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ABSTRACT  
This paper introduces a complete framework for temporal video segmentation. First, a 
computationally efficient shot extraction method is introduced, which adopts the normalized 
graph partition approach, enriched with a non-linear, multiresolution filtering of the similarity 
vectors involved. The shot boundary detection technique proposed yields high precision (90%) 
and recall (95%) rates, for all types of transitions, both abrupt and gradual. Next, for each 
detected shot we construct a static storyboard, by introducing a leap keyframe extraction method. 
The video abstraction algorithm is 23% faster than existing, state of the art techniques, for 
similar performances. Finally, we propose a shot grouping strategy that iteratively clusters 
visually similar shots, under a set of temporal constraints. Two different types of visual features 
are here exploited: HSV color histograms and interest points. In both cases, the precision and 
recall rates present average performances of 86%.  
 
Keywords: temporal video segmentation, video indexing, shot boundary detection; key-frame 
extraction, video abstraction, temporal constraints; scene extraction. 
 
INTRODUCTION  
Recent advances in the field of image/video acquisition and storing devices have determined an 
spectacular increase of the amount of audio-visual content transmitted, exchanged and shared 
over the Internet. In the past years, the only method of searching information in multimedia 
databases was based on textual annotation, which consists of associating a set of keywords to 
each individual item. Such a procedure requires a huge amount of human interaction and is 
intractable in the case of large multimedia databases. Today, existing video repositories (e.g. 
Youtube, Google Videos, DailyMotion...) include millions of items. Thus, attempting to 
manually annotate such huge databases is a daunting job, not only in terms of money and time, 
but also with respect to the quality of annotation.  

When specifically considering the issue of video indexing and retrieval applications, because 
of the large amount of information typically included in a video document, a first phase that 
needs to be performed is to structure the video into its constitutive elements: chapters, scenes, 
shots and keyframes This paper specifically tackles the issue of video structuring and proposes a 
complete and automatic segmentation methodology.  

Fig. 1 presents the proposed analysis framework. The main contributions proposed in this 
paper concern: an enhanced shot boundary detection method, a fast static storyboard technique 
and a new scene/chapter detection approach.  



The rest of this paper is organized as follows. After a brief recall of some basic theoretical 
aspects regarding the graph partition model exploited, we introduce the proposed shot detection 
algorithm. Then, we describe the keyframe selection procedure. The following section introduces 
a novel scene/chapter extraction algorithm based on temporal distances and merging strategies. 
The experimental results obtained are then presented and discussed in details. Finally, we 
conclude the paper and open some perspectives of future work. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1. [The proposed framework for high level video segmentation]. 
 
SHOT BOUNDARY DETECTION  

Related Work 
The first methods introduced in the literature were based on pixels color variation between 
successive frames (Zhang et al., 1993), (Lienhart et al., 1997). Such algorithms offer the 
advantage of simplicity but present serious limitations. Thus, in the presence of large moving 
objects or in the case of camera motion, a significant number of pixels change their intensity 
values, leading to false alarms. In addition, such methods are highly sensitive to noise that may 
be introduced during the acquisition process. 

Among the simplest, most effective and common used methods, the color histogram 
comparison and its numerous variations assume that frames from the same shot have similar 
histograms (Yuan et al., 2007), (Gargi et al., 2000). Histogram-based methods are more robust to 
noise and motion than pixel-based approaches due to the spatial invariance properties. However, 
they also present some strong limitations. First of all, let us mention the sensitivity to abrupt 
changes in light intensity: two images taken in the same place but with different lightening 
conditions will be described by distinct histograms. Furthermore, a color histogram does not take 
into account the spatial information of an image, so two identical histograms could actually 
correspond to two visual completely different images, but with similar colors and appearance 
probability (Matsumoto et al., 2006). 

Let us also cite the methods based on edges/contours (Zabih et al., 1995). Such methods are 
useful in removing false alarms caused by abrupt illumination change, since they are less 



sensitive to light intensity variation then color histogram (Yuan et al., 2007). However, their 
related detection performances are inferior to the histogram-based approaches.  

Algorithms using motion features (Porter et al., 2000) or developed in the compressed domain 
(Fernando et al., 2001) propose an interesting alternative solution to pixel and histogram-based 
methods. Notably, such approaches are fairly robust with respect to camera and object motion. In 
addition, in this case, the detection is performed only on a partial decoded video stream therefore 
the computation time is reduced. However, such methods lead to inferior precision rates when 
compared to other methods because of incoherencies in the motion vector field. The compromise 
solution consists in decompressing the data up to a certain level of detail (Truong et al., 2007). 

In the following section, we propose an improved shot boundary detection algorithm, based 
on the graph partition (GP) model firstly introduced in (Yuan et al., 2007) and considered as 
state of the art technique for both types of transitions: abrupt (cuts) and gradual (e.g. fades and  
wipes). 
 
Graph Partition Model   
The graph partition model was firstly introduced in (Hendrickson et al., 2000). The technique 
can be applied for video temporal segmentation by considering the input image sequence as an 
undirected weighted graph. In this context, we denote with G a set (V, E) where V represents the 
set of vertices, V = {v1,v2,…,vn}, and E V × V denote a set of pair-wise relationships, called 
edges. An edge ei,j = {vi, vj}is established between two adjacent nodes.    

A shot boundary detection process relaying on a graph partition system represents each video 
frame as a node in the hierarchical structure, connected with the other vertexes by edges (eij). 
The weight (wij) of an edge (eij), expresses the similarity between the corresponding nodes (vi 
and vj.). In our work, we have adopted, as visual similarity measure the chi-square distance 
between color histograms in the HSV color space (equation 1):   
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where H i denotes the HSV color histogram associate to frame i. The exponential term in 
equation (1) takes into account the temporal distance between frames: if two frames are located 
at an important temporal distance it is highly improbable to belong to the same shot. 

