

Edinburgh Research Explorer

Dynamic, automatic, first-order ontology repair by diagnosis of
failed plan execution

Citation for published version:
McNeill, F & Bundy, A 2007, 'Dynamic, automatic, first-order ontology repair by diagnosis of failed plan
execution', International Journal on Semantic Web and Information Systems, vol. 3, no. 3.
https://doi.org/10.4018/jswis.2007070101

Digital Object Identifier (DOI):
10.4018/jswis.2007070101

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

Published In:
International Journal on Semantic Web and Information Systems

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 30. Apr. 2024

https://doi.org/10.4018/jswis.2007070101
https://doi.org/10.4018/jswis.2007070101
https://www.research.ed.ac.uk/en/publications/58cf5d09-e202-44cc-b88f-e6e5bbf227c0

Dynamic, automatic, first-order ontology repair by diagnosis of failed
plan execution

Fiona McNeill and Alan Bundy
{f.j.mcneill,a.bundy}@ed.ac.uk

School of Informatics, University of Edinburgh, EH8 9LE, Scotland

We describe, an ontology repair system. In contrast to most ontologymatchingsystems,
 is designed torepair an ontology that does not accurately model its domain, rather than
to find links between two or more unchanging ontologies. It also works on first-order repre-
sentations rather than just concept taxonomies, classifications or hierarchies. can make
belief revisions, but it more often makessignaturerepairs,i.e.changes to the arities, types and
numbers of predicates. Unlike traditional ontology matching systems, does not require
full access to the ontologies of other agents and works entirely automatically and dynamically.
However, it does assume a large measure of pre-existing similarity between the ontologies
of interacting agents: it is designed to deal with ontologies that are evolving and that come
originally from the same source.
 works by analysing failed plan executions to diagnose ontological mismatches and to im-
plement repairs. This process iterates until it reaches either successful plan execution or failed
plan formation.
 is the first example of a new breed of dynamic, automatic ontology-repair mechanisms,
which we believe will be essential to realise the vision of autonomous, interacting agents, such
as envisaged in the Semantic Web. Full access to another (potentially rival) agent’s ontology is
unrealistic for both practical and commercial reasons. Static and interactive matching mecha-
nisms are unrealistic in the context of huge and dynamic populations of agents. Full ontological
agreement is pragmatically unrealistic, even where a standard ontology has been agreed, due
to evolving versions and local customisation.
Addressing these issues is very challenging. We have made a promising start, but much re-
mains to be done. To make initial progress, we have made many simplifying assumptions. We
present encouraging experimental results and an analysis of current limitations to be addressed
in future work.

The Problem of Dynamic
Representation

It is becoming a commonly accepted fact of life in Artifi-
cial Intelligence that semantics are fluid. The way in which
one person assigns meaning to a term may not reflect another
person’s way. Even if people are using the same language
and representing the same domain, the words they choose to
represent a certain meaning, the granularity of concepts they
choose and the structure in which these concepts are organ-
ised will inevitably diverge. Moreover, theories of knowl-
edge evolve as they are revealed to be inefficient or incorrect
or as they are used in different domains to the one in which
they were developed. This evolution could be central (an of-
ficial source of knowledge is updated) or it could be local (in-
dividuals or groups using publicly available knowledge can
alter it to suit their own requirements).

The research reported in this paper was supported by EPSRC
grant GR/S01771, the funded OpenKnowledge project and an
 studentship to the first author. We are very grateful to our
anonymous reviewers for their constructive and helpful feedback.

In AI, it is becoming increasingly apparent that the con-
cept of a global ontology – a definitive account of what exists
– is an impossible ideal. In practise it is often the case that
agents have individual ontologies that differ, to a greater or
lesser extent, from the ontologies of other agents, and in such
cases an ontology must be considered to be a single agent’s
view or perspective on the world. Agents cannot in general
interact successfully with other agents unless they are able to
understand the terms which those agents are using by match-
ing them to terms from their own ontologies: this is the role
of ontology matching. However, we believe that it is not suf-
ficient to match the words and concepts from one ontology
to another, but that the signature of the ontologies must also
be matched: representation itself is fluid (Bundy & McNeill,
2006).

The problem we address is of a very different nature to the
problem of ontology matching. In order to clarify this point
and allow the reader to address the paper with a full under-
standing of our approach, we define our interpretation of tra-
ditional ontology matching (Definition 1) and our approach
to ontology repair (Definition 2). Comparison of these two
definitions reveals the difference in our approach.

2 FIONA MCNEILL AND ALAN BUNDY

Definition 1 (Traditional Ontology Matching) For two
ontologies, O1 and O2, a mapσ must be found such that for
every theoremφ1 in O1, if it is mapped byσ to a theorem
φ2 in O2, thenφ1 is derivable from O1 if and only if φ2 is
derivable from O2.

∀O1 : O,O2 : O.∃σ : O1 ×O2.∀φ1 : O1, φ2 : O2.
σ(φ1, φ2)→ (O1 ⊢ φ1↔ O2 ⊢ φ2) (1)

Definition 2 (Ontology Repair: our approach) For an on-
tology O, for any statementφ that is derivable from O but is
discovered to be incorrect according to the world, a mapπ
exists such that eitherπ(φ) is correct according to the world
and derivable fromπ(O) or, if this cannot be satisfied,π(φ) is
not derivable fromπ(O).

∀O : O.∀φ : O.(O ⊢ φ∧ 6|= φ)
→ ∃π : (O 7→ O).(π(O) ⊢ π(φ)∧ |= π(φ)) ∨ π(O) 0 φ (2)

These definitions highlight the different problems that our
approach and the traditional approach are tackling. Both ap-
proaches are subsets of the global problem of misalignment
between ontology, but are focused on different aspects of that
problem. We briefly elaborate on these differences to en-
sure that the reader has a full understanding of our aims with
which to approach the paper.
• The traditional definition of ontology matching is con-

cerned with linking two ontologies,O1 andO2. Our approach
is focused only one ontology,O: the ontology of the agent or
system,A, which is using to help it communicate despite
potential mismatches with the world. The meaning ofO is
then considered not explicitly in terms of another ontology
but in terms of feedback from the world or environment in
which A is interacting. In a multi-agent system, this interac-
tion with the world will be interactions with other agents, and
mismatches between the ontologyOand the world will imply
mismatches betweenO and the ontologies of the agents with
which A is interacting. However, we emphasise that this is
not intrinsic to our approach: the world could be a physical
one, for example. Key to this is that in our approach, ontol-
ogy repair is done from the point of view of one agent: this
agent has only limited access to other agent’s ontologies and
is using to do its best to have successfully interactions
in a complex and only partially understood world. This is
opposed to the “God’s view” approach often used in ontol-
ogy matching, where it is assumed that both ontologies are
fully revealed and that the matching is done externally to any
agent using one or other of the ontologies.
• In Definition 1, the ontologies themselves remain un-

changed. A map,σ, is found between them and is applied
to the objects in them, butσ does not affect the ontologies
themselves. In Definition 2, however,π is discovered in ref-
erence to a particular object inO that has been discovered to
be false in the world andπ is then applied to the ontology
itself so that a new version ofO, π(O) is derived. That is,π
is a function between one ontology and a repaired one.
• In Definition 1, the ontology mapσ depends only on

the two ontologies and applies to all sentences, whereas the
ontology repairπ is dependent on the sentenceφ which has
witnessed the original ontology’s inconsistency.

• Whereas traditional ontology matching is generally
maximal, that is, a map between the entire ontologies is
sought, our approach is minimal: we only wish to change
that part of the ontology that has been directly proved to be
incorrect. We therefore have an additional minimality con-
straint, whereby we are only interested in altering the object
φ that has been discovered to be untrue and any other objects
in the ontologyO that are dependent onφ; all other objects
are unchanged by the matching.
The solution we propose to this problem is therefore de-
signed to work at run-time and only when problems become
apparent, making ontology alteration necessary. In large,
multi-user systems such as the Semantic Web, one might
wish to interact with large numbers of different users in a
short space of time and may not be able to predict in advance
who these may be: it is therefore impossible for us to match
their ontologies before run-time. Each interaction may con-
cern only a small part of our, or their, ontology and we may
then never interact with this individual again: it is therefore
extremely wasteful to match the entire ontologies. Agents
may have commercially sensitive material and may be un-
willing to reveal their entire ontologies to unknown agents
encountered during interactions, or may find it impractical
to do so, in which case matches must be gleaned from those
parts of their ontologies that they choose to reveal during in-
teractions.
• We are interested not only in matching the meanings

of words but also in matching the representation language in
which the ontology is written, which is defined in the sig-
nature of the ontology. When an ontology evolves, the shift
of the meaning of words is only one aspect of the problem.
Another key aspect is that signature objects, such as predi-
cate definitions and the type hierarchy, may also change. For
example, arguments may be added to predicates, the types
of arguments of predicates may change, and so on. In this
work we focus on the issues surrounding the shifting of the
representational language of the ontology. There has been a
great deal of work done in the field of matching words, albeit
not always within the confines of the context we are inter-
ested in. However, we believe that the problem of matching
different representations has not been addressed to any extent
in the literature, and yet is of key importance in the problem
of evolving ontologies.

This kind of underlying representational change is a com-
mon occurrence in every day life. Consider, for example, the
everyday experience of buying something from a slot ma-
chine. Imagine that the buyer knows that the item they want
costs £5, and so comes prepared with a £5 note. However, on
closer inspection, it is discovered that the machine does not
take notes but only coins: thus the buyer’s expectation thathe
must have £5 is revised to an expectation that he must have
£5 in coins. Whilst attempting to pay with coins, the buyer
may then discover that the machine does not take the new
50p coins - perhaps it is an old machine. Even some coins
that the machine claims to accept are unexpectedly rejected
- perhaps they are too worn. It may later be discovered that
the machine will accept coins which it is not supposed to
accept - for example, foreign coins that are similar enough in

DYNAMIC, AUTOMATIC, FIRST-ORDER ONTOLOGY REPAIR BY DIAGNOSIS OF FAILED PLAN EXECUTION 3

shape and size for the machine to confuse them with legiti-
mate coins. In order to obtain a correct understanding of how
to buy something from the machine, the buyer must alter the
preconditions he has on buying from the machine. However,
this does not merely require a change of belief but also of the
representation itself. New concepts have to be developed:
“coins excluding the new 50p”, “coins that are not too worn
to be accepted by this particular machine”, “foreign coins
that will fool this machine”, etc.

As another example, consider the experiment conducted
by Andreas diSessa on first-year MIT physics students
(diSessa, 1983). Students were asked to imagine a ball being
dropped from a height onto the floor, and asked to consider
how the energy of the ball changes. Before the ball is re-
leased, it has potential energy but no kinetic energy. As it
is falling, it has kinetic energy and potential energy, and just
before it hits the floor it has kinetic energy but no potential
energy. However, as it hits the floor it has neither potential
nor kinetic energy. The students had difficulty in accounting
for this “missing” energy. The answer was that this energy
was stored in the deformation of the ball. However, the stu-
dents had idealised the ball as a particle with mass but no
extent and so the correct answer could not be realised within
their representation. In order to see the correct answer, they
had to not merely change their beliefs about the ball but also
change theirrepresentationof the ball.

In this paper, we present our system,, which uses a
diagnostic theory based on abstraction and refinement tech-
niques to diagnose mismatches between ontologies that were
similar but have diverged. is intended to be a compo-
nent that any agent could use that would increase its chances
of engaging in successful interactions, because these inter-
actions may be possible even in situations where ontology
mismatches would, without diagnosis and repair, lead to fail-
ure.  focuses not on alignment between concepts, an
area where much work has been done and where there are
many other systems that can perform this part of the prob-
lem, but on structure alignment, a problem that has received
considerably less attention. An agent using is not intend-
ing to converge to a more correct version of its ontology –
though it could be used in this way if all external agents are
similar to each other – but rather assesses alignment needs
afresh for each agent it encounters and does not assume any
consistency between these other agents. is intended to
function in situations where agents have ontologies that may
have come from the same or a similar source and have di-
verged over time, rather than ontologies that are completely
disparate.

