
International Journal of Data Warehousing and Mining, X(X), X-X, XXX-XXX 2012 1

Copyright © 2012, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

A BPMN-Based Design and Maintenance

Framework for ETL Processes

Zineb El Akkaoui, Esteban Zimányi

Université Libre de Bruxelles, Belgium

Jose-Norberto Mazón, Juan Trujillo

University of Alicante, Spain

ABSTRACT
Business Intelligence (BI) applications require the design, implementation, and maintenance of

processes that extract, transform, and load suitable data for analysis. The development of these

processes (known as ETL) is an inherently complex problem that is typically costly and time

consuming. In a previous work, we have proposed a vendor-independent language for reducing

the design complexity due to disparate ETL languages tailored to specific design tools with

steep learning curves. Nevertheless, the designer still faces two major issues during the

development of ETL processes: (i) how to implement the designed processes in an executable

language, and (ii) how to maintain the implementation when the organization data

infrastructure evolves. In this paper, we propose a model-driven framework that provides

automatic code generation capability and ameliorate maintenance support of our ETL

language. We present a set of model-to-text transformations able to produce code for different

ETL commercial tools as well as model-to-model transformations that automatically update the

ETL models with the aim of supporting the maintenance of the generated code according to

data source evolution. A demonstration using an example is conducted as an initial validation

to show that the framework covering modeling, code generation and maintenance could be

used in practice.

Keywords: data warehouses, ETL process, conceptual model, code generation, maintenance,

model-driven development

INTRODUCTION

Organizational data used by BI applications

come from heterogeneous and distributed

sources that are integrated into a data

warehouse (DW) (Inmon, 2002). To achieve

this integration, the data warehousing process

includes the extraction of the data from the

sources, the transformation of these data (e.g.,

to correct syntactic and semantic

inconsistencies) and the loading of the

warehouse with the cleansed, transformed data.

This process is known as ETL (standing for

Extraction, Transformation, Load). It has been

widely argued that the ETL process

development is complex, error-prone, and

time-consuming (Simitsis, 2008; Vassiliadis,

2009; Wyatt, 2009). Actually, ETL process

development constitutes the most costly part of

a data warehouse project, in both time and

resources.

One of the main reasons for this is that, in

practice, ETL processes have been traditionally

designed by considering a specific vendor tool

from the very beginning of the data warehouse

project lifecycle. Unfortunately, commercial

ETL tools have a steep learning curve, due to a

lack of standard capabilities to be provided,

e.g., they all provide different underlying

languages with a wide spectrum of

functionality features or complex wizards.

Some existing approaches address this

problem by proposing a conceptual modeling

stage for developing ETL processes in a

vendor-independent manner (Skoutas 2009;

Trujillo, 2003; Vassiliadis, 2005). These

proposals successfully support the designer

tasks, although they lack of effective

International Journal of Data Warehousing and Mining, X(X), X-X, XXX-XXX 2012 2

Copyright © 2012, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

mechanisms for automatically generate vendor-

specific code of the ETL process to be

executed into different platforms. Moreover,

the increasing need of fresher analysis data and

the evolving nature of organizational data pose

new challenges for these proposed approaches.

The lack of systematic technique for

continuous update of ETL process increases

significantly the development effort

(Papastefanatos, 2009). Indeed, during the ETL

process lifecycle, both the data sources and the

analysis requirements are likely to evolve, the

latter implying an evolution of the data

warehouse. Such changes may lead to

inaccurate ETL processes: (i) syntactically

invalid ETL model and code; and (ii)

inconsistent data output generated by the

process to feed the data warehouse. To avoid

this situation, the ETL process should be

automatically updated to accommodate the

evolution. However, in general, schema

evolution is done manually and remains an

error-prone and time-consuming undertaking,

because the designer lacks the methods and

tools needed to manage and automate this

endeavor by (i) predicting and evaluating the

effects of the proposed schema changes, and

(ii) rewriting queries and applications to

operate on the new schema.

To overcome these problems, the present

work proposes a Model-Driven Development

(MDD) framework for ETL processes. This

framework aims at covering the overall ETL

development process, including the automatic

generation of vendor-specific code for several

platforms. Further, the framework supports an

automated maintenance capability of the

process and its code in order to accommodate

evolution of organizational data.

For creating and managing ETL processes,

in addition to the traditional graphical

languages, current platforms generally provide

programming capabilities through specific

languages, which can be scripting languages

(e.g. Oracle Metabase or OMB) or imperative

languages (e.g. C# for SQL Server Integration

Services). In our framework, transformations

between a vendor-independent model and such

vendor-specific code are formally established

by using model-to-text (M2T) transformations,

an OMG standard for transformations from

models to text (i.e. code). For evolving ETL

processes, a set of model-to-model (M2M)

transformations are iteratively applied on the

original model to automatically derive the

updated one. Finally, by applying our M2T

transformations, the updated code can be

derived.

The present framework relies on our

previous work: the BPMN4ETL metamodel for

designing ETL processes described in (El

Akkaoui et al., 2012; El Akkaoui & Zimányi,

2009). The rationale behind this metamodel is

the characterization of the ETL process as a

combination of two perspectives: (i) A control

process, responsible of synchronizing the

transformation flows; (ii) A data process,

feeding the data warehouse from the data

sources. In this way, designers are able to

specify conceptual models of ETL processes

together with the business process of the

enterprise (Wilkinson, 2010).

Furthermore, the model-driven approach has

been customized from a generic data

warehouse approach (Mazón & Trujillo, 2008)

into a concrete implementation for the ETL

component. Hence, our framework is

motivated by the facilities provided by MDD

technologies to support designers in their

development and maintenance tasks by means

of models and transformations. Importantly,

model-to-text and model-to-model

transformations enhance, respectively, the

automatic generation and maintenance of

executable code associated with the ETL

process.

This paper describes our model-driven

framework by illustrating its two main

contributions:

- A code generation capability ensured by

M2T transformations to any ETL

programming language (via the

definition of transformation patterns).

- An update capability to preserve the

correctness of the generated code, as this

International Journal of Data Warehousing and Mining, X(X), X-X, XXX-XXX 2012 3

Copyright © 2012, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

code may evolve due to data source or

data warehouse changes.

- In order to provide an initial validation,

an illustration of the latter framework

capabilities is conducted by using a toy

example as recommended by (Wieringa

2010), when the focus on the paper is

explaining the framework usability.

The remainder of this article is structured as

follows. The next section discusses related

work in ETL modeling, implementation, and

maintenance. Then, we provide an overview on

our model-driven framework. The subsequent

section describes the code generation

mechanism. Then, we discuss how the

framework copes with the evolution of the

generated code. With the aim of providing an

initial validation of our framework an example

is used through these two sections. The last

section concludes the article and points to some

future perspectives.

RELATED WORK

Existing approaches for developing ETL

processes address three main issues: (i)

designing ETL processes independently of a

specific vendor, (ii) producing, based on the

design, an executable code tailored to a specific

technology, and (iii) maintaining the model and

its code. We discuss next these issues.

Regarding the first issue, Vassiliadis (2005)

and Papastefanatos (2009) propose modeling

ETL processes using workflow and graph-

based models that represent, respectively, data

source relations and ETL objects. In order to

facilitate ETL design, some automation

mechanisms are proposed requiring additional

semantics to be added to ETL objects. Other

work in this direction describes the semantics

of source and target schemas as well as their

mappings using ontologies. For example, in

Skoutas & Simitsis (2009) an application

ontology is built, yielding a semi-automated

construction of ETL processes based on graph

operation rules. Another related approach

(Romero, 2011) adds user requirements to the

data source ontology, and provides an

algorithm for producing the conceptual ETL

design and the data warehouse design.

Unfortunately, a main drawback of these

approaches is the enormous effort required to

build the ontology comprising all the required

information. On the contrary, in the present

paper we advocate an ETL development

approach that starts from a model based on a

rich workflow language which does not require

the definition of any supplementary ontology.

Regarding the implementation of ETL

design, UML-based physical modeling of the

ETL processes was proposed in Tziovara et al.

(2007). This approach formalizes the data

storage logical structure and the ETL hardware

and software configurations. Further, it focuses

on the optimization of the physical ETL design

through a collection of algorithms. Although

relevant to implementation, none of these

proposals automatically produce code for

executing ETL processes. An ETL

programming approach using the Python

language has been proposed by Thomsen &

Pedersen (2009). Yet, this approach does not

provide a vendor-independent design, limiting

the reusability of the provided framework.

Another line of work takes into account both

ETL development axes: design and code

generation. For example, a conceptual

metamodel for designing ETL processes based

on BPMN and an implementation approach to

its corresponding BPEL code is described in El

Akkaoui & Zimányi (2009) and El Akkaoui et

al. (2012). In Muñoz et al. (2009), the authors

present a Model-Driven Architecture approach

to design the ETL processes by means of the

UML Activity Diagram. Again, none of these

proposals provide a multi-vendor code

generation utility.

