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Abstract

A conversation protocol is a top-down specifica-
tion framework which specifies desired global behav-
iors of a web service composition. In our earlier work [6]
we studied the problem of realizability, i.e., given a con-
versation protocol, can a web service composition be
synthesized to generate behaviors as specified by the pro-
tocol. Several sufficient realizability conditions were pro-
posed in [6] to ensure realizability. Conversation protocols
studied in [6], however, are essentially abstract con-
trol flows without data semantics. This paper extends the
work in [6] and achieves more accurate analysis by con-
sidering data semantics. To overcome the state-space
explosion caused by the data content, we propose a sym-
bolic analysis technique for each realizability condition.
In addition, we show that the analysis of the auton-
omy condition can be done using an iterative refinement
approach.

1. Introduction

Recently, verification (especially model checking) of
web service compositions has been attracting much atten-
tion [4, 5, 12]. Formal verification techniques can provide a
way to develop highly dependable web services: preset sys-
tem goals can be guaranteed to be satisfied by the imple-
mentations prior to the service deployment. However, be-
fore the application of the verification techniques, the first
challenge is to establish a formal modeling and specification
framework for web service compositions. There are numer-
ous competing standards for composition of web services
(e.g. BPELAWS [1], WSCI [15], DAML-S [3]), which com-
plicates the task of formal modeling and specification. Ad-
ditionally, certain characteristics of web services cause im-
portant problems. For example, asynchronous communica-
tion (supported by messaging platforms such as Java Mes-
sage service (JMS) [9] and Microsoft Message Queuing ser-

vice (MSMQ) [11]) causes LTL model checking to be un-
decidable [6].

In our previous work [2, 6], we established a conversa-
tion oriented framework to specify web service composi-
tions and reason about their global behaviors. Each partici-
pant (a peer) of a composition is characterized using a finite
state automaton (FSA), with the set of input/output mes-
sage classes (without message contents) as the FSA alpha-
bet. To simulate asynchronous communication, each peer is
equipped with a FIFO queue to store incoming messages.
The behaviors generated by a composition of peers can be
characterized using the set of message sequences (conver-
sations) exchanged among peers. Clearly Linear Tempo-
ral Logic (LTL) can be easily extended to this conversation
based framework [6] and specify desired system goals like
“when a request of cancel arrives, eventually the server
should respond with a cancel confirmation”.

In general, there are two different ways to specify a web
service composition: 1) The bottom-up approach, which is
favored by most industry standards such as WSDL [13] and
BPEL4WS [1], where each participant of the composition
is specified first and then the composed system is studied;
and 2) the top-down approach (e.g., conversation policies
[8] and Message Sequence Charts [10, 4]) where the set of
desired message events is specified and detailed peer im-
plementations are left blank. In [2] we generalized the no-
tion of conversation policy from two peers to arbitrary num-
ber of peers, and proposed the notion of conversation pro-
tocol. Compared with the bottom-up approach, the expres-
sive power of a conversation protocol is weaker, however
this leads to certain benefits in verification [2].

A conversation protocol, however, is not always realiz-
able. There may not exist any peer implementations whose
composition generates exactly the same set of conversations
as specified by the protocol. In [6] we proposed three suf-
ficient realizability conditions to restrict control flows of a
conversation protocol, and when these conditions are satis-
fied, the projections of the protocol to each peer are guar-
anteed to realize the protocol. One byproduct of the real-
izability analysis is avoiding the undecidability of verifi-



cation problems caused by the asynchronous communica-
tion. Our realizability analysis leads to a 3-step specifica-
tion and verification strategy: 1) A web service composition
is specified using a realizable conversation protocol. 2) De-
sired LTL properties are verified on the conversation proto-
col. 3) The conversation protocol is projected to each peer,
and the composition of these peer implementations will pre-
serve the LTL properties that are previously verified.

