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ABSTRACT

To revamp with new creative age characterized by ongoing digital transformation, more and more 
industries are capitalizing on digital innovation for their sustainable business growth. Drawing on 
a systematic literature review, thematic analysis, and using the theories of dynamic capabilities and 
market orientation, this research scrutinizes a systematic process for developing analytics-based 
data-driven innovation (DDI). Findings suggest a standardized seven-step process for DDI, including 
product conceptualization, data acquisition, data refinement, data storage and retrieval, distribution, 
presentation, and market feedback.
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1. INTRODUCTION

The world economy has transformed into a full-fledged digital economy in recent years led by data-
driven innovation. A perfect storm of information and technological infrastructure growth has led 
to an expanded digital economy with data emerging as one of the most important strategic assets 
(Gopalkrishnan et al., 2012; Morabito, 2015; Tallon, 2013). Being at the edge of the experience era, big 
tech giants and other myriad companies now consider customer experience as a key differentiator with 
data considered a key competitive advantage (Kamioka & Tapanainen, 2014; Rehan & Mohammad 
Saud, 2020). Designing and developing data-driven innovations (DDI) is the way that these companies 
live, breathe, strive, and sustain their competitive advantage in such a vast competitive data-driven 
environment. Big data teamed with advanced analytic portfolios has boosted cutting-edge data-
driven innovation in an unprecedented way (Debora Di et al., 2015; Groves et al., 2016; Lee et al., 
2014; Yun et al., 2020). Traditionally agile data-driven corporations, e.g., Amazon, Google, Apple, 
and Facebook as well as emerging start-ups, are deriving incremental benefits and more durable 
competitive advantage from DDI. DDI is defined as any process, method, model, product or service 
that that create and capture value (Davenport & Kudyba, 2016a). Using Netflix as an example, their 
personalized recommendation system captures data points on individual customer viewership and 
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engagement on various TV shows and movies of more than 151 million subscribers. By implementing 
data analytics and algorithms, the company has developed its innovative recommendation platform 
that represents over 80% of the content streamed on the platform.

Such significant changes to business models are attributable to several factors which have 
functioned as capabilities for these global giants. These factors include advancement in information 
and communication technologies (ICT), growth of investment in big data and AI initiatives (Lu 
et al., 2018), strong data management and analytics capabilities (Kwon et al., 2014), strong data 
governance (Ladley, 2019), application of smart machines (Ransbotham & Kiron, 2017), building 
a data culture accompanied with organizational alignment and cultural compliance (New Vantage 
Partners, 2017). Therefore, acknowledging the significance of big data and analytics in developing 
data-centric innovations, further investigation is required to support this important research field.

There has been a focus on numerous waves of data-driven innovations in recent years such as 
data-driven R&D (Kayyali, 2013), data-intensive products (Zhan et al., 2016), data-driven processes, 
data-driven marketing (Erevelles et al., 2016), and data-driven organization. Data-driven researchers 
have also addressed dominant fields like, business intelligence (Chen et al., 2012), e-commerce 
(Akter & Wamba, 2016; Joines & Scherer, 2003), supply chain management (Sanders, 2014), smart 
city development (Ojo et al., 2015) and myriad of other domains. Acknowledging that DDI is in its 
infancy with limited theoretical and empirical research, there is nonetheless missing a comprehensive 
conceptualization based on a structured approach to the aforementioned data-driven initiatives. Such 
a gap has been identified by the extant research, which determines that the impending value of big 
data is yet to be revealed in the arena of new product innovation (LaValle et al., 2011; Davenport, 
2013; Robert & Candi, 2014; Tan et al., 2015).

Early research typically centred on developing traditional information products (Browning et 
al., 2002; Kim et al., 2006; Littler et al., 1995; Meyer & Zack, 1996; Moenaert & Souder, 1990; 
Nambisan, 2003; Von Hippel, 1998) with the absence of analytics. Studies on data product innovation 
in a structured fashion are still in its infantry, and therefore, the question regarding how companies 
can take innovation initiatives in a data-impelled culture remains unanswered (Biemans & Langerak, 
2015). Hence, the research question that has guided this study is:

RQ: What is the process of developing data-driven innovations (e.g., data products) in big data 
economy?

To answer this question, this study adopts a systematic literature review as a method based 
on similar applications applied in prior studies (Akter & Wamba, 2016b). This study contributes 
to the literature in multiple ways. Firstly, it explores DDI and identifies the factors that lead to the 
sustainability of undertaking such innovation within the disruptive big data environment. Secondly, 
along with this exploration, this study presents the stages in the DDI model for developing data products 
that fit with the “time-to-market” phenomenon. For the successful design and development of data 
products, this research also recognizes various stakeholders’ (e.g., data & IT personnel, managers, 
marketing people, etc.) involvement throughout the process of DDI. The study has been structured 
in the following key sections. In section 2, we discuss the basic concepts (i.e., big data, big data 
analytics, and data-driven innovation). In section 3, we present some relevant studies conducted on 
DDI to show different approaches adopted by researchers. This section also sheds light on a list of 
challenges impending the initiatives for DDI. In Sections 4 and 5, we elucidate the methodological 
structure and findings of the systematic literature review. Finally, in the last section, theoretical and 
practical contributions are discussed.
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2. LITERATURE REVIEW

2.1 Big Data
With the unprecedented rise in e-commerce and advancement in digital technology, granular data is 
proliferating exponentially every second. Big data, therefore, is becoming one of the most inseparable 
words in all spheres of human life and the data-driven corporate mainstream.