The other related research on ETL processes

studies data warehouse maintenance. For

example, Golfarelli (2006) suggests a

formalization of the data warehouse, its

changes and versioning strategy. An

intersection operator is proposed to specify the

effect of the changes on the data warehouse

and to state the validity of current OLAP

queries among different data warehouse

International Journal of Data Warehousing and Mining, X(X), X-X, XXX-XXX 2012 4

Copyright © 2012, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

versions. Specific ETL process maintainability

approaches focus on ETL queries rather than

OLAP ones. Papastefanatos (2009) identifies a

set of structural changes on data sources and

their associated replication algorithm on the

ETL process. This algorithm takes into account

user policies that define the ETL objects

behavior towards a change (e.g. propagate and

block). Moreover, quality in ETL process

design is assessed according to maintainability

purposes. Papastefanatos (2008) propose

measures to compare alternative design

techniques according to their tolerance to

evolution events. Assessed ETL objects are

either internal to the data warehouse, such as

dimension tables, or external such ETL objects.

Similarly, Muñoz et al., (2010) propose and

validate a set of design measures related to

ETL design maintainability.

Along these lines, and building from our

previous work (El Akkaoui et al., 2011), the

contributions of this paper are as follows: (i)

Improvement and extension of the code

generation capability to ETL programming

languages; and (ii) Addition of maintainability

capabilities for the generated code to cope with

data source or data warehouse evolution. The

advisability of using models has been

highlighted in other related complex domains

such as data mining (Cuzzocrea et al., 2011;

Cuzzocrea, 2011; Cuzzocrea, 2010).

MODEL DRIVEN FRAMEWORK

Model Driven Development (MDD) is a

paradigm for software development where

extensive models are created before source

code is generated from them. The architecture

of MDD is depicted in a set of layers with

different abstraction levels in which

transformations are applied to refine models

(based on metamodels) into the corresponding

code (based on grammars). As shown in Fig. 1,

the M2 layer contains vendor-independent

description of concepts, i.e., metamodels,

grammars and transformations among them.

From these, vendor-specific representations are

instantiated at the M1 layer, such as models,

while others are automatically generated such

as code programs.

In order to improve the support of ETL

process development, the BPMN4ETL

metamodel (El Akkaoui et al., 2012) is used

within a two-fold MDD-based framework.

First, the framework enables implementation of

ETL models (i.e. ETL process design) through

executable code generation. Second, it handles

the automatic updates of these models

according to data store changes.

MOF

Progr. Lang.

Grammar
BPMN4ETLM2T

Code Model

Generate.mtl

M2T

Application

L
a

y
e

r
M

3
L

a
y
e

r
M

2
L

a
y
e

r
M

1

M2M

Update.atl

M2M

Application

Original

Updated

Figure 1: MDD framework for ETL implementation

and maintenance.

As depicted in Fig. 1, at the M2 Layer,
transformations are established using model-to-

text (M2T) and model-to-model (M2M)

transformations. M2T transformations,

depicted by the Generate.mtl file, are

responsible for code generation and consist of

mapping the BPMN4ETL Metamodel to the

Progr. Lang. Grammar. M2M transformations,

depicted by Update.atl file, are used to update

models for maintenance purposes and are

created on the BPMN4ETL Metamodel.
Moreover, Fig. 1 shows the transformations

at the M1 layer. The M2T Application on the

Original Model, original BPMN4ETL instance,

derives the corresponding code, Original Code.

On the other hand, following to a modification

on the Original Model, the Updated Model is

automatically derived by applying the M2M

transformations. The updated models can

hence be automatically derived as many times

as changes occur in the data sources.

Consequently, the updated code can be

produced by further applications of the same

set of M2T transformations.

International Journal of Data Warehousing and Mining, X(X), X-X, XXX-XXX 2012 5

Copyright © 2012, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Customer

CustomerID

CustomerName

ContactName

ContactTitle

Address

City

State

ZipCode

Country

...

Supplier

SupplierID

SupplierName

ContactName

ContactTitle

Address

City

State

ZipCode

Country

...

Figure 2: Excerpt of operational data sources.

DimArea

AreaKey

AreaName

DimGeography

GeographyKey

City

StateKey

PostalCode

DimState

StateKey

StateName

EnglishStateName

StateType

StateCode

StateCapital

RegionName

RegionCode

CountryKey

DimCountry

CountryKey

CountryName

CountryCode

CountryCapital

Population

Subdivision

Figure 3: Excerpt of the data warehouse schema.

In the following, we describe our framework

using a running example. Excerpts of the used

data sources and the data warehouse schemas

are respectively shown in Figs. 2 and 3.

Operational data reside in both a relational

database and an XML file. Decisional data

reside in a hierarchy dimension about location

data. Thus, the data contained in the sub-

hierarchy DimStateDimCountryDimArea

come from the XML file called Territories.xml.

The data contained in the DimGeography level

is brought from Customer and Supplier tables.

DimGeography

Load
+

DimState DimCountry

DimArea Load

Bad XML

File

+

Temporary

tables Load

+

g1

e1

Figure 4: Control model.

DB

Data

Conversion

Lookup with

TempCities.State

TempGeography

Yes

No Found

TempGeography

Bad Data

TempGeography

Lookup with

StateName

TempGeography Full

Found

DimGeography

Lookup with

EnglishStateName

Found

Lookup with

StateCode

CountryCode

Lookup with

StateCode

CountryName

Found Found

Filter:

State Null ?

TempGeography Load

TempGeographyFull Load

(a)

(b)

NoNo No

No

No

Figure 5: DimGeography Load data model.

The BPMN4ETL model designed to provide

the DimGeography dimension with necessary

data from the data sources are depicted in Figs.

4 and 5. It combines two perspectives: (i) a

data process view that tracks data from the

operational databases or other data sources to

the data warehouse, providing precise

information about the input and output data of

each (data) process element; and (ii) a control

process view that enables the orchestration of

data processes together with adjacent

applications.

Fig. 4 shows the example control process

including load tasks and subprocesses of the

location dimension levels, e.g., the DimArea

DimCountry DimState Load subprocess and the

DimGeography Load task. Other task kinds are

considered by the control model such as

Temporary Tables Load which creates

temporary tables in the database useful for the

DimGeography Load task. Fig. 5 depicts the

example data process that populates the

DimGeography dimension. Attribute State may

be null in the Customer and Supplier tables. In

these cases, data should be filled with its

corresponding value using the TempCities

table, see Fig. 5a. Referential integrity in the

temporary TempGeography table is checked

previously to the final loading using lookup

tasks. For example, the StateName could be

written in the original language or in its

English translation (e.g., Karnten or Carinthia,

respectively, for a state in Austria). Also, the

state and/or country name can be abbreviated

(AZ for Arizona and USA for United States).

Fig. 5b shows the sequence of lookup tasks for

these cases.

As described in Akkaoui & Zimányi (2009)

and El Akkaoui et al. (2012), the BPMN4ETL

language provides customized elements for

representing ETL operators by extending

BPMN ones. Next, we briefly outline the main

ETL process elements respectively belonging

to control and data process views.

Control container. A control container is a

control process/subprocess, swimlane, or loop.

A subprocess represents semantically coupled

<Areas>

 <Area>

 <AreaName>Europe</AreaName>

 <Country>

 <CountryName>Austria</CountryName>

 <CountryCode>AT</CountryCode>

 <CountryCapital>Vienna</CountryCapital>

 <Population>8316487</Population>

 <Subdivision>Austria </Subdivision>

 <State type="state">

 <StateName>Burgenland</StateName>

 <StateCode>BU</StateCode>

 <StateCapital>Eisenstadt

</StateCapital></State>

…

International Journal of Data Warehousing and Mining, X(X), X-X, XXX-XXX 2012 6

Copyright © 2012, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

adjacent elements that accomplish a significant

portion or stage of the ETL process, e.g. the

subprocess DimState DimCountry DimArea in

Fig. 4. A swimlane enables the organization

and the hierarchization of large ETL processes.

For example, it divides the ETL process by

business entities such as a department or

company. Finally, it is usual that one or more

tasks need to be executed multiple times which

is addressed by the loop container;

Control task. A control task includes data

process and foreign control tasks, which are

respectively depicted in Fig. 4 by DimCategory

Load and Temporary Tables Load;

Control sequence. A gateway and control

connection represent relationships between

control process elements. A Gateway has the

specificity to merge and split the process.

Gateways that simultaneously merge the flow

are designed as a parallel merge gateway, e.g.

g1 gateway in Fig. 4;

Control event. A control event represents

something that happens and affects the

sequence and timing of the ETL process.