Contributions of the present paper: While the framework
presented in [2, 6] introduces the concept of conversation
protocol and realizability conditions, it is still a step away
from practical web service applications since the message
contents and the data semantics are ignored. It is interesting
to raise the following question: can the realizability analysis
in [6] work when data semantics is associated with a con-
versation protocol? Or, to be more precise, given a guarded
conversation protocol where each transition in the protocol
is equipped with a guard to manipulate data, let skeleton
be the standard guardless conversation protocol generated
from the guarded protocol by removing all data and guards.
If the skeleton is realizable, does it imply that the guarded
conversation protocol is realizable? This paper answers the
above questions, and also provides symbolic analysis tech-
niques for the realizability conditions.

This paper is organized as follows. Section 2 lays out the
formal definition of conversation based framework for web
service compositions. Section 3 introduces a light-weight
skeleton analysis for guarded conversation protocols. Sec-
tion 4 presents the error-trace guided refined analysis for the
autonomy condition. Section 5 briefly discusses the sym-
bolic analysis for the other two realizability conditions. Sec-
tion 6 concludes the paper.

2. A Formal Specification Framework

This section presents a conversation oriented framework
to specify web service compositions. As we mentioned
earlier, a web service composition can be described in
a bottom-up or top-down fashion. Both specification ap-
proaches are based on a notion called “Guarded Finite State
Automata” (GFSA), which incorporates data semantics into
the framework. In this section, we begin with the intro-
duction of composition schema, the interconnection pattern
of a web service composition. Then we introduce GFSA,
based on which we present both the top-down and bottom-
up specification approaches. Finally we define the notion of
realizability.

2.1. Composition Schema

A composition schema is a tuple (P, M,Y.) where P is a
finite set of peers, M is a finite set of message classes, and ¥

Figure 1. An Online-Store Example

is a (finite or infinite) set of of messages. Generally a com-
position schema defines the composition infrastructure of a
set of web services. Each message class ¢ € M is trans-
mitted on one peer to peer channel, and each message class
has a finite set of attributes where each attribute has a static
data type such as integer, boolean, enumerated, or charac-
ter. Each message m € X is an instance of some message
class in M.

For example, the diagram on the left side of Figure 1
defines a composition schema for an online-store web ser-
vice composition. There are three peers, Store, Bank and
Warehouse. Message classes, such as Order, Bill, and
Payment, are transmitted among these three peers. In the
rest of this paper, we assume that message classes Bill,
Payment and Receipt have two integer attributes id and
amount, and the rest of message classes in Figure 1 has one
attribute id only. As a message is an instance of a message
class, it is written in the form of “class(contents)”. For
example, B(100, 2000) stands for a Bi11 whose id is 100
and amount is 2000. Here B111 is represented using its cap-
italized first letter B. Finally notice that in this paper mes-
sage contents are “flattened”. A version of our model with
more complex type support such as XML Schema [16] is
presented in [5].

2.2. Top-down approach: Conversation Protocol

A (guarded) conversation protocol is a tuple
((P,M,%), A), where (P,M,X) is the composition
schema, and A is a Guarded Finite State Automaton
(GFSA). Figure 1 shows an example guarded conversa-
tion protocol where the diagram on the right side is its
GFSA specification.

A GFSA is a tuple (M, X, T, s, F,A), where M and &
are the set of message classes and messages respectively, T’
is a finite set of states, s € T is the initial state, F' C T is a
set of final states, and A is the transition relation. Each tran-
sition 7 € A is of the form 7 = (s, (¢, g),t), where s,t € T
are the source and the destination states of the transition 7,



¢ € M is a message class and g is the guard of the tran-
sition. The guard of a transition expresses the relationships
between the message that is being sent and the last mes-
sage of each class that is sent or received by the sender of
the message being sent. For example, the guard of the transi-
tion to send Order is: Order.id’ = Order.id+1, which
intends to increment the value of attribute id by 1 whenever
anew Order message is sent. In a guard, a primed message
attribute stands for its “next value” after execution of the
transition, and a non-primed attribute stands for the value of
this attribute in the “latest” message of that message class.
(If for a message class there is no instance received or sent
yet, then attribute values for that message class are initial-
ized nondeterministically.)