The video is segmented using a sliding window that selects a constant number of N frames, 
centered on the current frame n. The window size should be large enough to capture usual 
transitions. In practice, such transitions are most often greater than 10–15 frames. Thus in our 
work, we have considered a value of N = 25 frames. 

For each position of the sliding window, the system computes a sub-graph Gn, and its 
associated similarity matrix that stores all the chi-square distances between the frames 
considered for analysis at the current moment. Let Vn = {vn

1, vn
2,..., vn

N} denote the vertices of 
graph Gn at frame n. For each integer k € {1,...,N-1}, a partition of the graph Gn into two sets 
(𝐴𝐴𝑛𝑛𝑘𝑘 = 𝑣𝑣𝑛𝑛1, … , 𝑣𝑣𝑛𝑛𝑘𝑘), (𝐵𝐵𝑛𝑛𝑘𝑘 = 𝑣𝑣𝑛𝑛𝑘𝑘+1, … , 𝑣𝑣𝑛𝑛𝑁𝑁) is defined.  

To each partition, the following objective function is associated with: 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝐴𝐴𝑛𝑛𝑘𝑘 ,𝐵𝐵𝑛𝑛𝑘𝑘) =
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where cut and assoc respectively denote the measures of cut (i.e. dissimilarity between the two 
elements of the partition) and association (i.e. homogeneity of each element of the partition) and 
are defined as described in (3) and (4): 

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝐴𝐴𝑛𝑛𝑘𝑘 ) = � 𝑤𝑤𝑖𝑖 ,𝑗𝑗
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The objective is to determine an optimal value for the k parameter that maximizes the 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝐴𝐴𝑛𝑛𝑘𝑘 ,𝐵𝐵𝑛𝑛𝑘𝑘) function defined in equation (2). This optimization requires to maximize the cut 
function, while simultaneously minimizing both association values involved in equation 2. The 
optimal value, determined for each image n of the video flow, is stored in a dissimilarity vector 
v = (v(n)) constructed as follows: 

𝑣𝑣(𝑛𝑛) = max
𝑘𝑘∈{1,…,𝑁𝑁−1}

{𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝐴𝐴𝑛𝑛𝑘𝑘 ,𝐵𝐵𝑛𝑛𝑘𝑘)} ,                                                                                                        (5) 

 
Fig.2 illustrates the dissimilarity vector obtained for different values N of the temporal 

analysis window.  
 

 
Figure 2. [Local minimum vector variation with different window sizes (a. 10 frames, b. 15 
frame, c. 25 frames and d. 35 frames) ]. 

 
A straightforward manner to identify a shot boundary is determine the peaks of the 

dissimilarity vector v that are higher than a considered threshold Tshot       



However, in practice the selection of the threshold parameter Tshot is highly difficult due 
mostly to various visual content variation caused by camera and large object movement, or by 
changes in the lightening conditions. An inadequate threshold may thus lead to both false alarms 
and missed detections. For these reasons, in contrast with (Yuan et al., 2007) and (Hendrickson 
et al., 2000), we propose to perform the analysis within the scale space of the derivatives of the 
local minimum vector v, as described in the next section. 

 
Scale Space Filtering 
The discrete derivative v’(n) of the dissimilarity vector v(n), can be defined in the discrete space 
based on the first order finite difference as:  

v’(n) = v(n) – v(n–1),                                                                                                          (6) 

Based on this simple relation we can construct a set of cumulative sums {𝑣𝑣𝑘𝑘′ (𝑛𝑛)}𝑘𝑘=1
𝑁𝑁 on the 

derivative signal up the sliding window size (N) based on the following equation: 

𝑣𝑣𝑘𝑘′ (𝑛𝑛) = ∑ 𝑣𝑣′(𝑛𝑛 − 𝑝𝑝)𝑘𝑘
𝑝𝑝=0 ,                                                                                                                           (7)  

The resulted signals v’k(n) represent low-pass filtered versions of the derivative signal v’(n), 
with increasingly larger kernels, and constitute our scale space analysis. After summing all the 
above equations, within a window of analysis, v’k(n) can be simply expressed as: 

𝑣𝑣𝑘𝑘′ (𝑛𝑛) = 𝑣𝑣(𝑛𝑛) − 𝑣𝑣(𝑛𝑛 − 𝑘𝑘);                                                                                                                  (8)  

Fig.3 presents the dissimilarity signal obtained at different scales. As it can be observed, 
smoother and smoother versions of the original signal are produced, which can be useful to 
remove undesired variations caused by camera/large object motions. 

 
 

 
 
 
 
 
 
 
 
 
 

Figure 3. [The set of scale space derivatives obtained]. 
 
The peaks which are persistent at multiple resolutions correspond to large variations in the 

feature vector and are used to detect the shot transitions.  
The selection of the identified peaks is performed based on a different non-linear filtering 

operation that is applied at each scale of analysis, defined as described by the following equation. 

𝑑𝑑(𝑛𝑛) = max
𝑘𝑘

{|𝑣𝑣𝑘𝑘′ (𝑛𝑛)| ∙ ℎ(𝑘𝑘)} = max
𝑘𝑘

{|𝑣𝑣(𝑛𝑛) − 𝑣𝑣(𝑛𝑛 − 𝑘𝑘)| ∙ ℎ(𝑘𝑘)},                                            (9) 

where the weights h(k) are defined as: 
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The shot boundaries detection process is applied directly on the d(n) signal. The weighting 

mechanism adopted, given by the h(n) function, privileges derivative signals located at the 
extremities of the scale space analysis (Fig. 4). In this way, solely peaks that are persistent 
through all scales are retained and considered as transitions.  