Big data is the voluminous, diversified and more complex data set that can’t be handled, processed 
and analysed by traditional data processing software (Akter & Wamba, 2016b). According to Laney 
(2001), volume, variety, and velocity are the three scales used to define big data. The ‘volume’ refers 
to the massive amounts of data generated from various sources like web and social media platforms, 
transactions or activity data, sensor data, machine to machine data, biometric data, click-stream data, 
video data, and voice data. The ‘velocity’ is the speed at which data are being collected, administered 
and analyzed in real-time. The ‘variety’ refers to the diverse forms of data including structured, semi-
structured and unstructured collected in big data environment (Schroeck et al., 2012). In the same way, 
Dijcks (2012) characterizes big data with volume, velocity, variety, and added “value” as it implies 
the transactional, strategic and informational benefits of big data (Wamba et al., 2015; Wixom et 
al., 2013). However, considering the importance regarding the authenticity of data source, White 
(2012) included “veracity” to the list of big data V’S. The ‘veracity’ thus, represents the reliability 
or trustworthiness of different data sources from which data are being collected.

Schroeck et al. (2012) focused on market competition and defines big data as the blend of 
volume, variety, velocity, and veracity in order to accomplish a competitive advantage in today’s 
digital market. Today with the aim of excelling data-driven competitors, more and more companies 
are infusing their resources in developing big data infrastructure that recognizes and exploits new 
market opportunities with the aid of big data analytics (Marshall et al., 2015). Kamioka and Tapanainen 
(2014) explore the connection between the utilization of big data and competitive advantage gained 
from such utilization in an organization. To outperform the competitors strategically, managers can 
utilize big data in assisting their decisions regarding appropriate new product development (Johnson 
et al., 2017). However, some researchers considered data as primary output or final goal of innovation 
process rather as a by-product (i.e., Trabucchi & Buganza, 2019).

2.2 Big Data Analytics (BDA)
Since its beginning around the 1950s, the concept of analytics has no longer been considered a novel 
concept (Davenport, 2014). Big data analytics are the advanced analytical tools and methods applied 
on an extensive and diverse set of data to unearth hidden behavioral patterns, trends, relationships and 
other insights in order to reduce costs, increase efficiency and profits, identify new opportunities, and 
make happier customers. Bose (2009) described BDA as the “group of tools” used to extract, interpret 
information as well as predict the outcomes of decisions. Consistently, Davenport (2013b) denoted 
BDA as the quantitative analysis of big data in pursuance of making business decisions. Apart from 
assisting decision making, many firms also deploy analytics to find meaningful patterns in data in 
order to approach various business problems (Demirkan et al., 2015, pp.35). More recently, deploying 
AI-enabled analytics allows firms to predict customer purchase pattern in advance, anticipate credit 
fraud before it takes place, and place digital advertising to targeted customers in real-time (Davenport 
et al., 2019). Accordingly, firms should endeavor to combine big data and analytics in order to generate 
innovation and competitive advantage (Duan et al., 2020).

2.3 Data-Driven Innovation (DDI) in Big Data Environment
The process of unlocking the hidden value of data aiding further innovations in the realm of functional, 
operational, strategic and progressively entire business model is termed as data-driven innovation 
(DDI) (Davenport & Kudyba, 2016). According to Stone and Wang (2014), utilization of any kind 
of data buttressing the innovation process with the aim of creating value is expounded as DDI. DDI 
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renders innovative applications with strategic benefits derived from data analytics where performing 
analytics drive specific organizational performances and decision-making process. Google, Facebook 
Inc., Yahoo! Inc., and some others are the leading innovators building data products based on data 
and analytics. Facebook’s, for instance, “People You May Know” feature shows people based on 
mutual friends, work, education information, and other factors. LinkedIn Corp. developed data 
products like “People You May Know”, “Jobs You May Be Interested In” and “Groups You May 
Like” (Davenport, 2013a). Table 1 depicts the definitional aspects of data-driven innovation derived 
from distinct relevant studies.

Comprehending the significance of big data and analytics on new product performances, the 
recent studies continue to explore “the evidence that using big data intelligently will improve business 
performance” (McAfee et al., 2012, pp.63). In reality, upfront rivals are deploying “advanced analytics” 
or “discovery analytics” with a data deluge for greater understanding and planning of their marketing 
efforts (Akter & Wamba, 2016b; Russom, 2011). Netflix’s collaborative filtering algorithm to 
anticipate customer movie ratings (Chen et al., 2012), Google’s use of users search behavior to target 
advertising (Hienz, 2014), and pursuit of big data to refine core search and ad-serving algorithms 
(Davenport & Patil, 2012) are just a very few of those. Throughout this progression, DDI is being 
embedded as an innovative value propositions into an organization’s core data products to make a 
complete market offering. For example, mobile apps ingrained with analytics are framing the “app 
economy” and have been considerably regarded as data products (OCED, “The App Economy” 2013). 
These creations and innovations are maneuvered to enhance customer experiences in many ways.

Table 1. Definitional Aspects of Data-driven Innovation

Study Potential Research 
Areas

Definition Purpose

Bakshi, 
(2012)

Unstructured data 
collection, storage and 

analysis.

Data-driven Innovation is 
comprised of the acquisition, 

processing, analyzing and 
application of data in order to 

excerpt the meaningful insights 
from it.

Proposing several techniques and 
approaches for managing and analyzing 

the growing number of unstructured data.

OECD, 
(2014) 

Rindfleisch 
et al., 
(2017) 
Ylijoki, 
(2019)

The role of big data and 
analytics for performing 
growth (e.g., increased 

productivity) and 
well-being as well as 

policy management for 
maximizing value of 

data-driven innovation. 
The relationship between 
“Innovation as Data” and 

customer-lead digital 
revolution; specifically 
in terms of 3D printing. 

