between a requesting peer and an

existing cluster. We have developed a tool implementing the semantic-based

ontology matching process. The tool has been submitted to experimental

evaluation and integrated to our PDMS simulator. Experimental results have

�� � �� � � ���
��
� �� � ��
� ��� � �� � � � � � �!
� � �

131

shown that the combination of linguistic, structural and semantic matchers can

improve ontology alignments.

Ontology Summarization Process

We have proposed an automatic process for building summaries of cluster

ontologies. The process is divided into several steps and is based on the notions

of centrality and frequency. Particularly, the use of frequency has not been

investigated before in other works. In this thesis, the use is motivated by the

fact that a cluster ontology is obtained by merging several different local

ontologies. The use of frequency as a measure to determine the relevance of

concepts of an ontology minimizes the need to update the semantic index. If the

most frequent concepts are included in the summary that represents a cluster,

when the associated cluster ontology evolves the most relevant concepts tends

to remain unaltered. Consequently, there is no need to generate a new summary.

The main contributions of this topic include a preliminary implementation and

evaluation of an ontology summarization tool which has also been integrated to

the PDMS simulator.

Peer Clustering Process

We have proposed an incremental process for clustering peers in a PDMS.

According to the clustering process, peers are first grouped into a

corresponding semantic community and then into a semantically similar cluster.

Instead of visiting all current clusters when a requesting peer arrives at the

semantic community, the basic idea is to start at a promising cluster and visit

only a subset of the clusters. The proposed process was implemented in the

simulator and submitted to experimental evaluation. Validation has been

performed using clustering indices and by executing query processing

simulations. The results have shown that homogeneous and well-separated

clusters can be generated if an ontology-based clustering process is used to

organize peers as soon as they connect to the system.

8.2 Future Work
This work has raised a large spectrum of new problems to be solved, which are

listed as follows. The problems are organized according to each one of the

research contributions. Although not directly related to this work, other types of

problems are also indicated, e.g. load balancing and fault tolerance.

�� � �� � � ���
��
� �� � ��
� ��� � �� � � � � � �!
� � �

132

Ontology Matching Process

As further work, the ontology matching tool can be extended by considering the

properties of the concepts both in the correspondences identification and in the

determination of the global similarity measure. Furthermore, new global

similarity measures between ontologies can be proposed as well as other

existing ones can be implemented.

Ontology Summarization Process

There are a number of ongoing research issues concerned with the proposed

summarization process which will be the goal of our future activity. An issue to

be studied in deep detail regards the application of transitivity rules to

identified paths in order to eliminate non-relevant concepts. In some situations,

instead of adding non-relevant concepts in the summary, some relationships

between relevant concepts could be inferred. The main idea is to automatically

derive new relationships between relevant concepts which are separated by a

non-relevant concept, and then remove the non-relevant concept and its

relationships.

Another research activity is devoted to executing experiments with the

other types of centrality measures (closeness, betweenness, and eigenvector).

We think that more accurate sets of relevant concepts can be produced if

different centrality measures are applied.

Peer Clustering Process

Regarding the ontology-based clustering process, there are some interesting

issues that can be the goal of future research. For instance, during the clustering

process, the fact that participating peers can leave the system may be

considered. In this case, the Ontology Manager component, located at the

integration peers, needs to be implemented. The component is responsible for

updating a cluster ontology whenever a data peer leaves the cluster, reflecting

the current content shared inside a cluster. Also, the simulator can be adapted to

consider parallel connection and disconnection of peers. This modification will

probably require the use of threads [Oaks and Wong, 2004].

Clearly, the search for an initial cluster in a semantic index needs to be

improved. The basic idea is to avoid full index scans and minimize the number

of matching between a local ontology (requesting peer) and the summarized

�� � �� � � ���
��
� �� � ��
� ��� � �� � � � � � �!
� � �

133

cluster ontologies. To this end, the summaries should be organized in such a

way that the initial cluster (i.e. the one with the highest global measure) should

be determined with as few matching as possible.

Load Balancing

The dynamic behavior of data peers and integration peers can lead to situations

where the overlay network of a community may need to be reorganized. For

instance, if most of the connected peers are integration peers, the system is

more like an unstructured P2P network and several peers will participate in

query processing. On the other hand, if too few integration peers are available,

the system is more like a centralized network.

In this sense, a graph-based clustering algorithm [Steiner and Biersack,

2005; Hammouda and Kamel, 2007] can be used to avoid the previously

mentioned situations. Such algorithm can be adapted to periodically balance

current clusters and still maintain the semantic organization of peers in the

overlay network. Clearly, some operations to be considered in the algorithm

are: (i) the redistribution of data peers between the semantic neighbors of an

overloaded cluster; and (ii) the merging of two clusters or the split of an

existing cluster into two new clusters.

Fault Tolerance

When an integration peer fails or disconnects, a fault tolerance approach must

be available in order to maintain the corresponding data peers connected. A

pro-active solution can be used in such a way that one of the data peers of a

particular cluster should be previously elected as a candidate integration peer.

In this case, the candidate acts as a redundant integration peer and keeps a copy

of the actual integration peer’s knowledge base. The knowledge base needs to

be periodically replicated from the actual integration peer to the candidate

integration peer. If the actual integration peer fails, then the candidate

integration peer assumes its role and another data peer is chosen as candidate

integration peer.

Since integration peers are responsible for executing important issues

within a cluster, several characteristics need to be considered so a data peer can

become an integration peer candidate. Such characteristics include physical

resources available such as physical memory, disk space, CPU powerfulness,

�� � �� � � ���
��
� �� � ��
� ��� � �� � � � � � �!
� � �

134

and network bandwidth. Additionally, the behavior of a data peer, while it is

connected to the system, should be an essential factor when determining an

integration peer candidate. Thus, subjective characteristics are also taken into

account, for example, availability, accuracy, response time, completeness, and

amount of data.

�

 135

REFERENCES

Aberer et al., 2002 Aberer, K., Cudre-Mauroux, P., and Hauswirth, M.: A
Framework for Semantic Gossiping. In: SIGMOD Record,
31(4) (2002)

Arenas et al.,
2003

Arenas, M., Kantere, V., Kementsietsidis, A., Kiringa, I., Miller,
R. J., and Mylopoulos, J.: The Hyperion Project: From Data
Integration to Data Coordination. In: SIGMOD Record,
Special Issue on Peer-to-Peer Data Management, 32(3):53-58
(2003)

Aumüller et al.,
2005

Aumüller, D., Do, H. H., Massmann, S., Rahm, E.: Schema and
ontology matching with COMA++. In: International
Conference on Management of Data (SIGMOD), Software
Demonstration (2005)

Baader et al., 2003 Baader, F., Calvanese, D., McGuinness, D., Nardi D., and Patel-
Schneider, P.: The Description Logic Handbook: Theory,
Implementation and Applications. Cambridge University Press
(2003)

Baeza-Yates and
Ribeiro-Neto,
1999

Baeza-Yates, R., Ribeiro-Neto, B.: Modern Information
Retrieval. Harlow, England, ACM Press (1999)

Barrasa et al.,
2004

Barrasa, J., Corcho, O., and Gómez-Pérez, A.: R2O, an
Extensible and Semantically Based Database-to-Ontology
Mapping Language. In: 2nd Workshop on Semantic Web and
Databases (SWDB’04), pages 1069-1070, Toronto, Canada
(2004)