Events attached to tasks are designed as

boundary events, e.g. the subprocess DimState

DimCountry DimArea has a boundary event e1

in Fig. 4;

Control artifact. Annotation can be

associated to any process element to add

semantics;

Moreover, the data process elements are

almost analogous to the control ones except for

data tasks that we expose in the following:

Data task. Seven major categories of data

tasks are (see Fig. 5).

- Multi-field derivation includes any kind

of variable manipulation and

computation, e.g. Data Conversion;

- Filter filters the input rows based on

one or multiple conditions, e.g. Filter:

State Null?;

- Lookup has two functionality: filtering

the input rows based on their matching

with a reference fieldSet (table) and

including new fields from the reference

fieldSet to the input rows, e.g. Lookup

with TempCities.State;

- Split splits the input fields (columns)

into two field sets;

- Merge includes tasks that combine

multiple row sets into a single one. It

involves join and union tasks;

- Aggregate includes the application of

standard, analytical and other custom

aggregation functions;

- Sort orders the input rows;

- Pivot & unpivot transpose the input

rows to columns;

- Data input is the entry point of data

into the process from any possible data

source: a database, file or web service,

e.g. DB is a column data input that

refers to a database. It has an associated

fieldSet determing the extracted table

into the process;

- Data output loads data into the data

warehouse, e.g. DimGeography.

Each data task has particular behavior

within the data process which is driven by its

properties. For instance, input and output data

tasks refer to resource fieldSet used to retrieve

or load the data. The resource element,

including this fieldSet determines the data

source or warehouse. Also, the stream

pipelining from the resources to data tasks is

characterized by a group of input and output

fields, denoted InputSet and OutputSet

properties. Finally, Condition, computation,

and query properties are used to address

expressions applied by data tasks.

MODEL-DRIVEN ETL CODE
GENERATION

In this section, we describe the code

generation capability of our framework. It is

based on a vendor-independent pattern for

M2T transformations.

International Journal of Data Warehousing and Mining, X(X), X-X, XXX-XXX 2012 7

Copyright © 2012, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Transformation Pattern

The transformations consist of matching

statements between the input metamodel and

the output grammar. They are expressed using

a set of templates, each of which is responsible

of translating one element of the metamodel

into a snippet of code. The templates are

applied according to the pattern shown in Fig.

6. Note that this pattern is independent from

the specific ETL programming language.

Hence, it could be provided as a guideline for

developing code generators for any ETL tool.

addCProcess addEmptyCP

addDProcess

addCTask

matchCTasks

addSubprocess

addEmptyDP

addResource

addDTask

matchDTasks

addKLTask

addVGTask

addGFTask

addDITask

addVDTask

addJTask

addDOTask

useConnection

convertCond.

addSeqTask

addRandTask

convertCond.

useConnection

convertQuery

convertComp.

convertCond.

useLocation

convertQuery

<<uses>>

<<enherits>>

addSubprocess

Figure 6: M2T transformation pattern.

Fig. 6 highlights the pattern of code

generation for BPMN4ETL models. This

pattern starts by creating the main control

process using the addEmptyCP template and

then iteratively creates its components, e.g.

data processes using addDProcess. The latter

requires the creation of a new empty data

process using the addNewDP template as well

as its resources (data sources and warehouses),

and are linked to each other by using

respectively addResource, addDTask, and

matchDTasks templates. According to the data

task type, a specific template inheriting from

addDTask is applied such as addDITask.

Similarly, foreign control tasks templates of the

control model are created and matched, as well

as subprocesses, loops, and events’

components.

Transformation Implementation

The M2T transformations for code

generation are implemented by using the above

pattern. During execution, the BPMN4ETL

model is provided as input argument, where

each element is converted by a specific

template to the target tool language. A template

contains static and dynamic code. The static

code is replicated literally during the execution.

Dynamic code corresponds to OCL expressions

specified using the model elements. Our set of

M2T transformations are implemented and

executed within the Acceleo transformation

engine.

We illustrate next the transformations from

the BPMN4ETL to the Oracle MetaBase

(OMB), the language used by Oracle

Warehouse Builder (OWB) for implementing

ETL processes. Equivalence between

BPMN4ETL and OMB objects is established

through these transformations. For example a

control process, control task, data process, and

data task respectively correspond to a

PROCESS FLOW, ACTIVITY, MAPPING,

and OPERATOR in OMB.

DimGeography

Load
+

DimState DimCountry

DimArea Load

Bad XML

File

+

Temporary

tables Load

+

 Row 1
 Table 1

 Row 2
 Table 1

 Row 3
 Table 1

 Row 4
 Table 1

 Row 5
 Table 1

Figure 7: Control model code generation.

DB

Data

Conversion

Lookup with

TempCities.State

TempGeography

Yes

No Found

TempGeography

Bad Data

Filter:

State Null ?

No

 Row 1
 Table 2

 Row 2
 Table 2

 Row 3
 Table 2

 Row 4
 Table 2

 Row 5
 Table 2

 Row 6
 Table 2

Figure 8: Data model code generation.

In the following, we show the code

generation mechanism on the running example.

The transformation details are shown in Figs. 7

and 8. Each element in the figures indicates the

row number in Tables 1 or 2 containing the

corresponding code and the applied template.

For example, Fig. 7 states that the generated

code for the control connection is depicted in

Row 5 of Table 1.

International Journal of Data Warehousing and Mining, X(X), X-X, XXX-XXX 2012 8

Copyright © 2012, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Object Name OMB Code Description

1 The overall control
process

OMBCONNECT
OWB OWNER/OWB OWNER@OWB
SYSTEM:1521:PROD
USE REPOSITORY ‘OWB OWNER’
CREATE MODULE ###
OMBCREATE PROCESS FLOW MODULE
‘M_PF_NWETL’
CREATE FLOW PACKAGE ###
OMBCREATE PROCESS FLOW PACKAGE ‘P PF
FACTSALES’
POSITION ON THE PACKAGE ###
OMBCC ‘P PF FACTSALES’
TRANSFORM CONTROL PROCESS ###
OMBCREATE PROCESS FLOW ‘CP FACT SALES LOAD’

Transforms a Control Process
into a PROCESS FLOW –
using the addCProcess
template, Listing 1.

2 Control Task

DimGeography

Load

TRANSFORM DATA PROCESS TASK ###
OMBALTER PROCESS FLOW ‘CP FACT SALES LOAD’
ADD MAPPING ACTIVITY ‘CT DIMCATEGORY LOAD’

Transforms a Control Task of
type Data Process into a
MAPPING activity – using the
addCTask template, Listing 6
(Appendix).

3 Control Subprocess
& Boundary Event

+

DimState DimCountry

DimArea Load

Bad XML

File

TRANSFORM SUBPROCESS ###
OMBALTER PROCESS FLOW ‘CP FACT SALES LOAD’
ADD SUBPROCESS ACTIVITY
‘CT DIMAREA DIMCOUNTRY DIMSTATE LOAD’

Transforms a Control Task of
type Control Subprocess into
a SUBPROCESS activity –
using the addCTask template,
Listing 7 (Appendix).

4 Gateway

+

TRANSFORM PARALLEL MERGE GATEWAY ###
OMBALTER PROCESS FLOW ‘CP FACT SALES LOAD’
ADD AND ACTIVITY ‘G AND’

Transforms a Boundary Event
into END ERROR activity, the
related Compensation Task
into USER DEFINED activity
– using Listing 8 (Appendix).

5 Control Connection

TRANSFORM CONNECTION ###
OMBALTER PROCESS FLOW ‘CP FACT SALES LOAD’
ADD TRANSITION ‘C TEMPORARYTABLES LOAD G
AND’
FROM ACTIVITY ‘CT TEMPORARYTABLES LOAD’ TO ‘G
AND’

Transforms a Parallel Merge
Gateway into an AND activity
– using Listing 9 (Appendix).

Table 1: Generated OMB code for the control elements in our running example.

Control Model Transformation. The control

model involves several elements: control task,

control subprocess, boundary event, gateway,

and control connection. Table 1 shows that a

data process is matched to a MAPPING activity

in OMB (Row 2), whereas, a control

subprocess is translated to a SUBPROCESS

activity (Row 3). A boundary event and its

compensation task are mapped to an END

ERROR and USER DEFINED activities,

respectively. The control connection between

these elements is transformed into a

TRANSITION between the associated activities

(Row 3). A parallel merge gateway is mapped

to the AND activity (Row 4). Finally, the

control connection is mapped to a TRANSITION

in OMB (Row 5). We describe next the control

process transformations corresponding to the

control model element. The other templates are

provided in Appendix.
1 [template addControlProcess(cprocess :

2 ControlProcess)]

3 [cprocess.setContext()/]

4 ### TRANSFORM CONTROL PROCESS ###

5 OMBCREATE PROCESS_FLOW 'CP_[cprocess.name/]'

6 ### TRANSFORM CONTROL OBJECTS ###

7 [for (c : ControlObject |

8 cprocess.controlObjects)]

9 [if (c.oclIsKindOf(ControlTask))]

10[c.oclAsType(ControlTask).addControlTask()/]

11[/if]

12[if (c.oclIsKindOf(ControlEvent))]

13[c.oclAsType(ControlEvent).addControlEvent()/

]

14 [/if]

15 [if (c.oclIsKindOf(Gateway))]

16 [c.oclAsType(Gateway).addGateway()/]

17[/if][/for]

18 ### TRANSFORM CONNECTIONS ###

19 [for (co : ControlObject |

20 cprocess.controlObjects)]

21 [if not (co.outConnections->isEmpty())]

22 [for (c : Connection | co.outConnections)]

23 [c.addCConnection()/][/for][/if][/for]

24 [/template]

Listing 1: Control process template.