Example 2.1 The guarded conversation protocol in Figure
1 describes the following scenario: an order is placed by
Store to Warehouse, and then Warehouse sends a Bill to
the Bank. The Bank either responds with the Payment or
rejects with a Fail message. Finally Warehouse issues a
Receipt or a Cancel message. The guards determine the
contents of the messages. For example, the id and amount
of each Payment must match those of the latest Bi11 mes-
sage. 1

It is straightforward to define the automata configura-
tion and the derivation relation between configurations for a
GFSA. Based on the derivation relation, the notion of a run
and accepted words can be defined. Details can be found
in the complete version of this paper [7]. For example, one
possible word accepted by the GFSA in Figure 1 is:

0(0), B(0, 100), P(0, 100), R(0, 100), O(1), B(1, 200), F(1), C(1)

2.3. Bottom-up Service Composition

Now we introduce the traditional bottom-up specifica-
tion of the composition of a set of web services. A web ser-
vice composition is a tuple S = (P, M, %), Ay, ..., An),
where (P, M, ¥) is the composition schema, and A4; is the
peer implementation for peer p;, where ¢ € [l..n] and
n = |P|. Each A; is a GFSA that is slightly different than
the GFSA used to specify a conversation protocol. In A4;
there are two types of transitions: 1) send-transition, which
sends out a message and has a guard to determine the con-
tents of the message being sent, and 2) receive-transition,
which consumes a message from the input queue. Send and
receive-transitions are denoted using “!” and “7”, respec-
tively. Figure 2 shows an example web service composition
which “implements” the conversation protocol in Figure 1.

Next we present the notion of “conversation” to cap-
ture the global behaviors that are generated by a web ser-
vice composition. Given a web service composition S =

! Fail
? Receipt [id’ = B.id]
(o) O,
? Cancel ! Payment
[amount’ = B.amount
Aid'=B.id]
(Store) (Warehouse) ( Bank)
Figure 2. A Realization of Figure 1
((P,M,%), A,...,Ap), wheren = |P|and k = |M]|, a

global configuration of S is a (2n + 3)-tuple of the form
(Q17 t1y ey Qn; Ly w, 5’7 5)

where for each j € [1..n], Q; € (E%)* is the queue con-
tent of peer p; (Where E; is the set of input messages of peer
p;), t; is the state of p;, w € X* is the global watcher which
records the sequence of messages that have been transmit-
ted, and message vectors &, ¢ record the latest sent and con-
sumed instances (resp.) for each message class. Basically
a global configuration can be regarded as a “snapshot” of
the system state of a web service composition. We can nat-
urally define a derivation relation between two configura-
tions v and ~', written as v — «/, if from v some peer
sends out a message, or consume a message, and the whole
system advances into the configuration +’. (Detail defini-
tion can be found in [7].) We say a word w € X* is a con-
versation of S if we can find a sequence of configurations
Yo — 71 — ... — 7y such that g is the initial config-
uration, and y; is a “final configuration” where each peer
is in a final state and all input queues are empty. Let C(S)
denote the set of conversations of a web service composi-
tion S. We say that S realizes a conversation protocol P if
C(8) = L(P). A conversation protocol P is realizable if
there is a web service composition that realizes P.

3. Skeleton Analysis

Our previous work [6] introduced a realizability analysis
for guardless conversation protocols where data semantics
are abstracted away. This section investigates the follow-
ing question: Can the results in [6] be applied to a guarded
conversation protocol by analyzing its “skeleton”? We first
briefly introduce the realizability conditions defined in [6],
and then present the skeleton analysis.

3.1. Previous Work

We start with three motivating examples (non-realizable
guardless conversation protocols) for realizability condi-



tions. The protocol at Figure 3(a) specifies a single conver-
sation a3, and the subscript of each message class describes
its sender and receiver, e.g., « is from peer A to B. Obvi-
ously Figure 3(a) is not realizable, because any implemen-
tation of peers A, B, C, D which generates a3 can generate
Ba as well. Similarly Figure 3(b) is not realizable since it
does not allow the conversation ya. Figure 3(c) is more in-
teresting. According to the protocol, peer A and B can take
the left and right branch of Figure 3(c) respectively, with-
out noticing the other peer is taking a different branch. Here
A first sends out the message «, and « is stored in the queue
of B; then B sends out 3, and § is stored in the queue of A.
Peer A and B consume the messages in their queues, and fi-
nally B sends out message . Hence a conversation af7 is
produced by the peer implementations, however, it is not
allowed by the conversation protocol shown in the Figure
3(c).