 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 4. [False alarms due to flash lights, large object/camera motion are avoided when using 
the scale-space filtering approach]. 
 

The second step of the proposed shot boundary detection system is focused on reducing the 
computational complexity of the proposed shot detector. In this context, a two pass analysis 
technique is introduced.  

 
Two Pass Analysis Approach 
The principle consists of successively applying two different analysis stages.  

In a first stage, the objective is to determine video segments that can be reliable classified as 
belonging to the same shot. In order to identify such segments, a simple and fast chi-square 
comparison on HSV color histogram between each two successive frames is performed. In this 
step we can identify also abrupt transition that characterized by large discontinuity values 
(Fig.5).   

 
 
 
 
 
 

 
Figure 5. [Classification of video in certain/uncertain segments]. 

 

Video stream 

Certain Interval Uncertain Interval 



Concerning the detection process we have considered two thresholds. The first one, denoted 
by Tg1 has to be selected high enough to avoid the false positives. The second threshold Tg2 is 
used in order to determine uncertain time intervals. If the dissimilarity values are above the 
second threshold (D(It, It–1)>Tg2), and also inferior to Tg1 a more detailed analysis is required and 
the method passes to the second step. All frames presenting lower similarity values, (i.e. smaller 
than Tg2) are classified as belonging to the same shot. 

In a second stage, for the remaining uncertain intervals (for which a reliable classification 
could not be made only by performing a simple chi-square distance analysis), we apply the graph 
partition method with scale space filtering previously described.  

In this manner, the total number of images that require a detailed analysis is considerably 
reduced. The second phase helps us differentiate between actual gradual transition and local 
variations in the feature vector caused by object or camera motion.   

For each detected shot, we aim at determining a set of keyframes that can represent in a 
significant manner the associated content. 
 
KEYFRAME EXTRACTION 

Related Work 
One of the first attempts to automate the keyframe extraction process was to consisted in 
selecting as a keyframe the first, the middle or the last frame (or even a random one) of each 
detected shot (Hanjalic et al., 1999). However, while being sufficient for stationary shots, a 
single frame does not provide an acceptable representation of the visual content in the case of 
dynamic sequences that exhibit large camera/object motion. Therefore, it is necessary to consider 
more sophisticated approaches (Fu et al., 2009).  

The challenge in automatic keyframe extraction is given by the necessity of adapting the 
selected keyframes to the underlying content, while maintaining, as much as possible, the 
original message and removing all the redundant information. In (Zhang et al., 1999), the first 
keyframe is set as the first frame in a shot appearing after a shot boundary. A set of additional 
keyframes is determined based on the variation in color/motion appearance with respect to this 
first frame. However, the approach does not take into account of the case of gradual transitions, 
where the first keyframe is not an optimal choice and might negatively influence the whole 
keyframe selection process.  

A clustering algorithm (Girgensohn et al., 1999) is the natural solution to solve the problems 
described above. The limitations here are related to the threshold parameters that need to be 
specified and which have a strong impact on both the cluster density and on the related 
computational cost.  

A mosaic-based approach can generate, in an intuitive manner, a panoramic image of all 
informational content existed in a video stream. The summarization procedure in this case is 
based on the assumption that there is only one dominant motion among all the others various 
object motions found in the sequence (Aner et al., 2002). Mosaic-based representations of shot / 
scene include more information and are visually richer than regular keyframe approaches. 
However, creating mosaics is possible solely for videos with specific camera motion, such as 
pan, zoom or tilling.  

In the case of movies with complex camera effects such as a succession of 
background/foreground changes, mosaic-based representations return less satisfactory results due 



to physical location inconsistency. Furthermore, mosaics can blur certain foreground objects and 
thus present a degraded image quality.  

In our case, we have developed a keyframe representation system that extracts a variable 
number of images from each detected shot, adaptively with the visual content variation. 
 
Leap-Extraction Method 

For each detected shot, a first keyframe is defined as the frame located N frames away after 
the detected transition (i.e., the beginning of the shot). Let us recall that N denotes the window 
size used for the shot boundary detection method. In this way, we make sure that the first 
selected keyframe does not belong to a gradual effect.  

In the second phase, we developed a leap-extraction method that analyzes only the frames 
spaced by multiple integers of window size N and not the entire set of frames as in the case of the 
reference techniques introduced in (Zhang et al., 1999), (Rasheed et al., 2005). Then, in order to 
select a new keyframe the current image is compared (i.e. chi-square distance of HSV color 
histograms) with all the keyframes already extracted. If the visual dissimilarity is above a pre-
established threshold the new image is marked as representative and is added to the set of 
keyframes (Fig. 6).      

 
 
 
 
 
 
 
 
 
 
 
 

 
 
Figure 6. [Keyframe selection based on leap-extraction technique]. 
 

The leap keyframe extraction method takes advantage of the shot boundary detection system 
that computes the graph partition within a sliding window of analysis. In this way, the proposed 
method ensures that all the relevant information will be taken into account. As it can be 
observed, the number of keyframes necessary to describe the informational content of a shot is 
not a priori fixed, but automatically adapted to the dynamics of the content. 
 An additional post-processing step is introduced. The goal is to eliminate, from the selected 
set of keyframes, all the blank images that might appear (Chasanis et al., 2008). Such images can 
appear due to gradual transitions developed over a large number of frames or to false alarms. 
They are often encountered in real life videos and it is necerssaryto remove them in order to 
ensure the quality of the detected summary (Li et al., 2010). . The adopted technique exploits a 
contour-based approach. Here, the total number of edges detected in a keyframe is analyzed in 
order to determine such blank images.  



A final contribution concerns the shot clustering within scenes. 
 