Our hypothesis is that:

it is possible, using dynamic ontology repair,
to locate and correct ontological mismatches
between agents during run-time, to enable suc-
cessful communication which would otherwise
be impossible. This repair must apply not only to
the concepts of an ontology but also to its struc-
ture.

In the next section, we clarify our view of ontologies and

detail the kinds of ontologies is designed to work with.
We then describe the context in which is designed to
work and provide a worked example of how functions.
The following section details our diagnostic theory and in-
troduces the theory of abstraction and refinement, and then
explain how it forms the basis of the diagnostic algorithm
in . We then provide an overview of the architecture and
subsystems of. Later, we describe the evaluation we have
performed on the system, both to confirm that the theoreti-
cal functionality is performed successful on ontology match-
ing problems and to provide statistical analysis of how often
real ontological mismatches could be successfully diagnosed
and refined by and analysis of mismatches for which this
failed. We then examine related work and explain how
fits in with other ontology matching systems. Finally, we
summarise the paper and draw conclusions.

Ontologies

There is some ambiguity and disagreement over the mean-
ing of ontology. Here, we define how we use the term in this
paper:

Definition 3 (Ontology) An ontology consists of two parts:
• the signature, which describes the representation lan-

guage in which the ontology is written;
• the theory, which contains formulae written in the rep-

resentation language and asserted to be true.

Ontologies are often considered to be simply hierarchies of
concepts (or taxonomies), describing only the kinds of things
that can exist and the subtype relations between them. This
richer notion of ontology, however, describes not just the
concepts and their hierarchical relationships, but also how
concepts can be related in a non-hierarchical manner through
predicates. These provide a rich language for expressing the
domain of the ontology.

Our work primarily focuses on the problem of representa-
tional mismatch: that is, mismatches in thesignature. How-
ever, alterations in the signature will normally also entail
alterations in the theory, where the particular signature ob-
ject is instantiated, and these are addressed where necessary.
There are many different levels of expressiveness which can
be contained in an ontological representation. Traditional
ontology representations range from full first-order to more
restricted representations such as Description Logics to tax-
onomies. Higher-order ontological representations are not
commonly used as reasoning with them is intractable. Our
work focuses on first-order ontologies, though the system
works with restricted first-order (discussed in the following
section).

Context of

“To learn, a learner needs to formulate plans, monitor the
plan execution to detect violated expectations, and then diag-
nose and rectify errors which the disconfirming data reveal.”
Frederick Hayes-Roth (Hayes-Roth, 1983)

4 FIONA MCNEILL AND ALAN BUNDY

We are concerned with the resolution of the problem of
ontological mismatch within a planning context, such as
would be necessary for an agent to orchestrate Semantic Web
services to reach a goal. An agent forms plans to achieve a
goal based on its understanding of the domain, and then at-
tempts to execute these plans through communication with
other agents. Planning in complex and dynamic environ-
ments is very difficult because any incomplete, incorrect or
out-of-date information can cause an inexecutable plan to be
developed because the environment is changing while plan-
ning is being performed. However, by adopting our approach
to ontological repair, these cases of plan execution failure can
be considered to be opportunities to learn more about the do-
main through repairing a mismatched ontology. Executing
plans, in our environment, is done by interacting with agents
who can perform the necessary tasks of the plan: for exam-
ple, buying a ticket is performed by successfully interacting
with a ticket-selling agent. Information about the cause of
failure is extracted from observation of the communication
surrounding plan failure, augmented by further communica-
tion with the other agents involved. Once the point of failure
has been located, repair techniques are implemented to fix
the problem, and a new plan is developed using the updated
ontology. This plan is more likely to succeed than the previ-
ous plan. This procedure is repeated until the goal is success-
fully reached, or until it becomes impossible to form a plan
to achieve the goal from the updated ontology. In, Defi-
nition 2 is used retrospectively rather than proactively. That
is, does not ensure it is enforced every time an interaction
takes place, but if an interaction leads to plan failure thenthe
equation is used to determine the cause of the failure.

We consider that there are three essential elements to cre-
ating such a dynamic ontology repair system:

1. the ability to link the relevant information about the un-
derlying ontology to the plan;

2. the ability to use this information to diagnose the exact
source of the problem;

3. the ability to select and apply appropriate techniques
for altering the ontology.

Of these, the ability to diagnose mismatches forms the
heart of the system. The ability to link plan execution de-
tails to the ontology which formed the plan and the ability
to refine the ontology after diagnosis are also crucial but are
less theoretically difficult. We therefore mention these latter
abilities in passing later in the paper, but dedicate the bulk of
this paper to discussing diagnosis.

In order to determine how to match the excerpts of un-
known ontologies revealed via communication to a known
ontology, we need to determine what the representation of
those ontologies are. Since we are interested in a planning
context, we are interested in representations that are expres-
sively rich enough to allow planning. We have therefore de-
veloped our diagnostic theory to deal with ontologies written
in first-order logic. This expressive power allows us to deal
with an interesting version of the problem, partly because it
allows scope for many kinds of mismatch and partly because
it allows interesting planning. However, in order to limit the
difficulty of the problem in the first instance, we decided to

exclude existential quantification from our algorithms, with
all variables being implicitly universally quantified, andour
algorithms therefore cannot be said to work with full first-
order logic.

When implementing the diagnostic theory in the system,
we needed to find a representation that was first-order but that
was also a standard ontology format, and therefore choose to
work with ontologies written in (Knowledge Interchange
Format)(Genesereth & Fikes, 1992). is a popular full
first-order ontological representation format. Choosing
as the representation to explore this issue allowed us to ex-
amine the problem in a rich environment. ontologies in-
clude types, predicates, individuals and axioms. Axioms can
be thought of as implication rules that have a conjunction
of relations determining when the rule is applicable, and a
conjunction of relations describing the situation after the rule
has been applied and can therefore describe plan action rules.
Much of our research focuses on identifying what potential
mismatches could arise between these ontological objects.
Since our diagnostic algorithms were designed to deal with
first-order logic excluding quantification, we must deal only
with  ontologies that do not have quantification: this is
normally allowed in. Additionally,  allows complex
class definitions which are not covered by our first-order di-
agnostic techniques, and we therefore use a restricted version
of  that uses simple class definitions.

When an ontological mismatch is detected, there is the po-
tential for some complex negotiations between the agents as
to which of them ought to refine their ontologies, or, indeed,
whether both should. Factors that might be relevant here are
whether one of the agents is recognised, perhaps by the com-
munity, perhaps by the other agent, to be an authority on the
matter; whether one is controlling the situation by, for exam-
ple, being able to provide something that is required by the
other agent; whether either of the agents consider this partof
their ontology to be particularly important and are unwilling
to compromise it; and so on.

We simplify all these issues by assuming that the planning
agent () is willing to take on trust any information that is
given to it by another agent. We believe that this assumption
is plausible, because, in this scenario, the is interacting
with other agents because it wishes them to provide services
for it; hence the other agents are in control of the situation.
This assumption also makes the situation tractable and allows
us to avoid getting side-tracked onto important but tangential
issues.

Example 1 (Online travel planning) The following worked
example is intended to illustrate the system as it creates
and executes plans, detects and diagnoses failure, repairsits
ontologies, then replans recursively until it either constructs
a plan that executes successfully or it fails. The domain
concerns the submission of the camera-ready copy of an ac-
cepted paper to a conference, then making plans to attend
the conference. It uses a peer-to-peer, multi-agent system.
Various agents assist the paper writer to submit the paper
and attend the conference. They interact together to achieve
the various goals this entails.

DYNAMIC, AUTOMATIC, FIRST-ORDER ONTOLOGY REPAIR BY DIAGNOSIS OF FAILED PLAN EXECUTION 5

In this example, the planning agent acts as the paper
writer’s personal assistant. The plan includes steps in which
the other agents perform various services, e.g., accept the
submitted paper. If the planning agent’s ontology were an
accurate model of the world then it would be bound to suc-
ceed. So a failure during plan execution signals an ontology
failure. For instance, the submission agent might refuse to
accept the paper. The traveller must then diagnose the fault
in its ontology and repair it. A new plan for the goal is then
derived and executed. This new plan may also fail, trigger-
ing a further round of diagnosis and repair. This process
recurses until either a plan is derived that successfully exe-
cutes or the planning agent is unable to diagnose or to repair
a fault.

The agents involved are as follows:

Planning Agent: which is responsible for forming and exe-
cuting the overall plan.

Publication Agent: through which the camera-ready copy
can be sent for publication in the proceedings.

Registration Agent: which can register conference atten-
dees.

Accommodation Agent: which can book accommodation
for a conference delegate.

Paper Conversion Agent: which is able to convert papers
into different formats.

The planning agent forms the following plan from its ini-
tial ontology1:
(SendPaper Researcher My-Paper.ps Ai-Conf),
(Register Researcher Ai-Conf Registration-Cost),
(BookAccom Researcher Ai-Conf Accommodation-Cost).

The first action,SendPaper, fails to be executed. There
was some questioning before the failure occurred, which in-
cluded a query from the publication agent:(Format My-
Paper.ps Pdf-Paper). The had not realised that this was
a precondition to the action but the fact that a question was
asked about it before the action could be performed means
that it is obviously important. Themust determine whether
this statement is true, and since My-Paper.ps is in Ps format
and not Pd f , it replies to the publication agent that this is not
true. The publication agent then fails to perform the action.
The can then determine that this ought to be a precondition
to the action and that it ought to change its rule concerning
the action to include it. It now plans again. This additional
precondition of the S endPaper action is not initially true,so
a new action must be included to make it true. The new plan
is:
(Convert-Paper Researcher My-Paper.ps My-Paper.pdf)
(SendPaper Researcher My-Paper.pdf Ai-Conf),
(Register Researcher Ai-Conf Registration-Cost),
(BookAccom Researcher Ai-Conf Accommodation-Cost).

The first and second action are now executed successfully.
The third action,Register, fails, following a surprising ques-
tion: (Money PA Credit-Card ?Amount), wherePA is the.
The predicateMoney matches a precondition thatPA was

expected to be asked about:(Money PA 100); however, the
surprising question has an extra argument concerning type
of payment. The discovers what the class of this extra
argument is (if it does not currently have this information,it
can question the registration agent) and alters its definition
of theMoneypredicate to include this extra argument. Every
instance of this predicate must also be changed. Before the
 can make plans using this, it must verify thatCredit-card
payment is indeed possible.

After this change has been made, the replans to form
the following plan:
(Register Researcher Ai-Conf Credit-Card Registration-
Cost),
(BookAccom Researcher Ai-Conf Credit-Card
Accommodation-Cost).
These actions are performed successfully.

This worked example is part of a larger example which
has been implemented in the system and successfully ex-
ecuted.

Determining Potential
Mismatches

The diagnostic process depends on a systematic analy-
sis of possible mismatches in the given representation - in
our case, first-order logic. There are two steps in produc-
ing a successful diagnostic algorithm: firstly, determining
the space of possible mismatches for the representation and
secondly, developing techniques that can use the available
information to search through this space and find a precise
diagnosis. The latter process depends on the context in which
interactions are taking place and on what this available infor-
mation about the mismatch happens to be in a given situation,
and in many cases it may be that a precise diagnosis cannot
be found. The former process, however, must be a precise
and methodical analysis of the problem. If there are situa-
tions in which certain mismatches cannot be precisely diag-
nosed (as is the case in the context of; these situations
are discussed later in the paper) this is because developing
diagnostic techniques that can opportunistically take advan-
tage of the available knowledge is difficult and there may be
cases where the available information is simply not enough
to narrow the mismatch down to a specific possibility. Such
situations, however, do not point to a flaw in the space of
possible mismatches.

In this section, we define what we mean by first-order on-
tologies and then present an analysis of possible mismatches
between such ontologies. This analysis is generic and can be
applied to any situation in which mismatches between such
first-order ontologies are diagnosed. We then describe the
diagnostic techniques we build on top of this to perform di-
agnosis in the specific context of our system.

1 The representation used in this example is: the first element
of a tuple represents the predicate and the following elements, the
arguments. Arguments beginning with a question mark are vari-
ables; otherwise, they are constants.