International Journal of Data Warehousing and Mining, X(X), X-X, XXX-XXX 2012 9

Copyright © 2012, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Listing 1 depicts the Acceleo template code

addControlProcess that transforms a control

element. First, in Line 2, the setContext
template is invoked to set general information

about the OWB project, e.g., the connection to

OWB repository, module, and package

associated with the process. Second, in Line 4,

the template addControlProcess creates the

OMB control process counterpart, called a

PROCESS FLOW, by using the OMBCREATE

command. This statement allows creating any

OWB process object. In order to uniquely

identify the control process, we assume that the

name property is unique for all control

processes. The generated OWB name is

composed of this property preceded by the CP

prefix. The same logic has been used for

naming all the generated OWB model elements

each time a particular prefix needs to be added,

as it is shown in the generated OMB code in

Table 1. The Acceleo engine applies iteratively

the addControlProcess template over all the

control elements.

Object Name OMB Code Description

1 The overall data process OMBCREATE ORACLE MODULE ‘SALES DW’
OMBCREATE LOCATION ‘MY LOCATION’
SET PROPERTIES (TYPE, VERSION)
VALUES (‘ORACLE DATABASE’, ‘11.2’)
OMBCREATE MAPPING ‘DIMGEOGRAPHY LOAD’

Creates and configures a
project context, and
transforms a data process
into a MAPPING – using
addDataProcess in Listing 2.

2 Column data input task

DB

OMBALTER MAPPING ‘DIMGEOGRAPHY LOAD’
ADD VIEW OPERATOR ‘GEOGRAPHIES’
SET PROPERTIES (QUERY)
VALUES ‘SELECT CITY, POSTALCODE, REGION
AS STATE, COUNTRY FROM CUSTOMERS’

Transforms the column data
input task into a VIEW
operator – using Listing 10
(Appendix).

3 Multi-field derivation task

Data

Conversion

OMBALTER MAPPING ‘DIMGEOGRAPHY LOAD’
ADD EXPRESSION OPERATOR
‘DATA CONVERSION’

OMBALTER MAPPING ‘DIMGEOGRAPHY LOAD’
ADD CONNECTION FROM GROUP ‘INOUTGRP1’
OF OPERATOR ‘GEOGRAPHIES’ TO GROUP
‘INGRP1’ OF OPERATOR ‘DATA CONVERSION’

OMBALTER MAPPING ‘DIMGEOGRAPHY LOAD’
ALTER ATTRIBUTE ‘CODEPOSTAL’ OF GROUP
‘OUTGRP1’ OF OPERATOR
‘[DATA CONVERSION/]’
SET PROPERTIES (EXPRESSION)
VALUES (‘To Number(INGRP1.CODEPOSTAL)’)

Transforms the Data
Conversion task into an
EXPRESSION operator and
the conversion expression
into the EXPRESSION
property – using Listing 11
(Appendix).

4 Filter task

Filter:

State Null ?

OMBALTER MAPPING ‘DIMGEOGRAPHY LOAD’
ADD FILTER OPERATOR ‘NULL STATE’
SET PROPERTIES (FILTER CONDITION)
VALUES (‘INGRP1.STATE = NULL’)

Transforms the filter task into
a FILTER operator – using
Listing 12 (Appendix).

5 Lookup task

Lookup with

TempCities.State

OMBALTER MAPPING ‘DIMGEOGRAPHY LOAD’
OMBCREATE FLATFILE “CITIES”
SET PROPERTIES(DATA FILE NAME,
RECORD DELIMITER, FIELD DELIMITER)
VALUES(‘C:nn Cities.txt’, ‘nn n’,’,’)

OMBALTER MAPPING ‘DIMGEOGRAPHY LOAD’
ADD LOOKUP OPERATOR ‘LOOKUP STATE’
SET PROPERTIES (LOOKUP CONDITION)
VALUES (‘INGRP1.STATE = TEMPCITIES.STATE’)
BOUND TO TABLE ‘TEMPCITIES’

Transforms the lookup task
into a LOOKUP operator and
the lookup condition property
into the LOOKUP
CONDITION – using
addKLTask in Listing 13
(Appendix).

6 Data output task

TempGeography

OMBALTER MAPPING ‘DIMGEOGRAPHY LOAD’
ADD TABLE OPERATOR ‘TEMPGEOGRAPHY’
BOUND TO TABLE ‘TEMPGEOGRAPHY’

Transforms (column) data
output task into the TABLE
operator – using Listing 14
(Appendix).

Table 2: Generated OMB code for the data objects in our running example.

International Journal of Data Warehousing and Mining, X(X), X-X, XXX-XXX 2012 10

Copyright © 2012, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Data Model Transformation. Data model

code generation consists mainly on

transforming different types of data tasks.

Table 2 shows some of these transformations.

Column data input is transformed into a

VIEW operator. The selectQuery property

from the data input is assigned to the QUERY

property of the operator (Row 2). Also, a

multi-field derivation task, e.g. data

conversion, is transformed into the

EXPRESSION operator (Row 3). These

elements are linked using a CONNECTION,

that allows the input attributes (i.e. GROUP)

definition. Then, it modifies the type of the

PostalCode attribute by applying the

To_Number function. For the filter task, a

FILTER operator is used with a FILTER

CONDITION transforming the filter condition

into SQL (Row 4). Finally, the lookup task

uses a file resource as a lookup reference,

which is loaded into the TempCities temporary

table using a record data input task. The record

data input is translated into a FLATFILE

operator and the lookup task into the LOOKUP

operator. The lookup is bound to the reference

table TEMPCITIES (Row 5). Next we describe

the data process transformations.

1[template public addDataProcess(dprocess :

2 DataProcess)]

3 [dprocess.setContext()/]

4 OMBCREATE MAPPING '[dprocess.name/]'\

5 [for (t : DataTask | dprocess.dataTasks)]

6 [OMBALTER MAPPING '[t.dataProcess.name/]'\

7 [t.addDTasks()/][/for]

8 [for (ds: DataTask |

9 t.inputSets.source.dataTask]

10[if not (ds.oclIsUndefined())]

11[if not

12(ds.oclIsKindOf(MultiFieldDerivation)]

13[ds.addDConnection()/][/if][/if][/for]

14[/template]

Listing 2: Data process template.

We mentioned, while explaining Listing 1,

that the transformation of a control task of type

data process invokes the addDataProcess

template, whose code is shown in Listing 2.

Line 4 creates a MAPPING. Then, the data

tasks code is generated interactively by

invoking addDTasks in Line 7. Except for the

multi-field derivation task, Lines 8-13 add the

connections between the tasks and their

predecessors using addDConnection. The

multi-field derivation task requires a particular

technical treatment, which we omit for the sake

of conciseness.

It is worth mentioning that some custom

templates, not mentioned in the template

pattern, may be added during the

implementation. These templates differ among

ETL tools, thus they need to be specified for

each target tool.

MODEL-DRIVEN ETL CODE
EVOLUTION

Likewise the ETL process, the generated

code may evolve over the time due to data

source and/or data warehouse update. In this

section we show how our model-driven

framework can automatically maintain the ETL

process in order to generate an evolving code,

which correctly answers the data warehouse

requirements.

On the first hand, the structure of data

sources is continuously updated which may

have implications on data warehouse

consistency. On the other hand, the data

warehouse structure can also be updated due to

new analysis requirements. In both cases,

evolution mechanisms should be established to

handle such updates and adapt the ETL

process. However, we focus in this work on the

data source updates.

For this purpose, our MDD-based

framework follows a typical three-step

approach for automating process evolution: (i)

identify the source updates; (ii) determine their

potential implications over data process

elements; and (iii) specify evolution strategies

to automatically handle the updates.

Update Identification
In our approach, the data source and

warehouse schemas are captured into a

simplified metamodel referred to as the

resource metamodel (El Akkaoui et al., 2012).

It contains two main classes: Field (e.g.

column) and FieldSet (e.g. table) with

corresponding properties. The resource

International Journal of Data Warehousing and Mining, X(X), X-X, XXX-XXX 2012 11

Copyright © 2012, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

metamodel provides these abstraction

mechanisms in order to cope with several types

of data models. Thus, it is suitable for record-

based, column-based, and XML-based data

source types.