Batini et al., 1986 Batini, C., Lenzerini, M., and Navathe, S.: A comparative
analysis of methodologies for database schema integration. In:
ACM Computing Surveys, 18(4):323-364 (1986)

Batistakis et al.,
2002a

Batistakis, Y., Halkidi, M., and Vazirgiannis, M.: Cluster validity
methods: Part I. In: Sigmod Record, 31(12) (2002)

Batistakis et al.,
2002b

Batistakis, Y., Halkidi, M., and Vazirgiannis, M.: Clustering
validity checking methods: Part II. In: Sigmod Record, 31(3)
(2002)

Bellahsène and
Roantree, 2004

Bellahsène, Z., Roantree, M. Querying Distributed Data in a
Super-Peer Based Architecture. In: 15th Int. Conf. on Database
and Expert Systems Applications (DEXA’04), Volume 3180
of LNCS, pages 296-305, Zaragoza, Spain (2004)

Berkhin, 2002 Berkhin, P.: Survey of Clustering Data Mining Techniques.
Accrue Software, Inc. San Jose, CA, USA (2002)

Berners-Lee et al.,
2001

Berners-Lee, T., Hendler, J., and Lassila, O.: The Semantic Web.
Scientific American (2001)

Bernstein et al.,
2002

Bernstein, P., Giunchiglia, F., Kementsietsidis, A., Mylopoulos,
J., Serafini, L., and Zaihrayeu, I.: Data management for peer-
to-peer computing: A vision. In: 5th International Workshop on
the Web and Databases (WebDB), pages 89-94, Madison,
USA (2002)

�

136

Bizer, 2003 Bizer, C.: D2R MAP – A Database to RDF Mapping Language.
In: 12th Int. World Wide Web Conference (Posters), Budapest,
Hungary (2003)

Bonacich, 1972 Bonacich, P.: Factoring and Weighting Approaches to Status
Scores and Clique Identification. In: Journal of Mathematical
Sociology, Volume 2, Number 1, pages 113-120 (1972)

Booch et al., 2005 Booch, G., Rumbaugh, J., and Jacobson, I.: The Unified
Modeling Language User Guide. Addison Wesley, 2nd Edition
(2005)

Castano et al.,
1998

Castano, S., Antonellis, V., Fugini, M. G., Pernici, B. :
Conceptual Schema Analysis : Techniques and Applications.
In: ACM Transactions on Database Systems, Volume 23,
Number 3, pages 286-333 (1998)

Castano et al.,
2003

Castano, S., Ferrara, A., Montanelli, S., Pagani, E., Rossi, G. P.:
Ontology-Addressable Contents in P2P Networks. In: 1st
WWW International Workshop on Semantics in Peer-to-Peer
and Grid Computing (SemPGRID’03), in conjunction with
12th International World Wide Web Conference (WWW’03),
pages 55-68, Budapest, Hungary (2003)

Castano et al.,
2004

Castano, S., Ferrara, A., Montanelli, S., and Racca, G.: Semantic
Information Interoperability in Open Networked Systems. In:
International Conference on Semantics of a Networked World
(ICSNW’04), pages 215-230, Paris, France (2004)

Castano and
Montanelli, 2005

Castano, S., Montanelli, S.: Semantic Self-Formation of
Communities of Peers. In: ESWC Workshop on Ontologies in
Peer-to-Peer Communities, Heraklion, Greece (2005)

Castano et al.,
2006

Castano S., Ferrara, A., and Montanelli, S.: Matching ontologies
in open networked systems: Techniques and applications. In:
Journal on Data Semantics, V:25-63 (2006)

Cerbah, 2008 Cerbah, F.: Learning Highly Structured Semantic Repositories
from Relational Databases – The RDBtoOnto Tool. In: 5th
European Semantic Web Conference (ESWC’08), pages 777-
781, Tenerife, Spain (2008)

Cheeseman and
Stutz, 1996

Cheeseman, P., Stutz, J.: Bayesian Classification (AutoClass):
Theory and Results. In: U. M. Fayyad, G. Piatetsky-Shapiro,
P. Smith, and R. Uthurusamy, editors, Advances in
Knowledge Discovery and Data Mining, pages 153-180,
AAAI/MIT Press (1996)

Crespo and
Garcia-Molina,
2002

Crespo, A., Garcia-Molina, H. Semantic Overlay Networks for
P2P Systems. Technical Report, Stanford University (2002)

Cullot et al., 2007 Cullot, N., Ghawi, R., and Yétongnon, K.: DB2OWL: A Tool for
Automatic Database-to-Ontology Mapping”. In: 15th Italian
Symposium on Advanced Database Systems (SEBD’07),
pages 491-494, Torre Canne di Fasano (BR), Italy (2007)

David and
Euzenat, 2008

David, J., Euzenat, J.: Comparison between ontology distances
(preliminary results). In: 7th International Conference on the
Semantic Web (ISWC’08), pages 245-260, Karlsruhe,
Germany (2008)

�

137

Davies et al., 2006 Davies, J., Studer, R., and Warren, P.: Semantic Web
Technologies: Trends and Research in Ontology-based
Systems. John Wiley & Sons Ltd (2006)

de Laborda and
Conrad, 2005

de Laborda, C. P. and Conrad, S. Relational.OWL A Data and
Schema Representation Format Based on OWL. In: 2nd Asia-
Pacific Conf. on Conceptual Modelling (APCCM’05), Volume
43 of CRPIT, pages 89-96, Newcastle, Australia (2005)

Diestel, 2005 Diestel, R.: Graph Theory. 3rd Edition, Springer-Verlag,
Heidelberg (2005)

Do and Rahm,
2002

Do, H. H., Rahm, E.: COMA - A System for Flexible
Combination of Schema Matching Approaches. In: 28th
International Conference on Very Large Data Bases (VLDB),
ACM Press, Hong Kong. pages 610-621 (2002)

Doan et al., 2003 Doan, A., Madhavan, J., Dhamankar, R., Domingos, P., and
Halevy, A.: Learning to match ontologies on the semantic
web. In: VLDB Journal 12, 4, 303-319 (2003)

Doan and Halevy,
2005

Doan, A.-H., Halevy, A.: Semantic integration research in the
database community: A brief survey. In: AI Magazine,
26(1):83–94. Special issue on Semantic integration. (2005)

Dou et al., 2005 Dou, D., McDermott, D., and Qi, P.: Ontology translation on the
semantic web. In: Journal on Data Semantics, II:35-57 (2005)

Doulkeridis et al.,
2006

Doulkeridis, C., Nørvag, K., and Vazirgiannis, M.: Scalable
Semantic Overlay Generation for P2P-Based Digital Libraries.
In: 10th European Conference on Research and Advanced
Technology for Digital Libraries (ECDL'06), pages 26-38,
Alicante, Spain (2006)

Doval and
O'Mahony, 2003

Doval, D., O'Mahony, D.: Overlay Networks: A Scalable
Alternative for P2P. In: IEEE Internet Computing, Volume 07,
No. 4, pages 79-82 (2003)

Eclipse, 2009 The Eclipse Integrated Development Environment (IDE),
http://www.eclipse.org/ (2009)