The scope and 
challenges of digital 

transformation of 
business driven by big 

data.

Data-centric process that 
supports the combination of 
both economic growth (i.e., 
data-driven infrastructural 

resources) and development 
(i.e., expansion of multi-sided 

market) is termed as data-driven 
innovation. 

Capturing, analyzing and 
acting upon data generated by 

consumers in order to strengthen 
the way companies pursue for 
innovating new products that 
enhance customer experience. 

DDI ensues when insights 
derived from data, either 

manually or automatically, lead 
to improvements.

Exemplifying the contributions of DDI 
in economic growth as well as presenting 

the risks associated with inappropriate 
use of data and analytics. 

Introducing the concept of “Innovation 
as Data (IAD)” as well as suggesting 

strategies for leveraging such an 
innovative approach. 

Exploring big data theories in order to 
present novel knowledge and techniques 

for innovating the conversion toward 
data-driven businesses.
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2.4 Theoretical Foundations
2.4.1 Market Orientation
Market orientation serves as a fundamental theory in the marketing literature for gaining competitive 
advantage. Gounaris et al., (2009) characterized market orientation as the amalgamation of gathered 
knowledge, skills and expertise helping a firm to bring it into line with recognizing and fulfilling 
market needs effectively. Market-oriented firms focus on developing and maintaining long term 
profitable relationship with customers by providing superior value to customers than their competitors. 
Being a critical resource for gaining sustainable competitive advantage (Hult & Ketchen Jr, 2001), 
market orientation is considered as a significant knowledge-based asset that envisions future market 
possibilities (Hunt & Morgan, 1995). Therefore, operating in a knowledge-based economy, data-
driven firms can gain a considerable stance of market-sensing and customer-linking capabilities 
(Day, 1994) through developing a strong base for data-centric market intelligence through integrating 
market orientation. From a resource-based view (RBV), the adoption of market orientation also allows 
firms to combine resources that are scarce, invaluable and difficult to emulate by competitors (Amit 
& Schoemaker, 1993; Barney, 1991). Thus, considering its appeal, a number of researchers have 
empirically proposed and examined the relationship between market orientation and new product 
performance and innovation (Atuahene‐Gima, 1995; Calantone et al., 2002; Frishammar & Åke Hörte, 
2007; Ho et al., 2018; Hurley & Hult, 1998; Kahn, 2001; Li et al., 2006; Lukas & Ferrell, 2000; Narver 
et al., 2004; Wei et al., 2014; Wren et al., 2000; Wu et al., 2019). However, the theory of market 
orientation is rarely found in the literature of data-driven innovation (Yu et al., 2019). Addressing this 
shortcoming, theory of market orientation is conceptualized as an integral part of DDI development . 
It provides significantly greater explanatory power of how market-based knowledge and intelligence 
contribute to ideating data products as well as facilitating market feedback.

2.4.2 Dynamic Capability
The dynamic capability perspective has emerged as one of the most prominent theories in the field 
of product development and innovation (Deeds et al., 2000; Giniuniene & Jurksiene, 2015; Marsh 
& Stock, 2003; Verona, 1999; Winter, 2003; Zhou et al., 2019). This concept developed by Teece 
et al. (1997) demonstrates the capability of firms to attain the sustainable competitive advantage 
through capturing new opportunities and making expected outcomes out of those opportunities in an 
ever-changing business environment by deploying and rebuilding the complementary resources and 
assets. Gaining accumulative knowledge, skills and experiences are one of the central prerequisites 
for achieving competitive advantage (Barney, 1991) and the key resources that comprise knowledge 
stimulate innovation and advance new product development (Grant, 1996). As mentioned above, 
previous research has examined the accomplishment and implications of product innovation under 
dynamic environments (Lynch, 2019; Piening & Salge, 2015; Prieto et al., 2009; Verona & Ravasi, 
2003) but no single attempt is evident in the area of how data-centric innovation can be attained and 
sustained where the industry is continuously disrupted by changing opportunities and challenges 
resulting from competitive forces and varying customer demands. Today the unprecedented volume, 
velocity, and variety of data and associated emerging technology have turned knowledge acquisition 
to revolve around the collection and administration big data. Drawing upon the dynamic capability 
literature highlights the data-driven firms’ capacity for capturing and utilizing big data in order to 
transform it into dynamic data product innovation.

2.4.3 Creativity Theory
Under the creativity theory, the most widely accepted definition of creativity is the construction of 
novel and useful ideas that can successfully be implemented through innovation capabilities within 
an organization (Amabile, 1983, Amabile et al., 1996; Amabile, 1998). Earlier studies on new 
product development literature have confirmed two components of new product creativity: novelty 
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and meaningfulness (Amabile, 1983; Sethi et al., 2001; Im & Workman, 2004; Rubera et al., 2011). 
Meaningfulness indicates the degree of the appropriateness and usefulness of a new product offered 
to the market in relation to its competitors, whereas novelty represents the latitude that determines the 
uniqueness of a new product relative to its contenders (Amabile, 1983). Previous studies (Bakhshi et 
al., 2008; Goller & Bessant, 2017; Maitanmi et al., 2019; Müller et al., 2009; Taalbi, 2017) proposed 
and evidenced creativity as one of the major drivers of innovation. For example, Hemment et al. (2017) 
introduced how art, creativity and public participation boost technology for smart city innovation. 
Cropley and Oppert (2018) explained how the elements of creativity drive organizational innovation. 
Creativity works as propelling force behind innovation (Benedict, 2018) and innovations produce 
novel knowledge and ideas, create access to new markets, enhance customer awareness and therefore 
improve the existing product offerings (Leonard-Barton, 1992; Gibson & Birkinshaw, 2004). Thus, 
considering creativity theory, it can be theoretically generalized that if the firm possesses all capabilities 
(e.g., appropriate market mechanisms, skilled talents, and top management support) and resources 
(e.g., data and infrastructure) for creativity, it can successfully develop new innovative data products.