In [6], we proposed three sufficient realizability condi-
tions for guardless conversation protocols. A guardless pro-
tocol is a tuple ((P, M), A) where messages do not have
any content (i.e., each message is completely specified by
its message class), and A is a standard FSA. In [6], we
showed that when the three conditions are satisfied, the pro-
jections of a guardless protocol to each peer are guaranteed
to realize the protocol. In order to describe the realizability
conditions, we need to define the projection and join opera-
tions. Given a message alphabet ¥ = ¥; U...UX,, which s
the union of pairwise disjoint message sets X1, ..., X, for
any word w € X*, its projection to X;, written as m;(w),
is a word in ¥}. m;(w) is generated from w by deleting
all messages that do not belong to ¥;. Given n languages
Ly, ...,L, where for each i € [1..n] : L; C X%, the join of
Ly, ..., L, is defined as follows:

M (L1,...,L,) = {w| Vi € [l.n] : m(w) € L;}.

For a language L C X*, its join closure is defined as:
JOINC(L) = (w1 (L), ..., mn(L)).

1) Lossless join: A guardless conversation protocol
((P,M), A) is lossless join if the join closure of A is
equivalent to A, i.e., JOINC(L(A)) = L(A). We can check
this property by projecting A to each peer, and then con-
structing the Cartesian product of all the projections, and
then checking the equivalence between the Cartesian prod-
uct and A.

2) Synchronous compatibility: Formally, a conversation
protocol {(P, M), A) is synchronous compatible if the fol-
lowing formula holds:

Vw € L*(A), Vi,j € [1..|P[], VYm € MPtn MJm :
mi(wm) € m(L*(A)) = m;(wm) € m;(L* (A))

Here L*(A) is the prefix language of A, i.e., L*(A) =
{w | w is a prefix of w', and w' € L(A)}. Given a guard-
less conversation protocol P = ((P, M), A), to check if it is

(v}
A> Ba>a
OasB Qa8
Pe>a Opsp
Bcb Tosa TB8>C

(a) (b) (c)
Figure 3. Non-realizable Examples

synchronous compatible, we construct the Cartesian prod-
uct of the determinized projections of A to peers. If we can-
not find a state in the Cartesian product such that a peer p; is
ready to send a message to peer p; but peer p; is not ready
to receive the message, P is synchronous compatible.

3) Autonomy: A guardless conversation protocol is au-
tonomous if for each peer p; and each finite prefix w of a
conversation, at most one of the following three conditions
hold: a) the next transitions of p; (including transitions that
are reachable through e-transitions) are all send operations,
b) the next transitions of p; (including transitions that are
reachable through e-transitions) are all receive operations,
or ¢) p; is in a final state.

In [6] we showed that a guardless conversation proto-
col is realizable if the above three conditions are satisfied.
It is not hard to see that the conversation protocols at Fig-
ure 3(a), Figure 3(b), and Figure 3(c) violate the lossless
join, synchronous compatibility, and autonomy respectively
(while satisfying the other two conditions).

3.2. A Fourth Condition

Given a GFSA A = (M, X, T, s, F, A), its skeleton, de-
noted as skeleton(A), is a standard FSA (M, T, s, F,A")
where A’ is obtained from A by replacing each transition
(s, (¢, 9),t) with (s, ¢, t). Note that L(skeleton(A4)) C M*,
while L(.A) is a subset of X*. For a guarded conversation
protocol P = ((P, M, X), A), we can always construct a
guardless conversation protocol ((P, M), skeleton(.A)) as
defined in [2, 6]. We call this protocol the skeleton proto-
col of P.

Now, one natural conjecture is: If the skeleton protocol
of a guarded conversation protocol is realizable, does this
imply that the guarded protocol is realizable? In Figure 4
we give a counter example.