6 FIONA MCNEILL AND ALAN BUNDY

Definition 4 (First-Order Ontology) We consider first-
order ontologies that contain:
• A signature, containing:

• Definitions of predicates: their names, arity and number
of arguments. Unary predicates are class definitions.
• Details of relationships between predicates. In the case of
the unary predicates, these relationships define a class hier-
archy.
• A theory, containing:

• Instantiations of the predicates defined in the theory.
• Action rules, which define the way in which performing
actions as part of a plan can alter the truth values of facts
in the theory. Action rules have preconditions, stating which
facts must be true or false in the theory for them to be appli-
cable, and effects, stating what facts are altered as a result
of the action.

This is described in Figure 1.

<predicate>::=<pred name> <args> <super pred>
<args>::=<variable id><type>

| <variable id><type> & <args>
| []

<type>::=<type name>, <supertype>
<supertype>::=<top>

| < type>
<super pred>::=<top>

| < pred name>
|[]

<rule>::=<conditions>→<conditions>
<conditions>::=<predicate>

| <predicate> & <conditions>
| []

<pred name>::= term
<typename>::= term

Figure 1. BNF description of the signature of ontologies on which
the diagnostic algorithms are based. uses ontologies written in
a form of that has been slightly simplified so as to conform with
this description.

We believe this is a standard definition of a first-order on-
tology with the exception of the inclusion of action rules,
which describe the necessary conditions for actions to be per-
formed and the effects of that action. Since we are consid-
ering diagnosis in a planning environment, we need to in-
clude these in our definition of an ontology. The mismatches
between ontologies without action rules would still be fully
described by our analysis of possible mismatches but our di-
agnostic techniques could not be applied in the way we have
envisaged.

Note that the BNF in Figure 1 describes the signature of
appropriate ontologies and not the theory. The signature de-
tails the way in which ontological objects such as predicates
must be defined; the theory contains specific instantiationsof
these signature objects. Because theory objects are specific
instantiations of these signature objects, they do not needto
contain all the general information about these objects. For
example, Figure 1 tells us that a predicate definition consists

of a predicate name, a number of args which must all has a
variable identifier and a type for that variable, and a super-
predicate (which could be null) which details how the pred-
icate fits into the predicate hierarchy. In practice, this may
look like the following:

(De f ine-Predicate Paper(?Title ?Author)
(Title ?Title) (Author ?Author) Written-Item) (3)

The first item in the definition is the predicate name, the
second item is a list of the variable identifiers, whose types
are detailed by the third and fourth arguments, and the final
argument is the super-predicate. However, when this pred-
icate is instantiated to create a theory object, general infor-
mation such as the types of the arguments and the super-
predicate do not need to be detailed: these can be deduced by
reference to the signature definition of the object. Instead, the
specific instantiations of the variables must be given, and the
types of these instantiations must agree with the type restric-
tions given in the signature. So, for example, an instantiation
of this predicate may be:

(Paper MyPaper S mith). (4)

The examples given below refer to mismatches in signa-
ture objects; however, for the sake of conciseness, we do not
always give the full definitions of them as shown in the ex-
ample predicate definition above. Instead, for these partic-
ular examples, we adopt a shorthand version of the defini-
tion which gives the pertinent information and appears sim-
ilar to a theory instantiation of the predicates. For exam-
ple, the definition ofPaper in Equation 3 may be given:
(Paper?Title ?Author), which is intended to signify that the
predicatePaperhas two arguments of typeTitle andAuthor.
Such variable names would normally just be place holders
and the type definitions would have to be referred to. How-
ever, it is very common to use the names of the types for
these placeholder names and, for the sake of convenience,
in the examples below we assume that this is the case and
therefore omit the actual type information. We do not give
information about the super-predicate unless it is pertinent to
the mismatch we are describing.

Abstraction and Refinement

The reasons that ontologies are altered are very often con-
cerned with the fact that too much or, more often, too little
detail has been included in the ontology. This creates the
need to remove detail - performing anabstractionof the on-
tology, or add detail - performing arefinement. Notions of
abstractions are often quite vague, but the theory of abstract-
ing first-order ontologies was formalised by Walsh and Giun-
chilgia (Giunchiglia & Walsh, 1990), who created a theory of
abstraction through observing and categorising large num-
bers of examples of abstraction. Since abstractions should
change the theory and not the logic (except in the case of re-
ducing a unary predicate to a nullary predicate, which could
be seen as reducing first-order logic to propositional logic),

DYNAMIC, AUTOMATIC, FIRST-ORDER ONTOLOGY REPAIR BY DIAGNOSIS OF FAILED PLAN EXECUTION 7

the problem of building abstractions can be reduced to the
problem of deciding on a suitable matching of atomic formu-
lae. They developed four categories into which abstractions
of objects in first-order ontologies can fall:

1. Predicate abstractions
matching predicate names in some uniform way:e.g.,
(Bottle ?X), (Cup ?X)map onto(Container ?X).

2. Domain abstractions
matching constants and function symbols in some uniform
way: e.g.,
(Prime 3), (Prime 5)map onto(Prime Oddnumber).

3. Propositional abstractions
dropping some or all of the arguments to predicates: e.g.,
(Abelian GroupA), (Abelian GroupB)map onto(Abelian).

4. Precondition abstractions
matching some of the atomic formulae ontotrue or false:
e.g.,
(Has Ticket Me)→ (Can-Travel Me)maps onto(Can-Travel Me)

We have developed corresponding refinement categories
through inverting these abstraction categories:

1. Predicate refinement
A single predicate is split into one or more subtype predi-
cates, e.g.,:
(Money ?Amount)maps onto(Dollars ?Amount), (Euros ?Amount),
(Sterling ?Amount), etc.

2. Domain refinement
The type of an argument is divided into one or more sub-
types, e.g.,:
(Money ?Amount European)maps onto(Money ?Amount Euros),
(Money ?Amount Sterling), (Money ?Amount Krona), etc.

3. Propositional refinement
The arity of a predicate is increased, e.g.,:
(Money ?Amount)maps onto(Money ?Amount Dollars), (Money
?Amount Sterling), etc..

4. Precondition refinement
A precondition is added to a rule, e.g.,:
(Has Money ?Agent)→ (Has Item ?Agent)maps onto
(Has Money ?Agent)∧ (InStock Item Shop)→ (Has Item ?Agent)

Naturally, not all possible mismatches in first-order tech-
niques are concerned with abstraction or refinements, but
these categories describe a large number of mismatches that
are encountered and provide a basis for developing a full the-
ory of the space of possible mismatches between first-order
ontological objects.

Types of Mismatches

A mismatch between ontological objects must exist be-
tween ontological objects of the same type (otherwise the
two objects are not mismatched, they are simply different).
Since each ontological object has only a certain number of
attributes, and the way in which objects are mismatched must
be exhibited as a mismatch between one of these attributes,
there are only a certain number of ways in which mismatches
between each kind of ontological object can occur. Since
there are only a few kinds of ontological objects, we can
detail precisely the possible ways in which two ontological
objects could be mismatched. Note that we do not consider

compound mismatches caused by combinations of different
mismatches.

1. Predicates:Predicates have names, arities and types of
arguments.
• Changing a predicate name:This is the case in which
a predicate is changed to one with a different name but with
the same arguments:

(p ~x) 7→ (q ~x), p , q (5)

This can be broken down into four situations:
predicate refinement: p ⊂ q: for example,
(Paper?Paper) 7→ (Pd f Paper?Paper),

predicate abstraction: p ⊃ q: for example,
(Pd f Paper?Paper) 7→ (Paper?Paper),

p ∼ q: for example, (Paper?Paper) 7→ (Article ?Paper),
p / q: for example,

(Paper?Paper) 7→ (Con f erence?Paper). 2

• Changing the arity:

(p ~x) 7→ (p ~x y) or (p ~x y) 7→ (p ~x) (6)

Here, there are two situations.
For example,propositional refinement:

(Paper?Title ?Author) 7→ (Paper?Title ?Author?Format)
or propositional abstraction:

(Paper?Title ?Author?Format) 7→ (Paper?Title ?Author)
• Changing the types of arguments:

(p ~x y) 7→ (p ~x z), type(x) , type(y) (7)

As with the change of name of a situation, this breaks down
into four cases:

domain refinement: type(x) ⊂ type(y): for example,
(S ubmit?Paper) 7→ (S ubmit?Item),

domain abstraction: type(x) ⊃ type(y): for example,
(S ubmit?Item) 7→ (S ubmit?Paper),

type(x) ∼ type(y): for example,
(S ubmit?Paper) 7→ (S ubmit?Article)

type(x) / type(y): for example,
(S ubmit?Paper) 7→ (S ubmit?Quotation).

The first two cases indicate that the argument has been made
more or less general, the third does not indicate a semantic
change but merely a change in label and the fourth indicates
a complete alteration of the argument.
• Switching the arguments:

(p ~x y z) 7→ (p ~x z y) (8)

For example:
(Paper?Title ?Author?Format) 7→

(Paper?Title ?Format?Author)
• Predicate relationships: Relationships between predi-
cates constitute a hierarchy. Each predicate can be associated

2 where⊂ represents an abstraction fromp to q, ⊃ represent a
refinement fromp to q, ∼ indicates thatp andq are semantically
equivalent even though they are labelled differently and/ indicates
that there is no known relationship between them.

8 FIONA MCNEILL AND ALAN BUNDY

with an optional super-predicate, which indicates its imme-
diately more general predicate. Predicates in general do not
need to have such super-predicates; the exception is types,
which must have a super-type. The only way in which this
can be changed is for the super-predicate of a predicate to be
altered, added or removed.

super pred(p) = q 7→ super pred(p) = r (9)

There are six ways in which this can happen:
q ⊂ r: for example, the super-predicatewritten-item in

Equation 3 becomesitem,
q ⊃ r: for example, a super-predicateitembecomes

written-item,
q ∼ r: for example, a super-predicatewritten-itembecomes

document,
q / r: for example, a super-predicatewritten-itembecomes

place,
q = ∅: that is, a predicate that had no specified

super-predicate is given one,r,
r = ∅: that is, a predicate with a super-predicateq is

matched to one with no super-predicate.
If p is unary (i.e., a type) then neitherq = ∅ or r = ∅ are
possible.

2. Action Rules: The only aspect of action rules that can
change is through the addition or removal of preconditions of
effects. Any alteration to the preconditions or effects them-
selves would be covered by the predicate changes described
above.
• Changing preconditions:
A precondition is removed -precondition abstraction:

(Φ ∧ (p ~x)→ Θ) 7→ (Φ→ Θ) (10)

whereΦ is a set of preconditions,Θ is a set of effects and
(p ~x) represents an extra precondition, for example:

(S ubmitted-Paper?Paper?Author?Con f erence)
∧(Format?Paper?Pd f)
→ (Registered?Author?Con f erence)

(11)

7→

(S ubmitted-Paper?Paper?Author?Con f erence)→
(Registered?Author?Con f erence)

or a precondition is added -precondition refinement:

(Φ→ Θ) 7→ (Φ ∧ (p ~x)→ Θ) (12)

: as above but in reverse.
• Changing effects:An effect is removed:

(Φ→ Θ ∧ (p ~x)) 7→ (Φ→ Θ) (13)

For example:
(S ubmitted-Paper?Paper?Author?Con f erence)→

(Registered?Author?Con f erence)
7→

(S ubmitted-Paper?Paper?Author?Con f erence)→
(Registered?Author?Con f erence) ∧

(Accommodation-Place?Author?Place)

or an effect is added:

(Φ→ Θ) 7→ (Φ→ Θ ∧ (p ~x)) (14)

3. Individuals: Individuals may change names:

a 7→ b (15)

For example,S mith 7→ Brown.
Additionally, individuals may change their type:

type(a) = τ1 7→ type(b) = τ2 (16)

Again, there are four possibilities:
τ1 ⊂ τ2: for example,τ1 = author,τ2 = person,
τ1 ⊃ τ2: for example,τ1 = person,τ2 = author,
τ1 ∼ τ2: for example,τ1 = author,τ2 = writer,
τ1 / τ2: for example,τ1 = author,τ2 = hotel.

In addition to changing ontological objects that are al-
ready present in the ontology, whole ontological objects can
be added or removed.