Ehrig et al., 2005 Ehrig, M., Haase, P., Hefke, M., and Stojanovic, N.: Similarity
for ontologies – a comprehensive framework. In: 13th
European Conference on Information Systems, Information
Systems in a Rapidly Changing Economy (ECIS’05),
Regensburg, Germany (2005)

Ehrig, 2007 Ehrig, M.: Ontology alignment: bridging the semantic gap.
Semantic web and beyond: computing for human experience.
Springer, New-York (NY US) (2007)

Ester et al., 1996 Ester, M., Kriegel, H.-P., Sander, J., and Xu, X.: A density-based
algorithm for discovering clusters in large spatial data sets
with noise. In: 2nd Int. Conf. on Knowledge Discovery and
Data Mining, pages 226-231, Portland, USA (1996)

Euzenat, 2001 Euzenat, J.: Towards a principled approach to semantic
interoperability. In: IJCAI Workshop on Ontologies and
Information Sharing, pages 19-25, Seattle, USA (2001)

Euzenat, 2004 Euzenat, J.: An API for ontology alignment. In: 3rd International
Semantic Web Conference (ISWC), volume 3298 of Lecture
notes in computer science, pages 698-712, Hiroshima, Japan
(2004)

�

138

Euzenat and
Shvaiko, 2007

Euzenat, J., Shvaiko, P.: Ontology Matching. Springer-Verlag
Berlin Heidelberg (2007)

Faye et al., 2007 Faye, D., Nachouki, G., and Valduriez, P. Semantic Query
Routing in SenPeer, a P2P Data Management System. In: 18th
International Conference on Database and Expert Systems
Applications, pages 365-374, Regensburg, Germany (2007)

Fensel, 2004 Fensel, D.: Ontologies: a silver bullet for knowledge
management and electronic commerce. Springer, Heidelberg
(DE), 2nd edition (2004)

Fiorano, 2003 Fiorano Software: Super-Peer Architectures for Distributed
Computing. White Paper, Fiorano Software, Inc. Available at
http://www.fiorano.com/docs/superpeer.pdf (2003)�

Fisher, 1987 Fisher, D. H.: Knowledge acquisition via incremental conceptual
clustering. In: Machine Learning, 2(2):139-172 (1987)

Fisher et al., 1992 Fisher, D. H., Xu, L., and Zard, N.: Ordering effects in
clustering. In: 9th International Conference on Machine
Learning, pages 163-168, Aberdeen, Scotland (1992)�

Fowlkes and
Mallows, 1983

Fowlkes, E., Mallows, C.: A method for comparing two
hierarchical clusterings. In: Journal of the American Statistical
Association, 78 (1983)

Freeman, 1979 Freeman, L. C.: Centrality in Networks: I. Conceptual
clarification. Social Networks 1, 215-39 (1979)

Freenet, 2009 The Free Network Project. http://freenetproject.org/ (2009)
Fuxman et al.,
2006

Fuxman, A., Hernández, M.A., Ho, H., Miller, R, Papotti, P., and
Popa, L.: Nested Mappings: Schema Mapping Reloaded. In:
VLDB 2006 Conference, pages 67-78, Seoul, Korea (2006)

Gan et al., 2007 Gan, G., Ma, C., Wu, J.: Data Clustering: Theory, Algorithms,
and Applications, ASA-SIAM Series on Statistics and Applied
Probability, SIAM, Philadelphia, ASA, Alexandria, VA
(2007), Society for Industrial and Applied Mathematics (2007)

Ganti et al., 1999 Ganti, V., Ramakrishnan, R., Gehrke, J., Powell, A., and French,
J.: Clustering Large Datasets in Arbitrary Metric Spaces. In:
15th ICDE Conf., pages 502-511, Sydney, Australia (1999)

Gennari et al.,
1989

Gennari, J., Langley, P., and Fisher, D.: Models of incremental
concept formation. In: Journal of Artificial Intelligence,
Volume 40, pages 11-61 (1989)�

Ghawi and Cullot,
2007

Ghawi, R., and Cullot, N.: Database-to-Ontology Mapping
Generation for Semantic Interoperability. In: 3rd International
Workshop on Database Interoperability (InterDB’07), held in
conjunction with VLDB 2007, Vienna, Austria (2007)

Giunchiglia and
Zaihrayeu, 2002

Giunchiglia, F., Zaihrayeu, I.: Making peer databases interact – a
vision for an architecture supporting data coordination. In: 6th
Int. Workshop on Cooperative Information Agents (CIA),
pages 18-35, Madrid, Spain (2002)

Giunchiglia and
Shvaiko, 2003

Giunchiglia, F., Shvaiko, P.: Semantic matching. The
Knowledge Engineering Review, 18(3):265-280 (2003)

Giunchiglia et al.,
2004

Giunchiglia, F., Shvaiko, P., and Yatskevich, M.: S-Match: an
algorithm and an implementation of semantic matching. In: 1st
European Semantic Web Symposium (ESWS), Volume 3053
of LNCS, pages 61-75, Hersounisous, Greece (2004)

�

139

Giunchiglia et al.,
2005

Giunchiglia, F., Shvaiko, P., and Yatskevich, M.: Semantic
schema matching. In: 13th Int. Conference on Cooperative
Information Systems (CoopIS), Volume 3761 of LNCS, pages
347-365, Agia Napa, Cyprus (2005)

Giunchiglia et al.,
2006

Giunchiglia, F., Shvaiko, P., and Yatskevich, M.: Discovering
missing background knowledge in ontology matching. In: 16th
European Conference on Artificial Intelligence (ECAI’06),
pages 382-386, Riva del Garda, Italy (2006)

Giunchiglia et al.,
2007

Giunchiglia, F., Yatskevich, M., and Shvaiko, P.: Semantic
matching: Algorithms and implementation. In: Journal on Data
Semantics, IX (2007)

Gruber, 1993 Gruber, T. R.: A translation approach to portable ontology
specifications. Knowledge Acquisition, 5(2):199-220 (1993)

Guarino, 1998 Guarino, N.: Formal Ontology and Information Systems. In: 1st
International Conference on Formal Ontologies in Information
Systems, pages 3-15, Trento, Italy (1998)

Haase and
Stojanovic, 2005

Haase, P., Stojanovic, L.: Consistent evolution of OWL
ontologies. In: 2nd European Semantic Web Conference
(ESWC’05), Volume 3532 of LNCS, pages 182-197 (2005)

Hai, 2005 Hai, D. H.: Schema Matching and Mapping-Based Data
Integration. Ph.D. Thesis. University of Leipzig, Germany
(2005)

Halevy et al.,
2003a

Halevy, A. Y., Ives, Z. G., Mork, P. and Tatarinov, I.: Piazza:
Data Management Infrastructure for Semantic Web
Applications. In: World Wide Web Conference, pages 556-
567 (2003)

Halevy et al.,
2003b

Halevy, A. Y., Ives, Z., Suciu, D., and Tatarinov, I.: Schema
Mediation in Peer Data Management Systems. In:
International Conference on Data Engineering (ICDE’03),
pages 505-516, Bangalore, India (2003)

Halevy et al.,
2006

Halevy, A., Rajaraman, A., and Ordille, J.: Data Integration: The
Teenage Years. In: VLDB'06, pages 9-16 (2006)

