
DOI: 10.4018/JOEUC.327365

Journal of Organizational and End User Computing
Volume 35 • Issue 3 

This article published as an Open Access article distributed under the terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and production in any medium,

provided the author of the original work and original publication source are properly credited.

*Corresponding Author

1

Digitalization of the Business 
Environment and Innovation 
Efficiency of Chinese ICT Firms
Jian Ding, University of Malaya, Malaysia

 https://orcid.org/0000-0002-5823-1069

Baoliu Liu, Beijing University of Technology, China

Jiaxin Wang, Zhongnan University of Economics and Law, China*

Ping Qiao, Politecnico di Milano, Italy

Zhaowei Zhu, Zhongnan University of Economics and Law, China

ABSTRACT

This study investigates how the digital business environment affects firms’ innovation input variables. 
It was discovered that digitization leads to ongoing corporate environment optimization, which 
improves the effectiveness of innovation. One of the institutional environment factors, digitalization, 
increases the redundancy of government subsidies on businesses’ investments in innovation. It also 
helps to eliminate duplication in innovation investment through the financial environment and the 
protection of legal rights. With increasing marketization in the informal institutional framework, the 
degree of R&D investment redundancy lowers while R&D human resource investment redundancy 
grows. Digitization not only lowers the grade of innovation, but it also has a negative association with 
the duplicate nature of commercial R&D investments. The authors’ research combines institutional 
environment theory and digital development to establish a new empirical foundation for corporate 
development in order to boost innovation efficiency.
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1. INTRODUCTION

The institutional theory posits that an effective system can foster economic growth and development, 
with the business environment serving as a tangible manifestation of this system (Struckell et al., 
2022; R. Wang et al., 2021). The business environment encompasses the policies, regulations, and 
socio-economic factors within a country or region that directly impact enterprise operations, such as 
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government policies, legal regulations, market competition, social culture, and infrastructure (Chang 
& Chen, 2021; Do et al., 2022). According to institutional theory, a robust legal system is crucial for 
safeguarding property rights and contractual agreements (Brousseau et al., 2011; Y. Yang et al., 2021). 
Additionally, a sound system should support market competition while preventing monopolies and 
undue intervention, thereby stimulating innovation and competitiveness among enterprises (Jiang et 
al., 2023; Pasinetti, 2021; Wang et al.,2022). Ultimately, a strong system can promote entrepreneurship 
and innovation, augment market efficiency, and improve overall business competitiveness.

The business environment has been profoundly affected by the advent of digital transformation 
(Mann et al., 2022; Y. Zhang et al., 2023; Liu et al.,2022). Firstly, it enables enhanced information 
exchange and collaboration, which expands the market size while reducing barriers to entry and 
streamlining innovation and entrepreneurship (Rosado-Cubero et al., 2023; L. Yu et al., 2023). 
Secondly, digital technologies can automate numerous internal processes, which in turn reduces 
cycle times, cuts costs, improves production efficiency and enhances product quality (H. Zhang et 
al., 2023). Finally, digital transformation has resulted in the emergence of new business models and 
opportunities, offering companies novel avenues for growth and development (Ancillai et al., 2023; 
Marcon et al., 2022). In the current digital era, enterprise competitiveness is increasingly predicated on 
intangible assets such as technology, data, and knowledge, thus transforming the traditional business 
environment (Şimşek et al., 2022). Consequently, digital transformation renders a multifaceted impact 
on the business environment, encompassing both beneficial effects and disruptions that challenge 
conventional business environment models (Wani et al., 2021; Liu et al.,2022).

The impact of the business environment on enterprise innovation can be seen in numerous ways 
(Ghosh et al., 2021; Kraus et al., 2022). Firstly, a positive business environment provides enterprises 
with sufficient innovation resources, which directly influences the effectiveness of their innovation 
implementation (Li et al., 2023, 2023). Secondly, a favorable business environment adequately 
protects the intellectual property (IP) rights of enterprises and supports their technological research 
and development (Zhao et al., 2022; Ding et al.,2022). This protection enables enterprises to engage 
more actively in technological innovation (Z. Chen, 2022; Scherrer & Perrig, 2021). Thirdly, 
government policies and services can promote innovation investment and practices by facilitating 
innovative activities among enterprises (Böttcher et al., 2022; Y. Jia et al., 2023; Ozen & Ozturk-
Kose, 2023). Fourth, regions or countries with a robust business environment have broader and 
more diversified market demand, providing enterprises with greater opportunities to innovate in 
products and technologies (K. H. Choi & Kwon, 2023; Karami et al., 2022). Fifthly, a competitive 
business environment incentivizes enterprises to constantly improve their innovation strength 
and competitiveness, thereby promoting technological progress and upgrading the entire industry 
(Amouri et al., 2021; Hoskins & Carson, 2022; Wang et al.,2023). Thus, the business environment 
has a significant impact on the innovation activities and outcomes of enterprises. A positive business 
environment can provide enterprises with improved conditions for innovation and development, 
fostering greater competitive advantages in the marketplace.

Corporate innovation is currently a topic of great interest to researchers, who have contributed 
many findings from multiple perspectives on wind farms. However, despite this progress, there are 
still some gaps in the existing research. Firstly, scholars have primarily used methods such as empirical 
regression and case studies in their research, focusing on individual firms and innovation elements. 
As a result, they have been unable to explain the underlying logic behind corporate innovation 
comprehensively. Secondly, most studies have concentrated on internal factors such as employee 
quality, technology base, and ownership nature, as well as external policy factors like R&D subsidies, 
tax incentives, and policy support, without taking into account a comprehensive, multi-level, and 
multi-faceted research perspective. Lastly, current research on corporate innovation has inadequate 
theoretical construction, with many studies describing phenomena without strong theoretical support.