We do not, at this stage, make any comment on how likely
these changes are to occur nor on how it would be possible
to automatically diagnose such changes: such things are dis-
cussed in the section on diagnosis. Our intention here is to
develop a theory of the way in which ontologies written ac-
cording to Definition 4 can be changed. We claim that every
possible change to such a theory must fall into one of the
categories described above. We therefore use this theory asa
basis for our diagnostic algorithm.

Diagnosis and Repair

We consider the major contribution of our work to be the
ability of  to diagnose and repair ontological mismatches
discovered during agent communication. The analysis of
potential mismatches discussed above provides a systematic
method for categorising mismatches in order to determine
what the appropriate repair is. In some domains, this the-
ory could be used to fully diagnose all potential mismatches.
However, in the domain in which operates - in an open,
distributed multi-agent system, where agents may be willing
to cooperate only to a certain level and do not wish to be fully
open - we will often face the problem of incomplete infor-
mation. Additionally, the way in which detects problems
- through the unexpected failure of plan execution - means
that certain kinds of ontological mismatch will never be high-
lighted. The ability of to link known ontological objects
to new objects that are revealed during communication can,
in some cases, depend on the linguistic ability to link two
words. takes a simple approach to this problem, depend-
ing on links between these words being stated explicitly in
the ontology, largely through the predicate and type hierar-
chy. The problem of semantic mismatch between words or
hierarchies has been widely studied and efficient solutions
are available. A version of that could truly cope in the
real-world scenarios we have envisaged would require links
to such systems so that it could perform the semantic word
matching in a more realistic manner. However, the work we
present here focuses on the structural aspects of the problem.

DYNAMIC, AUTOMATIC, FIRST-ORDER ONTOLOGY REPAIR BY DIAGNOSIS OF FAILED PLAN EXECUTION 9

The Diagnostic Algorithm

Having outlined the ways in which ontological mismatch
may occur, we now describe how we can apply this theory to
develop a diagnostic algorithm that operates in the contextof
the system.

Diagnostic Assumptions. In order to make the problem
tractable in the first instance, and to focus the research on the
problems of diagnosis and repair rather than on other unre-
lated problems, we have made various simplifying assump-
tions, which we explain here.
• The system is designed to deal with errors on a case-

by-case basis. We do not need to make the assumption that
failure is caused by exactly one error; we can identify one
error, fix it, replan, encounter failure again and then diag-
nose a second error. This is not the most efficient way to deal
with such a situation but is reasonable if we believe that in
most cases, a particular failure will be caused by a particular
error. However, the nature of this approach to multiple errors
means that we are forced to assume that these errors are inde-
pendent, and that dealing with them one by one will always
lead towards a more correct ontology. This is not always go-
ing to be a valid assumption in a real world situation, and the
system will fail if it encounters compound mismatches that
cannot be diagnosed as a series of individual mismatches.
• We assume that the only information we can get from

other agents is that which is revealed by the questions they
put to the, and by their answers to direct questions put by
the to them.
• We make various simplifying assumptions about the

agents with whom interaction takes place. We assume that
they are helpful and honest, that they will always perform
actions for one another if they are able to, that they are only
capable of communicating by exchanging messages and that
they share a common protocol: that is, the format of the
messages they send is the same, it is only in the content of
the messages that mismatches occur. The problem of mis-
matched protocols is also important but we do not deal with
this in our work.

Linking Plan Failure to Ontological Mismatches. The
means of detecting that an ontological mismatch has oc-
curred, and of determining what that ontological mismatch
may be, is through agent communication. The only informa-
tion available about mismatches is that which can be gleaned
from observation of past agent communication, from form-
ing appropriate questions and putting them to the appropriate
agent, and from analysis of the ontology.

The kinds of mismatches that we are primarily interested
in are signature mismatches, where the definitions of sig-
nature objects differ between agents; these potential mis-
matches have been outlined earlier in the paper. However,
agents do not normally communicate using abstract signature
definitions of objects. Agent communication tends to consist
instead of fully or partially instantiated theory objects such as
described in Equation 4; the would not have direct access
to other agent’s signature definitions, such as that described
in Equation 3. However, such theory objects, since they are

based on signature definitions, can reveal information about
those signature definitions that indicate to the that there is
a signature mismatch. For example, if the has a signature
definition ofPaperaccording to Equation 3 and, during com-
munication with another agent, is passed a message:(Paper
Banana Smith), it can infer that there is a signature mismatch
because it knows thatBananais of typeFruit, which is dis-
tinct from typeAuthor that the expected such arguments
to have. Equally, if the receives a message or query(Paper
MyPaper Smith Ai-Conf), it can again infer a signature mis-
match as the number of arguments of the predicate do not tie
in with its definition of the predicate.

The role of the diagnostic algorithm is therefore to allow
the  to link information gleaned from theory objects that
lead to communication failures to one of the signature mis-
matches defined in the space of possible mismatches defined
earlier in the paper. We emphasise again that this diagnosis
is applied pragmatically: we only attempt to infer such infor-
mation and form diagnoses and repairs on the basis of that
inference if communication has failed. In normal circum-
stances, we make a pragmatic assumption that other agent’s
ontologies match ours: though we know this to be unlikely
for the whole ontology, this assumption allows the to in-
teract with the world and form plans for achieving goals.
In situations where this assumption leads to failure, we are
then forced to determine what particular mismatch caused
this failure, and can then proceed to interact in a useful way
with the world.
 is intended to be accessed by a, which is attempting

to achieve a goal. First, the forms a plan to reach the goal
based on its understanding of the domain in which its operat-
ing, expressed in its ontology, where each plan step involves
invoking services from other agents in the network. It then
attempts to execute the plan through communication with
these agents. If its understanding of the domain and of the
circumstances under which these services can be performed
matches those of the’s (), the goal should be reached
successfully (since we are ignoring complicating factors such
as unhelpful agents and network problems). However, if
there are ontology mismatches between the and any of the
s with which it must communicate, and these mismatches
are pertinent to the particular service to be performed, this
may result in unexpected behaviour on the part of the
and, potentially, failure to provide the service and hence plan
execution failure. In this situation, the must invoke to
determine what the source of the problem is.

The questions put to the by thes provide the richest
source of information. In many cases, the source of the onto-
logical mismatch can be directly identified from these ques-
tions, through the information these questions reveal about
the ontology of the.

We have developed the notion ofsurprising questions,
which are questions put by a to the which do not di-
rectly pertain to the preconditions of the action, as far as the
 understands them. So, for example, if the were asking
an to perform an action that it believed was described by
the rule in Equation 11, it would expect to be asked about
paper submission and format, since these are identified as

10 FIONA MCNEILL AND ALAN BUNDY

preconditions of the rule. If it were asked a question:
(Money Author?Amount)

this would besurprising, because nothing in its descrip-
tion of the rule leads the to suppose this is pertinent. Also,
a question such as:
(S ubmitted-Paper Your-Paper Ai-Con f S mith)

would be surprising: althoughS ubmitted-Paperis an ex-
pected precondition, it is expected that the second argu-
ment is of typeAuthor and the third of typeCon f erence,
whereas the identifies the second argument in this ques-
tion,Ai-Con f, as of typeCon f erenceand the third argument,
S mith, as of typeAuthor.

These surprising questions can provide information about
where ontologies between two agents may differ. When a
question is put to it by the, it answers it as best as it can
and then compares this question against its list of precon-
ditions to see if it exactly matches one of these. If it does
not, it is flagged as a surprising question. No further action
is taken at this stage, but if plan failure occurs then the sur-
prising questions are referred to. Of particular interest are
surprising questions that are asked immediately before plan
failure occurs, referred to as Relevant Surprising Questions
(s). Note that not all preconditions will be checked with
the: some, the can determine without checking. Such
preconditions can present problems in diagnosis as the lack
of communication concerning them means that it is very dif-
ficult to deduce anything about them.

Very often, the information contained in a surprising ques-
tion is enough on its own to find the source of the problem.
For example, if the question contains an instance of a recog-
nised predicate, but with an unexpected arity, or with an argu-
ment with an unexpected type, then it is clear that the expec-
tations of this predicate are to blame. However, sometimes
it is discovered, possibly through information revealed ina
surprising question, that there is a problem with a fact, be-
lieved by the to be true, but believed by the to be false.
If there is no signature mismatch with respect to this fact –
i.e., the predicate expressing this fact is correct according to
the ’s signature but simply instantiated in a way that the
 did not expect – then linking the plan execution failure to
a flaw in the underlying ontology is more difficult. It must
be established how the fact came to be believed. The fact
may be present in the original ontology, or it may have been
added to the ontology because it was believed to have been
the effect of a previously performed action. In the former
case, our policy is to remove the fact from the ontology, pre-
ferring the’s belief that it is incorrect to the’s belief
that it is correct, since the is the one that is particularly
equipped to perform the service and thus, we assume, better
informed concerning information that relates to it. In the lat-
ter case, we must examine the faulty fact to discover how it
came to be believed. We refer to the algorithm that diagnoses
these incorrect facts as the Shapiro algorithm, because it is
loosely inspired by Shapiro’s work on algorithmic program
debugging (Shapiro, 1982). We have not attempted to follow
Shapiro’s algorithms closely but have merely used his ideas
as an inspiration. This algorithm is discussed later in this
section.

The examples we give below are examples of the objects
that will be revealed during communication, and therefore
these objects are always theory objects. If a theory object
indicates the presence of a signature mismatch, the must
use inferred information and information derived from ques-
tioning the to determine how to alter its own signature
appropriately.

The algorithms used in the diagnostic processes are il-
lustrated below as flow charts. Figure 2 illustrates the top-
level decision procedure, and Figures 3 and 4 illustrate sub-
algorithms that are called once the higher-level decisions
have been made.

Diagnositic Input:

Surprising Question List
Question List
Action,

NOYES

Were any

questions asked?

YES NO

Were any of them
surprising?

CASE 2
Diagnosis with no

CASE 1
Diagnosis with no

questions

CASE 3
Diagnosis with

surprising questions
(Figure 4)

(Figure 3)

surprising questions

Figure 2. Top Level Decision Making

Figure 2 separates the diagnosis into three separate cases:
those where no questions were asked between the request
to perform the action and the failure; those where questions
were asked but none of them were surprising; those where
there were questions asked and at least one of them was sur-
prising.

1.Failure immediately after a request to perform an action
has been made.

Example 2 The forms a plan:
(Send-Paper Researcher My-Paper.ps Ai-Conf),

(Register Researcher Ai-Conf Registration-Cost),
(BookAccom Researcher Ai-Conf Accommodation-Cost).

The  then consults its ontology as to the appropriate
agent to approach - in this case thepublication agent(-)
- and contacts it. The conversation is as follows:
: (Send-Paper Researcher My-Paper.ps Ai-Conf),

-: no

This situation is illustrated in Figure 3.
In this situation, it can be difficult or even impossible to

diagnose what the cause of failure is because the amount
of information we have access to is quite limited. The fact
that failure has occurred without any questioning is certainly
helpful information, but it reveals less about the ontologyof
the other agent than the other two situations.

We identify three situations in which this may occur.
• i) The  has been asked to perform a task it is not

able to.

DYNAMIC, AUTOMATIC, FIRST-ORDER ONTOLOGY REPAIR BY DIAGNOSIS OF FAILED PLAN EXECUTION 11

Is the agent willing
to perform the

action?

DIAGNOSIS:
Incorrect agent

consulted

Is there a problem

precondition?

