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ABSTRACT: 

 
This research has defined an abstract execution model for establishing user-defined correctness 
and recovery in a service composition environment. The service composition model defines a 
flexible, hierarchical service composition structure, where a service is composed of atomic and/or 
composite groups. The model provides multi-level protection against service execution failure by 
using compensation and contingency at different composition granularity levels, thus maximizing 
the potential for forward recovery of a process when failure occurs. The recovery procedures also 
includes rollback as a recovery option, where incremental data changes known as deltas are 
extracted from service executions and externalized by streaming data changes to a Process 
History Capture System. Deltas can then be used to backward recover an operation through a 
process known as Delta-Enabled Rollback. Our work defines the semantics of the service 
composition model and the manner in which compensation, contingency, and DE-rollback are 
used together to recover process execution. We also present a case study and describe a 
simulation and evaluation framework for demonstrating the functionality of the recovery 
algorithm and for evaluating the performance of the recovery command generation process. 
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1. INTRODUCTION 
 
In a service-based architecture, a process is composed of a series of calls to distributed Web 
services and Grid services that collectively provide some specific functionality of interest to an 
application (Singh and Huhns, 2005). In a traditional, data-oriented, distributed computing 
environment, a distributed transaction is used to provide certain correctness guarantees about the 
execution of a transaction over distributed data sources. In particular, a traditional, distributed 
transaction provides all-or-nothing behavior by using the two-phase commit protocol to support 
atomicity, consistency, isolation, and durability (ACID) properties (Kifer et al., 2006). A process 
in a service-oriented architecture, however, is not a traditional ACID transaction due to the 
loosely-coupled, autonomous, and heterogeneous nature of the execution environment. When a 
process invokes a service, the service performs its function and then terminates, without regard 
for the successful termination of the global process that invoked the service. If the process fails, 
reliable techniques are needed to either 1) restore the process to a consistent state or 2) correct 
critical data values and continue running. 

Techniques such as compensation and contingency have been used as a form of recovery in 
past work with transactional workflows (e.g., Worah and Sheth, 1997) and have also been 
introduced into recent languages for service composition (e.g., Lin and Chang, 2005). In the 
absence of a global log file, compensation provides a form of backward recovery, executing a 
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procedure that will “logically undo” the affects of completed and/or partially executed operations. 
Contingency is a form of forward recovery, providing an alternate execution path that will allow a 
process to continue execution. Some form of compensation may be needed, however, before the 
execution of contingency plans. Furthermore, nested service composition specifications can 
complicate the use of compensating and contingent procedures. To provide a reliable service 
composition mechanism, it is important to fully understand the semantics and complementary 
usage of compensation and contingency, as well as how they can be used together with local and 
global database recovery techniques and nested service composition specifications.  

This research has defined an abstract execution model for establishing user-defined 
correctness and recovery in a service composition environment. The research has been conducted 
in the context of the DeltaGrid project, which focuses on building a semantically-robust execution 
environment for processes that execute over Grid Services (Xiao, 2006; Xiao, Urban, and 
Dietrich, 2006; Xiao, Urban, and Liao, 2006; Xiao and Urban, 2007a). This paper is an extended 
version of the work presented in (Xiao, Urban, and Liao, 2006), with a focus on the full 
specification of the abstract service composition and recovery model for the DeltaGrid 
environment.  

The service composition model defines a flexible, hierarchical service composition structure, 
where a service is composed of atomic and/or composite groups. An atomic group is a service 
execution with optional compensation and contingency procedures. A composite group is 
composed of two or more atomic and/or composite groups and can also have optional 
compensation and contingency procedures. A unique aspect of the model is the provision of 
multi-level protection against service execution failure by using compensation and contingency at 
different composition granularity levels, thus maximizing the potential for forward recovery of a 
process when failure occurs.  

Another unique aspect of the model is the support it provides for rollback as a recovery option. 
Distributed services in the DeltaGrid environment, referred to as Delta-Enabled Grid Services 
(DEGS), are extended with the capability of recording incremental data changes, known as deltas 
(Blake, 2005; Urban et al., 2007). Deltas are extracted from service executions and externalized 
by streaming data changes out of the database to a Process History Capture System (PHCS) 
(Xiao, Urban, and Dietrich, 2006). The PHCS merges deltas from distributed sources into a time-
ordered schedule of the data changes associated with concurrently executing processes. Deltas 
can then be used to backward recover an operation through a process known as Delta-Enabled 
Rollback (DE-Rollback) (Xiao, 2006). DE-rollback can only be used, however, if certain 
recoverability conditions are satisfied, with the PHCS and the merged schedule of deltas 
providing the basis for determining the applicability of DE-rollback based on data dependencies 
among concurrently executing processes.  