Halkidi et al.,
2001

Halkidi, M., Batistakis, Y., and Vazirgiannis, M.: On Clustering
Validation Techniques. In: Journal of Intelligent Information
System, 17(2):107-145 (2001)

Hammouda and
Kamel, 2007

Hammouda, K. M., Kamel, M. S.: HP2PC: Scalable
Hierarchically-Distributed Peer-to-Peer Clustering. In: 7th
SIAM International Conference on Data Mining, Minneapolis,
Minnesota, USA (2007)

Hartigan, 1975 Hartigan, J. A.: Clustering Algorithms. John Wiley and Sons,
Inc., New York, NY (1975)

Hartigan and
Wong, 1979

Hartigan, J., Wong, M.: A k-means clustering algorithm. In:
Journal of Applied Statistics, Volume 28, pages 100-108
(1979)

Heese et al., 2005 Heese, R., Herschel, S., Naumann, F., Roth, A.: Self-Extending
Peer Data Management. In: GI-Fachtagung fur
Datenbanksysteme in Business, Technologie und Web
(BTW’05), Karlsruhe, Germany (2005)�

�

140

Hose et al., 2007 Hose, K., Lemke, C., Quasebarth, J., Sattler, K.-U.:
SmurfPDMS: A Platform for Query Processing in Large-Scale
PDMS. In: Business, Technology, and Web (BTW'07), pages
621-624, Aachen, Germany (2007)

Hu et al., 2006 Hu, B., Kalfoglou, Y., Alani, H., Dupplaw, D., Lewis, P., and
Shadbolt, N.: Semantic Metrics. In: 15th International
Conference on Knowledge Engineering and Knowledge
Management (EKAW’06), Vol. 4248 of LNCS, pages 166-
181, Prague, Czech Republic (2006)

Hu and Qu, 2007 Hu, W., Qu, Y.: Discovering Simple Mappings Between
Relational Database Schemas and Ontologies. In: 6th
International Semantic Web Conference (ISWC’07),
4825:225-238, Busan, South Korea, (2007)

Hu and Qu, 2008 Hu, W., Qu, Y.: Falcon-AO: a practical ontology matching
system. In: Journal of Web Semantics: Science, Services and
Agents on the World Wide Web archive. Volume 6, Issue 3,
pages 237-239 (2008)

Jain et al., 1999 Jain, A. K., Murty, M. N., and Flynn, P. J.: Data clustering: a
review. In: ACM Computing Survey, 31(3):264-323 (1999)

Java, 2009 Java, Sun Developer Network, http://java.sun.com/ (2009)
Jena, 2009 Jena, a Semantic Web Framework for Java,

http://jena.sourceforge.net/ (2009)
Kantere et al.,
2003

Kantere, V., Kiringa, I., Mylopoulos, J., Kementsietsidis, A., and
Arenas, M.: Coordinating Peer Databases using ECA Rules.
In: International Workshop on Databases, Information
Systems, and Peer-to-Peer Computing (DBISP2P’03), Volume
2944 of LNCS, pages 108-122, Berlin, Germany (2003)

Kantere et al.,
2008

Kantere, V., Tsoumakos, D., and Sellis, T.: A Framework for
Semantic Grouping in P2P Databases. In: The Information
Systems Journal, Volume 33, Issue 7-8, pages 611-636 (2008)

Kantere et al.,
2009

Kantere, V., Tsoumakos, D., Sellis, T., and Roussopoulos, N.:
GrouPeer: Dynamic clustering of P2P databases. In: The
Information Systems Journal, Volume 34, Issue 1, pages 62-86
(2009)

Karger et al., 1997 Karger, D., Lehman, E., Leighton, F., Levine, M., Lewin, D., and
Panigrahy, R.: Consistent hashing and random trees:
Distributed caching protocols for relieving hot spots on the
world wide web. In: 29th Annual ACM Symposium on Theory
of Computing, pages 654-663, El Paso, Texas, USA (1997)

Kashyap and
Sheth, 1996

Kashyap, V., Sheth, A.: Semantic and schematic similarities
between database objects: a context-based approach. In: The
VLDB Journal, 5(4):276-304 (1996)

Kashyap and
Sheth, 1998

Kashyap, V., Sheth, A.: Semantic heterogeneity in global
information systems: The role of metadata, context and
ontologies. In: Michael Papazoglou and Gunter Schlageter,
editors, Cooperative information systems, pages 139-178.
Academic Press, New York, USA (1998)

Katchaounov,
2003

Katchaounov, T.: Query Processing for Peer Mediator Databases.
PhD thesis, Department of Information Technology, Uppsala
University, Sweden (2003)

�

141

Konstantinidis et
al., 2008

Konstantinidis, G., Flouris, G., Antoniou, G., Christophides, V.:
A Formal Approach for RDF/S Ontology Evolution. In: 18th
European Conference on Artificial Intelligence (ECAI’08),
pages 405-409, Patras, Greece (2008)

Kotsiantis and
Pintelas, 2004

Kotsiantis, S. B. and Pintelas, P. E.: Recent advances in
clustering: a brief survey. In: WSEAS Transactions on
Information Science and Applications, Volume 1, Number 1,
pages 73-81 (2004)

Larson et al., 1989 Larson, J., Navathe, S., and Elmasri, R.: A theory of attributed
equivalence in databases with application to schema
integration. In: IEEE Transactions on Software Engineering,
15(4):449–463 (1989)

Leibowitz et al.,
2003

Leibowitz, N., Ripeanu, M., and Wierzbicki, A.: Deconstructing
the KaZaA Network. In: 3rd IEEE Workshop on Internet
Applications (WIAPP'03), San Jose, CA, USA (2003)�

Lenzerini, 2004 Lenzerini, M.: Principles of P2P Data Integration. In: 3rd
International Workshop on Data Integration over the Web
(DIWeb’04), pages 7-21, Riga, Latvia (2004)

Li and Vuong,
2005

Li, J., Vuong, S.: Ontology-Based Clustering and Routing in
Peer-to-Peer Networks. In: 6th Int. Conference on Parallel and
Distributed Computing, Applications and Technologies, pages
791-795, Dalian, China (2005)

Li and Vuong,
2007

Li, J., and Vuong, S.: OntSum: A Semantic Query Routing
Scheme in P2P Networks Based on Concise Ontology
Indexing. In: 21st International Conference on Advanced
Networking and Applications, pages 94-101, Niagara Falls,
Canada (2007)

Lodi et al., 2008 Lodi, S., Penzo, W., Mandreoli, F., Martoglia, R., and Sassatelli,
S.: Semantic Peer, Here are the Neighbors You Want! In: 11th
Extending Database Technology (EDBT’08), pages 26-37,
Nantes, France. (2008)

Löser et al., 2003 Löser, A., Naumann, F., Siberski, W., Nejdl, W., and Thaden,
U.: Semantic Overlay Clusters within Super-Peer Networks.
In: International Workshop on Databases, Information
Systems and Peer-to-Peer Computing (DBISP2P’03), pages
33-47, Berlin, Germany (2003)

Mädche and
Staab, 2002

Mädche, A., Staab, S.: Measuring similarity between ontologies.
In: 13th International Conference on Knowledge Engineering
and Knowledge Management (EKAW’02), Vol. 2473 of
LNCS, pages 251-263, Siguenza, Spain (2002)