GO TO:
Shapiro Algorithm

DIAGNOSIS:
Missing

Precondition

NOYES

YES NO

Figure 3. Diagnosis when no Questions have been Asked

We can eliminate this option by querying the agent as to
whether it is capable of performing the action. If not, we
must remove the information that this agent can perform the
action from our ontology and replan.
Example 3 In fact, asubmission agentshould be contacted
rather than a publication agent.
• ii) One of the preconditions for the action, that we

believed to be true, is not true.
The and the both have the following preconditions for
the action:
(p ~x) ∧ φ,
where (p~x) indicates a predicate (p) with some number of ar-
guments~x andφ indicates some number (≥ 0) of additional
preconditions.
However, we also have:

OPA |= (p ~x)
OS PA 6|= (p ~x)

That is, (p ~x) is true according to the’ ontology but not
according to the’ ontology.
We can investigate this option by querying the other agent
as to its beliefs of the truth values of our preconditions. If
we discover a precondition that it does not believe to be true,
then this is a likely cause of the failure. We then need to con-
sider why we came, incorrectly, to believe this precondition
to be true by using the Shapiro algorithm.
Example 4 The has the following action rule describing
how papers are submitted:
(And (Is-Open ?Conf-Submission) (Has-Paper ?Agent ?Pa-
per)) ⇒ (And (Accepted-Paper ?Agent ?Paper ?Confer-
ence)).
The also has the fact (Is-Open Ai-Conf-Submission) in its
ontology (where Ai-Conf is the relevant conference).
The conversation continues from Example 2 as follows:
: (Is-Open Ai-Conf-Submission)
-: no
Therefore, the and the- disagree about this fact.
• iii) We are missing a precondition, and that precon-

dition is not currently fulfilled.
The’s preconditions for the action are:φ,
whereas the’s preconditions are: (p ~x) ∧ φ.
If it happens, coincidentally, to be the case that
OS PA |= (p ~x)
then the communication will proceed as expected and this
mismatch will not be identified. However, since failure has

occurred, it can be determined thatOS PA 6|= (p ~x) is actually
the case. The problem in this situation is discovering what
(p~x) is. Information about this unexpected precondition can-
not be gleaned from previous communication, because at this
stage no questions have been asked: this is clearly a precon-
dition that the does not need to verify with the. This
case can be distinguished from case 2 by verify the perceived
truth value of every precondition inφ. If we have:
∀(q ~x) ∈ φ.OS PA |= (q ~x),
we can deduce the presence of an additional precondition
(p ~x) in the’s preconditions, but we cannot infer anything
about what the predicate is. Nor can we query the agent about
what this precondition is, since we have no basis to guess
what it might be, and we cannot assume that the other agent
will reveal its complete set of preconditions for this action.
Thus our only recourse during repair is to flag this rule as
incomplete and not use it during planning.
Example 5 The has the following action rule describing
how papers are submitted:
(Has-Paper ?Agent ?Paper)⇒ (Accepted-Paper ?Agent ?Pa-
per ?Conference)
whereas the- has a different version of the rule (though
the cannot know this):
(And (Is-Open ?Conf-Submission)∧ (Has-Paper ?Agent
?Paper))⇒ (Accepted-Paper ?Agent ?Paper ?Conference)
The can ascertain that its single precondition is correct ac-
cording to the-- and can therefore deduce that the-
must have an additional precondition in its rule. However,
the cannot discover what this precondition is.

2.Failure after a surprising question.
This situation is illustrated in Figure 4.
We can categorise surprising questions in the following

ways:
(a) The name of the predicate in the surprising question

matches the name of a precondition:
(i) The number of arguments of these two ‘matching’

predicates is the same: this is what we refer to asdomain
repair - oftendomain abstractionor domain refinement;

(ii) The number of arguments is different: this ispropo-
sitional abstraction or propositional refinement;

(b) The names do not match:
(i) There is a type relation between the name of the pred-

icate in the surprising question and the name of one of the
preconditions: this is what we refer to aspredicate repair -
oftenpredicate abstractionor predicate refinement;

(ii) There is no relation: this isprecondition refine-
ment.

In the examples given for the following cases, we are con-
sidering the action discussed in Example 1 and detailed in
Equation 11. Unsurprising questions, in this context, would
therefore be anything that matches the two preconditions of
the rule: (S ubmitted-Paper?Paper?Author ?Con f erence)
and (Format ?Paper ?Pd f) without any signature mis-
matches. When questions are put by the, as mentioned
before, they may have uninstantiated variables, indicatedby
being preceded by a question mark as above, in which case
not so much information can be inferred about the definition

12 FIONA MCNEILL AND ALAN BUNDY

Does the name of the
RSQ match one of the

preconditions?

YES NO

Are the arities of this
precondition and the

RSQ the same?

YES NO

Is the class of the
erroneous argument
the same in the RSQ

and the precondition?

NOYES

GO TO:
Shapiro Algorithm

Predicate

Propositional

Domain

Repair

Repair

Repair

Figure 4. Diagnosis with Surprising Questions

of the predicate in the signature, or they may have some or all
of the arguments instantiated, in which case type information
about the arguments can be inferred.

Case a)i):

• Most of these situations conform to the following3:
(p ~x y) matches (p ~x z), y , z,
wherep indicates a predicate,~x indicates one or more argu-
ments, andy andzare arguments.
There are four possibilities:
• type(y) = type(z)
In this case, the two predicates match with respect to the rep-
resentational language, but conflict with respect to their spe-
cific instantiation. The source of this incorrect fact must be
tracked down by theShapiro algorithm.
• type(y) ⊂ type(z) - domain refinement.
• type(y) ⊃ type(z) - domain abstraction.
• type(y) / type(z).
type(z) must already be in the ontology of, sincez is a
constant that is using in its planning.type(y) may already
be known by; if not, the  is queried to ascertain this
value. Since the is usingy in its communication, it must
know what its type is.
Example 6 The conversation proceeds as follows:
: (Register Researcher Ai-Con f Registration-Cost)
: (Format MyPaper.pd f Doc)
: no.
The expectation of thewas that the second argument would
be Pd f but it is instantiated by the as Doc. The is fourth
case: although there is a relation between the two types, it is
not a simple sub- or super-relationship.
• Sometimes, a mismatch of this type may conform to the

following:
(p ~x y z) matches (p ~x z y),
or, more generally,
(p ~x y z) matches (p ~x a b),
type(y) = type(b) andtype(z) = type(a).
That is, the arguments have been transposed, either with the

same instantiation or not.
Example 7 The conversation proceeds as follows:
: (Register Researcher Ai-Con f Registration-Cost)
: (S ubmitted-Paper?Paper Ai-Con f Researcher)
: no.
Note that the first argument of S ubmit-Paper are uninstanti-
ated as the does not yet know how it should be fulfilled.
The expects the second argument to be of type Author and
the third of type Con f erence and its facts are instantiated ac-
cording to that; however, this order is reversed in the ques-
tion put by the. It therefore cannot fulfil the expected
question and responds negatively.

Case a)ii):
• (p ~x y) matches (p ~x) - propositional refinement.

This signature repair is easy to diagnose and refine; all thatis
required is thattype(y) is ascertained, either through exami-
nation of the’s ontology or through questioning the.
• (p ~x) matches (p ~x y) - propositional abstraction.

This is easy to diagnose and refine, both for the initial signa-
ture repair, and for the theory repairs that entails. It may be
necessary to know what the type of the additional argument
is, so that it is possible to tell which argument should be re-
moved; this can be discovered either from the ontology or by
asking the.

Example 8 The conversation proceeds as follows:
: (Register Researcher Ai-Con f Registration-Cost)
: (S ubmitted-Paper?Paper?Author)
: no.
The expects the predicate S ubmitted-Paper to have three

3 Notation:
i)In all cases, the statement “A matchesB” indicates thatA is the
surprising question put by the, andB is the question the ex-
pected, which corresponds with the’s ontology. Thus diagnosis
and repair is aiming to changeB so that it matchesA;
ii) ⊂ indicates subtype relation;
iii) (p~x y) does not imply anything about the ordering of the argu-
ments: it does not imply thaty must be the last of the arguments.

DYNAMIC, AUTOMATIC, FIRST-ORDER ONTOLOGY REPAIR BY DIAGNOSIS OF FAILED PLAN EXECUTION 13

arguments and so has no correct instantiation for the above
query.

Case b)i):
• (p ~x) matches (g ~x)

There are three possibilities:
• type(p) ⊂ type(g) - predicate refinement.
• type(p) ⊃ type(g) - predicate abstraction.
• type(p) / type(g).
This can be difficult to diagnose, because there may be in-
sufficient information to determine that (p ~x) should match
precondition (g ~x). If this information cannot be found, sit-
uations of this type are usually incorrectly classified as oc-
currences of case b)ii): a missing precondition. We cannot
connect this surprising question to any of the preconditions,
and so we assume that it is an additional precondition.

Example 9 The conversation proceeds as follows:
: (Register Researcher Ai-Con f Registration-Cost)
: (S ubmitted-Item?Paper?Author)
: no.
S ubmitted-Item could be considered to be a super-predicate
of S ubmitted-Paper because Paper is a kind of Item.

Case b)ii):
• (p ~x) fails to match any of the preconditions.

In this situation, we diagnose a missing precondition - pre-
condition refinement - although, as discussed in case b)i),
this will sometimes be incorrect. If it is incorrect, the effect
will be to over-constrain the rule. We consider this to be
an acceptable approach, because if this does occur, we are
still left with a rule that will not be used other than in situ-
ations where it is correct to use it. The disadvantage is that
there may be some situations in which it is correct to use it in
which it appears to be unusable. However, since we consider
that random name changing will not occur especially often,
these situations will be rare, and a diagnosis of precondition
refinement is usually correct.
Note that in, precondition abstraction can never be diag-
nosed: having unnecessary preconditions to satisfy can lead
to unnecessarily complicated plans but does not lead directly
to plan execution failure.

Example 10 The conversation proceeds as follows:
: (Register Researcher Ai-Con f Registration-Cost)
: (Money?Author?Amount)
: no.
There is no semantic link between Money and either of the
two expected preconditions (S ubmitted-Paper and Format).

3.Failure after some questioning, with no surprising ques-
tions.

If failure occurs in this situation, we can conclude:
• Since questioning has begun, the only possible cause of

failure is the’s response to these questions.
• The  was expecting to be asked this question, and

therefore ensured that it was correctly answered, as far as
it understood this was to be done.

There are two ways in which this might happen:
(a) The last stage of the questioning immediately before

failure proceeds as follows:
: : (p ~x ?Q)
: : (p ~x A)
That is, the is asking the to instantiate a variable ?Q,
and the instantiates this variable asA.

If such a response by the causes failure, then clearly the
valueA returned by the was unacceptable to the. This
means that the’s expectations of what response would be
appropriate are incorrect, and the’s preconditions need to
be altered or added to so that they forceA to be instantiated
in the correct way. It is not difficult to diagnose this problem
but it is usually difficult or impossible to repair the ontology
correctly, since it is not know what values ofA would have
been acceptable to the. The best repair that can be done
in the general case is to add an extra precondition stating
explicitly that this variable ?Q should not be instantiated as
A. However, this fails to extract any rules that might apply to
the instantiation of ?Q and may well result in a rule that still
instantiates this variable incorrectly. The other option is to
mark the particular rule as unusable. This results in a more
correct but less complete ontology and would be the prefer-
able option if other rules were known that had the same or
similar effects.

(b) The last stage of the questioning immediately before
failure proceeds as follows:
:(p ~x)?
: yes(or no)

Here, the question from the is fully instantiated and
the  must respond as to whether it believes this statement
is true or not. Diagnosis is therefore straightforward, as is
repair, which is effected by negating the expectations of the
truth value of this statement.

Example 11 The conversation proceeds as follows:
: (Register Researcher Ai-Con f Registration-Cost)
: (Format MyPaper.pd f Pd f)
: yes.
This is an expected question and, during planning, the
has ensured that it is correct before the action takes place.
However, if failure occurs immediately after this question,
we can assume that the answer to this question was inappro-
priate. The only other possible answer would have been no.
We therefore deduce that the’s expectations were incorrect
and that it must ensure that(Format MyPaper.pd f Pd f) is
not true (thought we don’t, in this situation, have any infor-
mation about what the format should be).

Dealing with Incorrect Facts: The Shapiro Algorithm and
the Plan Deconstructor. In many cases, as has been dis-
cussed above, finding a problem fact will enable us to im-
mediately diagnose what the problem is. For example, if we
encounter a fact that contains an extra argument than we ex-
pect, it is clear that the problem is connected to this argument
mismatch. However, in some cases, a fact is believed that is
correct from a signature point of view but simply wrong,i.e.,
incorrect from a theory point of view, such as occurs in Ex-

14 FIONA MCNEILL AND ALAN BUNDY

ample 4. This problem is thus not amenable to signature re-
pair. Instead, we must discover how it was that this incorrect
fact came to be believed.