Our work defines the semantics of the service composition model and the manner in which 
compensation, contingency, and DE-rollback are used together to recover process execution. The 
results presented in this paper outline recovery algorithms in the context of single process 
execution, defining procedures for the application of shallow versus deep compensation, and also 
defining conditions for the applicability of the different recovery options. We also present a case 
study and describe a simulation and evaluation framework that we developed to demonstrate the 
functionality of the recovery algorithm and to also evaluate the performance of the recovery 
command generation process. 

The rest of the paper is organized as follows. After outlining related work in Section 2, 
Section 3 gives an overview of the DeltaGrid system that provides the context and test bed for 
this research. Section 4 provides an overview of the service composition and recovery model. 
defines the compositional structure of the model and defines the semantics of each compositional 
element of the model. Section 5 then elaborates on the semantics of the composition model, 
Section 6 presents algorithms for service recovery based on the semantics of each execution 
entity. A case study is given in Section 6, illustrating the use of the model in the context of an 
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online shopping application. Section 7 describes our results with the simulation and evaluation of 
the recovery algorithms. The paper concludes in Section 8 with a summary and discussion of 
future research. 

 
2. RELATED WORK 
 
The traditional notion of transactions with ACID properties is too restrictive for the types of 
complex transactional activities that occur in distributed applications, primarily because locking 
resources during the entire execution period is not applicable for Long Running Transactions 
(LRTs) that require relaxed atomicity and isolation (Cichocki, 1998). Advanced transaction 
models have been proposed to better support LRTs in a distributed environment (deBy et al., 
1998; Elmagarmid, 1992), including the Nested Transaction Model, the Open Nested Transaction 
Model, Sagas, the Multi-level Transaction Model and the Flexible Transaction Model. These 
advanced transaction models relax the ACID properties of traditional transaction models to better 
support LRTs and to provide a theoretical basis for further study of complex distributed 
transaction issues, such as failure atomicity, consistency, and concurrency control. These models 
have primarily been studied from a research perspective and have not adequately addressed 
recovery issues for transaction failure dependencies in loosely-coupled distributed applications. 

Transactional workflows contain the coordinated execution of multiple related tasks that 
support access to heterogeneous, autonomous, and distributed data through the use of selected 
transactional properties (Worah and Sheth, 1997). Transactional workflows require externalizing 
intermediate results, while at the same time providing concurrency control, consistency 
guarantees, and a failure recovery mechanism for a multi-user, multi-workflow environment. 
Concepts such as rollback, compensation, forward recovery, and logging have been used to 
achieve workflow failure recovery in projects such as the ConTract Model (Wachter and Reuter, 
1992), the Workflow Activity Model (Eder and Liebhart, 1995), the CREW Project (Kamath and 
Ramamritham, 1998), the METEOR Project (Worah and Sheth, 1997), and Units of Work 
(Bennett et al., 2000). These projects expose the weaknesses of using ATM techniques alone to 
support reliable transactional workflow execution, mainly due to the complexity of workflows. 
Previous work also shows the weakness of ATMs in support of the isolation, failure atomicity, 
timed constraints, and liveness requirements of distributed transactional workflows (Kuo et al. 
2002). Similar concerns are voiced in papers addressing transactional issues for traditional 
workflow systems (Alonso et al. 1997; Kamath and Ramamritham 1996; Kamath and 
Ramamritham 1998) as well as workflow for loosely-coupled distributed sources such as Web 
Services (Fekete et al. 2002; Kuo et al. 2002). More comprehensive solutions are needed to meet 
the requirements of transactional workflows (Worah and Sheth 1997). 

In the Web Services platform, WS-Coordination (2005) and WS-Transaction (2005) are two 
specifications that enable the transaction semantics and coordination of Web Service composition 
using Atomic Transactions (AT) for ACID transactions and Business Activity (BA) for long 
running business processes. The Web Services Transaction Framework (WSTx) (Mikalsen et al., 
2002) introduces Transactional Attitudes, where service providers and clients declare their 
individual transaction capabilities and semantics. Web Service Composition Action (WSCA) 
(Tartanoglu, 2003) allows a participant to specify actions to be performed when other Web 
Services in the WSCA signal an exception. An agent based transaction model (Jin and Goshnick, 
2003) integrates agent technologies in coordinating Web Services to form a transaction. Tentative 
holding is used in (Limthanmaphon and Zhang, 2004) to achieve a tentative commit state for 
transactions over Web Services. Acceptable Termination States (Bhiri et al., 2005) are used to 
ensure user-defined failure atomicity of composite services, where application designers specify 
the global composition structure of a composite service and the acceptable termination states.  
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In contrast, our research is among the first to provide a flexible hierarchical composition 
structure with automatic execution failure recovery capability for service composition (Xiao, 
2006).  Our research maximizes the forward recovery of a process by allowing flexible 
specification of multi-level contingency and compensation and addressing potential failure of 
recovery procedures. More importantly, we capture process execution history based on 
incremental data changes that can be used to backward recover a failed operation/process 
execution, and to support application-dependent correctness for multi-process execution. This 
paper presents the full details of the service composition model for the process specification and 
automatic service failure recovery algorithms in the context of global process execution. 
 