Madhavan and
Halevy, 2003

Madhavan, J., Halevy, A. Y.: Composing mappings among data
sources. In: 29th VLDB Conference, pages 572-583, Berlin,
Germany (2003)

Mandreoli et al.,
2006a

Mandreoli, F., Martoglia, R., Penzo, W., and Sassatelli, S.:
Semantic Query Routing Experiences in a PDMS. In: 3rd
Italian Semantic Web Workshop (SWAP’06), Pisa, Italy
(2006)

Mandreoli et al.,
2006b

Mandreoli, F., Martoglia, R., Penzo, W., and Sassatelli, S.: SRI:
Exploiting Semantic Information for Effective Query Routing
in a PDMS. In: WIDM, (2006)

�

142

Mandreoli et al.,
2007

Mandreoli, F., Martoglia, R., Penzo, W., Sassatelli, S., and
Villani, G.: SUNRISE: Exploring PDMS Networks with
Semantic Routing Indexes. In: 4th European Semantic Web
Conference (ESWC'07), Innsbruck, Austria (2007)

Melnik et al.,
2003

Melnik, S., Rahm, E., and Bernstein, P.: Rondo: A programming
platform for model management. In: 22nd International
Conference on Management of Data (SIGMOD), pages 193-
204, San Diego, USA (2003)

Mika, 2007 Mika, P.: Social Networks and the Semantic Web. Springer-
Verlag New York, Inc. (2007)

Miller, 1995 Miller, A. G.: WordNet: A lexical database for English. In:
Communications of the ACM, 38(11):39-41 (1995)

Milojicic et al.,
2002

Milojicic, D., Kalogeraki, V., Lukose, R., Nagaraja, K., Pruyne,
J., Richard, B., Rollins, S., Xu, Z.: Peer-to-Peer Computing.
In: Technical Report HPL-2002-57, HP Labs. Available at
http://www.hpl.hp.com/techreports/2002/HPL-2002-57R1.pdf
(2002)

Mitra et al., 1999 Mitra, P., Wiederhold, G., and Jannink, J.: Semi-automatic
integration of knowledge sources. In: 2nd Int. Conference on
Information Fusion, pages 572-581, Sunnyvale, USA (1999)

Modica et al.,
2001

Modica, G., Gal, A., and Jamil, H.: The use of machine-
generated ontologies in dynamic information seeking. In: 9th
Int. Conf. on Cooperative Information Systems (CoopIS), Vol.
2172 of LNCS, pages 433-448, Trento, Italy (2001)

Montanelli and
Castano, 2008

Montanelli, S. and Castano, S.: Semantically routing queries in
peer-based systems: the H-Link approach. In: Knowledge
Engineering Review 23(1): 51-72 (2008)

Moody and
Filtman, 1999

Moody, D., Filtman, A.: A Methodology for Clustering Entity
Relationship Models – A Human Information Processing
Approach. In: 18th Int. Conference on Conceptual Modeling,
pages 114-130, Paris, France (1999)

Nejdl et al., 2002 Nejdl, W., Wolf, B., Qu, C., Decker, S., Sintek, M., Naeve, A.,
Nilsson, M., Palmér, M., and Risch, T.: Edutella: A P2P
networking infrastructure based on RDF. In: 11th Int. World
Wide Web Conference, pages 604-615, Honolulu, USA (2002)

Ng et al., 2003 Ng, W. S., Ooi, B. C., Tan, K.-L., and Zhou, A.: PeerDB: A P2P-
based System for Distributed Data Sharing. In: 19th Int. Conf.
on Data Engineering, pages 633-644, Istanbul, Turkey (2003)

Noy and Musen,
2000

Noy, N. F., Musen, M. A.: Prompt: Algorithm and Tool for
Automated Ontology Merging and Alignment. In: 17th Nat.
Conf. on Artificial Intelligence, Austin, Texas, USA (2000)

Noy and Musen,
2003

Noy, N., Musen, M.: The PROMPT suite: interactive tools for
ontology merging and mapping. In: International Journal of
Human-Computer Studies, 59(6):983-1024 (2003)

Noy, 2004a Noy, N. F.: Semantic integration: a survey of ontology-based
approaches. SIGMOD Rec., 33(4):65-70 (2004)

Noy, 2004b Noy, N. F.: Tools for mapping and merging ontologies. In:
Steffen Staab and Rudi Studer, editors, Handbook on
ontologies, chapter 18, pages 365-384. Springer Verlag,
Berlin, Germany (2004)

�

143

Nyulas et al.,
2007

Nyulas, C., O'Connor, M., and Tu, S.: DataMaster - a Plug-in for
Importing Schemas and Data from Relational Databases into
Protégé. In: 10th Int. Protégé Conf., Budapest, Hungary (2007)

Oaks and Wong,
2004

Oaks, S., Wong, H.: Java Threads. O’Reilly, 3rd Edition (2004)

Ooi et al., 2003 Ooi, B. C., Tan, K.-L., Zhou, A., Goh, C. H., Li, Y., Liau, C. Y.,
Ling, B., Ng, W. S., Shu, Y., Wang, X., and Zhang, M.:
PeerDB: Peering into Personal Databases. In: ACM SIGMOD
International Conference on Management of Data, page 659,
San Diego, California, USA (2003)

OWL API, 2009 The OWL Application Programming Interface (API),
http://owlapi.sourceforge.net/ (2009)

Palopoli et al.,
2003

Palopoli, L., Terracina, G., and Ursino, D.: DIKE: a system
supporting the semi-automatic construction of cooperative
information systems from heterogeneous databases. In:
Software–Practice and Experience, 33(9):847-884 (2003)

Parent and
Spaccapietra,
1998

Parent, C., Spaccapietra, S.: Issues and approaches of database
integration. In: Communications of the ACM, 41(5):166–178
(1998)

Pires et al., 2006 Pires, C. E. S., Lóscio, B. F., and Salgado, A. C.: Data
Management in P2P Systems. In: 21st Brazilian Symposium on
Databases, page 310, Florianópolis, SC, Brazil (2006)

Pires, 2007a Pires, C. E. S.: Semantic-based Connectivity in a Peer Data
Management System. In: 6th Workshop of Thesis and
Dissertation on Data Base, held in conjunction with the 22th
Brazilian Symposium on Data Bases (SBBD’08), João Pessoa,
PB, Brazil (2007)

Pires, 2007b Pires, C. E. S.: Um Sistema P2P de Gerenciamento de Dados
com Conectividade Baseada em Semântica. Thesis Proposal.
Center for Informatics, Federal University of Pernambuco,
Recife, PE, Brazil (2007)

Pires et al., 2008 Pires, C. E. S., Souza, D., Lóscio, B. F., and Salgado, A. C.: An
Ontology-based Approach for Data Management in a P2P
System. SPEED Project, Technical Report, No. 2, Center for
Informatics, Federal University of Pernambuco (2008)

Pires et al., 2009a Pires, C. E. S., Alencar, V. B., Kedad, Z., and Salgado, A. C.:
Building Ontology Summaries for PDMS. Submitted to the
28th Conf. on Conceptual Modeling, Gramado, Brazil (2009)

Pires et al., 2009b Pires, C. E. S., Souza, D., Pachêco, T., and Salgado, A. C.: A
Semantic-based Ontology Matching Process for PDMS. To
appear in 2nd International Conference on Data Management in
Grid and P2P Systems (Globe’09), Linz, Austria (2009)