As has been described above, there are many cases in
which linking plan execution failure to specific mismatches
in the ontology is straightforward because communication
from agents reveal signature clashes. However, in cases
where incorrect facts are believed, further analysis of theplan
formation is necessary: we need to know how this fact came
to be believed. The propositional and black-box nature of
most modern planners, including the one used by (these
issues are discussed further later in the paper) mean that it
is not possible to extract directly from the planner any ex-
planation of how the plan was built from the ontology. We
have therefore developed aplan deconstructorwhich meta-
interprets the plan with reference to the ontology to attach
to each action the action rule that was used to justify it, the
preconditions of that rule and the facts that have been made
true or false or altered by its execution. The plan decon-
structor acts in a similar manner to a first-order planner, but
the massive search problems associated with such planners
is removed as this has already been dealt with by an efficient
propositional planner. For more details of these issues, see
(McNeill, Bundy, Walton, & Schorlemmer, 2003). The plan
deconstructor produces a justification for the plan, which is
then used by the Shapiro algorithm.

The Shapiro algorithm traces back through the justifica-
tion to determine where the value of the problem precondi-
tion was last changed. If this was a fact in the original on-
tology, it removes this fact. If this fact was an effect of a
previous action, it checks with the agent that performed that
action as to what it believes the value of the fact should be.

Summary of Diagnosis. Figures 2 - 4 (together with the al-
gorithm for dealing with failure after unsurprising question-
ing, which is not represented graphically here) provide a full
method for analysing the failure of an action during planning.
In any circumstance, the algorithm is able to pin this failure
down to a specific mismatch described in the space of possi-
ble mismatches, though in some cases it must be a guess and
in some cases is not precise. It is not always possible, due to
incomplete information, to use this diagnosis to implement
a full repair to the ontology, though this is possible in many
situations. However, these diagnostic algorithms providea
method for dealing with any possible cause of plan execution
failure within the context of the problem as defined in this
paper. Whether the context as defined here is broad enough
to be useful remains to be seen: this issue is addressed in the
evaluation section later in the paper.

Implementing repairs. Sometimes signature repair will be
a matter of refining a single signature object. In such cases,
implementing the diagnosis simply involves altering the on-
tology in the appropriate manner. In most cases, signature re-
pair entails theory repair, because all theory objects written
according to the original signature definition need to be al-
tered so that they are now written according to the new defini-
tion. For example, if the definition of a predicate is changed

so that it has one fewer argument, all instances of that pred-
icate will also need to have the relevant argument removed
so that the ontology remains consistent. In some cases, this
theory repair will also be simple: in the above example of
removing an argument, it can easily be determined, for every
instance, which argument should be removed (for example,
the second argument), and this can be implemented. In some
cases, however, there is not enough information to repair the-
ory objects fully. For example, if the signature repair was to
add an argument to a predicate definition, then every instance
of this predicate must also have an extra argument. It is pos-
sible to determine where in the instantiated predicate thisar-
gument should be added, and what type this argument should
be, but it is not usually easy to determine what the specific
instantiation of this argument should be. In such cases, our
approach is to introducemeta-variablesto such theory ob-
jects to act as place holders for these unknown arguments. It
is then not possible to use these theory objects in planning.

A complete, automated solution to this problem that is
guaranteed to be correct is impossible, since this missing in-
formation is not explicit in the ontology and cannot be au-
tomatically retrieved. The approach that takes to this
problem is to infer information, where possible, from com-
munication with other agents. For instance, in Example
1, an argument is added to the predicateMoney of type
Paymentmethod. The diagnostic algorithm can deduce,
from the agent communication, thatCredit card is the re-
quired instantiation and so instantiates this unknown argu-
ment in this particular theory object accordingly. All other
instantiations of the signature objects have meta-variables as-
signed to them, as their correct instantiations cannot be de-
duced. Circumstantial evidence can be useful here for deduc-
ing default instantiations. However, for these instantiations
to be guaranteed correct, a human user of the ontology would
need to view these meta-variables and decide how best to in-
stantiate them.

Overview of Architecture

 consists of various different sub-systems: thetransla-
tion system, the planning system, theagent communication
system, thediagnostic systemand therepair system. The
exists as part of the agent communication system and is able
to call the other parts of the system as necessary. Figure 5
shows the interaction between the subsystems.

Flow of System
The system is controlled by the. The flow of control

is illustrated in Figure 6. When a goal is passed to the sys-
tem, the system reacts to this by translating the ontology
into both  (Fox & Long, 2003) and Prolog4.  is
a standard representation for planning and is used by many
modern planners. The planner that uses is Metric-FF
5, which has won many awards and is widely accepted as a
leading planner. is less expressive than: although it

4 http://www.sics.se/sicstus/docs/latest/html/sicstus/
5 http://www.mpi-sb.mpg.de/ hoffmann/ff.html

DYNAMIC, AUTOMATIC, FIRST-ORDER ONTOLOGY REPAIR BY DIAGNOSIS OF FAILED PLAN EXECUTION 15

System

Diagnosis
System

Agent
Planning

Service

Agent
Providing

Agent

Agent

Service

Service

Providing

Providing

Planning System

Translation
 System

Repair

1

3

4 5

6

KIF
ontology

ontology
suitably translated

suitably translated
ontology

+ goal2

annotated
plan

annotation
+ failure point

+relevant extra information

diagnosis
of problem

KIF
ontology

+diagnosis ontology
KIF
updated

locutions

Figure 5. Architecture and Interaction of the

The planning agent () calls upon modules for planning, diagnosis, repair and translation. The planner forms
plans for specified goals, which is annotated with a justification of that plan with relation to the ontology. The
then attempts to execute the plan by passing requests to the external agents. If this fails, the diagnostic algorithm
is used to try to figure out what went wrong. Diagnosis may require further communication with the external
agents. If a fault is detected then the repair module is askedto repair the ontology. A variety of representational
formalisms are used by the different modules, so the translation module converts one formalism into another.

appears to be a first-order representation, it is in fact a first-
order window onto a propositional domain. This difference
in expressive power between the two representations may be
considered as indicating that a planner such as Metric-
FF is not appropriate for, but in fact this is a problem
that is inherent and increasingly recognised in planning us-
ing real ontologies. Efficient, tractable planning cannot be
done with a representation as rich as first-order logic, and yet
standard planning representations are not expressive enough
for representing ontological knowledge. Our approach to this
problem is to use a rich representation for retaining knowl-
edge and to translate this process to when planning is
necessary. This ontology is then discarded when the
plan has been formed and the translation is only one way.
The differences in expressiveness are dealt with, for exam-
ple, through the introduction ofpseudo-variablesto deal with
the fact that cannot handle variables: the planner views
these as constants and plans accordingly but the interprets
the plan knowing that they represent variables. For further
details of this translation process, see (McNeill, Bundy, &
Walton, 2004). The agent platform is based on the Sicstus
Prolog version of Linda (Patterson, Turner, & Hyatt, 1993),
which is a set of language extensions based on a tuple-space.
A server acts as a blackboard where agents, which are Linda
clients, can write to, read from and delete messages. These
agents therefore need a Prolog ontology, which is used dur-
ing plan execution and can then also be discarded. The sys-

tem also provides a translation process for this but this is
simpler than the translation to because Prolog is also
a first-order representation, so we do not discuss any of the
details of this. If repairs are necessary, these are performed
directly on the ontology. The and Prolog ontologies
are not altered, since these have been discarded, and if a fur-
ther goal is received, or the original goal is not yet reached,
these will be regenerated from the new ontology.

Once the translation process has created the and the
Prolog versions of the ontology, the then calls the planning
system. This consists of the planner and the plan deconstruc-
tor, discussed earlier in the paper. The planner first forms a
plan from the translated ontology and this plan is then de-
constructed by the plan deconstructor, with reference to the
ontology, and the plan, annotated with the justification, is
returned to the.If the planner fails to return a plan, this is
reported to the, and the process fails. This will occur if it is
not possible to reach the goal from the initial state described
in the ontology, using the actions described in the ontology.
This may happen the first time that the agent attempts to form
a plan, or it may be that it was initially possible to form a
plan, but this plan failed to be successfully executed, and re-
pairs made to the ontology, as a result of that failure, resulted
in a situation where it was no longer possible to reach the
goal.

The then attempts to execute the plan step by step. At
each step, it locates the appropriate to perform the task,

16 FIONA MCNEILL AND ALAN BUNDY

PA receives
a goal

PA translates

suitable format
ontology into

PA calls the
planner and

receives a plan

PA calls the
plan deconstructor
and receives a

justified plan

PA executes

the plan

PA updates ontology
with the results

of plan execution

SUCCESS

PA diagnoses
ontology mismatch
that caused failure

PA refines the
ontology

appropriately

PA marks some
part of the ontology

as unusable

FAILURE

SUCCESS FAILURE

FAILURE

SUCCESS

SUCCESS

FAILURE

Figure 6. Flow of Control of the

The translates the ontology, sends it to the planner and receives the plan. If this fails, the process terminates. If
it succeeds, the attempts to execute the plan. If this ends in success, the process terminates. If any plan step fails
to be executed, the attempts to diagnose the mismatch. If this is performed successfully, the ontology is altered
accordingly and retranslation and replanning is recommenced. If it fails, the offending part of the ontology is
marked as unusable and translation and planning begins again without it.

sends a request to that agent to perform the task and waits for
one of the following responses:

1. Information about the final outcome:
• An indication that the action has been successfully per-
formed;
• An indication that the action has failed to be performed;

2. A request for further information:
• A fully instantiated predicate, for which the must give
the truth value according to its ontology; an agent will either
reply that this is true if it has information to indicate this,
or that it cannot confirm the truth if it does not have such
information;
• A fully or partially uninstantiated predicate, which the
must instantiate according to its ontology. If there is no fact
in its ontology that corresponds with this, it replies that this
is false.

If the response received from the is of type 2, the,
after responding appropriately to it, waits again for one of
the above responses. This loop continues until a response
of type 1 is received. If the action succeeds, the then at-
tempts the next step of the plan, until the goal is reached.
At this point, the returns output to indicate that the plan
has succeeded, and terminates. If all the actions succeed,
the system is just performing planning within a multi-agent
system. It is when failure occurs that the core abilities of
are called into use: diagnosis and repair. If any action fails,

the  calls the diagnostic system to receive a diagnosis of
the problem. A diagnosis is always returned: either a precise
diagnosis, if sufficient information is available to discover
it, or else a diagnosis that one or more ontological objects
should not be used in planning, as they are faulty in some
unknown way. The repair system is then called to implement
the diagnosis. The process is then repeated. The updated on-
tology is retranslated, and a new plan is formed, if possible:
the refining of the ontology could mean that it is impossible
to form a plan to achieve the goal. If a plan is produced, this
is then executed step by step in the manner described above.
The process is repeated until the goal is achieved, or until
diagnosis, repair or replanning proves impossible.

Complexity of System

The application of the diagnostic algorithm consists of a
single traversing of the fault tree. It is never necessary to
retrace steps in the fault tree as we can determine at each
step which the best route to take is and even if we end in an
uncertain diagnosis, we can be sure that this is the best di-
agnosis available with the given information and that no re-
traversing of the fault tree will be efficacious. Therefore, if
we assume that the decision point at each node is in constant
time, diagnosis by fault tree is in constant time.

The assumption that the decision at each node takes con-

DYNAMIC, AUTOMATIC, FIRST-ORDER ONTOLOGY REPAIR BY DIAGNOSIS OF FAILED PLAN EXECUTION 17

stant time is certainly not always valid; such decisions usu-
ally involve interaction with other agents and thus the amount
of time they take depends both on the communication infras-
tructure and the amount of time another agent takes to pro-
cess its response. However, such operations are outside our
control and we can therefore only give complexity estimates
for our algorithm dependent on such unknown constraints.

The exceptions to this are the cases in which the diagnos-
tic algorithm leads to the calling of the Shapiro algorithm.
The application of this consists of tracing back through the
plan formation one step at a time and, at each step, checking
the effects of that step to determine whether the relevant fact
was altered by it. It is therefore linear in the length of the
plan.