3. DATA-DRIVEN INNOVATION MODELS

Being enabled by the abilities stated earlier, data-driven enterprises strive to identify an appropriate 
and competitive data product to be developed. Cisco India, for instance, first assesses the market 
need followed by ensuring product portfolio and product-capability fit (building a product that is 
compatible with the subsidiary’s capabilities). Developing a decision matrix and creating a working 
prototype through bootstrapping enables the company to turn its ideas into the ultimate data product 
in an emerging market (Jha et al., 2017). Nowadays, data monetization can also be a great source of 
competitive advantage for companies with hoards of data. According to Wixom and Ross (2017), 
companies can take three approaches to data monetization: “for improving internal business processes 
and decisions; for wrapping the offering around core products and services; and for selling information 
offering to the existing and new market” (pp. 1).

In recent times, involving customers in data-oriented innovations has been widespread. Zhan et al. 
(2018a) identified three different phases in customer-driven new product development (NPD) including 
generating ideas and concepts, designing and engineering individual products, and testing and 
launching new product or offering. Another customer-centric research project (Cooper, 2017a) found 
that using embedded customer feedback in developing an iterative series of “Build-Test-Feedback-
Revise” to design and deliver new product innovation wasted no time at all. A study conducted by 
Jin et al. (2016) identified product attributes and sentiment divergences from big consumer opinion 
data and ends with exploiting the data in developing a framework for market-driven product design. 
Besides, considering its lifecycle, digital twin-driven product designing, manufacturing and services 
have also been investigated by the researchers (Tao et al., 2018). However, regardless of the types 
of data products, a framework regarding innovation-driven product development should provide an 
instrument to scientifically evaluate the success of product innovation (Zhang et al., 2004).

Research has also been conducted in the domain of data-driven service innovations. Examining 
and offering a standardized framework for service innovation is one of many focused areas where 
researchers have poured their efforts. After determining a list of opportunities and challenges regarding 
the service-oriented decision support system (DSS), Demirkan and Delen (2013) recommended a 
theoretical framework for DSS in the cloud. Demirkan and Spohrer (2014) developed a systematic 
framework for a data-driven cloud-enabled intelligent self-service systems to enhance the virtual 
shopping experience of customers in digital retail malls. To scrutinize how manufacturing service 
organizations in industry 4.0 transform in the impending big data environment, Lee et al. (2014) 
addressed the adaptive capabilities of those organizations toward smart predictive informatics and 
proposed the systematic framework including cyber-physical system and decision support system for 
long-run innovative services. Yu and Sangiorgi (2018) explored service design to associate value co-
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creation in reframing new service development (NSD) through holistic understanding and suggested 
a conceptual NSD model toward a customer/service-centric logic. Antons and Breidbach (2018) 
examined 69 distinct types of research in the domain of service design and innovation by introducing 
and manifesting the applicability of topic modeling and machine learning to provide an experimental 
contribution to service research. Like NPD, recent studies also explored NSD in terms of cocreating 
and innovating values through customer involvement (Edvardsson et al., 2012; Gemser and Perks, 
2015; Gustafsson et al., 2012; Hoyer et al., 2010; Matthing et al., 2004). Table 2 represents several 
models proposed by innovation researchers for DDI.

3.1 Challenges of Big Data-Driven Innovation
With synthesizing enabling factors and multiple examples of big data-driven innovations, there is also 
growing tension regarding the challenges associated with the exploitation of big data. These challenges 
stretch from the degree of an organization’s data literacy to the extent of privacy and security regarding 
the usage of data (Bose, 2009; Leelien Ken, 2009; Smith & Shao, 2007). Challenges also apply in 
terms of stimulating the participation of other stakeholders in adopting and leveraging big-data-driven 
innovation (Hemerly, 2013). Nevertheless, strong data governance practice and data sharing, cultural 
norms and “differentiations” to narrow the strategic focus with the strongest advantage (Ransbotham 
& Kiron, 2017) may minimize the associated risks and combat challenges. Alongside, providing 
the required training to data personnel and developing big data analytics competence focusing on 
“sophisticated technology, robust talent and analytics-driven management culture” (Akter & Wamba, 
2016a, pp.190) can streamline the existing management dilemma resting upon DDI.

Table 2. Recent Studies on Data-driven Innovation

DDI Research 
Stream

Relevant 
Studies

Proposed Innovation Model

Market-driven New 
Product Innovation 
Data-driven 
Accelerated 
Innovation 
Data-driven Product 
innovation

Butscher 
and 
Laker, 
(2000) 
Iqbal 
et al., 
(2010) 
Cooper, 
(2017b) 
Zhan 
et al., 
(2017) 
Zhan 
et al., 
(2018b) 
Kusiak, 
(2009) 
Lin et al., 
(2016) 
Chien 
et al., 
(2016) 
Tao et al., 
(2019)