Structural updates of the resource

metamodel are identified based on a

formalization of schema modifications

proposed in Curino et al. (2008).

Updates Description

Create

table

Introduces a new, empty table to the
database (Add_FieldSet)

Drop table Removes an existing table from the
schema and deletes the data in the table
(Drop_ FieldSet)

Rename

table

Renames a table, without affecting the
data (Rename_ FieldSet)

Distribute

table

Distributes table tuples into two newly
generated tables (Horizontal_Split)

Merge

table

Creates a new table by merging data of
two tables with the same schema (N/D)

Copy table Creates a duplicate of a table (N/D)

Add

column

- Introduces a new column into the
specified table (Add_Field)
- Changes column semantics: conversion,
concatenation and split (Alter_Field)

Drop

column

Removes an existing column from a table
(Drop_Field)

Rename

column

Renames an existing column from a table

(Rename_ Field)

Copy

column

Copies a column into another table (N/D)

Move

column

Copies a column but the original column is
dropped (N/D)

Table 3: Curino et al. (2008) schema updates.

Table 3 describes the schema updates

identified in Curino et al. (2008) (e.g. Create

table) along with their corresponding updates

in the resource metamodel (e.g. Add_FieldSet).
The updates depicted with N/D are not

considered since they constitute a composition

of others. The Merge Table update comes to

several Add_Field’s on the table from the

structural viewpoint. The Copy Table/Column

does not affect the data process models.

Finally, the Move Column consists of a

Drop_Field composed with an Add_Field.

Using the resource metamodel syntax,

Add_Field, Drop_Field, Alter_Field, and

Rename_Field respectively correspond to add,

drop, alter, and rename an instance of the Field

class. Add_FieldSet, Drop_FieldSet, and

Rename_FieldSet consist respectively of add,

drop and rename an instance of the FieldSet

class. Finally, Horizontal_Split is a structural

update that breaks down an instance of

FieldSet into two instances. Since the changes

are identified on the common field-based

structure, they can be applicable for all data

source and warehouse types.

Evolution Strategies
Each resource Field or FieldSet update has a

specific implication over the elements of the

ETL process. This section shows how our

framework handles this impact through a set of

evolution strategies. Only data process

elements are concerned of the evolution

because of their direct relation with the data

source (see Section 3).

In BPMN4ETL, Field and FieldSet

constitute properties frequently associated to

data process elements, specifically tasks,

resources, and expressions. Hence, any Field or

FieldSet modification is directly reflected on

these elements. Namely, field is a property of

an InputSet/OutputSet, Query, Condition, and

Computation classes, while a fieldSet is a

property of a Data Input, Lookup, and Data

Process classes. Table 4 shows the handling

actions to be effected at each of these elements.

A mark  is used when no actions is required.

For instance, an Add_Field update does only

affect the data input task by adding and

configuring an extraction query with named

fields without the new added one.

Next, we provide an overview of the

evolution strategy for each data source update:

Add_Field should be handled, as mentioned,

by adjusting all data input tasks: create

extraction query (if does not exist) with named

fields excluding the new one. This action

maintains the ETL process and the data

warehouse unchanged, as initially specified by

business users.

International Journal of Data Warehousing and Mining, X(X), X-X, XXX-XXX 2012 12

Copyright © 2012, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Updates Handling action on elements associated with field Handling action on elements associated
with fieldSet

InputSet/
OutputSet

Query Condition Computation Data Input Lookup Data
Process

Add_Field     Add extraction
query with named
fields excluding
new one

 

Drop_Field Drop field Drop field Remove field
related cond.
or remove all

Field value to
null in comp.
or remove all

  

Alter_Field (type,
length)

      Add multi-
field deriv.

Rename_Field Rename Rename Rename Rename   
Rename_FieldSet     Rename Rename 

Add_FieldSet       
Drop_FieldSet     Remove data input

(& tasks to first
encountered merge
/data output)

Remove
lookup

Remove a
part or all
data
process

Horizontal_Split     Replace with two
generated data
inputs

 Add union
of the two
inputs

Table 4: Handling action on field and fieldSet associated elements.

Drop_Field must be handled by removing

the field property instance from the associated

elements, as shown in Table 4. Removing a

field for a condition means deleting one of its

operands, because the derived meaningless

condition part should be removed. For

example, removing f3 from (f1 = f2) or (f3 <>

f4) condition drives into (f1 = f2) condition.

For computation, removing a field implies

attributing a null value to its occurrences.

When the field constitutes the left operand of

the computation, this latter should be removed.

It is worth mentioning that removing some

elements may lead to ‘inactive’ tasks (see

Table 5); thus, requiring to be deleted after a

designer workaround.

Alter_Field consists of altering the field type

or length. Simple cases entail conversion

between equivalent structure (i.e. type and

length) or from one structure to a sub-one. For

example, a simple Alter_Field converts the

field from character to string or byte to integer

without increasing its length. To cope with

such update, a re-conversion is applied using a

multi-field derivation task immediately after

the data input task extracting the altered field.

The rest of the model is preserved. The same

evolution strategy can be required for

conversions to super structures but risking

information lost.

Rename_Field requires renaming the field

among the data process elements.

Rename_FieldSet requires renaming the

field among the data process elements.

Add_FieldSet does not require any

evolution.

Drop_FieldSet raises two close possibilities:

dropping either the fieldSet associated with a

data input (extraction table) or with a lookup

(reference table) both implying a task deletion.

Horizontal_Split implies replacing the

existing data input task into two data input

tasks, where each extracts one splitted fieldSet,

which are then merged using a union task.

It is worth mentioning that even if the

evolution strategies are described using

BPMN4ETL, they stay valid for any ETL

language due to equivalence between ETL

operators. Further, as said, task deletions may

induce further updates on the rest of the

process, as it is studied next.

International Journal of Data Warehousing and Mining, X(X), X-X, XXX-XXX 2012 13

Copyright © 2012, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Task Remove Scenarios. When a mandatory

property is eliminated due to a drop update, the

associated task is taken away because it

becomes meaningless.

Inactive Task Circumstances

Any task No field in task input or output

Aggregation No field in (group by) fields

Sort No field in the task field

Pivot No field in task fields

Multi-field

derivation

No computation in task

Loukup/ Filter/

Join

No condition in task

Lookup No fieldSet in task reference

relation

Data intput No extraction query in task and

no extraction relation

Data process

(subprocess)

No data input or data output

tasks

Table 5: Circumstances for inactive tasks.

Table 5 captures the circumstances where a

task should be removed. For example, any task

loses sense by removing its input or output

fields. Also, the aggregation task is not

applicable without the group by fields. Besides,

the data process (or subprocess) has no

meaning with no data input or output tasks.

Task1 Task2 Task3

Task1 Task2 Task3

Task1 Task2 Task3

Task1 Task2 Task3

Task4

Task4

Task1 Task2 Task3 Task4

(b)

Task1 Task2

Task3

(a)

Task4

Task1

Task3 Task4

Task2

Task1 Task2

Task3

Task4

Task1 Task2 Task3

(g)

(e)

(c)

Task1 Task2 Task3

(f)

Task1

Task3 Task4

Task2

Task1

Task3 Task4

Task2

?

(d)

Figure 9: Remove inactive tasks scenarios.

In practice, removing a task follows one of

the following scenarios, depicted in Fig. 9:

 Scenario (a) and (b) drop one-to-one

links connecting the task to its

neighbors. Scenario (a) assumes only

one task is to be removed. Scenario (b)

assumes more neighbor tasks to be

removed, which drives the application

of scenario (a) multiple times;

 Scenario (c) drops a merge task with

one of its incoming task. The other

incoming task is then linked with the

merge successor task;

 Scenario (d) holds no incoming task to

the merge is to be dropped. In this case,

the process cannot be linked

automatically and the designer is

involved;

Task1 Task2

Task3

Task4

Taski

Taskj

Taskp

Taskp

Apply (d)

pattern

Apply (c)

pattern

(a)

Task1 Task2

Task3

Task4

Taskp

Apply (d)

pattern
 (b)

Figure 10: Drop split strategy with: (a) no merge

task; (b) with merge task.

 Scenario (e) removes a split task which

necessary induces the remove of one of

its outgoing tasks. The merge task is

deleted according to scenario (a) or (b).

Tasks from one splitted stream are to be

removed until a merge task, or a data

output task is met, see Fig. 10(1) and

Fig. 10(2). If a merge is met, it is

deleted according to scenario (c).

 Scenario (f) removes the data input task

and its outgoing tasks until a merge or

data input task is met. If a merge is

crossed apply scenario (c) else drop all

the process because the process has no

more input stream.