Pires et al., 2009c Pires, C. E. S., Souza, D., Kedad, Z., Bouzeghoub, M., and
Salgado, A. C.: Using Semantics in Peer Data Management
Systems. To appear in Colloquium of Computation: Brazil /
INRIA, Cooperations, Advances and Challenges (Colibri’09),
Bento Gonçalves, RS, Brazil (2009)

Prefuse, 2009 The Prefuse Visualization Toolkit, http://www.prefuse.org/
(2009)

�

144

Rahm and
Bernstein, 2001

Rahm, E., Bernstein, P.: A survey of approaches to automatic
schema matching. In: The VLDB Journal, 10(4):334–350
(2001)

Ramanathan et al.,
2002

Ramanathan, M. K., Kalogeraki, V., and Pruyne, J.: Finding
good peers in peer-to-peer networks. In: 16th International
Parallel and Distributed Processing Symposium (IPDPS'02),
page 24-31, Florida, USA (2002)

Ramaswamy et
al., 2003

Ramaswamy, L., Gedik, B., and Liu, L.: Connectivity Based
Node Clustering in Decentralized Peer-to-Peer Networks. In:
3rd International Conference on Peer-to-Peer Computing
(P2P'03), pages 66-73, Linköping, Sweden.(2003)

Ratnasamy et al.,
2001

Ratnasamy, S., Francis, P., Handley, M., Karp, R., and Shenker,
S.: A Scalable Content-Addressable Network. In: ACM
SIGCOMM, pages 161-172, San Diego, California, USA
(2001)

Reynaud and
Safar, 2007

Reynaud, C., Safar, B.: Exploiting WordNet as Background
Knowledge. In: International ISWC'07 Ontology Matching
(OM-07) Workshop, Busan, Korea (2007)

Rijsbergen, 1979 Rijsbergen, C. J.: Information Retrieval, 2nd Ed. Stoneham, MA:
Butterworths, (1979)
http://www.dcs.gla.ac.uk/Keith/Preface.html.

Rocha et al., 2004 Rocha, J., Domingues, M., Callado, A., Souto, E., Silvestre, G.,
Kamienski, C., Sadok, D.: Peer-to-Peer: Computação
Colaborativa na Internet. In: Mini-curso 22º Simpósio
Brasileiro de Redes de Computadores (SBRC'04), Gramado,
RS, Brazil (2004)

Rousse and
Berman, 2006

Rousse, C., Berman, S.: A Scalable P2P Database System with
Semi-Automated Schema Matching. In: 26th IEEE Int.
Conference Workshops on Distributed Computing Systems
(ICDCSW'06), page 78, Lisboa, Portugal (2006)

Rousseeuw, 1987 Rousseeuw, P. J.: Silhouettes: a graphical aid to the
interpretation and validation of cluster analysis. In: Journal of
Computational and Applied Mathematics, Volume 20, pages
53-65 (1987)

Rousset et al.,
2006

Rousset, M.-C., Adjiman, P., Chatalic, P., Goasdoué, F., and
Simon, L.: Somewhere in the Semantic Web. In: 32nd
International Conference on Current Trends in Theory and
Practice of Computer Science (SofSem), Volume 3831 of
LNCS, pages 84-99, Merin, Czech Republic (2006)

Ruzzi, 2004 Ruzzi, M.: Data Integration: state of the art, new issues and
research plan. Technical Report (2004)

Sabou et al., 2006 Sabou, M., d’Aquin, M., and Motta, E.: Using the Semantic Web
as Background Knowledge for Ontology Mapping. In: 1st Int.
Workshop on Ontology Matching (OM’06), collocated with
the 5th International Semantic Web Conference (ISWC’06),
Athens, Georgia, USA (2006)

Schlicht and
Stuckenschmidt,
2008

Schlicht, A., Stuckenschmidt, H.: A Flexible Partitioning Tool
for Large Ontologies. In: IEEE/WIC/ACM International
Conference on Intelligent Agent Technology, Volume 1, pages
482-488, Sydney, Australia (2008)

�

145

Shvaiko and
Euzenat, 2008

Shvaiko, P. and Euzenat, J.: Ten Challenges for Ontology
Matching. In: 7th International Conference on Ontologies,
DataBases, and Applications of Semantics (ODBASE), pages
1164-1182, Monterrey, Mexico (2008)

Smith et al., 2004 Smith, M., Welty, C., and McGuinness, D.: OWL Web Ontology
Language Guide. Recommendation, W3C, (2004)

Souza, 2007 Souza, D.: Reformulação de Consultas Baseada em Semântica
para PDMS. Thesis Proposal. Federal University of
Pernambuco, Recife, PE, Brazil (2007)

Souza , 2009 Souza, D.: Using Semantics to Enhance Query Reformulation in
Dynamic Distributed Environments. Ph.D. Thesis. Center for
Informatics, Federal University of Pernambuco, Recife, PE,
Brazil (2009)

Souza et al., 2009 Souza D., Arruda, T., Salgado, A. C., Tedesco, P., and Kedad,
Z.: Using Semantics to Enhance Query Reformulation in
Dynamic Environments. To appear in the 13th East European
Conference on Advances in Databases and Information
Systems (ADBIS’09), Riga, Latvia (2009)

Staab and Studer,
2004

Staab, S., Studer, R.: Handbook on ontologies. International
handbooks on information systems. Springer-Verlag, Berlin,
Germany (2004)

Staab and
Stuckenschmidt,
2006

Staab, S., Stuckenschmidt, H.: Semantic Web and Peer-to-Peer.
Springer-Verlag, Berlin Heidelberg (2006)

Steiner and
Biersack, 2005

Steiner, M., Biersack, E. W.: DDC: a dynamic and distributed
clustering algorithm for networked virtual environments based
on P2P networks. In: 1st ACM/e-NEXT International
Conference on Future Networking Technologies, pages 288-
289, Toulouse, France (2005)

Stoica et al., 2001 Stoica, I., Morris, R., Karger, D., Kaashoek, M. F., and
Balakrishnan, H.: Chord: A Scalable Peer-to-Peer Lookup
Service for Internet Applications. In: ACM SIGCOMM, pages
149-160, San Diego, California, USA (2001)

Stuckenschmidt
and Klein, 2004

Stuckenschmidt, H, Klein, M.: Structure-Based Partitioning of
Large Concept Hierarchies. In: 3rd Int. Semantic Web Conf.
(ISWC’04), pages 289-303, Hiroshima, Japan (2004)

Stumme and
Mädche, 2001

Stumme, G., Mädche, A.: FCA-Merge: Bottom-up merging of
ontologies. In: 17th International Joint Conference on Artificial
Intelligence (IJCAI), pages 225-234, Seattle, USA (2001)

Sung et al., 2005 Sung, L. G. A., Ahmed, N., Blanco, R., Li, H, Soliman, M. A.,
and Hadaller, D.: A Survey of Data Management in Peer-to-
Peer Systems. School of Computer Science, University of
Waterloo (2005)

Tatarinov et al.,
2003

Tatarinov, I., Ives, Z., Madhavan, J., Halevy, A., Suciu, D.,
Dalvi, N., Dong, X., Kadiyska, Y. Miklau, G., and Mork, P.:
The Piazza Peer Data Management Project. In: ACM
SIGMOD Record, Vol. 32, Issue 3, pages 47-52 (2003)