Example 3.1 The guarded conversation protocol shown in
Figure 4 has four peers A, B, C, D. There are two message
classes in the system: « is from A to B and f is from C
to D. Both message classes have an attribute a. The pro-
tocol specifies two possible conversations a(1)3(1), and
B(2)a(2). The skeleton of this protocol is realizable, how-
ever the protocol itself is not, because any implementation



Figure 4. A Counter Example

that generates the specified conversations will also gener-
ate the conversation 3(1)a(1) as well. 1

Here we propose an extra condition that restricts the
guards of a guarded conversation protocol.

4) Deterministic Guards: To check the deterministic guard
condition, for each peer p;, we analyze m;(A), the projec-
tion of A to peer p;. We determinize 7;(A) as a guardless
standard FSA, ignoring the guards. Each state in this deter-
minized automaton corresponds to a set of states in m;(.A).
For each state in the determinized automaton we collect all
the transitions which start from the the corresponding states
in m;(A) and are labeled with the same message class. We
require that at each state for all send transitions at that state
there can be at most one guard for each message class, i.e., if
there are two send transitions with the same message class,
their guards have to be identical. A guarded conversation
protocol satisfies the deterministic guards condition, if such
a check succeeds for each peer. It is not hard to see that Fig-
ure 4 violates the deterministic guards condition, because
peer A has two different guards when sending out a.

Theorem 3.2 A guarded conversation protocol is realiz-
able if it satisfies the deterministic guards condition, and
its skeleton protocol satisfies the lossless join, synchronous
compatibility and autonomy condition.

Based on the above theorem, we have a light-weight re-
alizability analysis for guarded conversation protocols. We
check the first three realizability conditions on the skele-
ton of a conversation protocol (i.e, without considering the
guards), and then examine the fourth realizability condition
by syntactically check the guards (but actually without ana-
lyzing their data semantics).

4. Refined Analysis of Autonomy

Skeleton analysis may not be very precise. In Figure 5
we show a realizable conversation protocol where skeleton
analysis fails. The alternating-bit protocol shown in Figure
5(a) consists of two peers A and B. Message class « is re-
quest, and message class 3 is acknowledgment. Both mes-
sage classes contain an “id” attribute. Message class vy is
the end-conversation notification. The protocol states that
the id attribute of requests from A alternates between 0 and
1, and every acknowledgment 5 must match the id. Obvi-
ously, when the protocol is projected to each peer, we still

gy: [ouid = .id S ouid’ = 1-B.id ], gy: [owid # B.id > B.id’ = ov.id ], gy: [ev.id = B.id]

i o S NN
1 Bgsilol  [id=1]

(a) (b) (c)

Figure 5. Alternating Bit Protocol

cy

get the same GFSA (except and “?” are added for out-
put/input transitions).

Let A,, Ay, A:. be the three conversation protocols
shown in Figure 5. It is not hard to see that, the projection
of skeleton(A,) to peer A does not satisfy the autonomy
condition, because at state 3, there are both input and out-
put transitions. However, A, is actually autonomous. If we
explore each configuration of A,, we get A;, the “equiva-
lent” conversation protocol of A,. The pair of values asso-
ciated with each state in 4 stands for the id attribute of «
and f. It is obvious that A satisfies the autonomy condi-
tion, and hence A, should satisfy autonomy as well. In fact
to prove that 4, is autonomous we do not even have to ex-
plore each of its configurations like Ap. As we will show
later, it suffices to show A, is autonomous. Finally no-
tice that L(A,) = L(Ap) = L(Ae).

The examples in Figure 5 motivates a refined analy-
sis: given a conversation protocol .4, we can first check its
skeleton. If the skeleton analysis fails, we can refine the pro-
tocol (e.g. refine A, and get A.), and apply the skeleton
analysis on the refined protocol. We can repeat this proce-
dure until we reach the most refined protocol which actually
plots the transition graph of the configurations of the orig-
inal protocol (such as Ap to A,). Our refined analysis of
autonomy is based on the notion of simulation, which is de-
fined as below.