SCENE SEGMENTATION 

A scene is defined in the Webster’s dictionary as follows: “a subdivision of an act or a play in 
which the setting is fixed, the time is continuous and the action is developed in one place”.  
Such a definition involves some purely semantic elements, related to the unity of time, place and 
action that are difficult to determine automatically when performing solely vision-based analysis. 
This makes the scene detection process a highly difficult issue.  
 In addition, in some circumstances and from a purely visual point of view, such constraints 
may not hold, as in the case of scenes with large camera/object motion. 

For all these reasons, elaborating methods for pertinent and automatic scene identification is 
still an open issue of research. Let us first analyze how these aspects are treated in the rich 
literature dedicated to this subject.  

 
Related Work 
In (Rasheed et al., 2005), authors transform the detection problem into a graph partition task. 
Each shot is represented as a node being connected with the others through edges based on the 
visual similarity and the temporal proximity between the shots. A new measure, so-called shot 
goodness (SG), is here introduced. The SG measure quantifies the degree of representativeness 
of each shot, based on its temporal length, visual activity and action content. 

In (Hanjalic et al., 1999), the detection process relays on the concept of logical story units 
(LSU) and inter-shot dissimilarity measure. The LSU definition is based on the temporal 
consistency of the visual content assuming that similar elements (e.g. people, faces, locations …) 
appear and some of them even repeat. So, a LSU gathers a set of successive shots, connected by 
overlapping links. The shots regrouped in a same LSU present similarity values superior to an 
adaptive threshold set by the user. 

Different approaches (Ariki et al., 2003) propose to use both audio features and low level 
visual descriptors in order to detect scenes separately based on both characteristics. In this case, 
two types of boundaries are detected and used to make a final decision. A scene is defined based 
on audio sequences as a succession of shots in which a similar audio pattern occurs (e.g. dialog 
between two characters, cheering crowd …) (Truong et al., 2007). The audio segments are 
divided in: background and foreground. Only the foreground segments are analyzed in order to 
make a decision because the background soundtrack is assumed not to carry any information that 
may be relevant to the film story. 

In (Ngo et al., 2002), color and motion information are integrated in order to take a decision. 
The motion analysis is based on the tensor determination in order to establish the slices (set of 
2D images in a x, y t space) with horizontal and vertical positions. 

A mosaic-based approach is introduced in (Aner et al., 2002). The value of each pixel in the 
mosaic is defined as the median value of pixels corresponding to all the frames mapped in the 
mosaic image. The scene boundaries are determined after segmenting the mosaic in small 
regions and analyzing the similarities between such adjacent regions.  

More recent techniques (Chasanis et al., 2009), (Zhu et al., 2009) introduce in the analysis 
process useful concepts such as temporal constraints and visual similarity. 

However, the existing approaches show strong limitations and present limited precision and 
recall rates (77% to 82%).  



In order to deal with the complexity of the scene detection task this paper proposes a novel 
approach, based on a hierarchical clustering algorithm with and temporal constraints. 
 
Scene Detection Method  
The algorithm takes as input the set of keyframes detected for the whole set of video shots as 
described in the previously. A clustering process is then applied. The principle consists of 
iteratively grouping shots encountered in a temporal sliding analysis window that satisfy 
simultaneously a set of similarity constraints.   

The size of the sliding window (denoted by dist) is adaptively determined, based on the input 
video stream dynamics and is proportional to the average number of frames per shot. The 
parameter dist can be computed as: 

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 𝛼𝛼 ∙
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜 𝑠𝑠ℎ𝑜𝑜𝑜𝑜𝑜𝑜

       ,                                                                                       (11) 

where α denotes a user-defined parameter. We consider further that a scene is completely 
described by its constituent shots: 

𝑆𝑆𝑙𝑙 : 𝑠𝑠(𝑆𝑆𝑙𝑙) = �𝑠𝑠𝑙𝑙 ,𝑝𝑝�𝑝𝑝=1
𝑁𝑁𝑙𝑙 → ��𝑓𝑓𝑙𝑙 ,𝑝𝑝 ,𝑖𝑖�𝑖𝑖=1

𝑛𝑛𝑙𝑙 ,𝑝𝑝 �
𝑝𝑝=1

𝑁𝑁𝑙𝑙
       ,                                                                                    (12) 

where Sl denotes the lth video scene, Nl the number of shots included in scene Sl, sl,p the pth shot 
in scene Sl, and fl,p,i the ith keyframe of shot sl,p. containing nl,p keyframes. 

 
The proposed scene change detection algorithm based on shot clustering consists of the 

following steps: 
Step 1: Initialization – The technique starts by assigning the first shot of the input video 

stream to the first scene S1. Scene counter l is set to 1.  
Step 2: Shot to scene comparison – The next shot being analyzed (i.e. a shot that is not 

assigned to any already created scene) is considered as the current shot and denoted by scrt. the 
technique determines The subset Ω of all anterior scenes located at a temporal distance inferior 
to the parameter dist with respect to the current shot scrt is then determined. The visual similarity 
between each scene Sk in Ω and the shot scrt is computed as described by the following relation:    

∀𝑆𝑆𝑘𝑘 ∈ Ω, 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜(𝑠𝑠𝑐𝑐𝑐𝑐𝑐𝑐 , 𝑆𝑆𝑘𝑘) =
𝑛𝑛𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 ℎ𝑒𝑒𝑒𝑒

𝑛𝑛𝑘𝑘 ,𝑝𝑝 ∙ 𝑁𝑁𝑘𝑘 ∙ 𝑛𝑛𝑐𝑐𝑐𝑐𝑐𝑐
          ,                                                         (13) 

 
where ncrt is the number of keyframes of the considered shot and nmatched represents the number 
of matched keyframes of the scene Sk. A keyframe from scene Sk is considered to be matched 
with a keyframe from shot scrt if a given visual similarity measure between the two keyframes is 
superior to a threshold Tgroup. Let us note that a keyframe from the scene Sk can be matched with 
multiple frames from the current shot.  