Tatarinov and
Halevy, 2004

Tatarinov, I. and Halevy, A.: Efficient query reformulation in
peer data management systems. In: ACM SIGMOD Int. Conf.
on Management of Data, pages 539-550, Paris, France (2004)

�

146

Theodoridis and
Koutroumbas,
2003

Theodoridis, S., Koutroumbas, K.: Pattern Recognition.
Academic Press, 2nd Edition (2003)

Toledo, 2005 Toledo, M. D. G.: A Comparison in Cluster Validation
Techniques. In: Master Dissertation in Mathematics
(Statistics), University of Puerto Rico (2005)

Uschold and
Gruninger, 2004

Uschold, M., Gruninger, M.: Ontologies and Semantics for
Seamless Connectivity. In: SIGMOD Record, Vol. 33, No. 4,
pages 58-64 (2004)

Valduriez and
Pacitti, 2004

Valduriez, P., and Pacitti, E.: Data Management in Large-Scale
P2P Systems. In: Int. Conference on High Performance
Computing for Computational Science (VecPar’04), pages
104-118, Valencia, Spain (2004)

Vdovjak et al.,
2006

Vdovjak, R., Houben, G-J., Stuckenschmidt, H., and Aerts, A.:
RDF and Traditional Query Architectures. In: Peer-to-Peer and
Semantic Web: Decentralized Management and Exchange of
Knowledge and Information, Springer-Verlag, pages 41-58
(2006)

Wache et al., 2001 Wache, H., Voegele, T., Visser, U., Stuckenschmidt, H.,
Schuster, G., Neumann, H., and Hübner, S.: Ontology-based
integration of information – a survey of existing approaches.
In: IJCAI Workshop on Ontologies and Information Sharing,
pages 108-117, Seattle, USA (2001)

Walkerdine et al.,
2002

Walkerdine, J., Melville, L., and Sommerville, I.: Dependability
properties of P2P architectures”. In: 2nd International
Conference on Peer to Peer Computing (P2P'02), pages 173-
174, Linkoping, Sweden (2002)

Wang et al., 1997 Wang, W., Yang, J., and Muntz, R.: STING: A Statistical
Information Grid Approach to Spatial Data Mining. In: 23rd
VLDB Conference, pages 186-195, Athens, Greece (1997)

Wicaksana and
Yétongnon, 2006

Wicaksana, W. S., Yétongnon, K.: A Peer-to-Peer Based
Semantic Agreement Approach for Information System
Interoperability. In: International Workshop on Ontology
Matching collocated with the 5th International Semantic Web
Conference, pages 216-220, Georgia, USA (2006)

Wiederhold, 1992 Wiederhold, G.: Mediators in the Architecture of Future
Information Systems. In: IEEE Computer, 25(3):38-49 (1992)

Xiao, 2006 Xiao, H.: Query Processing for Heterogeneous Data Integration
using Ontologies. Ph.D. Thesis. University of Illinois,
Chicago, USA (2006)

Xu and Srimani,
2005

Xu, Z., Srimani, P. K.: Self-stabilizing Publish/Subscribe
Protocol for P2P Networks. In: 7th Int. Workshop on
Distributed Computing (IWDC’05), Volume 3741 of LNCS,
pages 129-140, Kharagpur, India (2005)

Xu and Wunsch,
2005

Xu, R., Wunsch, D.: Survey of Clustering Algorithms. In: IEEE
Transactions on Neural Networks, Volume 16, Number 3,
pages 645-678 (2005)

Yang and Garcia-
Molina, 2003

Yang, B., Garcia-Molina, H.: Designing a Super-Peer Network.
In: 19th International Conference on Data Engineering
(ICDE'03), pages 49-60, Bangalore, India (2003)

�

147

Young, 2004 Young, W. A.: Evaluation of Peer-to-Peer Database Solutions,
Course Project available at
http://www.tonyyoung.ca/cs654paper.pdf (2004)

Yu and Jagadish,
2006

Yu, C., Jagadish, H. V.: Schema Summarization. In: 32nd Int.
Conference on Very Large Data Bases, pages 319-330, Seoul,
Korea. (2006)

Zhang et al., 1997 Zhang, T., Ramakrishnan, R., and Linvy, M.: BIRCH: An
efficient data clustering method for very large data sets. In:
Data Mining and Knowledge Discovery, 1(2): 141-182 (1997)

Zhang et al., 2007 Zhang, X., Cheng, G., and Qu, Y.: Ontology Summarization
Based on RDF Sentence Graph. In: 16th International
Conference on World Wide Web, pages 707-716, Alberta,
Canada (2007)

Zhang et al., 2008 Zhang, R., Wang, Y., and Wang, J.: Research on Ontology
Matching Approach in Semantic Web. In: International
Conference on Internet Computing in Science and Engineering
(ICICSE'08), pages 254-257, Harbin, China (2008)

Zhdanova and
Shvaiko, 2006

Zhdanova, A. V., and Shvaiko, P.: Community-Driven Ontology
Matching. In: 3rd European Semantic Web Conference
(ESWC'06), pages 34-49, Budva, Montenegro (2006)

Zhuang et al.,
2004

Zhuang, Z., Liu, Y., and Xiao, L.: Dynamic Layer Management
in Super-Peer Architectures. In: International Conference on
Parallel Processing (ICPP'04), Volume 00, pages 29-36,
Montreal, Canada (2004)

�

 148

��������

"����

"����

"����

" ��������������������
� ���
�� �
� ���
�� �
� ���
�� �
� ���
�� �

����� �����
��� �����
��� �����
��� �����
������

A1. Ontology: UnivBench.owl

Figure A.1. The UnivBench ontology. Some statistics: #concepts=42 and #properties=28.

�

149

A2. Ontology: Semiport.owl

Figure A.2. The Semiport ontology. Some statistics: #concepts=41 and #properties=40.

�

150

A3. Ontology: UnivCMOCS.owl

Figure A.3. The UnivCSCMO ontology. Some Statistics: #concepts=77 and #properties=78.

�

 151

��������

" �����

" �����

" �����

" ������������������ ����� � �� ����� � �� ����� � �� ����� � �

�����
� � ��� ���
� � ��� ���
� � ��� ���
� � ��� ������

B1. Alignments (Aij) between Semiport.owl and UnivBench.owl
Id Semiport concept UnivBench concept Semantic relationship Similarity value