 Scenario (g) removes all predecessor

tasks to the data output until a split or a

International Journal of Data Warehousing and Mining, X(X), X-X, XXX-XXX 2012 14

Copyright © 2012, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

data input is met. In case the split is

met, apply scenario (d).

Other possible scenarios are not identified in

Fig. 9 because they do not happen in ”real-

world” situations, such as drop data output task

without its predecessor task, or unlink a split

task without one of its outputs.

Evolution Implementation
This section shows how our MDD

framework enables an easy implementation of

the highlighted evolution strategies.

Specifically, the ATL language is used for

establishing a set of M2M transformations in a

formal manner.

ATL Language Preliminaries. Model

evolutions are implemented in the Atlas

Transformation Language (ATL) language, a

hybrid declarative-imperative language for

implementing M2M transformations.

Declarative rules are preferred over imperative

ones, since they enable to match output

elements with input ones. They are typically

called matched rules. Imperative rules are

typically invoked by declarative ones in order

to allow the use of control statements, e.g. if

then else and for statements. Typical

imperative rules are called helpers.

Moreover, ATL proposes an advanced

capability called refactoring or refining mode.

This capability avoids the necessity of creating

rules and bindings for each element and

property in the model, only modified elements

require rules (as in our evolution scenario).

AddField

DropField

Link

Tasks
Revise

Fields

DropField

Set

AlterField Rename

Field

AlterField

SetOriginal

Model
Updated

Model

Drop

Tasks

Horizontal

Split

Resource

Model

Figure 11 : ATL evolution modules.

Evolution Modules. Some update strategies

should be performed in steps. However, in

contrast with M2T template, the M2M rules are

applied simultaneously and independently from

the input model hierarchy. Modules are thus

used to encompass simultaneous rules and

progressively apply sequential ones.

Modules implementing the specified update

strategies are depicted in Fig. 11. According to

the update, one or a sequence of modules is

applied on the Original Model to produce the

Updated Model. The Resource Model
determines the updated part of the data source.

For example, a DropField event is addressed by

four modules: (i) a DropField module is applied

to drop the field from directly associated

elements; (ii) a LinkTasks module creates a new

link from the previous to the successor task in

order to get around the task to be removed; (iii)

DropTasks module is applied to actually drop

these tasks; finally (iv) ReviseFields module

removes the fields generated by the dropped

task from the successor ones. An additional

module Common groups the helpers to be used

by the other modules.

Implementation Illustration. Suppose that in

the source table Customer of Fig. 2 the field

City is removed. By applying the Drop_Field

evolution strategy, the data process model of

Fig. 5 holds the following changes: (i) all the

City field occurrences are removed; (ii) the

derived useless computation ca is removed

from the multi-field derivation tasks; (iii)

unlinks the Data_Conversion task by linking its

previous and successor tasks; and (iv)
Data_Conversion task is removed.

The evolution is performed in steps by

successively executing the aforementioned

ATL modules, where each module partially

contributes to the process evolution. For

instance the DropField module drops the City

field occurrences and the ca computation,

while the LinkTasks gets around the

Data_Conversion task to be removed.

International Journal of Data Warehousing and Mining, X(X), X-X, XXX-XXX 2012 15

Copyright © 2012, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Figure 12: Drop_Field change on DimGeography_Load example (Fig. 5).

We explain next how the evolution

modules are implemented in ATL. Fig. 12

shows the example process designed by

using the Eclipse Ecore tree editor
i
 in

different evolution steps.
-- @atlcompiler atl2010

-- @path BPMN4ETL=./Models/DP3.4.ecore

-- @path Resource=./Models/Resource.ecore

module DropField;

create UpdatedModel : BPMN4ETL refining

OriginalModel : BPMN4ETL, modified :

Resource;

-- drop field from all process elements

rule DropField{

from old_df : BPMN4ETL!FieldIDS,

df: Resource!FieldIDS(old_df.name=df.name)

to drop

}

-- drop unitary condition if one operand is

the dropped field or not defined

rule DropFieldUCondition{

from old_uc : BPMN4ETL!UnaryCondition,

df : Resource!FieldIDS(old_uc.field.name=

df.name or old_uc.field.oclIsUndefined())

to drop

}

-- drop binary condition if one operand is

the dropped field or not defined

rule DropFieldBCondition{

from old_bc : BPMN4ETL!BinaryCondition,

df : Resource!FieldIDS(old_bc.lField.name=

df.name or old_bc.rField.name=df.name or

old_bc.lField.oclIsUndefined() or

old_bc.rField.oclIsUndefined())

International Journal of Data Warehousing and Mining, X(X), X-X, XXX-XXX 2012 16

Copyright © 2012, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

to drop

}

-- drop computation assignement fields if

the left operand is the dropped field or not

defined

rule DropFieldComputation{

from old_ca:

BPMN4ETL!ComputationAssignement,

df : Resource!FieldIDS(old_ca.lValue.name=

df.name or old_ca.lValue.oclIsUndefined())

to drop

}

Listing 3: ATL code of the DropField module.

Listing 3 shows the DropField module

that applies the first evolution step

transforming the Original Model to Updated

Model v1, depicted in Fig. 12. First, the

original, updated and resource models, as

well as the applied refining mode are

indicated in the create module statement.

Second, rules are established for each

element being modified by the module. For

example, in order to remove all City field

occurrences, the DropField rule matches

field elements to null, using the drop
keyword. The fields to be removed are

indicated in the resource model, by using a

filtering condition e.g. old_df.name

=df.name. Moreover, in order to remove

derived useless conditions and

computations elements, rules such as

DropFieldComputation are applied.

In our example, this rule implies the remove

of the ca computation.
-- @atlcompiler atl2010

-- @path BPMN4ETL=./Models/DP3.4.ecore

module LinkTasks;

create UpdatedModel : BPMN4ETL refining

OriginalModel : BPMN4ETL;

uses Common;

rule LinkTaskIS{

from is : BPMN4ETL!InputSet(is.source.

dataTask.isToDrop() and not is.source.

dataTask.oclIsTypeOf(BPMN4ETL!DataInput))

to update_is: BPMN4ETL!InputSet(

source <- is.source.dataTask.inputSets->

collect(is1|is1.source)->first()

)

}

rule LinkTaskOS{

from os : BPMN4ETL!OutputSet(os.target.

dataTask.isToDrop() and not os.target.

dataTask.oclIsTypeOf(BPMN4ETL!DataOutput))

to update_os: BPMN4ETL!OutputSet(

target<- os.target.dataTask.outputSets->

collect(os1|os1.target)->first()

)

}

Listing 4: ATL code of the LinkTasks module.

Listing 4 depicts the LinkTasks module

part applying the remove task Scenario (a),

see Fig. 9. This module is in charge of the

second evolution step transforming the

Updated Model v1 to Updated Model v2,

see Fig. 12. It first detects the inactive tasks

to be removed using isToDrop()helper.

For example, Data_Conversion task should

be removed since no computations remains

in this task. Second, it updates links

between previous and successor tasks to the

tasks to be removed, using the

LinkTaskIS and LinkTaskOS rules.

Particularly, these rules are responsible of

respectively modifying the target properties

of inputSet and outputSet elements of

neighbor tasks. Fig. 12 shows for example

that after the module execution, the target

property of Customers outputSet points on

Global Condition inputSet.
-- @atlcompiler atl2010

-- @path BPMN4ETL=./Models/DP3.4.ecore

module DropTasks;

create UpdatedModel : BPMN4ETL refining

OriginalModel : BPMN4ETL;

uses Common;

rule DropDaTask{

from dt : BPMN4ETL!DataTask(dt.isToDrop())

to drop

}

Listing 5: ATL code of the DropTasks module.

Listing 5 shows the DropTasks module

responsible of the last evolution step by

translating the Updated Model v2 to Final

Updated Model, depicted in Fig. 12. It is

responsible of actually removing the

Data_Conversion task element.

CONCLUSION

In this paper we discussed a BPMN-

based, vendor-independent framework for

implementing ETL processes that copes

with evolution of data sources. Using a

Model-Driven Development (MDD)

approach, ETL models built using our

BPMN4ETL metamodel can be translated

into vendor-specific code supported by any

ETL tool, using a suite of Model-to-Text

transformations. Further, in the case of data

International Journal of Data Warehousing and Mining, X(X), X-X, XXX-XXX 2012 17

Copyright © 2012, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

source evolution, the generated ETL code

can be automatically updated using Model-

to-Model transformations.

Several research challenges arise from

the work presented in this paper. Even

though an initial validation of our

framework has been conducted,

demonstrating the usability of the

framework by means of an exhaustive

validation procedure is still missing.

Further, code generation still takes

significant development effort since each

target ETL tool requires a particular suite of

transformations. We believe that this

problem can be addressed in two ways: (a)

a set of technology-independent patterns

can be defined to guide the transformation

development; (b) ETL tools can be

categorized according to three paradigms

from the data processing perspective (i.e.,

procedural, imperative, and hybrid), and in

two paradigms from the control process

perspective (i.e., imperative and workflow).