 
3.  OVERVIEW OF THE DELTAGRID SYSTEM 

 
A unique aspect of the service composition and recovery model presented in this paper is the 
ability to use incremental data changes extracted from service executions as a log file to support 
what we refer to as Delta-Enabled rollback (DE-rollback) as an additional option for recovery of 
a failed process. Before presenting the composition and recovery model, this section provides an 
overview of the DeltaGrid environment, describing Delta-Enabled Grid Services (DEGS) and the 
manner in which they work together with the Process History Capture System to support the use 
of DE-rollback.  
 
3.1 Delta-Enabled Grid Services 
 
A foundational component of the DeltaGrid environment is the notion of a Delta-Enabled Grid 
Service (DEGS) (Blake, 2005; Urban et al., 2007). A DEGS is a Grid Service that has been 
enhanced with an interface that provides access to the incremental data changes, or deltas, 
associated with service execution in the context of globally executing process. A DEGS uses an 
OGSA-DAI Grid Data Service (Foster, 2001; IBM, 2005) for database interaction, modifying the 
SQLUpdate activity feature for database access to provide the functionality necessary for capturing 
and returning delta values.  

The database accessed by a DEGS captures deltas using capabilities provided by most 
commercial database systems. Our own implementation has experimented with the use of triggers 
as a delta capture mechanism, as well as the Oracle Streams capability (Oracle, 2005). Oracle 
Streams is a feature that monitors database redo logs for changes and publishes these changes to a 
queue to be used for replication or data sharing. Deltas captured from the source database are 
stored in an associated delta repository. Deltas can then be sent to the DeltaGrid event processor 
after the completion of an operation execution by push mode, or be requested by the DeltaGrid 
system by pull mode.  

A DEGS uses the object delta concept originally defined in (Sundermeir et al. 1997) to create 
a conceptual view of relational deltas. As shown in Figure 1, each tuple of a relation can be 
associated with an instance of a DeltaObject. A DeltaObject has a className indicating the name of 
a class (i.e., relation) to which the associated object belongs, and an objectId (i.e., primary key) to 
uniquely identify the associated object instance. A DeltaObject can have multiple DeltaProperty 
objects, which correspond to the attributes of a relation. Each DeltaProperty object has a 
PropertyName, and one or more PropertyValues (i.e., delta values). A PropertyValue contains an 
oldValue and a newValue, representing the old attribute value and the new attribute value, 
respectively. Each PropertyValue is associated with a DataChange object. The DataChange object 
has a processId and an operationId, indicating the global process and operation that has created the 
PropertyValue, with a timestamp to record the actual time of change. Deltas are extracted from the 
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delta repository and communicated to the delta event processor in an XML format that captures 
the object structure shown in Figure 1. 

 
Figure 1. The Delta Structure  of a DEGS 

 
 
3.2 Delta-Enabled RollBack 
 
Deltas generated by a DEGS are forwarded as a stream of information to the DeltaGrid event 
processor and then communicated to a Process History Capture System (PHCS). The PHCS 
maintains the execution context of each active process in the system. As an extension of the 
execution context, the PHCS merges the deltas received from each DEGS in the environment to 
create a time-ordered schedule of data changes for concurrently executing processes. The work in 
(Xiao, 2006; Xiao, Urban, and Dietrich, 2006; Urban et al., 2007) elaborates on the structure and 
formation of this merged schedule of data changes.  

The delta schedule forms a global log file that is used for two primary purposes within the 
DeltaGrid system. One use of the schedule is to analyze data dependencies among concurrently 
executing processes when process failure occurs. In the DeltaGrid system, processes cannot 
enforce serializability as a correctness criterion since a process is not an ACID transaction. 
Processes are long running execution entities and do not lock data during the entire execution 
period because of the autonomy of individual Grid Services. Due to relaxed isolation, multiple 
processes might have interleaved access to the same data object. When one process fails, the 
schedule of data changes can be used to identify data dependencies and determine how the failure 
and recovery of one process potentially affects other executing processes that have accessed the 
same data (Xiao, 2006; Xiao and Urban, 2007a). 