Two different types of visual similarity measures have been considered:  
(1) the total number of common interest points established based on a SIFT descriptor (Lowe, 
2004) and matched with the help of a KD-tree technique (Vedaldi et al., 2010), and (2) the chi-
square distance between HSV color histograms.   



The current shot scrt is identified to be similar to a scene Sk if the following condition is 
satisfied:   
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜(𝑆𝑆𝑘𝑘 , 𝑠𝑠𝑐𝑐𝑐𝑐𝑐𝑐 ) ≥ 0.5,                                                                                                         (14) 
 
The relation 13 expresses that at least half of the keyframes belonging to the current shot scrt 

need to be similar with the scene’s Sk keyframes.   
In this case, the current shot scrt is clustered in the scene Sk. In the same time, all the shots 

between the current shot and the scene Sk will also be attached to scene Sk and marked as 
neutralized. Then all scenes containing neutralized shots are automatically removed, in the sense 
that they are attached to the scene Sk. The list of detected scenes is consequently updated. 

The neutralization process allows us to identify the most representative shots for a current 
scene (Fig. 7), which are the remaining non-neutralized shots. In this way, the influence of 
outlier shots which might correspond to some punctual digressions from the main action in the 
considered scene is minimized. 

 

Figure 7. [Neutralizing shots (marked with red) based on visual similarity]. 
 

If the condition described in equation (13) is not satisfied, go to step 3.  
 
Step 3: Shot by shot comparison – Here, we determine the set of highly similar shots (i.e., 

with a similarity value at least two times bigger than the grouping threshold Tgroup ). Here, for the 
current shot (scrt) we compute its visual similarity with respect to all shots of all scenes included 
in the sub-set Ω determined at step 2. If the shot scrt is found as being highly similar with a scene 
in Ω,  then it is merged with the corresponding scene, together with all the intermediate shots. If 
scrt is found highly similar to multiple scenes, than the scene which is the most far away from the 
considered shot is retained. 

Both the current shot and all its highly similar matches are unmarked and for the following 
clustering process will contribute as normal, non-neutralized shots (Fig. 8).  

This step ensures that shots that are highly similar with other shots in a previous scene are be 
grouped into this scene. In this way, the number of false alarms (i.e., false scene transitions) is 
considerably reduced. 

Step 4: Creation of a new scene – If none of the conditions introduced in steps 2 and 3 are 
satisfied, then a new scene, containing the current shot (scrt), is created.  

Step 5: Refinement –The scenes containing only one shot are automatically deleted and their 
shot is attached to the adjacent scenes based on the highest similarity value. In the case of the 
first scene, the corresponding shot will be grouped to the following one by default. 

 
 
 



 

Figure 8. [Unmarking shots based on high similarity values (red – neutralized shots; green – 
non-neutralized shots)]. 

    
The grouping threshold Tgroup is established adaptively with respect to the input video stream 

visual content variation, for each visual similarity measure considered (i.e. HSV color histogram 
or interest points). Thus, Tgroup is defined as as the average chi-square distance / number of 
interest points between the current keyframe and all anterior keyframes located at a temporal 
distance smaller then dist. 
 
EXPERIMENTAL RESULTS 

Shot Boundary Detection 
In order to evaluate our shot boundary detection algorithm, we have considered a sub-set of 
videos from the “TRECVID 2001 and 2002 campaigns”, which are available on Internet 
(www.archive.org and www.open-video.org). The videos are mostly documentaries that vary in 
style and date of production, while including multiple types of both camera/object motion 
(Table 1). 
 
Table 1. Movie database features. 

Video 
title 

Number 
of frames 

Number of 
transition 

Abrupt 
transition 

Gradual transition 
File name Fade in / 

out Dissolve Other 
type 

NAD  55 26104 185 107 21 57 - NASA Anniversary 
NAD 57 10006 73 45 6 22 - NASA Anniversary 
NAD 58 13678 85 40 7 38 - NASA Anniversary 

UGS09 23918 213 44 25 144 - Wrestling with 
Uncertainty 

UGS01 32072 180 86 6 88 - Exotic Terrane 
23585a 14797 153 80 2 71 - Adelante Cubanos 
10558a 19981 141 79 20 42  1 Desert Venture 
06011 23918 153 81 26 46 - The Egg and US 

TOTAL 164474 1183 562 113 508  1  
 

As evaluation metrics, we have considered the traditional Recall (R) and Precision (P) 
measures, defined as follows:  

𝑅𝑅 =
𝐷𝐷

𝐷𝐷 + 𝑀𝑀𝑀𝑀
;𝑃𝑃 =

𝐷𝐷
𝐷𝐷 + 𝐹𝐹𝐹𝐹

;𝐹𝐹1 =
2 ∙ 𝑃𝑃 ∙ 𝑅𝑅
𝑅𝑅 + 𝑃𝑃

   .                                                                           (15)    

 



Here, D is the number of the detected shot boundaries, MD is the number of missed detections, 
and FA the number of false alarms. Ideally, both recall and precision should be equal to 100%, 
which correspond to the case where all existing shot boundaries are correctly detected, without 
any false alarm. 

Table 2 presents the precision, recall and F1 rates obtained for the reference graph partition 
shot boundary detection method proposed by Yuan et al. (Yuan et al., 2007), while Table 3 
summarizes the detection performances of our proposed scale-space filtering approach.  
 