This suggests that we could define ‘pivot’

metamodels for these ETL paradigms, and

then, using the MDD approach, an

automatic mapping from our metamodel to

the pivot metamodels could be built. The

main effort will be then restricted to define

M2T transformations from a pivot

metamodel to the target tool metamodel.

APPENDIX

Control M2T Transformations
[template addControlTask(ctask:ControlTask)]

 [if (ctask.oclIsKindOf(DataProcess))]

 ### TRANSFORM DATA PROCESS TASK ###

[ctask.oclAsType(DataProcess).

addDataProcess()/]

 OMBALTER PROCESS_FLOW

'CP_[ctask.controlProcess.name/]'

 ADD MAPPING ACTIVITY

'CT_[ctask.name/]'[/if]

 [if (not

ctask.oclIsKindOf(ForeignControlTask))]

 ### TRANSFORM FOREIGN CONTROL TASK ###

 OMBALTER PROCESS_FLOW

'CP_[ctask.controlProcess.name/]'

 ADD WEB SERVICE ACTIVITY

'CT_[ctask.name/]'[/if]

 [if (ctask.oclIsKindOf(DataSubProcess))]

 ### TRANSFORM SUBPROCESS ###

[ctask.oclAsType(DataProcess).addDataProcess

()/]

 OMBALTER PROCESS_FLOW

'CP_[ctask.controlProcess.name/]'

 ADD SUBPROCESS ACTIVITY

'CT_[ctask.name/]'[/if]

[/template]

Listing 6: Control task transformation

[template

addControlEvent(cevent:ControlEvent)]

 [if (cevent.eventType.toString() = 'Error')

 or (cevent.eventType.toString() =

'Cancel')]

 [if (cevent.oclIsKindOf(StartEvent))]

 ### TRANSFORM START EVENT GATEWAY ###

 OMBALTER PROCESS_FLOW

'CP_[cevent.controlProcess/]'

 ADD START ACTIVITY 'CE_[cevent.name/]'[/if]

 [if (cevent.oclIsKindOf(EndEvent))]

 ### TRANSFORM END EVENT GATEWAY ###

 OMBALTER PROCESS_FLOW

'CP_[cevent.controlProcess/]'

 ADD END ACTIVITY 'CE_[cevent.name/]'[/if]

 [if (cevent.oclIsKindOf(NonBoundaryEvent))]

 ### TRANSFORM NONBOUNDARY EVENT GATEWAY ###

 OMBALTER PROCESS_FLOW

'CP_[cevent.controlProcess/]'

 ADD MANUAL ACTIVITY

'CE_[cevent.name/]'[/if]

 [if (cevent.oclIsKindOf(BoundaryEvent))]

 ### TRANSFORM BOUNDARY EVENT GATEWAY ###

 OMBALTER PROCESS_FLOW

'CP_[cevent.controlProcess/]'

 ADD END ACTIVITY 'CE_[cevent.name/]'

 [if not (cevent.outConnections.target-

>isEmpty())]

 OMBALTER PROCESS_FLOW

'CP_[cevent.controlProcess/]'

 ADD USER_DEFINED ACTIVITY

 'CT_[cevent.outConnections.target.name/]'

 OMBALTER PROCESS_FLOW

'CP_[cevent.controlProcess/]'

 ADD TRANSITION 'C_[cevent.name/]_

 [cevent.name/]'

 FROM ACTIVITY 'CT_[cevent.name/]'

 TO 'CT_[cevent.name/]'

 OMBALTER PROCESS_FLOW

'CP_[cevent.controlProcess/]'

 ADD TRANSITION 'C_[cevent.name/]_

 [cevent.outConnections.target.name/]'

 FROM ACTIVITY 'CE_[cevent.name/]'

 TO

'CT_[cevent.outConnections.target.name/]'

 [/if][/if][/if]

[/template]

Listing 7: Control event transformation.

[template addGateway(g:Gateway)]

 [if (g.oclIsKindOf(ParallelMergeGateway))]

 ### TRANSFORM PARALLEL MERGE GATEWAY ###

 OMBALTER PROCESS_FLOW

'CP_[g.controlProcess.name/]'

 ADD AND ACTIVITY 'G_[g.name/]' [/if]

 [if (g.oclIsKindOf(InclusiveMergeGateway))]

 ### TRANSFORM EXCLUSIVE MERGE GATEWAY ###

International Journal of Data Warehousing and Mining, X(X), X-X, XXX-XXX 2012 18

Copyright © 2012, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

 OMBALTER PROCESS_FLOW

'CP_[g.controlProcess.name/]'

 ADD OR ACTIVITY 'G_[g.name/]' [/if]

 [if (g.oclIsKindOf(ParallelSplitGateway))]

 ### TRANSFORM PARALLEL SPLIT GATEWAY ###

 OMBALTER PROCESS_FLOW

'CP_[g.controlProcess.name/]'

 ADD FORK ACTIVITY 'G_[g.name/]' [/if]

 [if (g.oclIsKindOf(ExclusiveSplitGateway))]

 ### TRANSFORM EXCLUSIVE SPLIT GATEWAY ###

 OMBALTER PROCESS_FLOW

'CP_[g.controlProcess.name/]'

 ADD ROUTE ACTIVITY 'G_[g.name/]' [/if]

 [if (g.oclIsKindOf(InclusiveSplitGateway))]

 ### TRANSFORM INCLUSIVE SPLIT GATEWAY ###

 [for (con : Connection | g.outConnections)]

 OMBALTER PROCESS_FLOW

'CP_[g.controlProcess.name/]'

 ADD TRANSITION 'C_[con.name/]'

 FROM ACTIVITY

'[g.inConnections.source.getPrefix()/]_

 [g.inConnections.source.name/]'

 TO '[con.target.getPrefix()/]_

[con.target.name/]'

 OMBALTER PROCESS_FLOW

'CP_[g.controlProcess/]'

 MODIFY TRANSITION 'C_[con.name/]'

 OF ACTIVITY

'[g.inConnections.source.getPrefix()/]_

 [g.inConnections.source.name/]'

 SET PROPERTIES (CONDITION)

 VALUES ('[con.condition/]') [/for][/if]

[/template]

Listing 8: Gateway transformation.

[template addCConnection(c:Connection)]

 [if (c.target.oclIsUndefined()) and

 not (c.oclIsKindOf(InclusiveSplitGateway))

and not (c.target.oclIsKindOf(

InclusiveSplitGateway)]

 ### TRANSFORM CONNECTION ###

 OMBALTER PROCESS_FLOW

'CP_[c.source.controlProcess.name/]'

 ADD TRANSITION

'C_[c.source.name/]_[c.target.name/]'

 FROM ACTIVITY

'[c.source.getPrefix()/]_[c.source.name/]'

 TO

'[c.target.getPrefix()/]_[c.target.name/]'

 [if (c.source.oclIsKindOf(BoundaryEvent))]

 ### MODIFY TRANSITION CONDITION ###

 OMBALTER PROCESS_FLOW

'CP_[c.source.controlProcess/]'

 MODIFY TRANSITION

'C_[c.source.name/]_[c.target.name/]'

 OF ACTIVITY 'CE_[c.source.name/]'

 SET PROPERTIES (CONDITION)

 VALUES ('ERROR') [/if][/if]

[/template]

Listing 9: Control connection transformation.

Data M2T Transformations

[template public addCDITask(t:

ColumnDataInput)]

 [for(f: Field|t.oclAsType(ColumnDataInput).

 selectQuery.fields)]

 # Set a connection with required data

resources

[f.fieldset.resource.useConnection()/][/for]

 [if t.oclAsType(ColumnDataInput).

 selectQuery.oclIsUndefined()]

 ADD TABLE OPERATOR '[t.fieldSet.name/]'

 BOUND TO TABLE '[t.fieldSet.name/]' [/if]

 [if not t.oclAsType(ColumnDataInput).

 selectQuery.oclIsUndefined()]

 ADD VIEW OPERATOR '[t.fieldSet.name/]'

 SET PROPERTIES (QUERY)

 VALUES '[t.selectQuery.queryToSQL()/]'

[/if]

[/template]

Listing 10: Column data input task

transformation.

[template public addMFDTask(t :

MultiFieldDerivation)]

 ADD EXPRESSION OPERATOR '[t.name/]'

 [t.addDConnection()/]

 [for (f: Field | t.outputSets.fields)]

 ALTER ATTRIBUTE '[f.name/]' OF GROUP

 'OUTGRP1' OF OPERATOR '[t.name/]'

 SET PROPERTIES (EXPRESSION) VALUES

 ('[t.computations->at(i).

rValue.computationToSQL()/]')

 [/ for]

[/template]

Listing 11: Multi-field derivation task

transformation.