Other aspects of the system have much larger time com-
plexity than this: for example, that of the planner is exponen-
tial. We therefore only discuss the complexity of the central
diagnostic aspects of the system.

Evaluation

The nature of our system as illustrated in Definition 2
means that standard methods of evaluating ontology match-
ing systems, such as giving them as input two mismatched
ontologies and determining how many of these mismatches
they discover and how long it takes them to do this, are irrel-
evant. is not designed to deal with ontology mismatches
in the abstract – to be able to discover any mismatch between
two given ontologies – but to track down specific mismatches
that are causing problems in an interaction. In order to evalu-
ate it, therefore, we must develop these interaction situations
and then establish that the system can, in fact, track down any
mismatches that cause problems. Additionally, the minimal
approach of, where mismatches are ignored except when
they are discovered to be causing problems, means that we
cannot simply input two ontologies to and see how many
of the mismatches between them can discover. is
intended to ignore mismatches that do not lead to communi-
cation problems, and we therefore need to set up this com-
munication environment where mismatches between agents
actually lead to plan execution failure to establish how well
 performs. This means that it is only possible to eval-
uate it in a situation in which we have disparate agents in-
teracting in a multi-agent system, with one agent acting as
 and one or more acting as. In order to determine
how performs, we must have agents with ontologies from
which they can form plans to achieve a given goal and, in the
execution of these plans, interact with agents who have on-
tologies which are not only slightly mismatched to theirs but
with mismatches that occur in relevant places, so that these
particular actions bring them to light. Different versions of
large ontologies tend to have a large number of mismatches
between them; however, it is difficult to test against all
of them, as this means we need to develop an interaction sit-
uation in which each mismatch leads directly to a problem.
Two mismatched ontologies are not sufficient input to evalu-
ate; we must also allow to operate in an interaction
situation in which mismatches may come to light.

We therefore divided the evaluation of into two parts.
The first part of the evaluation was to determine whether the
algorithm was able to actually diagnose and repair the mis-
matches that it is intended that it should: that is, does the
algorithm work correctly? This was performed with ontolo-
gies created from different versions of real-world ontologies
as well as other ontologies we developed ourselves, so that
every kind of possible mismatch was tested. The purpose
of this part of the evaluation was to determine that every
kind of mismatch that we claim can diagnose and repair
did prove, in practice, to be diagnosable and repairable by
. This element of the evaluation therefore provided an
environment in which we could test whether our algorithm
succeeded or failed at diagnosing and repairing mismatches
that it is intended to be able to perform, and through this
evaluation we can determine whether the algorithm is suc-
cessful. However, in order to determine the real value of
the algorithm, it is also necessary to determine whether the
diagnostic techniques that are embodied in the algorithm are
really the ones which are encountered in real life. We al-
ready know areas in which the algorithm will fail: adding
ontological objects is sometimes impossible because there
is insufficient information; removing ontological objects is
usually impossible because their presence does not lead to
plan execution failure and thus cannot be discovered by the
algorithm; certainly any ontological object that is not part of
an ontology built according to Definition 4 cannot be cor-
rectly diagnosed by. The degree of failure that these
imply differs according to the type of failure: for example,
a failure due to the ontology not conforming to our definition
of an ontology is not really a failure of the algorithm itself
but rather a failure of scope of the context of the problem.
However, if a large proportion of encountered mismatches
are not those that are diagnosable by the algorithm, then its
value must be questioned. The second part of the evaluation
was therefore to determine, for large real world first-order
ontologies available in different versions, how many of the
mismatches between them would be diagnosable by. We
therefore divided them into categories determining which,if
they were the cause of plan execution failure, would be diag-
nosable and repairable by and which would not (and, for
such mismatches, why not). The first part of the evaluation
has already verified that, for all kinds of mismatches that are
classified as being one that can diagnose and repair,
can actually do this. We present below the statistics derived
from these results and discuss what they mean: which fail-
ures point to flaws in the theory, which to limitation of scope
and which can be considered irrelevant.

In undertaking the first stage of the evaluation, we first
tested the performance of the system on seven different on-
tologies, where the had a slightly different version to the
other agents with which it was interacting. Three of these
were based on off-the-shelf ontologies:,  and.
These ontologies were altered so that their format matched
the expected input format for the system and so that there
was some kind of planning format overlaid on them: all of
these ontologies (like most publicly available ontologies) are
static and do not include action rules or many individuals and

18 FIONA MCNEILL AND ALAN BUNDY

thus cannot immediately be used for planning. However, we
believe that this imposition of a planning context does not
lessen the value of these results because this does not affect
the ontological mismatches that is diagnosing and repair-
ing; it is simply adding extra ontological objects, such as in-
dividuals and action rules, so that these mismatches can form
part of the communication between the agents. These three
ontologies are all first-order and written in or a similar
representation. However, none exactly matched the restricted
 used by and they therefore had to be altered slightly to
be used as input to the system. This merely involved remov-
ing the detail from complex class definitions and ignoring
ontological objects that contained quantification. It did not
involve changing the mismatches we were testing. The other
four were based on planning scenarios taken from the

(European Network of Excellence) repository6 but we did
not have different versions of these ontologies available and
had to create the mismatches between these ontologies. We
were able to demonstrate that could successfully perform
all the mismatches described earlier in this paper: see the
project webpage7 for details.

When considering the second part of the evaluation, we
define four different categories into which mismatches may
fall, one of which is further subdivided:

1.  could refine the mismatch because the mismatch
fell into one of the categories we have demonstrated can
deal with:e.g., changing the arity of a predicate was appro-
priate;

2.  could not currently refine the mismatch, but mi-
nor changes to the system would allow to refine it: e.g.,
changing the class of an instance;

3.  could not refine the mismatch. This is because:
(a)  did not have sufficient functionality:e.g., double

implication was altered to single implication;
(b) This particular mismatch is outside the scope of the

project:e.g., a compound mismatch;
(c) This mismatch is irrelevant to an automated system:

e.g., a change to commenting or formatting;
(d) This mismatch could not occur in the restricted that
 is designed to use:e.g., a change to a complex class
definition;

(e) This mismatch could not be highlighted in a planning
context:e.g., an instance is removed from the ontology.

4.. The information we had about the mismatch was in-
sufficient to diagnose which of the above categories it would
fall into.

From the above categories, it is clearly desirable that as
many as possible fall into category 1; such mismatches in-
dicate a successful outcome for. However, given the as-
sumptions we have had to make in and the unsuitabil-
ity of the ontologies against which it is evaluated, it is to be
expected that many will fall into categories 3b- 3e. A poor
outcome for would be represented by many mismatches
falling into category 3a. It may seem fairly arbitrary whether
mismatches are assigned to category 3a or category 3b: is a
mismatch unrefinable because it is outside the scope of the
project, or because does not have sufficient functional-
ity? We assign mismatches to 3b if they belong to categories

that we have explicitly ignored: compound mismatches and
random changes; otherwise we assign them to 3a. Under
such circumstances, mismatches being assigned to 3a is the
worst outcome; nevertheless, a large number of mismatches
being assigned to 3b would indicate that is not especially
well adapted to the task it is attempting to perform. A large
number of mismatches in 3d does not directly provide a poor
outcome for, since we have made and justified a decision
to limit the ontologies with which can operate.

We summarise our results in Figure 7, where the propor-
tions of mismatches that fall into each category are illus-
trated. The complete ontologies from which these results
came, and the complete set of their mismatches, can be found
through links from the project website. The mismatches on
the website are highlighted to illustrate which category each
mismatch falls into.

Analysis of Results

The results illustrated in the pie-chart indicate a reason-
ably good performance for: it can perform 38.8% of
all mismatches. If we consider onlysignificantmismatches,
that is, ignoring categories 3c (alterations to commentingand
other changes that are not directly to the ontology) and cat-
egory 4 (which are impossible to evaluate), we find that

can perform 45.0% of the mismatches. If we consider only
relevantmismatches, that is, ignoring categories 3d and 3e,
which are specifically outside the scope of the system, we
find that can perform 70.8% of the mismatches. Here,
we discuss the kinds of repairs that fall into each of the cate-
gories.
• Category 1( could refine the mismatch)

The evaluation illustrates that a wide range of the potential
mismatches we identified can actually be found in these on-
tologies. Additionally, we see that a fairly high proportion
of mismatches fall into this category, despite the fact that
these ontologies are written in a different representation to
the one required for, are not designed for planning and
have been altered on the assumption that these changes will
be interpreted by human users.
• Category 2 ( could refine the mismatch after small

changes)
Only 6.5% of mismatches fell into this category. All of these
fell into three different groups:
• Changing the super-type of a type;
• Changing the type of an instance;
• Adding relations to the ontology:
• Category 3a( did not have sufficient functionality)

The results in this category are very low, which is a good
result for. In fact, only two of all the mismatches fell
into this category.
• One was concerned with a double implication in a rule be-
ing altered to one-way implication: does not deal with
double implication because this is not standard in action
rules.

6 http://scom.hud.ac.uk/planet/repository/
7 http://dream.inf.ed.ac.uk/projects/dor/

DYNAMIC, AUTOMATIC, FIRST-ORDER ONTOLOGY REPAIR BY DIAGNOSIS OF FAILED PLAN EXECUTION 19

Each segment of the piechart represents and is labelled by one of the mismatch categories defined in the above
classification. Its size represents the proportion of examples of that kind of mismatch found in the ontologies we
analysed.

Figure 7. Results of the Evaluation of

• An individual was altered to be a type. does not con-
sider mismatches between different types of ontological ob-
jects.
• Category 3b (the mismatch is outside the scope of the

project)
The percentage of mismatches that fall into this category
is far larger than the percentage of those that fall into the
previous category: nearly 9% of all mismatches, fell into
this somewhat undesirable category. We consider these mis-
matches to be outside the scope of the project because they
fall into one of two categories:
• Multiple interacting mismatches;
• Arbitrary changes to the ontology.
• Category 3c (the mismatch is irrelevant to an auto-

mated system)
Mismatches that fall into this category are not really interest-
ing to the evaluation. However, the fact that they occur rea-
sonably frequently (11.4% of all mismatches) indicates that
there is much information in these ontologies which is not
readable automatically by agents that cannot interpret natu-
ral language, and that some effort is put into updating this
information. This is a reflection of the assumption that this
information is relevant only to human users. If automated
systems perform this task more commonly, effort will be
put into explaining these changes using ontological objects
where possible, rather than through commenting.
• Category 3d (the mismatch could not occur in re-

stricted)
This category is relatively common, largely due to the fact
that the complex class definitions that we exclude from
our representation occur fairly frequently.
• Category 3e(the mismatch could not be highlighted in

a planning context)
These mismatches are exclusively concerned with objects be-

ing removed from the ontology.
• Category 4 (insufficient evidence to properly classify

mismatch)

Related Work

It can be seen from Definitions 1 and 2 that our work
is fundamentally different to that of traditional ontology
matching, and the comparison between the two approaches
should be clear from the introduction to this paper. We
therefore do not repeat that discussion in this section; see
(Campbell & Shapiro, 1998; Wiesman, Roos, & Vogt, 2002;
Doan, Madhavan, Dhamankar, Domingos, & Halevy, 2003;
Giunchiglia & Shvaiko, 2003; Kalfoglou & Schorlemmer,
2003; Giunchiglia, Shvaiko, & Yatskevich, 2005) for further
details about this approach.

We believe that this pragmatic, piece-meal, agent-centric
approach to ontology matching is novel; however, there has
been work on structural mismatch in other contexts. (Visser,
Jones, Bench-Capon, & Shave, 1998) presents a method of
assessing heterogeneity between ontologies and is concerned
not just with semantic but also with structural mismatches.
However, this work, like most ontology matching, looks at
the problem of comparing two complete ontologies before
interaction commences and is interesting only in assessment
of heterogeneity rather than in matching and repairing on-
tologies. (Klein, 2001) provides an analysis of problems and
solutions in the field of combining and relating ontologies,
some of which overlaps with our interests. However, the
approaches mentioned are again interesting in aligning en-
tire ontologies and are not fully automated. The scope of
the approaches is much broader than our scope: for exam-
ple, mismatches between different languages are examined,
and this is possible because a much higher level of human
involvement is assumed.