Our research offers several improvements to the existing literature in order to address gaps that 
currently exist. Firstly, we utilized a three-stage DEA method to measure the innovation efficiency 
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of listed ICT firms. By measuring the impact of various environmental variables on the redundancy 
of firms’ innovation inputs, we were able to generate results that more accurately reflect the real 
situation. Additionally, we employed the Malmquist index model to analyze the dynamic trend of 
innovation efficiency changes among ICT firms over a ten-year period and assess the impact of 
different factors on innovation efficiency. Furthermore, we utilized the Tobit model to quantify the 
factors with the greatest impact on the innovation efficiency of listed ICT companies. This approach 
provides a comprehensive understanding of ICT conglomerates as a whole, as well as the underlying 
mechanisms that affect innovation efficiency. Secondly, unlike previous studies that have mainly 
focused on examining the internal and external environment of individual firms, our study explores 
the impact of the digital business environment on the innovation efficiency of ICT firms from 
multiple perspectives. We also construct a comprehensive analytical framework for this purpose. 
Lastly, while prior research has primarily relied on firm endowment theories, such as competitive 
advantage theory and factor endowment theory, to explain innovation; our study takes a different 
approach by adopting institutional theory to examine the impact of the business environment on 
firms’ innovation efficiency. This provides a theoretical basis for promoting innovation efficiency 
from a broader societal perspective.

2. LITERATURE REVIEw AND HyPOTHESES DEVELOPMENT

The digital transformation has brought about several positive impacts on the business environment, 
including the following: Firstly, the digital business environment simplifies interactions between 
businesses and government, reducing time and labor costs (Teece, 2018; Wiredu et al., 2021; M. 
Yang & Han, 2021). Secondly, it enhances fairness and transparency in market competition through 
open and transparent information and data-sharing mechanisms (Dong et al., 2023; Shin & Park, 
2019). Finally, it provides enterprises with comprehensive and accurate information on market 
intelligence, technological developments, and talent resources, fostering innovation and development 
(Delorme, 2023; Mota et al., 2023). Therefore, optimizing the business environment through digital 
transformation and establishing a robust institutional framework are effective means of promoting 
enterprise innovation.

The impact of a digital business environment on a company’s innovation resources is 
comprehensive. It can facilitate the provision, transformation, and application of these resources. 
Firstly, the digital business environment offers enterprises more information and data resources, 
enabling them to better comprehend market and industry conditions, thus determining their innovation 
direction and strategy more effectively (Varadarajan, 2020; Zafari et al., 2023; Wang et al., 2022). 
Secondly, it enhances the innovation capability of enterprises. Digital technology enables companies 
to develop and innovate rapidly and efficiently, reducing costs and risks involved in the process (H. 
Chen & Tian, 2022; Mithani, 2023). Finally, digital platforms facilitate better transformation and 
application of companies’ innovation resources. Companies can manage their intellectual property 
rights more efficiently, and access more financing channels and collaboration opportunities, thus 
better converting innovation resources into business value (Marcon et al., 2022; Varadarajan, 2020; 
F. Yu et al., 2023). In summary, the digital business environment plays a crucial role in promoting 
the discovery and application of innovation resources, empowering enterprises to seize opportunities, 
enhance their market competitiveness, and increase their profitability.

The digital business environment has a positive impact on the protection of companies’ legitimate 
rights and interests, in addition to its profound impact on innovation resources (Dahabiyeh & 
Constantinides, 2022; Laïfi & Josserand, 2016). Firstly, it provides more transparency and information, 
enabling companies to better grasp market dynamics and protect their legitimate rights and interests 
in a timely manner (D. Y. Choi & Perez, 2007; Zhang et al.,2023). Secondly, digital platforms offer 
a more transparent and secure market environment for businesses, increasing trust and promoting 
collaboration that protects their legitimate rights and interests in business dealings (Delorme, 2023; 
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Dong et al., 2023; Karami et al., 2022). Thirdly, it enhances compliance awareness and management 
capabilities of enterprises, allowing them to comply with relevant laws and regulations more easily, 
manage risks and disputes in a timely manner, and conduct refined and scientific risk management and 
internal management (Ghosh et al., 2021; Ozen & Ozturk-Kose, 2023). Finally, the digital business 
environment helps improve the level of intellectual property rights protection. Digital platforms 
effectively prevent IPR infringement, misappropriation, and theft, protecting innovation achievements 
and IPR interests of enterprises, while also providing convenient and efficient means of IP protection 
(Böttcher et al., 2022; Karami et al., 2022). Therefore, the digital business environment positively 
impacts enterprises’ legitimate rights and interests, enhancing their competitiveness and long-term 
development capabilities.

A digital business environment can optimize innovative policy measures and improve the 
efficiency of policy implementation (Boateng et al., 2021; Delorme, 2023; Rosado-Cubero et 
al., 2023). By establishing a digital information sharing platform, policy makers, regulators, and 
businesses can quickly share information and data, reducing wasted resources and uncertainty in 
policy implementation (Delorme, 2023; F. Yu et al., 2023). Digital technology allows for the rapid 
replication of successful innovation experiences and standardizes the implementation process of 
relevant innovation policies, thereby enhancing the efficiency and quality of policy implementation 
(Li et al., 2023; Marcon et al., 2022; Liu et al.,2023). This optimizes the flow of innovation capital, 
reduces financing costs, and increases the dynamism of corporate innovation through innovative 
financial instruments and investment mechanisms (Amouri et al., 2021; Y. Zhang et al., 2023). 
Additionally, the digital business environment improves communication between enterprises and 
the government, enabling the government to better understand enterprise needs, further improving 
policy implementation efficiency, thus increasing the confidence and ability of enterprises to innovate 
(Hoskins & Carson, 2022; Scherrer & Perrig, 2021; Zafari et al., 2023). Lastly, smart contracts and 
blockchain technology improve the transparency and efficiency of policy implementation, reducing 
power-seeking behavior in policy subsidy processes and allowing equal access to innovation 
opportunities for all enterprises (Ozen & Ozturk-Kose, 2023).

A favorable business environment in a region or country generally leads to broader and more 
diverse market demand, providing greater opportunities for product and technological innovation 
(Mithani, 2023; L. Yu et al., 2023; Zafari et al., 2023). The digital business environment further 
optimises digital shopping patterns, driving the development of consumers’ willingness and demand 
to buy (Karami et al., 2022). It also facilitates access to information about products and services, 
reducing information asymmetry between producers and consumers and increasing market competition 
efficiency (Varadarajan, 2020). Moreover, the digital business environment expands markets globally, 
expanding aggregate market demand. Finally, it enables firms to better understand consumer needs 
and preferences, offering more personalised products and services and creating conditions for lean 
innovation (Ghezzi & Cavallo, 2020; Karagiannis et al., 2022). In summary, the digital business 
environment can influence all aspects of market demand, reshaping market structures and business 
models.

The digital business environment strengthens competitive pressure in the market, pushing 
enterprises to improve their innovative strength and competitiveness. This promotes technological 
progress and upgrading of the entire industry (Ancillai et al., 2023; Do et al., 2022; Dong et al., 
2023; Şimşek et al., 2022). Firstly, the digital business environment provides faster, more efficient 
and accurate data and information support, enhancing decision-making capabilities and operational 
efficiency, strengthening competitiveness (Helfat & Raubitschek, 2018; Nathan & Rosso, 2015). 
Secondly, it intensifies competition in the market, compelling enterprises to continuously innovate 
and optimise products, services and business models to maintain market advantages (Andersson & 
Xiao, 2016; Fini et al., 2023). The digital business environment impacts competitive pressure in 
three main ways: digitising and automating production processes, reducing R&D costs and risks, 
and conducting accurate and targeted marketing through various digital channels and tools (Giachetti 
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& Li Pira, 2022; Giachetti & Mensah, 2023). This results in improved production efficiency and 
quality, better understanding of market demand and trends, shorter product development cycles, and 
enhanced marketing effectiveness and customer conversion rates. In conclusion, the digital business 
environment necessitates digital transformation and innovation for companies to stay competitive in 
the market. Based on this analysis, we propose the research hypothesis:

Hypothesis: digital business environment has a significant positive impact on the innovation 
efficiency of ICT enterprises.

To test our research hypothesis, our research process is shown in Figure 1.

3. RESEARCH DESIGN

3.1 Methodology
3.1.1 ICT Industry Innovation Performance Evaluation Index System
The innovation efficiency of ICT enterprises in China was evaluated based on the “Enterprise 
Innovation Capability Evaluation Index System” developed by the Ministry of Science and Technology 
in 2013. To gather data on government subsidies, annual reports of enterprises were consulted, while 
information on tax concessions was obtained from the State Administration of Taxation’s proportion of 
tax concessions for high technology industries. The Doing Business Index was derived from the World 
Bank Doing Business Assessment Report. Total output value of high-tech industries and technology 
transactions were sourced from various statistical yearbooks, including China High-Tech Industry 
Statistical Yearbook, China Science and Technology Statistical Yearbook, and China Torch Statistical 
Yearbook. Data on digitization levels came from the China Digital Economy Development Report and 
the Digital China Index Report. An innovation performance evaluation index system was determined 
based on the specific characteristics of the ICT industry. This system was used to evaluate selected 
listed companies in the ICT sector, and Table 1 presents the details of the evaluation index system.

3.1.2 Analytic Model of Innovation Performance of Listed ICT 
Companies Based on the Three-Stage DEA Model
The model developed by Charnes et al. (1978) is known as Data Envelopment Analysis (DEA), and 
it is a non-parametric method used for measuring the relative efficiency of decision-making units 
(DMUs). In the context of this study, the DMUs are ICT firms. In addition to the DEA model, the 
stochastic frontier model (SFA) introduced by Fried et al. (2002) was used in this study. SFA is a 

Figure 1. Flow chart of the study



Journal of Organizational and End User Computing
Volume 35 • Issue 3

6

parametric method used to estimate the technical inefficiency of firms and to identify the sources of 
inefficiency. The Malmquist index model was also used in this study to portray the dynamics of 
innovation efficiency changes in listed ICT firms. The Malmquist index measures the change in 
efficiency over time and identifies the sources of change. Finally, the Tobit model is used to analyze 
the impact of different factors on the innovation efficiency of ICT firms. The Tobit model is a 
regression model that takes into account censoring or truncation in the dependent variable. In the 
context of this study, the dependent variable is the measured innovation efficiency of each ICT firm. 
The BCC-DEA model is used to examine the relationship between innovation inputs and innovation 

performance in ICT firms. The analysis model was: min α υ− +
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Table 1. Index system of innovation performance evaluation of listed ICT enterprises

1st Indicator 2nd Indicators Measurement Unit

Input Funding The proportion of R&D expenditure in operating income %

Manpower Input The proportion of R&D employees %

Proportion of employees with graduate degree or above %

Output Patent Number of patents applied item

Number of patents granted item

Transformation Proportion of new product sales revenue %

Operating income growth rate %

Net profit million

Environment Policy Government subsidy amount million

Tax incentive ratio %

Legal power protection index 12

Financing Get credit index %

Get credit index %

Technical Total value of high-tech industry million

Technology transfer turnover million

Digital level (internet penetration) %
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a  is pure technical efficiency (PTE). Dividing comprehensive technical efficiency (TE) in BCC into 
PTE and scale technical efficiency (SE), TE=PTE×SE, when TE=1, that is, PTE=1, SE=1, which 
means that the input and output are optimal, and DMUs are effective.

The slack variables produced by the BCC model were mainly caused by environmental factors, 
management inefficiency or inefficiency, and statistical noise (Jin et al., 2023). Therefore, when 
constructing a similar SFA model to perform regression analysis on these variables, the slack variable 
was used as the dependent variable of the regression analysis, and the environmental variables and 
statistical noise (mixed error terms) were used as independent variables (Namasudra & Roy, 2018). 
Thus, the following random frontier model was constructed:

S f p z v
mi i m mi mi
= ( )+ +;q  (2)

In this frontier model, i j∈  )1, , m k∈  )1, , S
mi

 denotes the slack of the mth input in the ith 
DMU, z v

mi mi
+  represents the random error term; p

i
, q

m
 respectively, represent the environmental 

variables and their coefficients. z
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 represents random statistical noise, v
mi

 is the management 
invalid, and z Q

mi zm
∼ �0 2, ;( )  v Q
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∼ �+ ( )0 2, . Finally, the initial original input variables were 

further adjusted, and all DMUs were placed under the same environmental conditions. The adjustment 
method was as follows:
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is to put all the DMUs in the same environment.
The output data from the adjusted DEA model and the original data are incorporated into the 

BCC model, which has variable returns to scale, in order to calculate the PTE, SE, TE, and efficiency 
values of the sampled ICT companies. By doing so, the DUMs’ level of technical management can 
be accurately reflected while environmental and statistical noise is eliminated for increased accuracy. 
This multi-stage analysis allows for an assessment of which companies operate in optimal efficiency 
levels, and which require improvements to enhance productivity.

3.2 DEA-Malmquist Index Model
The Malmquist Index model is utilized to assess the productivity and efficiency of multiple DMUs 
over time, taking into account both technological progress and individual DMU performance changes. 
To better understand the dynamic evolution of innovation activities, this study employs the BCC-
DEA-Malmquist analytical model. The distance functions formulated to evaluate inventions with 
varying returns to scale are provided below:

D x y x y S k
k

t t t t T, inf : , /( ) = ( ) ∈ ( ){ }a a  (4)

S k x y x x y yt t t t t t t( ) = ≥ ∑ ≤ ∑ ∑ = ≥{ }, , , ,l l l l1 0  (5)

In equation (4), x represents the input variable matrix, y represents the output variable matrix, 
and equation (5) represents the set of production possibilities with variable returns to scale in period t. 
From the equation, the function is greater than 1 if the output variable matrix is outside the production 
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possibility set; the function value is equal to 1 if the output variable matrix is at the boundary of the 
production possibility set; and the function value is less than 1 if the output variable matrix is within 
the production possibility set. therefore, the Malmquist index formula from period t to period t+1 
is as follows:

M x y x y
D x y

D x y

D x y
k

t t t t k
t t t

k
t t

k
t t t

, , ,
,

,

,
+ +

+ + + + +

( ) = ( )
( )

×1 1

1 1 1 1 1(( )
( )+D x y

k
t t t1

1

2

,
 (6)

Further Malmquist’s exponential model in output terms is derived as:
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In formula (8), pure efficiency change (PEC) is expressed as:
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is expressed as scale efficiency change (SEC); and in the Malmquist index model, the product of 
pure efficiency change (PEC) and scale efficiency change (SEC) is the integrated technical change 
efficiency (EC), i.e.:
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denotes production technology progress TC, and TC is further decomposed into pure technical progress 
change, i.e. TC PTC STC= × . Therefore, equation (8) can be simplified to:

MI TFP TC EC PEC SEC PTC STC= = × = × × ×  

which reflects total factor productivity progress.
TFP indicates the change in the productivity of the DMU from period t to period t+1. If TFP>1, 

it indicates an increase in the level of production, and vice versa. EC indicates the ratio between the 
actual output of the DMU and the theoretical maximum output, reflecting the ability of innovation 
to obtain maximum output; EC>1 indicates an increase in technical efficiency, and vice versa; 
TC indicates the effect of changes in the production frontier on the efficiency of innovation, TC 
>1 indicates technological progress and vice versa. In this paper, SEC indicates the scale of each 
company’s input to innovation activities, i.e. whether the company’s relevant funding and personnel 
are at the optimal scale; SEC > 1 indicates optimised scale efficiency and vice versa; PEC indicates 
the rationality of each company’s innovation input approach, structure and mechanism; PEC > 1 
indicates an increase in efficiency in technology use and vice versa.

4. ANALySIS OF EMPIRICAL RESULTS

4.1 Sample Selection
The paper under consideration selected ICT companies listed on A-shares in China as the sample for 
examination during 2010-2019, as shown in Table 3. Since the DEA model necessitates all input and 
output indicators to be positive, some of the data in the sample had large values; thus, dimensionless 
pre-processing of the data was conducted using formula (9) to rescale the sample data into a positive 
interval. The formula (9) was applied to adjust the data and ensure the data sets were compliant with 
the DEA requirements. Unfortunately, without access to the actual formula, further elaboration on 
the process is not possible:
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where Z
ij

 represented the ith index of the j-th ICT industry listed company after the dimensionless 
treatment every year, m

i
 indicated the minimum value in the i-th index, M

i
 indicated the maximum 

value of the i-th index. After the above non-dimensional quantification preprocessing, it was ensured 
that all values belonged to [0.1, 1], thus, ensuring the validity and accuracy of the DEA-Malmquist 
index model.

4.2 Analysis of Results Before Adjustment
4.2.1 Analysis of Results Based on the First Stage BCC-DEA Model
In this study, the innovation efficiency of Chinese A-share listed ICT firms was evaluated using the 
investment-oriented CCR-BCC model in the DEAP 2.1 application software (available by contacting 
the authors due to journal space limitations). The results reveal that the integrated technical efficiency 
before adjustment has a mean value of 0.5614 and the pure technical efficiency is 0.8208. These 
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findings suggest that the static technical efficiency and decomposition terms’ mean values reflect 
the overall low innovation efficiency of Chinese ICT firms. Nonetheless, they also indicate that ICT 
listed firms have higher management levels and stronger operational capabilities in technological 
innovation and management. Additionally, according to the decomposition terms TE, PTE, and SE, 
the primary drivers of the ICT industry’s development are management and investment in R&D 
personnel. Moreover, the scale effect has a more significant impact on low innovation efficiency. This 
finding suggests that the main reason for the low innovation efficiency of Chinese ICT enterprises is 
the lack of a scale advantage resulting from the industry’s overall development.

4.2.2 Analysis of Dynamic Innovation Efficiency of Listed Companies in ICT Industry
The study utilized the Malmquist index to analyze changes in innovation efficiency for listed enterprises 
in the A-share ICT industry across different time periods (Table 3). Results indicated that Chinese 
ICT enterprises possess strong innovation capability, as evidenced by EC and TC values of 1.119 
and 1.046, respectively, both greater than 1. Although the mean PTC value was 0.895, the SE change 
index remained above 1 throughout all time periods, indicating scale efficiency in the Chinese ICT 
industry. However, a decline in PTC was observed as the source of the drop in technical efficiency. 
The EC fell below 1 only in the period of 2014-2015, suggesting that the loss of TE during this time 
had a significant impact on the industry’s innovation efficiency. In contrast, the M index decreased 
below 1 in 2017-2018, which indicates a slowdown in the growth of the Chinese ICT industry during 
this period. The low M index value can be attributed mainly to the limited level of PTE reflected in 
the low TC index. The study results, available upon request from the authors due to journal space 
constraints, showed only 20 companies (18% of sample size) with a Malmquist Index greater than 1. 
These findings suggest that, despite possessing high levels of management, Chinese ICT companies 
are unable to adequately improve their innovation efficiency through internal staff quality and that 
the industry’s potential for growth is hindered by a scarcity of highly skilled human resources. 
Consequently, low innovation transformation efficiency remains a key factor impeding development 
in the Chinese ICT industry despite extensive collaboration between industry, academia, and research.

4.3 Analysis of Results Based on SFA Model
The study employed the slack variables of three input variables: the proportion of R&D personnel to 
enterprise employees, the proportion of employees holding postgraduate degrees or higher, and R&D 
expenditure investment. These were used as explanatory variables in constructing a SFA model (Devi 
et al., 2020; S. Lim & Zhu, 2016). The SFA utilized the total output value of the high-tech industry, 
the amount of technology transfer, and the level of digitization as explanatory variables. The effects 
of data and seven environmental variables on the three input slack variables were recalculated using 

Table 2. Descriptive statistics of input and output indicators

Variables Unit Max Min Mean SD

R&D employees % 0.005 73.197 23.130 14.518

Graduate degree or above % 0.001 2.910 0.240 4.992

R&D expenditure % 0.007 21.778 6.595 41.928

Patents applied items 9698 0 89.220 549.037

Patents granted items 9711 0 74.870 548.883

New product sales revenue % 1 0 0.1755 0.2541

Operating income growth rate % 21.570 0 0.2304 0.983

Net profit million 514800 -575100 13278.020 51977.110
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Frontier 4.1 software (C. Guo & Zhu, 2017). Table 6 presents the results of the significance test for 
l^2 and γ, demonstrating that statistical noise (error) and environmental variables affect the analysis 
of the innovation efficiency of the sampled ICT-listed companies.

From a government perspective, the study’s regression coefficients revealed that the slack 
variables of government subsidies and corporate R&D investment have positive coefficients, but 
only the R&D expenditure slack variable is significant. This suggests that government subsidies 
undermine firms’ risk-taking and creativity while denying them the opportunity to develop their own 
independent creative talents (Fini et al., 2023; Ozen & Ozturk-Kose, 2023; F. Yu et al., 2023). Tax 
incentives have a positive effect on the slack variables of firms’ R&D expenditure inputs, but the 
slack variables for both R&D staff and employee qualifications are negative. This indicates that tax 
incentives enhance the redundancy of a firm’s R&D investment but reduce the redundancy of R&D 
personnel’s investment (Dai & Chapman, 2022; Gross & Klein, 2022; He et al., 2022; Rosado-Cubero 
et al., 2023; J. Zhang & Guan, 2018). Overall, this demonstrates that tax policy is more steering than 
subsidizing. The variables of access to investment and credit slack both produced negative regression 
results, emphasizing the financing environment’s positive effect on firms’ innovation efficiency 
(Alquist et al., 2022; Cull & Xu, 2005; Ribeiro & Shapira, 2020). Access to capital is an important 
factor in reducing firms’ barriers to innovating, and financing institutions increase innovation 
effectiveness by reducing firms’ costs of innovation while monitoring innovation-related actions of 
innovation agents (Long & Pelloni, 2017; Ribeiro & Shapira, 2020). The regression coefficients for 
both the slack in the input variable and the legal power protection index are negative, indicating that 
the redundancy of the input variable decreases with improved legal power protection. For a long 
time, imperfections in the Chinese market system have led to a lack of effective protection of firms’ 
legal rights (especially intellectual property rights), resulting in serious violations of the legal rights 
of firms investing in China, at the expense of their willingness to innovate.

From a market perspective, the level of digitization and marketization can significantly impact 
ICT companies’ investment in innovation (Boudreau et al., 2022). The regression analysis shows 
that R&D investment and R&D staff quality are negatively affected by the degree of digitization, 
but positively impacted by slack in R&D staff. This indicates that increasing digitization leads 
to greater information transparency, which can make some R&D personnel redundant, while 
lowering the redundancy of corporate R&D expenditures and highly qualified R&D staff. This is 
because increased digitization allows for lean innovation and an open innovation paradigm, which 
are crucial for enhancing firms’ innovation performance and quality (Li et al., 2023; Miric et al., 
2019). Moreover, the regression results based on high-tech industries’ gross value indicate that as 

Table 3. Malmquist index and its decomposition

Period EC TC PTC STC M index

2010-2011 1.191 0.962 0.823 1.420 1.248

2011-2012 1.031 1.055 0.924 1.222 1.222

2012-2013 1.079 1.066 0.947 1.298 1.383

2013-2014 1.176 1.076 0.902 1.262 1.431

2014-2015 0.885 1.210 1.073 1.052 1.100

2015-2016 1.358 0.917 0.745 1.262 1.229

2016-2017 1.107 1.213 0.952 1.192 1.454

2017-2018 1.090 0.953 0.857 1.114 0.983

2018-2019 1.157 0.971 0.832 1.035 1.319

Mean 1.119 1.046 0.895 1.206 1.263
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industry growth increases, the redundancy of firms’ R&D inputs reduces, while the redundancy 
of human resources increases. This is due to the larger innovation technology base created as 
the industry grows, leading to lower costs of enterprise innovation (Andries et al., 2021; Khan 
et al., 2022; Moshirian et al., 2021; Neumann et al., 2019). However, this can also lead to talent 
clustering and human resource redundancy. The regression results for both technology transfer 
efficiency and firm innovation input slack variables show a negative correlation, implying that 
higher technology transfer turnover rates can significantly reduce the redundancy of firms’ 
innovation resource inputs (Fareed et al., 2022; Z. Jia et al., 2023). Therefore, the development 
of technology markets can help decrease redundancies in firms’ innovation resource inputs and 
enhance their innovation quality.

4.4 Analysis of the Adjusted Results
The first stage of efficiency measurement included environmental factors and statistical noise, 
which impacted the accuracy of measuring the true innovation efficiency of ICT listed companies. 
Therefore, further adjustments were necessary using DEAP 2.1 software in the second stage, where 
technical efficiency, pure technical efficiency, and scale efficiency were recalculated with adjusted 
input variables and original output variables. The adjusted results (available from the authors due 
to journal space constraints) demonstrate significant improvements in technical efficiency, pure 
technical efficiency, and scale efficiency after removing environmental variables and statistical 

Table 4. SFA regression results of innovation efficiency of the sampled

R&D Expenditure R&D Employees Degree

Constant Term 4.68***
(1.20)

4.17***
(1.01)

3.68***
(1.15)

Government Subsidies 0.74**
(0.36)

1.36
(1.06)

0.75
(1.33)

Tax Incentive 2.36***
(0.61)

-0.96
(1.03)

-0.92
(0.96)

Legal Rights -0.58***
(0.11)

-1.67**
(0.84)

-1.35***
(0.24)

Get Credit -1.59**
(0.69)

-1.32***
(0.36)

-0.20
(0.97)

Get Investment -2.56***
(0.20)

-1.36***
(0.42)

-2.19***
(0.72)

Total Value -1.28**
(0.64)

1.11***
(0.39)

2.18***
(0.68)

Technology Transfer -2.37***
(0.36)

-1.32***
(0.48)

-1.13***
(0.41)

Digitalization -1.59**
(0.60)

1.99**
(0.98)

-1.79***
(0.62)



2Log -402.39 -398.69 -542.09

gLR 1.77*** 2.03*** 4.27***

Note: *, **, *** denote significant at the level of 0.1, 0.05, and 0.001, respectively, and the standard deviation in parentheses
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noise. The mean values for technical efficiency, pure technical efficiency, and scale efficiency are 
0.747, 0.814, and 0.861, respectively, compared to pre-adjustment mean values of 0.561, 0.821, 
and 0.708.

Interestingly, technical efficiency and scale efficiency improved more significantly after 
adjustment, while pure technical efficiency showed a downward trend. Previously, Chinese ICT-listed 
companies’ innovation performance was mainly driven by pure technical efficiency, representing 
management level. However, after adjustment, technical efficiency and scale efficiency have become 
increasingly important drivers of overall efficiency. Removing environmental variables resulted in 
a significant improvement in the overall innovation efficiency of enterprises. This confirms that the 
adjusted values of each efficiency accurately reflect the level of innovation efficiency of listed ICT 
enterprises. Moreover, this demonstrates the important influence of business environment elements 
on firms’ innovation performance.

4.4.1 Analysis of TE of the Sampled Listed ICT Companies
Figure 1 illustrates the significant improvement in the technical efficiency of ICT listed enterprises 
after removing external influences, with the value increasing from 0.561 to 0.747 compared 
to the pre-adjustment period. The number of businesses on the cutting edge of technological 
efficiency also increased from three before adjustment to thirteen after adjustment, indicating 
that the optimization of the business environment has enabled better distribution of innovation 
resources and allowed companies to fully leverage their technological advantages. Moreover, after 
excluding external environmental influences and statistical noise, the total technical efficiency 
of ICT firms experienced substantial growth, indicating that the improved business climate has 
positively impacted the development of China’s ICT industry. This highlights the importance 
of optimizing the business environment for promoting innovation and improving the efficiency 
of firms in the industry.

4.4.2 Analysis of PTE of the Listed ICT Companies
Figure 2 displays the PTE before and after adjustment. The adjustment resulted in an increase in the 
number of businesses with a PTE of 1, from 8 to 32, which equates to an increase from 7.27% to 
29.09%. However, the overall reduction in PTE raises concerns that environmental influences and 

Figure 2. Comparison of technical efficiency before and after adjustment



Journal of Organizational and End User Computing
Volume 35 • Issue 3

14

statistical noise may have exaggerated the beneficial effects of PTE on enterprises’ overall innovation 
efficiency. This is because statistical analysis often fails to consider the impact of environmental 
factors and attributes increases in firm efficiency and innovation performance solely to increased 
management, which differs from reality.

4.4.3 Analysis of SE of Listed ICT Companies
Figure 3 presents the changes in scale efficiency of listed ICT companies before and after adjustment. 
The results show that the scale efficiency increased from 0.708 to 0.861, an increase of around 
16%. The statistical analysis also indicates that scale efficiency increased by 90 companies before 
and after adjustment. This suggests that the scale effect of listed companies in the ICT industry is 
improving, and the industry as a whole is becoming stronger. While some companies experienced 
a decline in scale efficiency, the most affected were core business and chip-related companies due 
to the business environment. However, enterprises on the frontier side of scale efficiency were not 
impacted, indicating that the level of a company’s own development plays a significant role in its 
ability to respond to changes in the business environment. This demonstrates that firms with stronger 
capabilities are less susceptible to changes in the country’s business environment.

4.5 The Influencing Factors of Innovation Performance
4.5.1 Analysis Model
Based on the literature review and research hypotheses, the DEA model results are used as dependent 
variables. Since the DEA model results fall within the [0,1] interval, technical efficiency, pure technical 
efficiency, and scale efficiency are used as dependent variables. By combining input elements and 
environmental elements and applying Tobit regression analysis, the impact of various elements of 
the business environment on the innovation performance of ICT companies is verified through the 
following model:

Model 1:

Figure 3. Comparison before and after adjustment of PTE
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Model 3:
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Among them, Crste Vrste Scale, ,  respectively represent the comprehensive technical efficiency, 
pure technical efficiency and scale effect previously calculated by DEA model, χ α β, ,  is the parameter 
to be estimated, subscript i means the i-th enterprise, t means year t, σ η ξ, ,  is the random interference 
term. Indicators and explanations are shown in Table 5.

Among them, because the World Bank’s evaluation standards use the two cities of Beijing and 
Shanghai as survey samples for data analysis, the standards for the policy environment and investment 
environment are also conducted in accordance with the standards of Beijing and Shanghai to reduce 
statistical errors.

Figure 4. Comparison before and after scale efficiency adjustment
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4.5.2 Result Analysis
The study conducted a Tobit analysis using stata15.1 to examine the factors affecting innovation 
efficiency in the ICT industry. The empirical results are presented in Table 6, which show that both 
internal input elements, such as R&D investment and quality of R&D staff, and external environmental 
factors, such as institutions, funding, and markets, have a positive impact on all three models. Model 1 
highlights that R&D spending has the greatest positive incentive effect on technical efficacy, indicating 
that companies are the primary source of innovation . Additionally, the importance of investment is 
second only to R&D spending, suggesting that financial restraints can stifle innovation. The impact 
of tax incentives on advancing technical efficacy is found to be minimal.

In Model 2, government subsidies negatively influence pure technical efficiency by creating an 
imbalance in innovation costs between subsidized and non-subsidized firms, resulting in reduced 
quality of business management (Hu et al., 2019). Similarly, reliance on the government lowers the 
management team’s capability, negatively affecting the company’s ability to generate profits (Gutub, 
n.d.). However, the legal power protection index positively incentivizes purely technological efficiency 
since it protects IP rights for ICT enterprises.

In Model 3, government subsidies, legal power protection, and levels of digitalization have a 
negative effect on scale efficiency. Government subsidies deter innovation since firms only innovate 
to receive subsidies, causing a mismatch between firms and reduced investment in other innovations 
(Ding et al., 2022; D. Guo et al., 2022; C. Y. Lim et al., 2018). Digitalization also causes a mismatch 
between firms, with small and medium-sized businesses avoiding innovation to avoid competing with 
bigger businesses, reducing the effectiveness of scale. Investment is the biggest inducement to scale 
efficiency in ICT enterprises, mainly because it lowers the risk of failure and encourages consistent 
and scientific analysis of the firm’s innovation initiatives by investors (Contractor et al., 2020; Long 
& Pelloni, 2017; Teece, 2018).

Overall, the study identifies several factors that positively and negatively affect innovation 
efficiency in the ICT industry, including internal input elements, external environmental factors, 
government subsidies, legal power protection, and digitalization.

Table 5. Descriptive statistics and interpretation of each indicator

Variable Measurement Sample Min Max Mean SD

R&D Personnel R&D employees(%) 110 0.005 73.197 23.130 14.518

R&D Investment Degree (%) 110 0.007 21.778 6.595 41.928

Postgraduate R&D expenditure (%) 110 0.001 2.910 0.240 4.992

Subsidy Amount of government subsidy 
(RMB million)

110 30.585 2233489.051 3828.779 21406.173

Tax Tax credit ratio (%) 10 0 15 8.494 6.863

Protect Legal Protection (%) 10 1 5 3.647 1.328

Loan Credit Index (%) 10 15 60 36.584 41.256

Investment Investment indices (%) 10 20 70 39.157 36.556

Value H-Tech Total value of high technology 
industries (RMB million)

10 604300000 1854060000 1205440000 1303.245

Tech Transfer Technology Transfer Turnover 
(RMB million)

10 22260000 176974000 80709450 4538.986

Digitization Digitalisation index (%) 10 10.654 76.286 42.873 19.796
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5. DISCUSSION

The study’s results suggest that although government subsidies can provide a boost to the ICT industry, 
they can also create imbalances and market monopolies that stifle innovation. Additionally, the lack 
of high-end human capital and low corporate management efficiency are significant barriers to 
innovation development in the industry. To address these issues, it is necessary to focus on developing 
a more diverse and inclusive talent pipeline and improving corporate management practices. It is also 
important to prioritize innovation development across the entire industry, rather than solely focusing 
on leading enterprises or those receiving government subsidies. By doing so, the industry can move 
towards a more balanced and sustainable innovation ecosystem that benefits all stakeholders.