Table 2. Precision, recall and F1 rates obtained for the Yuan et al. algorithms  

Video 
title 

Abrupt transitions Gradual Transitions All transitions 
R P F1 R P F1 R P F1 

NAD 55 0.9626 0.824 0.8879 0.8717 0.7391 0.7999 0.9243 0.788 0.8507 
NAD 57 0.8666 0.8666 0.8666 0.7857 0.8148 0.7999 0.8472 0.8472 0.8472 
NAD 58 0.95 0.8444 0.8940 0.7777 0.6603 0.7142 0.8588 0.7448 0.7977 
UGS09 0.9727 0.8431 0.9032 0.8106 0.7740 0.7918 0.8866 0.7894 0.8351 
UGS01 0.9069 0.8472 0.8760 0.8404 0.7523 0.7939 0.8722 0.8579 0.8649 
23585a 0.75 0.923 0.8275 0.7945 0.9666 0.8721 0.7712 0.944 0.8488 
10558a 0.8607 0.8717 0.8661 0.7741 0.923 0.8420 0.8226 0.8923 0.8560 
06011 0.9135 0.9024 0.9079 0.8333 0.7228 0.7741 0.8756 0.8121 0.8426 

TOTAL 0.8950 0.8627 0.8785 0.8164 0.7812 0.7984 0.8610 0.8198 0.8398 
P – Precision ; R – Recall ; F1 – F1 norm 

 
Table 3. Precision, recall and F1 rates obtained for the scale-space filtering algorithm  

Video 
title 

Abrupt transitions Gradual Transitions All transitions 
R P F1 R P F1 R P F1 

NAD 55 1 0.922 0.9594 0.935 0.802 0.8634 0.972 0.869 0.9176 
NAD 57 0.955 0.955 0.955 0.857 0.888 0.8722 0.917 0.931 0.9239 
NAD 58 0.95 0.904 0.9264 0.955 0.811 0.8771 0.952 0.852 0.8992 
UGS09 1 0.916 0.9561 0.941 0.919 0.9298 0.953 0.918 0.9351 
UGS01 0.976 0.884 0.9277 0.989 0.861 0.9205 0.983 0.871 0.9236 
23585a 0.937 0.949 0.9429 0.917 0.985 0.9497 0.928 0.965 0.9461 
10558a 0.962 0.894 0.9267 0.967 0.857 0.9086 0.964 0.877 0.9184 
06011 0.938 0.926 0.9319 0.944 0.871 0.9060 0.941 0.904 0.9221 

TOTAL 0.9661 0.917 0.9409 0.945 0.877 0.9097 0.955 0.896 0.9245 
P – Precision ; R – Recall ; F1 – F1 norm 

 
The results presented clearly demonstrate the superiority of our approach, for both types of 

abrupt (Fig. 9) and gradual transitions (Fig. 10). The global gains in recall and precision rates are 
of 9.8% and 7.4%, respectively (Fig. 11).  

Moreover, when considering the case of gradual transitions, the improvements are even more 
significant. In this case, the recall and precision rates are respectively of 94,1% and 88,3% (with 
respect to R = 81.5% and P = 79% for the reference method (Yuan et al., 2007)). This shows that 



the scale space filtering approach makes it possible to eliminate the errors caused by 
camera/object motion. 

Concerning the computational aspects, Table 4 synthesizes the results obtained, in 
computational time, with the two-pass approach (cf. Section II) compared to the initial scale-
space filtering method. 

Here, for the chi-square, frame-to-frame HSV color histogram comparison we considered for 
the first threshold (Tg1) a value of 0.9 to detect abrupt transition, while the seconf (Tg2) has been 
set to 0.35.  
 Such values ensure the same overall performance of the shot boundary detection as the multi-
resolution graph partition method applied on the entire video stream. A smaller value for the Tg1 
will determine an increase in the number of false alarms while a higher values for Tg2  will 
increase the number of missed detected transitions. 

 
Table 4. Computation time for GP and two-pass approach 

Video 
title 

Video duration 
Time (s) 

Two-pass approach 
Time (s) 

Graph partition 
method 
Time (s) 

Gain (%) 

NAD55 871 153 221 30.7 
NAD57 417 72 107 32.7 
NAD58 455 102 141 27.5 
UGS09 1768 355 457 22.3 
UGS01 1337 292 399 26.8 
23585a 615 125 155 19.3 
10558a 833 169 225 25.3 
06011 997 168 215 21.8 

TOTAL 7293 1436 1920 25.2 
 

 
 
 
 
 
 
 
 

 
 
 
Figure 9. [Recall (a.), Precision (b.) and F1 norm (c.) rates when detecting abrupt transitions 
for: a. Yuan et al. algorithm (blue), b. The novel scale space derivative technique (red)]. 
 

a. b. c. 



 

 
Figure 10. [Recall (a.), Precision (b.) and F1 norm (c.) rates when detecting gradual transitions 
for: a. Yuan et al. algorithm (blue), b. The novel scale space derivative technique (red)]. 
 

 

 
Figure 11. [Recall (a.), Precision (b.) and F1 norm (c.) rates when detecting all types of 
transitions for: a. Yuan et al. algorithm (blue), b. The proposed technique (red)]. 
 
Table 5 presents the computational times for different values for the threshold parameter. The 
experimental results were obtained for Tg1 constant and Tg2 variable and vice-versa.  
 
Table 5. Computation time for different values of the threshold parameters  
Threshold Value NAD55 

Time (s) 
NAD57 
Time (s) 

NAD58 
Time (s) 

UGS09 
Time (s) 

UGS01 
Time (s) 

23585a 
Time (s) 

10558a 
Time (s) 

06011 
Time (s) 

Tg1 

0.05 214 101 135 450 391 151 223 208 
0.1 207 93 131 439 376 148 215 203 

0.15 197 89 127 426 361 144 201 193 
0.2 188 85 119 411 342 138 188 185 

0.25 173 81 111 399 319 134 175 178 
0.3 161 75 105 373 305 129 172 171 

0.35 153 72 102 355 292 125 169 168 

Tg2 

0.9 153 72 102 355 292 125 169 168 
0.95 162 79 107 367 306 128 177 172 

1 166 83 114 378 315 133 184 182 
1.05 174 88 118 389 332 137 193 189 
1.1 183 95 123 404 345 141 202 194 

1.15 192 101 132 421 368 146 211 199 
1.2 218 103 138 448 389 149 221 211 

a. b. c. 

a. b. c. 



 
Results presented in Table 5 lead to the following conclusion. With the increase of the threshold 
Tg1 and respectively with the reduction of the Tg2 the computational time is decreasing. Let us 
also mention that the values parameter Tg1 should be inferior to 0,35 and  the value of Tg2 greater 
than 0.9 in order to maintain the same performances in terms of detection efficiency.      
 
Leap Keyframe Extraction 
 
For each detected shot we applied the leap extraction method described. Fig. 12 presents a set of 
keyframes detected from of a complex shot which exhibits important visual content variation 
(because of very large camera motion). In this case, the proposed algorithm automatically 
determines a set of 6 keyframes. 
 

 

 
Figure 12. [Shot boundary detection and keyframe extraction]. 

 
Table 6 presents the computational time1

Video title 

 necessary to extract keyframes for two methods: (1) 
the proposed leap-extraction strategy, and (2) the state-of-the-art method (Zhang et al., 
1999), (Rasheed et al., 2005) based on direct comparison of all adjacent frames inside a shot. Let 
us note that the obtained key-frames are quite equivalent in both cases.  
 

Table 6. Computation time for LEM and CE approach 
Video duration 

Time (s) 
LEM 

Time (s) 
CE  

Time (s) 
Gain (%) 

Seinfeld 1313 297 434 31.56 
Two and a half men 1200 384 509 24.55 

Prison Break 2512 990 1260 21.42 
Ally McBeal 2607 1269 1642 22.71 

Sex and the city 1801 854 1067 19.96 
Friends 1506 309 371 16.71 

TOTAL 10936 4103 5283 22.33 
LEM- Leap Extraction Method, CE – Classical Extraction 
The results presented in Table 6 demonstrate that the proposed approach makes it possible to 

significantly reduce the computational complexity for the keyframe detection algorithms, for 

                                                           
1 The algorithms have been tested on a Pentium IV machine with 3.4 GHz and 2 Go RAM, under a Windows XP SP3 platform. 



equivalent performances. Thus, the leap keyframe extraction method leads to a gain of 22% in 
computational time when compared to the state of the art method. 
 
Scene/DVD Chapter Extraction 
The validation of our scene extraction method has been performed on a corpus of 6 sitcoms and 
6 Hollywood movies (Tables 6 and 7) also used for evaluation purposes in the state of the art 
algorithms presented in (Rasheed et al., 2005), (Chasanis et al., 2009), (Zhu et al., 2009).  

Fig. 13 illustrates some examples of scene boundary detection, obtained with the HSV-based 
approach. 

 

 

 
Figure 13. [Detected scenes].  

 
We can observe that in this case the two scenes of the movie have been correctly identified.  
In order to establish an objective evaluation, for the considered database, a ground truth has 

been established by human observers. Table7 summarizes the scene detection results obtained 
with both visual similarity measures adopted (i.e. SIFT descriptors and HSV color histograms).  

 
Table 7. Evaluation of the scene extraction: precision, recall and F1 rates  

Video name 
Ground 

truth 
scenes 

SIFT descriptor HSV color histogram 

D FA MD R 
(%) 

P 
(%) 

F1 
(%) D FA MD R 

(%) 
P 

(%) 
F1 

(%) 
Sienfeld 24 19 1 5 95.00 79.16 86.36 20 0 4 100 83.33 90.88 

Two and a half men 21 18 0 3 100 81.81 90.00 17 2 4 89.47 80.95 85.01 
Prison Break 39 31 3 8 91.17 79.48 84.93 33 0 6 100 84.61 91.66 
Ally McBeal 32 28 11 4 71.79 87.50 78.87 24 4 8 84.00 75.00 79.24 

Sex and the city 20 17 0 3 100 85.00 91.89 15 1 5 93.75 75.00 83.33 
Friends 17 17 7 0 70.83 100 82.92 17 7 0 70.83 100 82.92 

5th Element 63 55 24 8 69.62 87.30 77.46 54 10 9 83.05 84.48 83.76 
Ace -Ventura 36 34 11 2 75.55 94.44 83.95 29 2 7 92.85 78.78 85.24 

Lethal Weapon 4 67 63 39 4 61.76 94.02 74.55 64 25 3 71.97 95.52 82.05 
Terminator 2 66 61 11 5 84.72 92.42 88.41 60 7 6 89.55 90.90 90.22 

The Mask 44 40 5 4 88.88 90.91 89.88 38 7 6 84.44 86.36 85.39 
Home Alone 2 68 56 6 12 90.32 82.35 86.15 57 5 11 90.90 81.96 86.20 

TOTAL 497 439 118 58 88.32 78.81 83.29 428 70 69 86.11 85.94 86.02 

D – Detected ; FA – False Alarms ; MD – Missed Detected; P – Precision ;  R – Recall ; F1 – F1 norm 

 



As it can be observed, the detection efficiency is comparable in both cases. The α parameter 
has been set here to a value of 7.  