1 Student Student isEquivalentTo 1.00

2 ResearchProject ResearchProject isEquivalentTo 1.00

3 Person Person isEquivalentTo 1.00

4 DevelopmentProject ResearchProject isCloseTo 0.75

5 Product Software isSuperConceptOf 0.68

6 ResearchGroup ResearchGroup isEquivalentTo 1.00

7 Project ResearchProject isSuperConceptOf 0.84

8 UnofficialPublication UnofficialPublication isEquivalentTo 1.00

9 TechnicalStaff Worker isSubConceptOf 0.68

10 ClericalStaff ClericalStaff isEquivalentTo 1.00

11 Publication Publication isEquivalentTo 1.00

12 Worker Worker isEquivalentTo 1.00

13 Organization Organization isEquivalentTo 1.00

14 SystemsStaff SystemsStaff isEquivalentTo 1.00

15 Department Department isEquivalentTo 1.00

16 Proceedings Publication isSubConceptOf 0.68

17 UndergraduateStudent UndergraduateStudent isEquivalentTo 1.00

18 AdministrativeStaff AdministrativeStaff isEquivalentTo 1.00

19 Thesis Publication isSubConceptOf 0.69

20 TechnicalReport TechnicalReport isEquivalentTo 1.00

21 University University isEquivalentTo 1.00

22 Article Article isEquivalentTo 1.00

23 AssistantProfessor AssistantProfessor isEquivalentTo 1.00

24 SoftwareComponent Software isPartOf 0.48

25 PhDStudent GraduateStudent isSubConceptOf 0.81

26 Lecturer Lecturer isEquivalentTo 1.00

27 Book Book isEquivalentTo 1.00

28 FullProfessor FullProfessor isEquivalentTo 1.00

29 Faculty Faculty isEquivalentTo 1.00

30 Manual Manual isEquivalentTo 1.00

31 SoftwareProject ResearchProject isCloseTo 0.75

32 GraduateStudent GraduateStudent isEquivalentTo 1.00

 Sum 29.36

�

152

B2. Alignments (Aji) between Semiport.owl and UnivBench.owl
Id UnivBench concept Semiport concept Semantic relationship Similarity value

1 Institute Organization isSuperConceptOf 0.68

2 Book Book isEquivalentTo 1.00

3 AdministrativeStaff AdministrativeStaff isEquivalentTo 1.00

4 FullProfessor FullProfessor isEquivalentTo 1.00

5 Article Article isEquivalentTo 1.00

6 UndergraduateStudent UndergraduateStudent isEquivalentTo 1.00

7 Work Project isSuperConceptOf 0.68

8 Student Student isEquivalentTo 1.00

9 GraduateStudent GraduateStudent isEquivalentTo 1.00

10 Department Department isEquivalentTo 1.00

11 Organization Organization isEquivalentTo 1.00

12 ResearchProject ResearchProject isEquivalentTo 1.00

13 Lecturer Lecturer isEquivalentTo 1.00

14 GraduateCourse GraduateStudent isWholeOf 0.52

15 VisitingProfessor AssistantProfessor isCloseTo 0.75

16 Chair AdministrativeStaff isSubConceptOf 0.68

17 Worker Worker isEquivalentTo 1.00

18 University University isEquivalentTo 1.00

19 Course GraduateStudent isWholeOf 0.42

20 Director AdministrativeStaff isSubConceptOf 0.68

21 UnofficialPublication UnofficialPublication isEquivalentTo 1.00

22 TechnicalReport TechnicalReport isEquivalentTo 1.00

23 AssociateProfessor ResearchProject isPartOf 0.39

24 JournalArticle Article isSubConceptOf 0.84

25 Publication Publication isEquivalentTo 1.00

26 Professor AssistantProfessor isSuperConceptOf 0.84

27 AssistantProfessor AssistantProfessor isEquivalentTo 1.00

28 SystemsStaff SystemsStaff isEquivalentTo 1.00

29 Manual Manual isEquivalentTo 1.00

30 Dean AdministrativeStaff isSubConceptOf 0.68

31 Program Organization isSubConceptOf 0.71

32 PostDoc Faculty isSubConceptOf 0.68

33 ResearchGroup ResearchGroup isEquivalentTo 1.00

34 ConferencePaper Article isSubConceptOf 0.68

35 Faculty Faculty isEquivalentTo 1.00

36 Specification Publication isSubConceptOf 0.68

37 Assistant Worker isSubConceptOf 0.68

38 Software Publication isSubConceptOf 0.69

39 College Organization isSubConceptOf 0.71

40 Person Person isEquivalentTo 1.00

�

153

41 ClericalStaff ClericalStaff isEquivalentTo 1.00

 Sum 34.99

B3. Global Similarity Measure between Semiport.owl and
UnivBench.owl

77.0
4241

99.3436.29
),(=

+
+=UnivBenchSemiportAverageWeighted

����

�

154

��������

" �����

" �����

" �����

" �����������������
����
����
����
��������
�� �����
�� �����
�� �����
�� ����� ����

In order to execute a clustering test, first it is necessary to provide the order in

which requesting peers will be connected. This can be done through an input

file named input.txt. In fact, this file contains the name of the local ontologies

to be associated with requesting peers. For instance, considering the ontologies

depicted in Figure C.1 the first requesting peer is associated with the local

ontology LO05-Education.owl, the following with LO02-Education.owl, and so

on. The parameters cluster threshold and neighbor threshold are informed at the

simulator interface.

LO05-Education.owl
LO02-Education.owl
LO10-Education.owl
LO15-Education.owl
LO01-Education.owl
…

Figure C.1. Local ontologies to be associated with requesting peers.

After a successful execution of a simulation test, the network is exhibited

in the screen (Figure C.2). For this part of the implementation we have used the

graphical visualization tool Prefuse [Prefuse, 2009]. Due to the performance

reasons, the interface can be omitted for tests with a high number of requesting

peers in which the user is interested only in the clustering result.

The simulator also produces a log file named output.txt. The file provides

the clustering result and contains information such as: (i) the number of clusters

that were created; (ii) the number of peers in each cluster; (iii) the semantic

neighbors of each cluster; and (iv) the cluster to which a requesting peer has

been associated with. In fact, such information describes the network status

after all requesting peers are connected. The file also contains the connection

log of each requesting peer. Thus, it is possible to verify all the steps followed

by a requesting peer before it joins a current cluster or creates a new one.

Figure C.3 depicts the fragment of a log file created after a simulation with 45

requesting peers.

An option to calculate the statistical indices Rand Index, Jaccard

Coefficient, Fowlkes-Mallows (FM) Index, Hubert’s statistic, and Silhouette

�

155

indexes is available. For the first four indices, the clustering result produced by

the simulator must be compared with another clustering result that can be either

provided manually or generated by another cluster algorithm.

Figure C.2. The SPEED’s simulator interface.

Tue Mar 24 18:18:45 GMT-03:00 2009

RP45 is now connecting...
RP45 is now a Integration Peer with out semantic neighbors
Semantic Index:
<<Cluster: 45>>
 Exhibition(1) Event(1) Conference(1) Workshop(1)
Network:
Domain: education (represented by SP: 100)
 Cluster45(RP45)
…
Network:
Domain: education (represented by SP: 100)
 Cluster45(RP45, RP13, RP36, RP29, RP42)
 Cluster08(RP08, RP20, RP02, RP05, RP06, RP27, RP26, RP16, RP30)
 Cluster44(RP44, RP38, RP39, RP41, RP22, RP33)
 Cluster37(RP37, RP32, RP19, RP40)
 Cluster15(RP15, RP11, RP31, RP21, RP07, RP17, RP18, RP03)
 Cluster24(RP24, RP14, RP34, RP43)
 Cluster28(RP28, RP01, RP23, RP35, RP12, RP04, RP09, RP25, RP10)

Total number of messages: 561
#matchings between OS and LO: 251
#matchings between CLOs: 42
#matchings between CLO and LO: 42
Simulation time: 1161 seconds
External indices: RandIndex=0.942 JaccardCoefficiet=0.646 FMIndex=0.785 Hubbert=0.752

Figure C.3. The clustering result associated to a simulation test with 45 requesting peers.

�

�

�

