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ABSTRACT

Digital transformation in public health has been implemented by governments and has significantly 
improved the accuracy and timeliness of public health management. Digital transformation in 
measuring social determinants of health is an emerging research area that has drawn significant 
scholarly attention. To assess how digital information influences the measurement of social 
determinants of health, this study performs a systematic literature review. The paper first discusses 
the background, definitions, conceptual framework, and research issues. Then it summarizes the 
research results with a focus on disruptions, strategic responses, changes that happened in the process, 
facilitators and barriers, and negative and positive impacts. After a discussion of the key findings, 
opportunities for future research are presented along with the conclusion.
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INTRODUCTION

Digital transformation (DT), which has been implemented in various domains of public health, 
has significantly improved the accuracy, speed, efficiency, and cost-effectiveness of public health 
management (Brewer et al., 2020; WHO, 2019). To further improve public health outcomes, 
international and regional public health agencies have issued strategic frameworks in DT. For example, 
the Strategy on Digital Health 2020-2025 provides guidance and coordination on global digital health 
transformation (WHO, 2021).

In recent years, social determinants of health (SDOH) have gained attention in public health arenas. 
Research shows that SDOH have more significant effects on population health than healthcare alone 
(Barnard & Hagos, 2022; Bradley et al., 2016; Talbert-Slagle et al., 2016). Traditional measurements 
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of SDOH are generally based on national surveys. Although reliable, the traditional methods are not 
timely (Elias et al., 2019). The far-reaching impacts of COVID-19 further underscore the need for 
prompt surveillance of SDOH to efficiently identify vulnerable groups and reduce health inequalities 
(Thorpe et al., 2022). Post-pandemic, social activities (e.g., working, studying, shopping) continue to 
shift to remote operations. This shift will continue to increase with the development of information 
technologies (Franken et al., 2021).

Thus, it is essential to implement DT in measuring SDOH. In fact, this emerging trend is drawing 
significant attention from scholars and officials. For example, the Centers for Disease Control and 
Prevention (CDC)’s Public Health 3.0 Call to Action asks political and local public health leaders 
to address SDOH and health equity issues with timely, reliable, granular, and actionable resources 
(DeSalvo et al., 2017). Studies of DT in measuring SDOH have been conducted across multiple 
disciplines. Most studies are seen in public health (e.g., Lasser et al., 2023), information systems (e.g., 
Macha et al., 2021), and sociology (e.g., Siira & Axel, 2022). To the best of the authors’ knowledge, 
there are eight literature reviews in related fields. Four of the reviews examine SDOH measurement in 
the context of electronic health records (EHRs; Berg et al., 2022; Chen et al., 2020; Patra et al., 2021; 
Wark et al., 2021). Kino et al. (2021) focused on studies that measure SDOH with machine learning. 
Thorpe et al. (2022) theoretically discussed and summarized digital data sources for the monitoring 
of SDOH. Craig et al. (2021) and Cossio (2023) conducted a literature review of articles that leverage 
novel datasets and digital technologies to collect and measure SDOH. Still, both fail to adopt a clear 
theoretical framework to guide the review lens, resulting in a weak and incomplete analysis.

Accordingly, the current study conducts a comprehensive, deep systematic literature review on the 
ability of DT to measure SDOH based on a widely accepted DT process framework. The remainder 
of this article is organized as follows. First, it explains related definitions, the conceptual framework, 
and research issues. Second, the study describes research methods. Third, the results are presented. 
Fourth, the study offers recommendations for research agendas and discusses the article’s contributions.

DEFINITIONS AND CONCEPTUAL FRAMEwORK

Definition of Measuring SDOH
Healthy People 2020 defines SDOH as:

Conditions in the environments in which people are born, live, learn, work, play, worship, and age, that 
affect a wide range of health, functioning, and quality-of-life outcomes and risks. (USDHHS, 2017, p. 1)

This definition is the basis of the SDOH measurement. It is divided into key domains with 19 
subcategories per the U.S. Department of Health and Human Service (2017):

1.  Economic Stability: This domain reflects on the connection between a person’s financial 
resources (e.g., income, cost of living, and socioeconomic status) and their health. Issues include 
poverty, employment, food security, and housing stability.

2.  Education Access and Quality: This domain reflects on the connection between a person’s 
education and their health or well-being. Issues include high school graduation, enrollment in 
higher education, language and literacy, and early childhood education and development.

3.  Healthcare Access and Quality: This domain reflects on the connection between a person’s 
access to and understanding of health services and their health. Issues include access to health 
care, access to primary care, and health literacy.

4.  Neighborhood and the Built Environment: This domain reflects on the connection between 
where a person lives (e.g., housing, neighborhood, and environment) and their health or well-
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being. Issues include access to healthy food, quality of housing, crime and violence, and 
environmental conditions.

5.  Social and Community Context: This domain reflects on the connection between a person’s social 
environment (e.g., social support, family circumstances, and community engagement) and their health 
or well-being. Issues include social cohesion, civic participation, incarceration, and discrimination.

Definition of DT
Many differences can be found in research on the definition of DT (Vial, 2019). The current study 
adopts the following definition of DT:

A process that aims to improve an entity by triggering significant changes to its properties 
through combinations of information, computing, communication, and connectivity technologies. 
(Vial, 2019, p. 9)

This definition is constructed on 23 extant definitions using semantic analysis methods. It also 
includes a comprehensive and in-depth description of the nature of DT.

Conceptual Framework and Research Issues
Vial (2019) presented an induction framework summarizing current DT knowledge to explain 
the process of DT. The authors adapted this framework to guide the literature review research 
(see Figure 1). The framework describes DT as a process in which digital technology plays 
a central role in creating and reinforcing disruptions at the social and industry levels. These 
disruptions also trigger strategic responses at the organizational level. Organizations apply 
digital technologies to transform value creation paths used to stay competitive. To this end, 
they must implement structural changes and overcome obstacles to their transformation 
efforts. At the same time, these changes have positive and negative impacts on organizations, 
industries, and society.

The arrow neither represents a statistical relationship nor the causal relationship in the variance 
model. Instead, it details the overall sequence of relationships described in the DT literature (adapted 
from Vial, 2019, p. 122).

Figure 1.



Journal of Organizational and End User Computing
Volume 35 • Issue 3

4

Thus, the following research questions are proposed:

1.  What disruptions occur when DT is applied to measuring SDOH?
2.  What strategic responses are proposed by industry associations or governments to facilitate DT 

when measuring SDOH?
3.  What changes occur when measuring SDOH in the context of DT?
4.  What negative and positive impacts could changes bring to organizations, industries, or society?
5.  What are the facilitators and barriers at the organizational level in the process of measuring 

SDOH in the context of DT?

METHODS

Search Strategy
The current review is guided by PRISMA 2020 (Page et al., 2021). First, the study performs a 
search of full papers in the Scopus and PubMed databases. The search queries consist of three 
areas, focusing on titles and abstracts (see Table 1). The keywords in the public health domain 
are extracted from the Healthy People 2030 SDOH framework. Year of publication is set from 
2013 to 2023. The final search was performed on May 1, 2023. If the databases provide studies 
within the reference list of previous literature reviews and papers, they will be screened to ensure 
the extent of coverage. In addition, the study searches for “digital transformation in measuring 
social determinants of health” on Google Search and Google Scholar. Then, it evaluates the 
results of the first 20 pages.

Study Selection Criteria
Table 2 lists the inclusion and exclusion criteria for this study. These criteria are iteratively developed 
by the authors based on a random sample of 20 abstracts. The study excludes research that meets any of 
the 10 exclusion criteria. It includes research that meets only the inclusion criteria. The authors follow 
this strategy to screen the abstract. If the authors hold differing opinions, the abstract is discussed 
until a consensus is reached. Then, the full text is reviewed for included articles. The authors filter 
the full text according to the selection criteria in Table 2.

Table 1. Search queries

Building Block Keywords

Information technology “Digital” OR “Digital transform” OR “Information system” OR 
“Informatics” OR “Computer system” OR “Technology” OR “Big data” AND

Public health domain

“Social determinants of health” OR “SDOH” OR “Public health 3.0” 
OR “Housing instability” OR “Poverty” OR “Employment” OR “Food 
insecurity” OR “Enrollment in higher education” OR “Early childhood 
development and education” OR “Language and literacy” OR “High 
school graduation” OR “Access to primary care” OR “Health literacy” OR 
“Access to health services” OR “Environmental conditions” OR “Quality 
of housing” OR “Crime and violence” OR “Access to foods that support 
healthy dietary patterns” OR “Social cohesion” OR “Discrimination” OR 
“Incarceration” OR “Civic participation”

AND

Characteristics

“Measure” OR “Assess” OR “Detect” OR “Surveillance” OR “Collect” 
OR “Identify” OR “Quantify” OR “Assess” OR “Impact” OR “Quantify” 
OR “Policy” OR “Disruption” OR “Strategic” OR “Change” OR “Impact” 
OR “Facilitator” OR “Barrier”
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Data Screening, Extraction, and Synthesis
The screening took place in two stages. Following the removal of duplicates, studies were screened 
independently by two authors (on title and abstract). Conflicts were resolved by a third reviewer. 
In the second phase, full text articles were screened independently by two authors. Conflicts were 
resolved by a third author. Data extraction was performed by two reviewers. Differences were resolved 
by a third reviewer.

The extracted data contained the following characteristics of each study: publication year; 
publication region; publication name; research theories; research approaches; research contexts; and 
samples. Data were also extracted pertaining to five research issues: (1) disruptions; (2) strategic 
responses; (3) digital data/technologies used; (4) negative/positive impacts; and (5) facilitators/barriers.

Extracted data were imported into a Microsoft Excel spreadsheet and a narrative synthesis was 
conducted. The qualitative and quantitative data were tabulated and classified according to five 
research questions. Frequency and proportion were calculated to examine the characteristics of studies.

RESULTS

Descriptive Quantitative Analysis
Overall Growth
A total of 73 papers (62 journal papers, five book chapters, three conference papers, two working 
papers, and one report) were included in the review. Figure 3 illustrates the annual number of published 
articles on DT in measuring SDOH. According to the results, over the last decade, researchers have 
continued to pay attention to DT in measuring SDOH. In fact, most of the articles were published 
after 2016.

Research Regions
Figure 4 shows the geographical scope of the included research. It is identified as the first affiliation of 
the article in this study. A total of nine countries were involved. Among them, the United States ranks 
first (with 61 publications). This is followed by the United Kingdom (4), and Australia (4). Portland.

Table 2. Selection criteria

Exclusion 
Criteria

1. Study that explores the new SDOH generated in the digital context. 
2. Study that records SDOH information using digital techniques. 
3. Study that assesses the importance of SDOH using digital techniques. 
4. Study that teaches SDOH-related classes using digital techniques. 
5. Study that predicts disease using SDOH data. 
6. Study that discusses traditional measurement strategies for SDOH. 
7. Study that uses digital techniques to solve SDOH-related problems. 
8. Study that discusses barriers or facilitators of digital transformation in measuring SDOH. 
9. Papers without full text. 
10. Literature review papers.

Inclusion 
Criteria

1. Study that explores disruptions that have occurred when DT is applied in measuring SDOH. 
2. Study that explores strategic responses that have been proposed by industry associations or 
governments to facilitate the DT of measuring SDOH. 
3. Study measuring SDOH with one or multiple digital data sources. 
4. Study measuring SDOH with one or multiple digital techniques. 
5. Study exploring the negative or positive impacts of DT in measuring SDOH. 
6. Study exploring the facilitators and barriers at the organizational level in the process of measuring 
SDOH in the context of DT.
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Figure 2.

Figure 3.
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Publication Sources
Furthermore, selected articles were distributed across various disciplines (e.g., information systems, 
public health, medicine, social science, and computer science). Publications with three or more 
articles include the American Medical Informatics Association Annual Symposium Proceedings 
(five articles), Journal of Biomedical Informatics (three articles), Journal of the American Medical 
Informatics Association (three articles), NPJ Digital Medicine (three articles), and American Journal 
of Preventive Medicine (three articles).

Research Theoretical Basis
Most studies did not employ a theory or framework to guide research. Only three studies adopted 
a specific theory or framework (social network theory, Bourdieu’s forms of capital theory, and the 
biopsychosocial model). Table 3 summarizes the theories/models and their descriptions.

Research Approaches
Twenty-three of the included articles belong to review/comment papers. The remaining 49 research 
papers used six approaches to answer research questions. Secondary data analysis (n = 35) was the 
dominant method in the digital measuring of SDOH. Secondary data used in this method is usually 
obtained from publicly available data sources (e.g., Lybarger et al., 2021) or third party (e.g., Melody 

Figure 4.

Table 3. Overview of the theoretical foundation of included studies

Theory Description Study

Social network 
theory

The theory holds that each person is embedded in a social network of 
relationships that can influence health through diet, exercise, and other 
lifestyle habits (Scott, 2012).

Dhand et al. 
(2022)

Biopsychosocial 
model

The model states that in every healthcare task, three dimensions (biological, 
psychological, and social) must be considered (Engel, 1977).

Conic et al. 
(2021)

Bourdieu’s forms of 
capital theory

Social class is a social group defined by the possession and utilization of 
various kinds of capital (economic, cultural, and social capital) in social 
space (Bourdieu, 1986).

Baum et al. 
(2012)
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et al., 2022). The remaining five methods were case study (n = 5), survey (n = 5), observation 
experiment (n = 2), interview (n = 1), and focus group (n = 1). Table 4 summarizes the research 
approaches adopted in the research papers.

Disruptions
Expanded Measurement Framework
DT calls for a new understanding of the concepts of SDOH measurement. The most significant 
disruption in the SDOH measurement framework has been expanded. Two new indicators, digital 
literacy and digital access, are suggested for inclusion in the SDOH measurement framework (see 
Figure 5) as super determinants of health. This is because they are essential factors that impact all other 
SDOH (Bauerly et al., 2019; Clare, 2021; Early & Hernandez, 2021; Golder et al., 2010; Kickbusch 
et al., 2021; Sieck et al., 2021).

Digital literacy refers to the ability to search, evaluate, create, and communicate information via 
information and communication technologies (American Library Association, 2017). Digital access 
refers to the appropriation process in the form of information and communication technologies. These 
forms are mainly computers and the internet. Sometimes, smartphones and other digital hardware 
and software are included (Van et al., 2017).

Few studies present digital health literacy as the super determinant of health instead of digital 
literacy (Gillie et al., 2022; van Kessel et al., 2022; Richardson et al., 2022). However, the relationships 
among digital health literacy, digital literacy, and health literacy in the SDOH measurement framework 
have not been identified. More empirical research is needed to support this opinion.

Table 4. Overview of the research approaches of included studies

Method Frequency

Secondary data analysis 35

Case study 5

Survey 5

Observation experiment 2

Interview 1

Focus group 1

Figure 5.
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Digitally Recorded SDOH Data
Increased activities have shifted online as DT is embedded into broader healthy, political, societal, and 
economic processes. As a result, SDOH-related data can increasingly be collected from digital data 
sources, such as electronic health records or other digital health information storage and management 
systems (Adler & Stead, 2015; Backholer et al., 2021; Bazemore et al., 2016; CRSBDMEHR, 2014), 
real-life digital trails (Thorpe et al., 2022), and virtual digital trails (Rowe, 2021).

Proposed Strategic Responses
A digitally inclusive strategy is most proposed in responding to DT when measuring SDOH. This 
generally includes improving citizens’ digital connectivity (e.g., providing equipment, reducing 
network costs, providing technical support) and digital literacy (e.g., providing digital literacy 
training) (Chakkalakal et al., 2014; Gold et al., 2017; Graham et al., 2016; Ray et al., 2017). Another 
strategy is through the creation of SDOH collection tools and record standards (BPHPHP, IoM & 
CRSBDMEHR, 2015; Friedman & Banegas, 2018).

In addition to efforts to create new collection and integration tools, a potential source of SDOH 
data already exists in electronic medical records. Thus, the International Classification of Diseases (10th 
edition) clinically modified Z codes (Z55-Z65) to document patients’ SDOH-related socioeconomic, 
occupational, and psychosocial environments (CMS, 2018).

Changes in the Process of Measuring SDOH
Changes in the process of measuring SDOH in the context of DT can be divided into three streams. 
First, as mentioned, the measuring framework of SDOH has been expanded to six domains with 21 
subdomains. Then, an overview of the SDOH domain measured in selected studies was completed 
(see Table 5). The results show that housing instability and social cohesion are the most watched 
indicators. Other indicators, measured by more than 10 articles, are poverty (n = 10), access to 
primary care (n = 11), and environmental conditions (n = 12). However, indicators of high school 
graduation, incarceration, and civic participation are only mentioned in two papers. Among the five 
SDOH domains, economic stability captures the attention of scholars. Social and community contexts 
gain the least attention.

The second stream of research places emphasis on seeking novel digital data sources (see Table 
6). Among these data sources, electronic health record (EHR) is the first to receive attention. It is 
still the key component of digital sources for measuring SDOH (n = 28). Particularly, unstructured 
EHR data, such as physician notes (Navathe et al., 2018) and nursing notes (Topaz et al., 2019), have 
attracted increased attention from scholars. Other digital data sources explored in selected articles 
contain online activity data (n = 3), mobile device data (n = 4), and online survey data (n = 4). 
However, online survey data are self-reported by research subjects. Other data are passively collected, 
which makes data more objective and accurate.

The third stream of research highlights technology innovation (see Table 7). Technologies that 
emerged from the analysis include digital analytic technologies (e.g., natural language process [NLP]), 
geographic information system (GIS), machine learning (ML), image processing (IP), digital display 
technology, and digital collection technologies.

There is a degree of overlap between research streams. For example, some studies that extract 
SDOH from novel data sources also try to innovate in data analysis methods (e.g., Gundlapalli et 
al., 2013; Lybarger et al., 2021; Navathe et al., 2018). In addition, with the deepening of research in 
related fields, increased studies will innovate in both data sources and collection/analysis methods.

Forty-four papers measuring SDOH with digital data resources and digital technologies have 
used different types of research samples. Table 8 lists the common research samples used in the 
selected research. Fourteen of the 44 identified studies use general patients as samples. Samples of 
four studies are general individuals. However, more studies select specific objects as research samples, 
such as participants with a specific disease, participants of specific age, participants with a specific 
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Table 5. Overview of SDOH domains in included studies

SDOH Domains Frequency

Economic stability

Housing instability 14

Poverty 10

Employment 9

Food insecurity 3

Education access and 
quality

Enrollment in higher education 6

Early childhood development and education 3

Language and literacy 3

High school graduation 2

Healthcare access and 
quality

Access to primary care 11

Health literacy 8

Access to health services 7

Neighborhood and 
built environment

Environmental conditions 12

Quality of housing 6

Crime and violence 4

Access to foods that support healthy dietary patterns 3

Social and community 
context

Social cohesion 14

Discrimination 3

Incarceration 2

Civic participation 2

New domains in the 
context of DT

Digital access 6

Digital literacy 1

Digital health literacy 1

Table 6. Overview of digital data sources used for measuring SDOH

Categories Study

EHRs (n = 28)

• Structured data (Blosnich et al., 2020; Caryn et al., 2014; Downs et al., 2019; Feller et al., 
2019; Kepper et al., 2023; Lasser et al., 2023; Rogers et al., 2022; Sills et al., 2016) 
• Unstructured data (Bejan et al., 2018; Bhavsar et al., 2020; Bucher et al., 2019; Conic et 
al., 2021; Feller et al., 2018; Goodday et al., 2020; Gundlapalli et al., 2013; Gundlapalli et., 
2014; Hatef et al., 2021; Hatef et al., 2022; Hazlehurst et al., 2014; Lybarger et al., 2021; 
Navathe et al., 2018; Reeves et al., 2021; Shoenbill et al., 2020; Stemerman et al., 2021; 
Topaz et al., 2019; Winden et al., 2018; Yu et al., 2022; Zhu et al., 2019)

Mobile devices data 
(n = 4)

• Mobile location data (Macha et al., 2021) 
• Wearable camera data (Gemming et al., 2015; Schrempft et al., 2017) 
• Sensor devices data (Dhand et al., 2022)

Online survey data (n 
= 4) Allison et al. (2022), Elin and Axel (2022), Greg et al. (2018), Prather et al. (2017)

Online activities data 
(n = 3)

• Online consumer data (Melody et al., 2022) 
• Social media and search engine data (Melody et al., 2022; Nguyen et al., 2017; Rachel, 
2021)
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occupation, or participants with a specific gender. Among these samples, mental illness patients, 
human immunodeficiency virus (HIV) patients, adults, and military veterans have gained attention.

The scale of selected samples varies from 15 (Schrempft et al., 2017) to 240 million (Rachel, 
2021). It is evenly distributed across four intervals through this review (see Table 5). Choice of sample 
size is closely related to research method. Research conducted by case studies, surveys, or observation 
experiments usually selects small-scale samples. The data collection and initial processing may need 
to be carried out manually by selecting a small-scale sample, making the research more feasible. 
The research using the secondary data analysis method generally chooses large-scale samples as they 
will result in more accurate research results. Finally, current computer technology has the ability to 
process large-scale data and unstructured data.

Table 7. Overview of digital technologies used for measuring SDOH

Category Study

Digital analytic 
technologies (n 
= 26)

NLP (n = 17)

Gundlapalli et al. (2013), Hazlehurst et al. (2014), Gundlapalli et al. (2014), 
Winden et al. (2018), Navathe et al. (2018), Feller et al. (2018), Bejan et al. 
(2018), Zhu et al. (2019), Topaz et al. (2019), Bucher et al. (2019), Goodday 
et al. (2020), Bhavsar et al. (2020), Shoenbill et al. (2020), Hatef et al. (2021), 
Conic et al. (2021), Hatef et al. (2022), Yu et al. (2022)

GIS (n = 5) Kolifarhood et al. (2015), Masho et al. (2017), Greg et al. (2018), Zhang and 
Schwartz (2020), Siegal et al. (2022)

ML (n = 2) Lybarger et al. (2021), Stemerman et al. (2021)

IP (n = 2) Gemming et al. (2015), Schrempft et al. (2017)

Digital display technologies (n = 1) Pettit and Howell (2016)

Digital collection technologies (n 
= 1) Friedman and Banegas (2018)

Table 8. Overview of the research samples of included studies

Sample Frequency

Characteristic

General individual 4

General patient 14

Participants with 
specific disease

ICU (n = 1); COVID-19 (n = 1); Cardiovascular (n = 1); Gestational 
Diabetes Mellitus (n = 1); Mental Illness (n = 3); HIV (n = 2); Eye Loss (n 
= 1); Hypertension (n = 1); Lung Cancer(n = 1); Tuberculosis (n = 1)

Participant with 
specific age

Live Birth Baby (n = 1); Children (n = 1); 4-17 years old (n = 1); Adult (n 
= 2); > 65 years old (n = 1)

Participant with 
specific occupation Military veterans (n = 2); Patients (n = 1)

Participant with 
specific gender Woman (n = 1)

Scale

> 100,000 10

10,000 - 100,000 12

1,000 - 10,000 9

< 1,000 8
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Two studies select longitudinal samples to follow individuals over time to measure changes in 
SDOH and health outcomes (Bucher et al. 2019; Feller et al., 2019). This type of sample is useful 
for understanding the impact of SDOH on health over time.

Facilitators and Barriers at the Organizational Level
Two types of facilitators emerged from the analysis. The first, the rapid adaptation of SDOH 
documentation tools in health information systems, includes EHR (Gottlieb et al., 2015; Wang et 
al., 2021). The second notes that unstructured SDOH data could be effectively captured and utilized 
with the development of technologies (Dorr 2019).

Meanwhile, studies found that a lack of interoperability is a key barrier to measuring SDOH in 
the context of DT (Cook et al., 2021; Lehne et al., 2019). Interoperability is the ability to exchange 
and use information shared between two or more systems or components (IEEE Standard Computer 
Dictionary, 1991). This requires a shared technical, legal, and organizational framework, which is a 
prerequisite for digital tools and data-driven technologies to realize their potential in public health 
(Lehne et al., 2019). However, combining data sets and running a comprehensive analysis is a 
longstanding challenge due to unstructured data and isolated data infrastructures (Cook et al., 2021).

Although SDOH is highly correlated with health, screening or conversations about SDOH are not 
a standard part of clinical communication (Gottlieb et al., 2015; Winden et al., 2018). For instance, 
the existing standard for recording SDOH (e.g., ICD-10-CM Z codes) has been found to have a low 
rate of utilization (Guo et al., 2020; Truong et al., 2020).

Negative and Positive Impacts
Impacts have been extensively discussed in the literature on DT measuring SDOH. The consensus is 
that the implementation of DT in measuring SDOH could reduce costs and improve efficiency (Siira 
& Wolf, 2022). It also poses a set of novel ethical and human rights challenges, such as privacy, equity, 
fairness, and safety (Bincoletto, 2020; Cantor & Thorpe, 2018; Kickbusch et al., 2021; Wood, 2020).

The studies yield inconsistent findings about the accuracy of digitally measuring SDOH. Several 
studies found that leveraging digital technologies and data in measuring SDOH could improve accuracy 
(Greer et al., 2022; Macha et al., 2021; Rowe, 2021). However, several scholars indicate biases in 
algorithmic development and data collection (Wood, 2020), as well as the growing digital divide 
(Baum et al.,2012). These factors could, in turn, magnify the monitoring deviation.

DISCUSSION

DT in measuring SDOH continues to gain attention from scholars and officials. However, a unified 
and systematic understanding of current knowledge is lacking. Therefore, based on a widely accepted 
DT process framework, this study reveals the current situation of related research from the aspects 
of disruptions, strategic responses, changes happening in the processes, facilitators, barriers, and 
negative and positive impacts. This section uses the observations and findings to discuss gaps in 
research and future opportunities.

First, the authors recommend discussions on how to expand the SDOH measurement framework 
in the context of DT. A preliminary consensus has been reached about expanding the measurement 
domain of SDOH in the context of DT. However, the exact number, name, and relationship of indicators 
are being discussed. For instance, which indicators should be adopted in the new measurement 
framework (digital health literacy, digital literacy, or both)? What is the logical relationship between 
digital health literacy, digital literacy, and health literacy if they are all included in the measurement 
framework? Besides, most current research on new indicators belongs to conceptual discussions. 
Therefore, more empirical research is needed to support the development of a measurement framework.
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Second, future research directions should develop new digital data sources because the existing 
development of data sources is limited. The current research shows that the digital data sources 
used in existing research focus on EHR. Thus, they lack exploration of other digital data sources, 
especially passively collected data. There is rich research on digital public health surveillance using 
digital data. In addition, it is proven to be effective and feasible (Dredze, 2014; Șerban et al., 2019; 
Drew et al., 2020; Menni et al., 2020).

Besides, the measurement of SDOH belongs to the category of digital public health surveillance. 
Therefore, most digital data sources used in the research of digital public health surveillance (i.e., 
sensor data, social media data, search engine data, and online news data) are theoretically feasible 
for the detection of SDOH. Future research can learn from existing studies on digital public health 
surveillance and, in turn, develop more effective digital data sources to measure SDOH.

Furthermore, extant literature has not compared the differences among data sources used in 
measuring SDOH. Future research could investigate questions around which type of data could 
measure SDOH more accurately (active presentation data or passively collected data).

Third, the authors aim to further measure the SDOH with less attention. The current study shows 
that the measurement of SDOH in existing research focuses on few indicators, including housing 
ability, social cohesion, power, access to primary care, and environmental conditions. There are still 
many SDOH indicators to be measured. For example, future research could investigate how to measure 
civic participation or discrimination with digital data sources and technologies. The measurement of 
health literacy, digital literacy, digital health literacy, and digital access, as relatively new concepts 
with evolving definitions, should also be explored (American Library Association, 2017; Berkman 
et al., 2004; van Kessel et al., 2022).

Fourth, future research should explore new methods for SDOH measurement. The current study 
shows that most existing studies adopt secondary data analysis as a research method. This lacks in-
depth exploration of other research methods. With the rapid development of sensor technology, real-
time and specific data collection of research objects will become increasingly convenient. Therefore, 
observation experiments will have more space in SDOH measurement research. Future research 
should give more attention to observation experiments and other research methods, including how to 
use sensor technology to capture and categorize the environmental and social context of individuals.

Fifth, the current research shows that many studies are conducted in the U.S. The sample is 
too strong to effectively promote research results. Future research should include more extensive 
samplings in different regions of the world to expand the range of existing research and increase the 
universality of results. Furthermore, the research could compare the accuracy of the monitoring of 
SDOH through social media data in different countries.

Last, prior studies yield inconsistent findings regarding the influence on the accuracy of measuring 
SDOH in the context of DT. Most empirical studies support that leveraging digital technologies and 
data sources in SDOH measurement could improve accuracy. Macro factors like algorithmic biases 
(Wood, 2020) and the digital divide (Baum et al., 2012) would magnify the monitoring deviation. 
Thus, future research should explore the differences and interrelationships among these accuracy 
impact factors. Furthermore, there exists a tipping point to which macro factors (e.g., digital divide) 
have been improved. Thus, relevant disputes will no longer exist.

CONTRIBUTIONS

This study makes three main contributions. First, guided by PRISMA 2020, this study uses a rigorous 
method to review and analyze the published research on digital measurement of SDOH. Then, it 
determines the trend, theoretical basis, method, and background. Second, this study applies and 
adapts the DT process framework presented by Vial (2019) to explore the current situation of related 
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research from five aspects (disruptions occurred, strategic responses, changes that happened in the 
processes, facilitators and barriers, and negative and positive impacts). Third, based on the discovery 
and analysis, the authors identified six future research directions.

However, this study is not immune to the common limitations of the literature review. For example, 
although this study does not restrict the search language, there are no non-English studies in the final 
review. Additionally, the keywords in the literature search need to be covered in more detail to search 
the literature more comprehensively. Further studies can improve the search keywords.
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