A transition system is a tuple (M, T, s, A) where M is
the set of labels, 7' is the set of states, s the initial state,
and A the transition relation. Generally a transition sys-
tem can be regarded as an FSA without final states. On
the other hand, a standard FSA (M, T, s, F, A) can be re-
garded as a transition system of (M, T, s, A); and a GFSA
(M,%,T,s,F,A) can be regarded as a transition system
of the form (X, T",s’, A") where T" contains all configura-
tions of the GFSA, and A’ defines the derivation relation
between configurations.

Definition 4.1 A transition system A" = (M',T',s', A")



is said to simulate another A = (M, T,s,A), written as
A < A, if there exists a mapping p : T — T' and
0 : M — M’ such that for each (s, m,t) in A there is a
(p(s), o(m), p(t)) in A’. Two transition systems A and A’
are said to be equivalent, written as A ~ A’, if A < A’ and
A <A 1

Example 4.2 For the three conversation protocols
Aq, Ap, Ac in Figure 5, the following is true:

skeleton(Ap) < skeleton(A.) < skeleton(Ag)

For example, for skeleton(A.) < skeleton(.A,), the map-
ping p maps states 1,2,3,4,5 in skeleton(A4.) to states
1,2,3,3,4 of skeleton(A,) respectively, and the mapping
o is the identity function which maps each message class to
itself.

For another example, .4, < skeleton(A,), and similar
relation holds for any GFSA and its skeleton. We can con-
struct the mappings for a GFSA to its skeleton. Since a con-
figuration of GFSA is of the form (¢, M) where ¢ records the
local state and m is a vector of message instances for each
message class, for each (¢, 171) mapping p maps it to ¢ in the
skeleton. For each message m, mapping g maps to its class.
Finally it is not hard to see that A, ~ Ap ~ A.. ]

Intuitively when A < A', each word accepted by A will
find a corresponding word accepted by A’, and A’ can con-
tain “more” words than 4. It is not hard to infer the follow-
ing lemma.

Lemma 4.3 For any GFSA A, A < skeleton(A).

Lemma 4.4 For each GFSA A = (M,X,T,s,F,A) ona
finite alphabet 3, there is a standard FSA on alphabet
such that A ~ 4"

Theorem 4.5 If A < A’ and A’ is autonomous, then A is
autonomous.

Corollary 4.6 A GFSA is autonomous if its skeleton is au-
tonomous.

Based on Corollary 4.6 we have an error-trace
guided symbolic analysis algorithm  (procedure
AnalyzeAutonomy in Figure 6). If the input GFSA is au-
tonomous, AnalyzeAutonomy returns null; otherwise
it returns the error trace which is a list of configurations.
AnalyzeAutonomy starts from the input GFSA, and re-
fines incrementally. During each cycle, AnalyzeAutonomy
analyzes the skeleton of the current GFSA A'. If the skele-
ton is autonomous, by Corollary 4.6, AnalyzeAutonomy
simply returns and reports that the input GFSA is au-
tonomous; otherwise, AnalyzeAutonomy identifies a
pair of input/output transitions which start from the same
state and lead to the violation the autonomy. For exam-
ple, when analysis is applied to the skeleton of Figure

5(a), the two transitions starting at state 3 will be identi-
fied. Then procedure Refine is invoked to refine the current
GFSA.

Procedure Analyze Autonomy(.A): List
Begin
A’ =acopy of A;
While true do
If skeleton of A’ is autonomous Then return null;
Find a pair (s, (m1, g1),t1), (s, (m2, g2), t2) violating the autonomy
(A’ trace) = Refine(A’, (s, (m1, 91),t1), (s, (m2, g2),t2));
If trace # null Then return trace;
End While
End