[template public addKLTask(t : KeyLookup)]

 ADD LOOKUP OPERATOR '[t.name/]'

 SET PROPERTIES (LOOKUP_CONDITION)

 VALUES

('[t.lookupCondition.ConditionToSQL()/]'

 BOUND TO TABLE '[t.lookupTable/]'

[/template]

[template public addCDITask(t :

ColumnDataInput)]

 [for (f : Field |

t.oclAsType(ColumnDataInput).

 selectQuery.fields)]

Listing 12: Lookup task transformation.

[template public addFiTask(t :

GlobalConditionFilter)]

 ADD FILTER OPERATOR '[t.name/]'

 SET PROPERTIES (CONDITION)

 VALUES

'[t.filterCondition.ConditionToSQL()/]'

[/template]

Listing 13: Filter task transformation.

[template public addDOTask(t:DataOutput)]

ADD TABLE OPERATOR '[t.name/]'

 BOUND TO TABLE '[t.resource/]'

[/template]

Listing 14: Data output task transformation.

i
 http://wiki.eclipse.org/Ecore

International Journal of Data Warehousing and Mining, X(X), X-X, XXX-XXX 2012 19

Copyright © 2012, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

REFERENCES

Curino, C. A., Moon, H. J., & Zaniolo, C.

(2008). Graceful database schema

evolution: the prism workbench. PVLDB,

1(1), 761–772.

Cuzzocrea, A., Mazón, J.-N., Trujillo, J.-C

& Zubcoff J.J. (2011). Model-driven data

mining engineering: from solution-driven

implementations to 'composable' conceptual

data mining models. International Journal

of Data Mining, Modelling and

Management, 3(3), 217–251.

Cuzzocrea A. (2011). A UML-extended

Approach for Mining OLAP Data Cubes in

Complex Knowledge Discovery

Environments. In I. Song & E. Zimányi

(Eds.), Proceedings of the 13th

International Conference on Enterprise

Information Systems, ICEIS’11 (pp. 281–

289). Beijing, China: SciTePress.

Cuzzocrea A., F. Francesco, & Pontieri L.

(2010). Effective Analysis of Flexible

Collaboration Processes by Way of

Abstraction and Mining Techniques. Filipe

J., & Cordeiro J. (Eds.). Proceedings of the

twentieth International Conference on

Enterprise Information Systems, ICEIS’11

(pp. 157–166). Funchal, Madeira, Portugal:

SciTePress.

El Akkaoui, Z., & Zimányi, E. (2009).

Defining ETL worfklows using BPMN and

BPEL. In I. Song & E. Zimányi (Eds.),

Proceedings of the 12th ACM International

Workshop on Data Warehousing and

OLAP, DOLAP’09 (pp. 41–48). Hong

Kong, China: ACM Press.

El Akkaoui, Z., Zimányi, E., Mazón, J.-N.,

& Trujillo, J.-C. (2011). A model-driven

framework for ETL process development.

In I. Song, A. Cuzzocrea & K.C. Davis

(Eds.), Proceedings of the 14th ACM

International Workshop on Data

Warehousing and OLAP, DOLAP’11 (pp.

45–52). Glasgow, Scotland, UK: ACM

Press.

El Akkaoui, Z., Mazón, J.-N., Vaisman, A.,

& Zimányi, E. (2012). BPMN-based

conceptual modeling of ETL processes. In

A. Cuzzocrea & U. Dayal (Eds.),

Proceedings of the 14th International

Conference on Data Warehousing and

Knowledge Discovery, DAWAK’12. Vienna,

Austria: Springer.

Golfarelli, M., Lechtenbörger, J., Rizzi, S.,

& Vossen, G. (2006). Schema versioning in

data warehouses: Enabling cross-version

querying via schema augmentation. Data

Knowl. Eng. 59(2), 435–459.

Inmon, W. (2002). Building the Data

Warehouse. Wiley.

Mazón, J.-N., & Trujillo, J.-C. (2008). An

MDA approach for the development of data

warehouses. Decision Support Systems,

45(1), 41–58.

Muñoz, L., Mazón, J.-N., & Trujillo, J.-C

(2009). Automatic generation of ETL

processes from conceptual models. In I.

Song & E. Zimányi (Eds.), Proceedings of

the 12th ACM International Workshop on

Data Warehousing and OLAP, DOLAP’09

(pp. 33–40). Hong Kong, China: ACM

Press.

Muñoz, L., Mazón, J.-N., & Trujillo, J.-C

(2010). A family of experiments to validate

measures for UML activity diagrams of

ETL processes in data warehouses.

Information & Software Technology,

52(11), 1188–1203.

Papastefanatos, G., Vassiliadis, P., Simitsis,

A., & Vassiliou, Y. (2008). Design Metrics

for Data Warehouse Evolution. In Q. Li, S.

Spaccapietra, E. Yu, & A. Olivé, (Eds.),

Proceedings of the 27th International

Conference on Conceptual Modeling, ER

'08, (pp. 440-454). Berlin, Heidelberg:

Springer.

Papastefanatos, G., Vassiliadis, P., Simitsis,

A., & Vassiliou, Y. (2009). Policy-

regulated management of ETL evolution. In

Journal on Data Semantics XIII, 146–176.

Romero, O., Simitsis, A., & Abelló, A.

(2011). GEM: Requirement-driven

Generation of ETL and Multidimensional

http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/f/Filipe:Joaquim.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/c/Cordeiro:Jos=eacute=.html

International Journal of Data Warehousing and Mining, X(X), X-X, XXX-XXX 2012 20

Copyright © 2012, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Conceptual Designs. In A. Cuzzocrea

& U. Dayal (Eds.), Proceedings of the

13th International Conference on Data

Warehousing and Knowledge Discovery

DaWaK '11, (pp. 80–95). Toulouse, France:

Springer.

Simitsis, A., & Vassiliadis, P. (2008). A

method for the mapping of conceptual

designs to logical blueprints for ETL

processes. Decision Support Systems, 45(1),

22–40.

Skoutas, D., & Simitsis, A. (2009).

Ontology-driven conceptual design of ETL

processes using graph transformations. In

Journal on Data Semantics XIII, 122–149.

Thomsen, C., & Pedersen, T. B. (2011).

Easy and effective parallel programmable

ETL. In I. Song, A. Cuzzocrea & K.C.

Davis (Eds.), Proceedings of the 14th ACM

International Workshop on Data

Warehousing and OLAP, DOLAP’11 (pp.

37–44). Glasgow, Scotland, UK: ACM

Press.

Trujillo, J.-C., & Luján-Mora, S. (2003). A

UML based approach for modeling ETL

processes in data warehouses. In I.Y. Song,

S.W. Liddle, T.W. Ling & P. Scheuermann

(Eds.), Proceedings of the 22nd

International Conference on Conceptual

Modeling, ER'03 (pp. 307–320). Chicago,

IL, USA: Springer.

Tziovara, V., Vassiliadis, P., & Simitsis, A.

(2007). Deciding the physical

implementation of ETL workflows. In I.

Song & T. Pedersen (Eds.), Proceedings of

the 10th ACM International Workshop on

Data Warehousing and OLAP, DOLAP’07

(pp. 49–56). Lisbon, Portugal: ACM Press.

Vassiliadis, P., Simitsis, A, Georgantas, P.,

Terrovitis, M., & Skiadopoulos, S. (2005).

A generic and customizable framework for

the design of ETL scenarios. Information

Systems, 30(7), 492–525.

Vassiliadis, P., Simitsis, A., & Baikous, E.

(2009). A taxonomy of ETL activities. In I.

Song & E. Zimányi (Eds.), Proceedings of

the 12th ACM International Workshop on

Data Warehousing and OLAP, DOLAP’09

(pp. 25–32). Hong Kong, China: ACM

Press.

Wilkinson, K., Simitsis, A., Castellanos,

M., & Dayal, U. (2010). Leveraging

Business Process Models for ETL Design. .

In J. Parsons, M. Saeki, P. Shoval, C. Woo

& Y. Wand (Eds.), Proceedings of the 29th

International Conference on Conceptual

Modeling, ER'10 (pp. 15–30). Vancouver,

BC, Canada: Springer.

Wieringa, R. (2010). Design science

methodology: principles and practice. In J.

Kramer, J. Bishop, P. T. Devanbu & S.

Uchitel (Eds.), Proceedings of the 32nd

International Conference on Software

Engineering ICSE’10 (pp. 493–494). Cape

Town, South Africa: ACM Press.

Wyatt, L., Caufield, B., & Pol, D. (2009).

Principles for an ETL benchmark. In R.

Nambiar & M. Poess (Eds.), Proceedings of

the First TPC Technology Conference,

TPCTC 2009 (pp. 183–198). Lyon, France:

Springer.

http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/c/Cuzzocrea:Alfredo.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/d/Dayal:Umeshwar.html