Defining target customers; identifying competitive advantage; positioning new 
products within target market; fine-tuning product design and pricing; market 
simulations; and determining the target costs. 
Qualitative and quantitative analysis; developing candidate solution; creating and 
evaluating model; static validation; dynamic validation; and release solution. 
Idea generation; scoping; building business case; new product development; testing 
and validation; and full launch. 
Accelerated innovation process; building close relations with customers; and 
developing fast launch-and-improve ecosystem. 
Autonomy; cross-functional teams; simultaneous processing; understanding 
customers’ needs; interaction with customers; customer co-creation; sharing 
information and gathering feedback; network development; product launch and 
improve; fast learning and improvement. 
Prototype formulation; developing prototype alternative; evaluation of prototypes; 
test configurations; and innovation score. 
Understanding and defining the problem; identifying the niche for decision quality 
improvement; forming the objective hierarchy and data collection; data preparation 
and data mining; interpreting and evaluating results. 
Defining the problem; preparing data; generating rules; and evaluating and 
interpreting results. 
Planning and task clarification; developing conceptual design; developing 
embodiment design; preparing detail design; and virtual verification. 
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4. METHODS

To investigate the compatibility of the model for DDI as well as to prove how the stated model can 
include the historical combination of data and analytics, this research has adopted a systematic approach 
toward reviewing the literature based on similar applications in several prior studies, such as Yurko-
Mauro et al. (2015) and Akter et al. (2019) in big data studies; Mikalef et al. (2018) and Thomas 
and Leiponen (2016) in big data analytics researches; Ngai and Wat (2002); Vaithianathan (2010); 
and Akter and Wamba (2016a) in e-commerce fields as well. A systematic literature review allows 
researchers to conduct a reliable amalgamation of evidence from relevant sources that successively 
leads them to accomplish a robust and comprehensive theoretical implications and conclusion 
on a given research question (Baumeister, 2013). Considering particular research objectives and 
purposes, the systematic approach consolidates and verifies appropriate studies in a coherent fashion 
(Greenhalgh et al., 2004; Sivarajah et al., 2017). Therefore, considering the subjective nature of the 
study, a systematic literature review deemed to be apposite and worthwhile in order to encapsulate a 
succinct empirical record on a structured approach for innovating data-driven products was conducted 
in a big data context.

This study generates the review process based on the following research questions: how analytics 
contribute to data-centric innovation? and what is the “standardized process” for designing and 
developing data products in data-driven firms? This question directed the literature review process 
precisely in determining appropriate theories, knowledge areas, academic and professional journal 
articles, web resources and bibliographic records. To practically answer the question, this study, 
therefore, reviewed related research conducted specifically on big data analytics and innovation, data-
driven product development, data-oriented service innovation, data-driven innovation framework, 
customer-centric data product development, data-centric decision making, and big data value chain.

Literature related to new product development (NPD), data-driven innovation (DDI), technology 
innovation and service innovation was reviewed rigorously and exhaustively. As the research in DDI 
domain is still evolving, considering the published articles in between the year 2010 and 2019 seemed 
reasonable to represent an inclusive study of the literature. Relevant publications in the aforementioned 
literature were identified by using the search filaments comprised of several keywords. Although 
the preliminary focus was on “developing data-driven innovation”, however, other fundamental 
phrases like “big data”, “big data analytics”, “big data-driven innovation” “big data-analytics driven 
innovation” “data products” were also used in narrowing down the field that fit the area of this 
research. Afterwards, to represent the entire scope of the study in terms of depicting how big data 
analytics enables data-driven innovation, these search strings were accompanied with “value of big 
data analytics” and “examples of analytics-driven data products”.

In order to obtain the maximum number of scholarly articles and periodicals, several eminent 
research databases including Emerald (e.g., Journal of Knowledge Management), Wiley-Blackwell 
(e.g., Journal of Product Innovation Management), Scopus (Elsevier), and Science Direct (Elsevier) 
were explored. To do that, this study first executed a rigorous search on these databases using the 
keywords data-driven innovation with the terms phases/steps, design, value chain, time-to-market 
expectations etc. However, relevant publications from other databases were also extracted to develop 
arguments and support findings. While searching on the abovementioned databases, a total number 
of 103 articles appeared and later on, the articles those did not fit to the research area were dropped. 
Followed by Akter et al. (2019), search duplication was omitted, and selection criteria were specified, 
which led this research to select and scrutinize 63 most relevant publications. Finally, 22 articles 
were deemed to be directly connected to the development of data-centric innovations based on their 
explicit or implicit implications in terms of data-centric product innovation. Following the guidelines 
of Braun and Clarke (2006), this study performed a thematic analysis of the existing literature and 
came up with seven stages for data-centric innovation that conformed to the seven-step model for 
designing and developing analytics-based data products proposed by Davenport and Kudyba (2016).
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5. FINDINGS ON DATA-DRIVEN INNOVATION PROCESS

In the world of the traditional product innovation process, a various number of long time-consuming 
steps are taken in isolation that often ignores the market mechanism. In contrast, because of its 
unique nature like interactivity, continuity, and parallelism, the development of data-driven products 
is greatly influenced by how customers relate to companies and products resulting from the changing 
digital environment. Based on the thematic analysis, this study presents seven steps (see Figure 1) for 
architecting and developing data-driven innovation, which is discussed as follows.

5.1. Step 1: Product Conceptualization
Conceptualizing the market needs is the very first and probably the most important phase in the process 
of DDI. It sets the foundations as to whether the remaining steps of the development initiative would 
be efficient and whether the data product is going to be commercially successful. This process of 
conceptualization should take place before data acquisition and fine-tuned with a market feedback 
loop. In this stage, an organization must hypothesize the data product that satisfies the needs of the 
market, along with the available data sources required for that innovation. The product innovation 
process involves defining the product, investigating data, and establishing the framework for rapid 
prototyping (Davenport & Kudyba 2016). According to Wixom and Ross (2017), once the key enablers 
(i.e., R&D capacity, emerging market opportunity, and support of executive champions) for market 
innovation are positioned, as an example, Cisco India considers market need (what data product is to 
be produced), portfolio fit (how the product fits company’s existing portfolio), and product-capability 
fit (how the product fits subsidiary’s product-development capability) in terms of taking a decision 
about what data product to be developed.