Procedure Refine(\A, (s, (m1,91),t1), (s, (m2, g2),t2)) : (GFSA, List)
Begin
If (Pre(g1) A Pre(g2)) is satisfiable then
Path = FindPath(.A, s, Pre(g1) A Pre(gz))
If Path # null then return (null,Path);
End If
Let A" = (M', T, sy, F', A”) be a copy of A;
T =T — {s}+ {s1,82}, F' = F" — {s} + {s1,52};
Substitute each (¢, (mj, g;), ) in A’ with
(t,(mj,95),s1) and (t, (m;j, g;), 52)
Substitute each (s, (mj, g;),t) in A’ s.t. m; # mq and m; # mo with
(317 (mjvgj)vt) and (321 (mjagj)at)
Substitute (S, (ml, g1), tl) in A" with (31, (ml, g1), tl);
Substitute (s, (ma2, g2), t2) in A" with (s2, (m1, g1), t2);
Remove all unreachable transitions;
return (A’ ,null);
End

Figure 6. Refined Analysis of Autonomy

The input of Refine are two transitions (with guards g;
and g» respectively) which leads to the violation of auton-
omy on the skeleton. Refine will try to refine the current
GFSA by splitting the source state of these two transitions.
If refinement succeeds, the refined GFSA is returned; oth-
erwise, a concrete error trace is returned to show that the
input GFSA is not autonomous. The first step of Refine is
to compute the conjunction of the precondition of the two
guards, i.e., Pre(g1) A Pre(gz). If the conjunction is satis-
fiable, it means that there is a possibility that at some con-
figuration both transitions are enabled. Then we call proce-
dure FindPath to find a concrete error trace, which will be
explained later. In the case where the conjunction is not sat-
isfiable, we can proceed to the refinement task. We split the
source state of the two transitions into two states, and mod-
ify the transitions accordingly. Finally we eliminate tran-
sitions that cannot be reached during any execution of the
GFSA.

Example 4.7 When procedure Refine is applied to Figure
5(a), and the two transitions starting at state 3, it first com-
pute the conjunction of two preconditions: a.id # S.id A
a.id = f.id. Obviously the conjunction is not satisfiable.
Then state 3 is split into two states, (state 3 and 4 in Figure
5(c)), and transitions are modified accordingly. Finally, un-
reachable transitions (dotted arrows in Figure 5(c)) are re-
moved, and we get the GFSA in Figure 5(c). 1



(a) (b)

Figure 7. Counter Examples

The precondition operator Pre is standard operator in
symbolic model checking, in which, first, all primed vari-
ables in the formula g are existentially quantified, and then
they are eliminated using existential quantifier elimination.
For example given a constraint g as “a = 1A Y = 17, its
precondition is Pre(g) = 3,3 (a = 1 A Y = 1), which is
equivalentto “a = 1”.

Procedure FindPath has three inputs: a GFSA A, a state
s in A, and a symbolic constraint g. FindPath will locate
an error trace (a list of configurations) which starts from the
initial state of 4, and finally reaches s in a configuration sat-
isfying constraint g. The algorithm of FindPath is a varia-
tion of the standard symbolic model checking algorithm to
explore reachable states. Details of FindPath can be found
in [7]. Finally to reason about the correctness of the algo-
rithm in Figure 6, the following Lemma is crucial.

Lemma 4.8 After procedure Refine successfully refines a
GFSA A, and let the result be A’. The following is true:
L(A)=L(A)and A’ ~ A

Complexity of the algorithms in Figure 6 depends on the
data domains associated with the input GFSA. When the
message alphabet of a guarded conversation protocol is fi-
nite, algorithms in Figure 6 are guaranteed to terminate. For
infinite domains, a constant loop limit can be used to termi-
nate Procedure FindPath by force, which will result in a
conservative analysis algorithm.

5. Symbolic Analysis of Lossless Join and
Synchronous Compatibility

Now one natural question is: Can we apply a similar
analysis algorithm to lossless join and synchronous com-
patibility conditions? The answer is negative, and the rea-
son is explained below.