The average precision and recall rates are the following:  
• R=88% and P=78%, for the SIFT-based approach, and  
• R=86% and P=85%, for the HSV histogram approach.  

These results demonstrate the superiority of the proposed scene detection method with respect 
to existing state of the art techniques (Rasheed et al., 2005), (Chasanis et al., 2009), (Zhu et al., 
2009), which provide precision/recall rates between 82% and 77%. 

We also analyzed the impact of the different temporal constraints lengths on the scene 
detection performances. Thus, Fig. 14 presents the precision, recall and F1 scores obtained for 
various values of the α parameter.  

As it can be noticed, a value between 5 and 10 returns quite similar results in terms of the 
overall efficiency. 

 
 
 
 
 
 
 
 
 
 
Figure 14. [Precision, recall and F1 scores obtained for different α values]. 

 
Let us also observe that increasing the α parameter lead to lower recall rates. That means that 

for higher values of the α parameter, different scenes are grouped within a same one. In the same 
time, the number of false alarms (i.e. false scene breaks) is reduced.  

This observation led us to investigate the utility of our approach for a slightly different 
application, related to DVD chapter detection. For the considered Hollywood videos, the DVD 
chapters were identified by movie producers and correspond to access points in the considered 
video. The DVD chapters are highly semantic video units with low level of detail containing a 
scene ore multiple scenes that are grouped together based on a purely semantic meaning.  

The value of the α parameter has been here set to 10.  
The average recall (R) and precision (P) rates obtained in this case (Fig.15) are the following: 
• R=93% and P=62%, for the SIFT-based approach, and  
• R=68% and P=87%, for the HSV histogram approach.  

 
Such a result is quite competitive with the state of the art techniques introduced in (Rasheed et 

al., 2005), (Chasanis et al., 2009), (Zhu et al., 2009) which yield precision/recall rates varying 
between 65% and 72%.  

 
The obtained chapter detection results, with precision, recall and F1 rates are further detailed  

in Table 8.  
 



 
 
 
 
 
 
 
 
 
 
 
Figure 15. [Recall, Precision and F1 norm rates when extracting DVD chapter using: a. HSV 

color histogram, b. Interest points extracted based on SIFT descriptor]. 
 

Table 8. Evaluation of the DVD chapter extraction: precision, recall and F1 rates  
 

Video name 
Ground 

truth 
scenes 

SIFT descriptor HSV color histogram 

D FA MD R 
(%) 

P 
(%) 

F1 
(%) D FA MD R 

(%) 
P 

(%) 
F1 

(%) 
5th Element 37 36 39 1 97.29 48.00 64.28 35 25 2 58.33 94.59 72.16 

Ace -Ventura 31 28 12 3 90.32 70.00 78.87 25 5 6 83.87 80.64 82.23 
Lethal Weapon 4 46 44 41 2 95.65 52.87 68.09 43 28 3 60.56 93.47 73.5 

Terminator 2 58 51 7 7 87.93 87.93 87.93 45 4 13 91.83 77.58 84.11 
The Mask 34 32 12 2 94.11 71.11 81.01 32 16 2 66.66 94.11 78.04 

Home Alone 2 29 28 22 1 96.55 56.00 70.88 25 17 4 59.52 86.21 70.41 

TOTAL 235 219 133 16 93.19 62.42 74.76 205 95 30 68.33 87.23 76.66 

D – Detected ; FA – False Alarms ; MD – Missed Detected; P – Precision ;  R – Recall ; F1 – F1 norm 

 
The analysis of the obtained results leads to the following conclusions.  
 
The keyframe similarity based on HSV color histogram is much faster than the SIFT 

extraction process. In addition, it can be successfully used when feature detection and matching 
becomes difficult due to the complete change of the background, important variation of the point 
of view, or complex development in the scene’s action.  

The matching technique based on interest points is better suited for scenes that have 
undergone some great changes but where some persistent, perennial features (such as objects of 
interest) are available for extraction and matching. In addition, the technique is robust to abrupt 
changes in the intensity values introduced by noise or changes in the illumination condition. 

It would be interesting, in our future work, to investigate how the two methods can be 
efficiently combined in order to increase the detection performances.  
 
CONCLUSION AND PERSPECTIVES 

In this paper, we have proposed a novel methodological framework for temporal video 
structuring and segmentation, which includes shot boundary detection, keyframe extraction and 
scene identification methods.  

a. b. 



The main contributions proposed involve: (1) an enhanced shot boundary detection method 
based on multi-resolution non-linear filtering and with low computational complexity; (2) a leap 
keyframe extraction strategy that generates adaptively static storyboards; (3) a novel shot 
clustering technique that creates semantically relevant scenes, by exploiting a set of temporal 
constraints, a new concept of neutralized/ non-neutralized shots as well as an adaptive 
thresholding mechanism. 

The shot boundary detection methods is highly efficient in terms of precision and recall rates 
(with gains up to 9.8% and 7.4%, respectively in the case all transitions with respect to the 
reference state of the art method), while reducing with 25% the associated computational time. 

Concerning the shot grouping into scenes, we have validated our technique by using two 
different types of visual features: HSV color histograms and interest points with SIFT 
descriptors. In both cases, the experimental evaluation performed validates the proposed 
approach, with a F1 performance measure of about 86%. 

Finally, we have shown that for larger temporal analysis windows, the proposed algorithm can 
also be used to detect DVD chapters. The experimental results demonstrate the robustness of our 
approach, which provides an average F1 score of 76%, regardless the movie’s type or gender. 

Our perspectives of future work will concern the integration of our method within a more 
general framework of video indexing and retrieval applications, including object detection and 
recognition methodologies. Finally, we intend to integrate within our approach motion cues that 
can be useful for both reliable shot/scene/keyframe detection and event identification. 
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