At this stage, considering the product position defined by targeted consumers, developing a product 
architecture better facilitates the rigor of product innovation process where the market and technological 
opportunities, technological planning, and data platform opportunities influence architectural choice 
(Whitney, 2004). Therefore, with regard to customer-centered product innovation, an organization may 

Figure 1. Data-Driven Innovation (a closed-loop process)
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embolden customer engagement, particularly in product definition and rapid prototyping processes. 
For example, Lenovo arranges a customer-based competition that includes online services, telematics 
and future PC online assistance systems (Bel, 2015). In another way, concrete focus on customers 
allows firms to discover novel ways to learn about and deliver new data products that better satisfy 
unique needs (Chen, 2015). After streamlining all these process components efficiently, the rest of 
the phases, for example, data acquisition, storage and retrieval, and even market feedback mechanisms 
can be transmitted with higher efficiency.

Proposition 1: Product conceptualization is the first step of the DDI process.

5.2. Step 2: Data Acquisition
After establishing a comprehensive and robust conceptualization model, the acquisition of data 
can be accomplished precisely. Due to the diversified and ubiquitous nature of data, a company’s 
big data platform needs to attract all its data sources regardless of the data quality (Cohen et al., 
2009). Therefore, in a big data environment, data can be acquired from completely unstructured (for 
example, tweets, blogs, social media data, and video data) to fully structured sources (e.g., retail 
transactions, customer demographic data, and sensor data). In addition, data-oriented technology 
allows firms to acquire more granular data on their end customers. Internet of Things (IoT), in this 
case, is reasonably identified as more capable than other new-age technologies such as Artificial 
Intelligence (AI), Machine Learning (ML) and Blockchain (Akter et al., 2020). By its sensing and 
monitoring capacities, IoT makes it possible to capture large-volumes of diversified data from 
billions of devices and objects connected on a network (Coetzee & Eksteen, 2011). However, when 
fuelled by a massive amount of data, ML is to be considered as the second most important resource 
for data-driven innovation and growth (Hartmann & Henkel, 2018). Thus, firms aspiring to achieve 
both efficiency and effectiveness should select the sources of data acquisition and aggregation as 
well as relevant technologies in such a fashion that coincide with the organization’s business model 
and functionalities. In this regard, organizations should consider attending both within and outside of 
their system for the acquisition of such data (Dwoskin, 2015). Dynamically capable firms can develop 
the capacity to create, extend and customize their resource base that fit a particular business setting 
(Helfat et al., 2009). To respond to the data dynamism, companies must install such data processing 
pipelines that not only facilitates the acquisition of high-volume data but also ensures efficient data 
warehouse analysis tools for processing low-value data without losing any data throughout the process 
(Lyko et al., 2016). Thus, data acquisition should be adapted to the elaborative product architecture 
developed by the firm at the early stage of DDI process.

Proposition 2: Data acquisition is the second step of the DDI process.

5.3. Step 3: Refinement
To maximize the benefits of big data assets in deriving innovation, the implication of data refinement 
is crucial (Boiten, 2016). Composed of many distinctive sub-stages (Chen & Udding, 1989), data 
refinement converts an abstract data model or conceptual blueprint into implementable data structure 
(Wirth, 2001) through refining unstructured and uncategorized raw data sets with the aim of upsurging 
the understanding of data, eliminating data volatility and redundancy, and developing a unified data 
resource and operation. At this abstract data innovation model or conceptual schema development 
phase, classes and relationships of all abstract entities or items are conscientiously classified and 
constructed in such a way that resembles organizations’ real-life exercises and events. For instance, 
an Entity-Relationship Model (Bagui & Bouressa, 2014; Pandey & Pandey, 2019; Storey & Song, 
2017), a data modelling technique is used to delineate the variety of data to be stored and ensures 
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efficient data management without sacrificing the quality of data in a database. A logical schema 
composition also functions in the same way where logical object related classes are defined.

Nowadays, through re-engineered and improved application of real-time machine learning, deep 
learning, and algorithm processing, data elements can better classify, coordinate, and epitomize 
customer profiles as well as spawn tremendous value for customers (Kiron et al., 2014). For example, 
using analytics, Bridgestone Americas Inc.’s new business model with data-driven innovations 
(data sharing between Bridgestone and automakers and software providers) can combine driver data 
(from odometer readings and other telematics data) and its own data to encourage car owners to visit 
repair stores in advance for tires and other services even before any problem takes place in their cars 
(Ransbotham & Kiron, 2017). This, in turn, provides a new market opportunity to Bridgestone to create 
superior value for customers being learned about automobile performance and consumer behavior.

Proposition 3: Data refinement is the third step of the DDI process.

5.4. Step 4: Storage and Retrieval
In the emerging big data ecosystem, storage and retrieval offer the infrastructure for a data management 
platform (Koulouzis et al., 2019; O’Mara et al., 2016; Wang et al., 2018) that is designed to cope 
with and combine the variety, velocity, and volume of more unpolished and unpurified data and let 
all advanced storage analytics tools to run in the big data environment. Upon framing the system, 
understanding the business value of data innovation is crucial for defining the data storage strategy 
(Zillner et al., 2016) and planning regarding compliance need. Retrieval, in addition, ought to integrate 
leading-edge query and search processing competencies (Davenport & Kudyba, 2016) that fit an 
organization’s data-driven products and storage platform.