5.1 Theoretical Implications
Environmental factors have a significant impact on the innovation efficiency of ICT firms, 
demonstrating that the business environment plays a vital role in firms’ innovation strategies 
(Neumann et al., 2019; Prajogo, 2016; Varriale et al., 2021). As the business environment continues 
to be optimized, it becomes increasingly crucial in driving corporate innovation and technological 
progress (Andreeva et al., 2021; Khan et al., 2020; Möller et al., 2020). However, while the policy 
environment can facilitate this optimization, its impact on the business environment’s role is not always 
positive (Khan et al., 2021; Qiang et al., 2021; Reyes et al., 2021; Vo et al., 2020). Although previous 
studies have primarily focused on optimizing individual elements of the business environment, recent 
research has emphasized the selection of regional innovation strategies based on the overall business 
environment (Contractor et al., 2020; Gaganis et al., 2019; Prajogo, 2016; Wong et al., 2021). In line 
with this new trend, our study examines how various business environment indicators impact firms’ 
investment in innovation to provide a theoretical framework for improving innovation efficiency.

Given the complex and subjective nature of the business environment, quantifying its impact on 
firms’ investment in innovation is challenging. Previous research has highlighted the government’s 
leadership role in providing effective policy guidance, but with the rapid expansion of the internet 

Table 6. Tobit model analysis results of factors influencing innovation efficiency of ICT enterprises

Influencing factors Model 1 Model2 Model 3

R&D personnel 0.94E+89** 0.52E+11** 0.97E+34*

R&D investment 0.45E+16** 0.22E+88 0.63E+15*

Postgraduate 0.14E+49** 0.25E+72** 0.08E+25

Subsidy 0.57E+55** -0.12E+34* -0.46E+44**

Tax 0.35E+94 1.66E+33 +0.65E+80

Protect 0.73E+73*** 0.96E+88** -0.18E+32**

Loan 0.36E+16* 0.23E+11*** 0.21E+22**

Investment 0.75E+79*** 0.43E+55** 0.99E+73**

VHtech 0.12E+76** -1.32E+66* 0.82E+72*

Techtransfer 0.68E+35** -0.25E+34** 0.67E+44**

Digitization 0.87E+58*** 0.11E+00** -0.83e+18

Log likelihood 81.64831532 22.58513643 63.53466492

Wald chi2 (11) 68.36 53.19 47.38

Prob>chin2 0.0000 0.0000 0.0003

Note: *, **, *** indicate significant levels at 0.1, 0.05, and 0.001, respectively
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economy, variables related to firms’ perceived returns have become increasingly important in 
encouraging them to innovate (Bai et al., 2019; Chakravarty, 2022; S.-S. Chen et al., 2021; Khan 
et al., 2023; X. Wang et al., 2019). Our paper analyzes the specific extent to which different factors 
contribute to firms’ investment in innovation, emphasizing the stimulating effect of the policy 
environment on their investment. This analysis provides theoretical guidance for creating a business 
climate that encourages firms to invest in innovation and improve their innovation efficiency.

5.2 Practical Implications
The findings of this paper offer valuable insights for optimizing the business environment and enhancing 
enterprise innovation efficiency. At the government level, differentiated guidance policies should be 
implemented to cultivate innovation growth poles for enterprises of different gradients fairly. Policy 
support should be given to enterprises with strong innovation capabilities but lagging behind in 
development while assisting leading enterprises in improving their innovation mechanisms. Selecting 
and nurturing unicorn enterprises with innovative capabilities can establish a reasonable innovation 
gradient in the ICT industry. Establishing an innovation cooperation mechanism can take advantage of 
high-gradient enterprises’ driving effect on low-gradient enterprises. The government should also use 
policy instruments to establish a sound industry-university-research cooperation alliance and encourage 
universities to improve ICT technology research and development and management-related talent training.

Enterprises can actively seek institutional dividends conducive to their development by enhancing 
their organizational structure and operational mechanisms. They can further develop niche markets and 
ensure core competitiveness in these markets. SMEs can improve their innovation efficiency through 
collaboration with large enterprises to enhance production methods and technologies, thus increasing 
the market competitiveness of their products. By training and enhancing the overall staffing level of 
enterprises, especially the R&D capabilities of core ICT technicians and the management level of 
professional managers, they can improve their innovation efficiency. It is essential to adapt innovation 
strategies to the business environment and enhance the efficiency of innovation commercialization.

5.3 Limitations and Future Research
This study has several limitations that provide a starting point for further research. Firstly, it is challenging 
to generalize about the complexity of the business environment solely from policy, investment, and market 
data while ignoring differences between cities and countries. The results of this study may vary depending 
on resource endowments and cultural values. Future research in other developing countries and cities is 
necessary to confirm these findings. Secondly, although our study focused on the homogeneous economic 
environment in mainland China due to strong central government coordination, the sample size limitations 
of our available data survey could affect our results’ accuracy. Additionally, only listed companies were 
examined, limiting our ability to monitor the consequences for unlisted start-ups adequately. Future research 
will aim to expand the range of organizations assessed and identify potential confounding factors at a regional 
level that may distort our findings. Finally, the business environment in a region changes with both formal 
and informal institutions, thereby impacting the efficiency of business innovation. Therefore, continuous 
optimization of the business environment remains an essential topic, particularly in emerging economies.
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