Example 5.1 Figure 4 is an example where the skeleton
is lossless join, however the guarded conversation proto-
col is not. Figure 7(a) is an example where the protocol is
lossless join, while its skeleton is not. There are four peers
A, B,C, D in Figure 7(a), and all message classes consist
of a single attribute a. In the beginning, peer D informs

peer A and B about which path to take by the value of at-
tribute a (1 for left branch or 2 for right branch). Then A
and B knows who is going to send the last message (o or
B), so there is no ambiguity. It can be verified that the pro-
tocol is lossless join. However the skeleton of Figure 7(a) is
obviously not lossless join, because -y« is included in its
join closure. 1

Example 5.2 If we make the message § in Figure 4 from
peer C to A, the modified Figure 4 is an example which
is not synchronous compatible, yet its skeleton is syn-
chronous compatible. Figure 7(b) is another example, where
the guarded conversation protocol is actually synchronous
compatible however its skeleton is not, because after the
partial conversation Aa, peer B is ready to send v how-
ever peer C' is not receptive to it. 1

The two examples above imply that we cannot conclude
a guarded conversation protocol is lossless join or not based
on the lossless join check on its skeleton. Same observa-
tion applies to synchronous compatibility and realizability
as well. Due to the lack of results like Corollary 4.6, we do
not have refined analysis for lossless join and synchronous
compatibility. However, we do have a symbolic analysis al-
gorithm for these two conditions, though the cost is greater.
The analysis for lossless join is based on the following the-
oretical observation.

Recall that each GFSA A can be regarded as a transi-
tion system, and can be represented symbolically (details
are given in [7]). Let T (A) denote the symbolic transition
system derived from 4. From the initial configuration, we
can compute all the reachable configurations of 7 (A), and
let set of reachable configurations be S*A. We have the fol-
lowing result.

Lemma 5.3 Let A; and A, be two guarded conversation
protocols. The following statement is true:

(L(A1) € L(A2)) & (S AT(A) = S AT(A))

Lemma 5.3 naturally implies the symbolic analysis algo-
rithm in Figure 8.

Procedure AnalyzeJoin(.A): boolean
Begin

Construct Cartesian product of projections of A, let it be A’.

’
Compute S# and SA°.
!

return SA A T(A) = SA AT(A)

End

Figure 8. Symbolic Analysis of Lossless Join

It is not hard to see that given a GFSA 4, when its al-
phabet is finite, algorithm shown in Figure 8 is decidable.
When infinite domains are used, we can simply compute



the approximate closure of S and S, and let them be S,
and S, respectively. In Figure 8 we can replace S# and S A
with S7 and Ss respectively, which will give us a conserva-
tive algorithm.

Now we briefly discuss how to symbolically examine the
synchronous compatibility. Recall the algorithm to check
synchronous compatibility for a guardless conversation pro-
tocol. We project the protocol to each peer and determinize
them, and then construct the Cartesian product from these
deterministic projections. Then we check whether each state
in the product is an illegal state (where some peer is not re-
ceptive to a message that another peer is ready to send).
Note that determinization is a necessary step, otherwise
the algorithm will not work. The symbolic analysis of syn-
chronous compatibility for a guarded conversation protocol
follows exactly the same procedure. However the key point
here is how to “determinize” a GFSA. We present a sym-
bolic “determinization” algorithm for GFSAs in [7].

6. Conclusions

This paper is an extension of the realizability analysis
in [6] to guarded conversation protocols. We introduced a
range of techniques to analyze each of the realizability con-
ditions. There are several strategies of combining the use of
them.

The most light-weight analysis is the skeleton analysis.
However, this approach may not be very precise, hence,
it may not recognize some realizable protocols. The most
costly method is to combine the refined symbolic check
of autonomy, the symbolic check of lossless join and syn-
chronous compatibility. Note that the analysis procedure
may be undecidable for infinite domains, however finite do-
mains guarantee termination. Another combination is the
use of skeleton analysis combined with refined analysis of
autonomy. We can first check the autonomy of the skele-
ton. If the condition is not satisfied, we can apply the analy-
sis until a concrete error trace is identified, or the autonomy
is assured on a refined protocol. Then we can apply skele-
ton analysis on that refined protocol.

In the future, we plan to implement the algorithms de-
scribed in this paper in our tool WSAT [14]. Symbolic
model checking tool such as Composite Symbolic Library
[17] can be used in implementing the presented symbolic
analysis algorithms.
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