Being a powerful architecture, cloud integrates frameworks for parallel data processing to help 
users accessing cloud resources and deploying programs (Warneke & Kao, 2009). Combining the 
computing utility model with a rich set of computations, infrastructures and storage, cloud services 
offer a highly attractive innovation environment (Gunarathne et al., 2013). Map reduction, for example, 
is a preferred scientific computation model (Xiao & Xiao, 2014) that accelerates the processing of 
a large amount of data in the cloud environment and allows parallelization to a cluster of servers 
(O’Leary, 2013). With the advancements in analytics (for instance, HDFS-Hadoop Distributed File 
System), big data renditions a unified open-source environment (Tay, 2019) that simplifies the loading, 
extraction, transformation and processing of large and diverse sets of data.

Proposition 4: Data storage and retrieval platform is the fourth step of the DDI process.

5.5. Step 5: Distribution
Living in the age of ubiquitous data, the success of DDI largely depends on how a firm maintains 
its data structure and data product life-cycle (Kronsbein & Mueller, 2019). According to planned 
obsolescence, data are governed for DDI with a shorter lifespan and are purged from archive 
immediately after exhaustion of value of those data. Examining the benefits and challenges of global 
business expansion, many firms are rebuilding their data infrastructure consists of a geo-distributed 
data platforms (Jeon et al, 2019; Vulimiri et al., 2015; Zhao et al, 2016) where data can be shared 
and updated on a near-real-time basis with fine-tuned control over data accessibility and availability. 
Based on the timing and frequency in distribution, the entire distribution model should facilitate rapid 
learning and quick resolution of issues through joint-problem solving.

However, with the evolution of the app-economy, incremental accessibility of mobile apps 
via smartphones, tablets and other devices has compelled data product innovators to overhaul their 
content configuration and design (Davenport & Kudyba, 2016b). Simultaneously, the distribution 
of data products through clouds has let organizations garner the benefits of agility while reducing 
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complexity and accelerating time to value. For instance, through implementing a real-time system 
called Distributor Connect, P&G manages inventory in real-time and keeps connected to its retailers 
through a globally synchronized data warehouse (Saldanha, 2019) that allows the company to manage 
commercial transactions in a completely automated fashion.

Proposition 5: Data product distribution is the fifth step of the DDI process.

5.6. Step 6: Presentation
Despite the richness of storage and distribution, presentation of data is crucial when a data product 
comes to correspond to distinct markets. An organization must combine a unique business and 
operational model with a certain set of analytic capabilities that support presenting and monetizing 
data to its stakeholders under intensive collaboration situations (Wixom & Ross, 2017). The value 
of an information product is paid off from the context where it has been used (Meyer & Zack, 1996) 
and likewise for the data products. An example can be State Street, one of the largest administrators 
of private equity assets, which collects data from 3000 private equity clients regarding their financial 
capital noted on the public stock exchange to create an aggregated data index. As this index represents 
the financial performance of those equity firms and possesses great value to the firm’s targeted 
customers who need an exact representation of that index, State Street must incorporate analytics 
capabilities with a new division to present indexes in proper authenticity (Wixom & Ross, 2017). 
Alongside, a unified data platform with proper data sharing across silos is critical for the success of 
data product presentation. For example, in the context of Deloitte, the unified data platform aides 
three other critical activities: data enrichment (a common set of services utilized to move data between 
systems), data persistence (the storage structure to maintain data within the unified data platform), 
and data consumption (the various services and systems of unified data platform that allow the 
organization to use its data).

Although the increased acceptance of the knowledge-based view (Nickerson & Zenger, 2004) 
and exponential digitization is influencing the adoption level of analytics among adopters, the user-
interface still should be considered in the diffusion of product innovation. Thus, when simple data 
products are appropriate for mass targeting, data products wrapped in cutting-edged analytics (real-
time calculations generated through machine learning) will reward companies with creativity and 
differentiation (Davenport & Kudyba, 2016b).

Proposition 6: Data product presentation is the sixth step of the DDI process.

5.7. Step 7: Market Feedback
Whether to create a new data product or, to re-engineer an existing one, harnessing a well-catalogued 
customer feedback platform empowers an innovator in terms of gaining customer insights (Hasson et 
al., 2019; Soroka et al., 2017; Wei et al., 2020), knowing competitor trend in the data-driven industry, 
and thus attaining competitive advantage over data rivals. This step is compatible with analytics-based 
data-driven innovation in a “lean startup” context that focuses on periodic refinement over time for 
continual innovation through minimizing the total time throughout the closed-loop process cycle.

For garnering unequivocal feedback from customers, listening to social media has been very 
worthwhile for many firms. For example, along with other capabilities, technologies including 
social media ratings abilities have enabled Uber empowering its customers through creating greater 
control of passengers over their rides (Grewal et al., 2019). While both passengers and drivers have 
the opportunity to rate each other based on their ride experiences, Uber uses this data to generate 
more value and satisfaction for customers. In addition to direct comments on social networks as one 
of the most common method, polling tools built in particular web pages (e.g., in Facebook) help in 
measuring user satisfaction with that page. Pedigree, a specialized pet food firm in Belgium, used an 
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embedding survey in Facebook, allowing participants to finish the survey without opening another 
tab or leaving the page. Other enclosed on-site widgets like Beacon, can also be utilized to gather 
quick customer feedback. Apart from flash surveys, interactive blogs are being leveraged to appraise 
customer impressions regarding existing data products (Rajpathak & Narsingpurkar, 2013; Zeidler, 
2015). To gain unbiased feedback through simulating a real use of data product, bootstrapping usability 
test can be pursued. This test enables representative users to evaluate a product or service to provide 
their feedback regarding any usability problems.