20 FIONA MCNEILL AND ALAN BUNDY

In the field of database integrity, the problem of incom-
plete information and inconsistency can lead to difficulties
in the task of query processing, and much work has been
done in this area (Cali, Calvanese, Giacomo, & Lenzerini,
2002). Work on maintaining the consistency of databases
after data has been integrated from multiple sources usu-
ally focuses on tuple insertion and deletion (Greco, Greco,
& Zumpano, 2003). However, some work has been done on
value modification, where tuples referring to similar things
but structured and labelled differently are merged (Bohan-
non, Fan, Flaster, & Rastogi, 2005). This is in some ways
similar to our work on ontology alignment; however, this
work depends on pre-definedinclusion dependencies, which
detail how a schema from one database matches a schema
from another database, as well asfunctional dependencies,
which detail dependencies within a schema, and these are
key in determining matches and repair: this has no parallel
in ontology alignment. Additionally, there is full access to
both (all) databases and (manually derived) weights giving
information as to how accurate each datum is believed to be.
(Wijsen, 2003) also deals with the problem of inconsistent
tuples in databases, focusing on repairing them so as to re-
tain as much pertinent information as possible rather than
deleting them from the database to maintain consistency. A
difference from our work is that the target tuple is not clear:
there may be many ways of altering a tuple so that it be-
comes consistent. In our case, however, there is a clear target
– the representation of the other agent – which we are aim-
ing towards. This work is also concerned with inappropriate
instantiations of tuples that violate integrity constraints (for
example, one date argument ought to represent a later time
than a second date argument and does not) and does not ad-
dress, as we do, mismatches in the underlying signature (for
example, the argument ought not to be a date at all).

The field of constraint mapping and dynamic query trans-
lation focuses on an area that is to some extent similar to
our work. However, constraint mapping, like much ontol-
ogy matching, tends to focuses on concept mapping, and in
addition makes use of specific user-provided mapping rules
(Chang & Garcı́a-Molina, 1999), and thus cannot be consid-
ered to be a general, fully-automated approach as is. Al-
though in general this work does not deal with predicate map-
ping, (Z.Zhang, B.He, & K.C.-C.Chang, 2005) introduces an
attempt to provide this functionality. However, this work is
domain specific rather than general, and the predicates in-
volved are rather different to our notion of predicates: they
are really query templates. Additionally, there is also a clear
source and target predicate, so that it is not necessary, as in
 to search for an appropriate predicate to match to.

Another interesting parallel is work on plan repair in
multi-agent systems (Krogt & Weerdt, 2005a, 2005b). Like
our work, this focuses on executing plans in a multi-agent
scenario with limited access to information, and on dealing
with plan execution failure when it inevitably occurs. Like
, this work considers the need to alter preconditions and
effects of action rules and the removing of propositions al-
ready in the agent’s knowledge base (or ontology) in light
of new information from the world. However, they do not

consider the central focus of: representational change
when it is discovered that the current representation is not
appropriate to describe the world. We also do not tackle the
problem of plan repair: instead, repairs the ontology and
then plans from scratch using the new ontology. Incorporat-
ing some of this work on plan repair into may lead to a
more efficient system.

Further Work

 is intended to be a first approach to the problem de-
fined in the paper. As such, there are many assumptions
and simplifications made so that we can reduce this complex
problem to something that is tractable. The further work we
wish to do with involved removing these assumptions
and simplifications, thereby making the system more appli-
cable to an environment such as the Semantic Web.

This work would include:
• Investigating the use of full with , rather than the

restricted we are currently using, and investigating its ap-
plications to other ontological representations such as. A
difficulty here would be whether these other representations
would be rich enough for the planning environment we are
interested in.
• Investigating a more sophisticated approach to imple-

menting the repairs on the ontology. Perhaps altering the
ontology and disposing of the old one is not always the best
approach: different ontologies may be appropriate in differ-
ent situations and with different agents; older versions may
prove to be more correct and could be reverted to, and so on.
• Ontological mismatches could be negotiated between

agents, rather than the being always assumed to be in the
wrong.
• Diagnostic restrictions could be relaxed, such as the fact

that we do not deal with compound mismatches.
• Plan repair based in conjunction with ontological repair

may prove more efficient than replanning from an improved
ontology; this should be investigated.
•  focusses almost exclusively on structural mis-

matches (where terms are composed differently) rather than
semantic mismatches (where individual words are used dif-
ferently). We made this decision because of the large body
of work that has already been done in semantic matching.
However, to make practically useful, we need to in-
corporate work already done on semantic matching so that
 can match terms that are both structurally and seman-
tically different. We have begun some initial investigations
into the idea of amalgamating the abstraction and refine-
ment structural mismatches identified in with state-of-
the-art semantic matching (Giunchiglia, Yatskevich, & Mc-
Neill, 2007); however, we have not yet extended this to be
incorporated in itself.

Conclusion

In this paper, we presented our system,, the theory
underpinning it and some experimental results. We believe
that not only is our approach novel in the ontology matching
field but that our interpretation of the what the problem is

DYNAMIC, AUTOMATIC, FIRST-ORDER ONTOLOGY REPAIR BY DIAGNOSIS OF FAILED PLAN EXECUTION 21

also novel.  is designed as a system to be used by an
agent attempting to use its ontology to help it interact with
the world. The expectation is that the ontology is an accurate
and full representation of that world, but this expectationis
almost never valid. In reality, interaction with the world will
repeatedly highlight flaws in the ontology. When these flaws
lead to failure to achieve goals, such agents can call on

to use whatever information can be gleaned from the inter-
action to diagnose and repair the ontological fault that led
to this interaction failure, and to then replan with this im-
proved ontology and attempt once again to reach the goal.
We have presented evidence of how performs against
genuine mismatched ontologies and demonstrated that such
ability is a major advantage in communication between dis-
parate agents with mismatched ontologies. We view as
a first step on the path and have discussed in this paper the
ways in which this work could be extended to provide a more
complete solution to the problem.

References

Bohannon, P., Fan, W., Flaster, M., & Rastogi, R. (2005). A cost-
based model and effective heuristic for value-based constraint
repair. In Proceedings of the 2005 special interest group on
management of data.Baltimore, Maryland, USA.

Bundy, A., & McNeill, F. (2006). Representation as a fluent: An
AI challenge for the next half century.IEEE Intelligent Systems.

Cali, A., Calvanese, D., Giacomo, G. D., & Lenzerini, M. (2002).
Data integration under integrity constraints. InProceedings of
the 14th conf. on advanced information systems engineering
(caise 2002).

Campbell, A. E., & Shapiro, S. C. (1998). Algorithms for ontolog-
ical mediation. InProceedings of the COLING-ACL workshop
(pp. 102–107). Montreal, Canada.

Chang, C.-C. K., & Garcı́a-Molina, H. (1999). Mind your vocabu-
lary: query mapping across heterogeneous information sources.
In Proceedings of the 1999 special interest group on manage-
ment of data(pp. 335–346). Philadelphia, Pennsylvania, USA.

diSessa, A. (1983). Phenomenology and the evolution of intuition.
In A. Stevens & D. Gentner (Eds.),Mental models(p. 15-33).
Erlbaum.

Doan, A., Madhavan, J., Dhamankar, R., Domingos, P., & Halevy,
A. (2003). Learning to match ontologies on the semantic web.
The VLDB Journal, 12(4), 303–319.

Fox, M., & Long, D. (2003). PDDL2.1: An extension of PDDL for
expressing temporal planning domains.Journal of AI Research,
20, 61-124.

Genesereth, M. R., & Fikes, R. E. (1992).Knowledge Interchange
Format, Version 3.0 Reference Manual(Tech. Rep. No. Logic-
92-1). CA, USA: Stanford.

Giunchiglia, F., & Shvaiko, P. (2003). Semantic matching. In
F. Giunchiglia, A. Gomez-perez, A. Pease, H. Stuckenschmidt,
Y. Sure, & S. Willmott (Eds.),Workshop on ontologies and dis-
tributed systems (ods 2003).Acapulco, Mexico.

Giunchiglia, F., Shvaiko, P., & Yatskevich, M. (2005). S-
match: an algorithm and an implementation of semantic match-
ing. In Y. Kalfoglou, M. Schorlemmer, A. Sheth, S. Staab, &
M. Uschold (Eds.),Semantic interoperability and integration.
Internationales Begegnungs- und Forschungszentrum (IBFI),
Schloss Dagstuhl, Germany.

Giunchiglia, F., & Walsh, T. (1990). The use of abstraction in auto-
matic inference.Proceedings of UK Conference on Information
Technology (IT-90).

Giunchiglia, F., Yatskevich, M., & McNeill, F. (2007).Structure
preserving semantic matching(Tech. Rep. No. EDI-INF-RR-
0955). University of Edinburgh: Informatics Research Report.

Greco, G., Greco, S., & Zumpano, E. (2003). A logical framework
for querying and repairing inconsistent databases.IEEE Trans-
actions on Knowledge and Data Engineering, 15(6), 1389–
1408.

Hayes-Roth, F. (1983). Using proofs and refutations to learn from
experience. InMachine learning(pp. 221–240). Palo Alto, CA:
Tioga Publishing.

Kalfoglou, Y., & Schorlemmer, M. (2003). If-map: an ontology
mapping method based on information flow theory.Journal on
Data Semantics, 1(1), 98-127.

Klein, M. (2001). Combing and relating ontologies: an analysis
of problems and solutions. In A. Gomez-Perez, M. Gruniger,
H. Stuckenschmidt, & M. Uschold (Eds.),Proceedings of ijcai
workshop on ontologies and information sharing.Seattle, USA.

Krogt, R. van der, & Weerdt, M. de. (2005a). Coordination through
plan repair. In M. Gleizes, G. Kaminka, A. Nowe, S. Os-
sowski, K. Tuyls, & K. Verbeeck (Eds.),Proceedings of the
third european workshop on multiagent systems (eumas)(pp.
509–510). Koninklijke Vlaamse Academie van Belgie voor de
Wetenschappen en Kunsten.

Krogt, R. van der, & Weerdt, M. de. (2005b). Coordination
through plan repair. In Gelbukh, de Albornoz, & Terashima-
Marin (Eds.),Micai 2005: Advances in artificial intelligence
(Vol. 3789, pp. 264–274). Springer.

McNeill, F., Bundy, A., & Walton, C. (2004). An automatic transla-
tor from KIF to PDDL. InProceedings of the 23rd workshop of
the UK planning and scheduling special interest group (PlanSIG
2004).Cork, Ireland.

McNeill, F., Bundy, A., Walton, C., & Schorlemmer, M. (2003).
Plan execution failure analysis using plan deconstruction. In
Proceedings of the 22nd workshop of the UK planning and
scheduling special interest group (PlanSIG 2003).

Patterson, L. I., Turner, R. S., & Hyatt, R. M. (1993). Construction
of a fault-tolerant distributed tuple-space. InProceedings of the
1993 ACM/SIGAPP symposium on appliced computing: states
of the art and practice.Indianapolis, United States.

Shapiro, E. Y. (1982).Algorithmic program debugging. The MIT
Press.

Visser, P., Jones, D., Bench-Capon, T., & Shave, M. (1998). As-
sessing heterogeneity by classifying ontology mismatches. In
Proceedings of the 1st international conference on formal ontol-
ogy in information systems (FOIS)(pp. 148–162). Trento, Italy.

Wiesman, F., Roos, N., & Vogt, P. (2002). Automatic ontology
mapping for agent communication. InAamas ’02: Proceedings
of the first international joint conference on autonomous agents
and multiagent systems(pp. 563–564). New York, NY, USA:
ACM Press.

Wijsen, J. (2003). Condensed representation of database repairs
for consistent query answering. InProceedings of the 9th inter-
national conference on database theory (ICDT 2003).London,
UK: Springer-Verlag.

Z.Zhang, B.He, & K.C.-C.Chang. (2005). Light-weight domain-
based form assistant: Querying web databases on the fly. In
Proceedings of the 31st very large databases conference (vldb
2005)(pp. 97–108). Trondheim, Norway.