Proposition 7: Market feedback is the final step of the DDI process.

6. DISCUSSION

6.1 Theoretical Contributions
Architecting and developing a data product based on analytical capabilities ensues in a circumstance 
which is incessantly disrupted by new technologies, change in market conditions and competition 
patterns. A data-driven firm’s growth in a competitive environment depends on its dynamism and 
creativity in terms of fulfilling customers’ varying needs (Im et al., 2013). Moreover, competition has 
further been intensified by the heavy investment in AI and advanced analytics by some companies. 
Considering this phenomenon, this study delivers three important theoretical contributions. First, 
it critically discourses how data products are completely different from those of mere information 
products through implicating the inevitable contribution of big data analytics in designing and 
developing data-driven innovations. Capabilities are firm-specific abilities that require considerable 
time and complex interactions among resources to be developed (Amit & Schoemaker, 1993). 
Considering the dynamism and volatility changing and shaping the digital market, this research, 
therefore, expands the theory of DC through theoretically presenting a set of specific vital innovation 
capabilities in the context of data-driven product development. Characterized as knowledge-based, 
innovation performs a critical role in firm performance and competitive advantage (Kopanakis et al., 
2016). Hence, this study extends MO theory by pertaining how digital firms can develop market-
oriented innovative data products based on market-sensing and customer-linking capabilities in order 
to deliver superior value to customers and so to gain competitive advantages over rivals. Therefore, 
through drawing upon market orientation and dynamic capabilities, this research theoretically 
represents a set of unique steps and knowledge that firms require for DDI as well as reveals the 
urgency of integrating market mechanisms in the design and implementation of DDI to gain a 
sustainable competitive advantage in the industry. Finally, this study based on the creativity theory 
offers depth knowledge regarding how firms can embed creative thinking into their culture as well 
as what are the tools they can develop for applying creativity into data-centric environment. As a 
prerequisite of innovation (Nakata et al., 2018), this study expands the importance of creativity in 
terms of influencing and supporting organizational change beyond the traditional processes that fit 
to the time-to-market model of market-driven innovation. Assimilating all the mentioned findings 
into existing literature of NPD, this study offers the groundwork for building and expanding theories 
and guidelines for future research.

6.2 Practical Contributions
The questions guided this study hit directly to the practicality of suggesting a standardized model of 
DDI for all firms regardless of their operational and strategic differences. The ultimate findings of 
this study answer the research question through disclosing various phases practised by data people 
and managers in several data-driven firms with regard to designing real-time data products. Thus, 
this revelation has validated the feasibility of pursuing a standardized framework for DDI in real life 
and subsequently established guidance for other digital firms having involvement or intension to 
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involve in DDI initiatives. Many data products have been developing in the last few years based on 
predictive modeling (see Aggarwal et al., 2018; Brynjolfsson & McElheran, 2019; Heo et al., 2019; 
Jagannathan & Udaykumar, 2020; Varghese, 2019; Wang et al., 2018 as examples), whether these 
are for weather forecasting or recommendation engines like Amazon’s. An example can be Cloud 
Dataprep by Trifacta which is a data service, efficient for intelligent data preparation, including faster 
capturing, cleaning, and profiling of data (Novet, 2017) that are placed for further analysis. Companies 
wanting to make this sort of data service in the cloud can adapt the data product development model 
conferred in this study for capturing and analyzing all varieties of data in order to make the product or 
service more market-based. Another practical contribution of this study is to deliver a comprehensive 
understanding of the value of analytics in modelling and building data products. For example, this 
understanding will enable any data-driven firms to extract the hidden value from data for improved 
decision making through embedding visual analytics with services like ‘Google Data Studio’. When 
these analytics are further coupled with business intelligence engines, the process of data investigation 
and visual interactivity grasp higher speed upon massive datasets. Taking these practical implications 
into consideration, this research will certainly aid managers and policymakers in terms of developing 
optimal strategies for data-driven innovation.

6.3 Limitations
The first limitation of this study originates from its qualitative nature. Ignoring any quantitative 
approach (i.e., survey) makes it challenging to provide empirical evidence throughout the research 
process. Furthermore, due to qualitative nature, this research maybe impacted by the researcher’s 
personal thoughts, expertise, and experiences (Anderson, 2010). Dealing with a huge amount of 
qualitative data makes the analysis, interpretation, and presentation of findings difficult. Secondly, 
this paper is limited to offering environmental factors that influence data product development. 
Since the development of data-driven innovation is subject to various market dynamics (Cuzzocrea 
& Tommasetti, 2017), depending on the category of industry an organization falls within, the type 
of data product a firm wants to develop as well as the cluster of customers the firm target to serve, 
this process may vary. Therefore, future studies can focus on incorporating various environmental 
factors for data-centric product development.

6.4 Conclusion
Establishing a comprehensive and robust data-driven innovation model would contribute to 
an emerging big data-driven environment. Through the accumulation of steps stretching from 
conceptualizing the product at the front loop and establishing market feedback instruments at the back 
loop, the study has uncovered the synchronization between customer feedback and its implications 
in product conceptualization in terms of developing distinct data product from distinct companies. 
Product-capability fit, based on these sort of findings, can be streamlined and re-engineered in 
accordance with the changes happening in consumer needs. Discoveries from this study will help 
organizations construct an effective decision-matrix in terms of choosing an appropriate approach 
o for rapid prototyping data products and innovations. Overall, this study contributes to enriching 
the theoretical and practical base for data-driven innovations. This study has also created a path for 
future researchers to test and update the implied model according to market dynamism and variations 
in data products within the same or diverse industries.
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