Another use of the schedule is to support Delta-Enabled rollback (DE-rollback). DE-rollback 
is the action of reversing the data changes that have been introduced by a service execution to 
their before-execution images. DE-rollback can be used to reverse the results of a service 
execution even after the execution has terminated.  

Figure 2 illustrates the execution of two processes, p1 and p2. The process p1 is composed of 
two service invocations, indicated by op11 and op12. The process p2 is composed of service 
executions op21 and op22. Each process accesses X and Y, with the schedule of data changes shown 
as x1, followed by x2 and x3, as well as y1 followed by y2. As shown in Figure 2, if DE-rollback is 
invoked on op22, the object delta created by op22 (y2) will be removed, and the value of Y will be 
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Figure 2. Delta-Enabled Rollback 
 

restored to the value y1. Likewise, DE-rollback can be applied to op21 to reverse the value of X 
from x3 to x2. 

Since DE-rollback restores object values based on the order of modification, DE-rollback can 
only be invoked under semantic conditions that conform to the traditional notion of 
recoverability. A recoverable schedule requires that, at the time when each transaction ti commits, 
every other transaction tj that wrote values read by ti has already committed (Kifer et al., 2006). 
Thus a recoverable schedule does not allow dirty writes to occur. In a recoverable schedule, a 
transaction t1 cannot be rolled back if another transaction t2 reads or writes data items that have 
been written by t1, since this may cause lost updates. When interleaved access to the same data 
item disables the applicability of DE-rollback on an operation, compensation can be used to 
semantically undo the effect of the operation.  

The following section elaborates on the manner in which DE-rollback, compensation, and 
contingency are used together to support process recovery. 
 
4. SERVICE COMPOSITION AND RECOVERY MODEL 

 
In the DeltaGrid environment, a process is hierarchically composed of different types of 
execution entities. Table 1 shows seven execution entities defined in the service composition 
model. Figure 3 uses a UML class diagram to graphically illustrate the composition relationship 
among these execution entities. A process is a top-level execution entity that contains other 
execution entities. A process is denoted as pi, where p represents a process and the subscript i 
represents a unique identifier of the process. An Operation represents a service invocation, denoted 
as opij, such that op is an operation, i identifies the enclosing process pi, and j represents the unique 
identifier of the operation within pi. Compensation (denoted as copij) is an operation intended for 
backward recovery, while contingency (denoted as topij) is an operation used for forward recovery.  
 

Table 1. Execution Entities 
Entity Name Definition 
Operation A DEGS service invocation, denoted as opij 
Compensation 
 

An operation that is used to undo the effect of a committed 
operation, denoted as copij 

Contingency An operation that is used as an alternative of a failed operation 
(opij), denoted as topij 

Atomic Group An execution entity that is composed of a primary operation (opij), 
an optional compensation (copij), and an optional contingency 
operation (topij), denoted as agij = <opij [,copij] [,topij]> 

Composite 
Group 

An execution entity that is composed of multiple atomic groups or 
other composite groups. A composite group can also have an 
optional compensation and an optional contingency, denoted as cgik 
= <(agikm

 | cgikn)+ [,copik] [,topik])> 
Process A top level composite group, denoted as pi 
DE-rollback An action of undoing the effect of an operation by reversing the 

data values that have been changed by the operation to their before 
images, denoted as dopij 
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Figure 3. Service Composition Structure 

 
An atomic group and a composite group are logical execution units that enable the specification 

of processes with complex control structure, facilitating service execution failure recovery by 
adding scopes within the context of a process execution. An atomic group contains an operation, an 
optional compensation, and an optional contingency. A composite group may contain multiple atomic 
groups, and/or multiple composite groups that execute sequentially or in parallel. A composite group 
can have its own compensation and contingency as optional elements. A process is essentially a top 
level composite group. 

An atomic group is denoted as agij, while a composite group is denoted as cgik. The subscripts in 
the atomic group and composite group notation indicate the nesting levels of an atomic group or 
composite group within the context of a process. For example, a process pi is a top-level composite 
group denoted as cg1. Assume cg1 contains two composite groups and an atomic group. The 
enclosed composite groups are denoted as cg11 and cg12, and the atomic group is denoted as ag13. 
Assume cg11 contains two atomic groups. These atomic groups are denoted as ag111 and ag112, 
respectively. 

The only execution entity not shown in Figure 3 is the DE-rollback entity. DE-rollback is a 
system-initiated operation that uses the deltas of the PHCS to reverse the execution of a 
completed operation.   

Figure 4 shows an abstract view of a sample process definition based on the DeltaGrid service 
composition structure. This sample process will be used throughout the rest of the paper to 
demonstrate different operation failure and recovery scenarios. A process p1 is the top level 
composite group cg1. The process p1 is composed of two composite groups cg11 and cg12, and an 
atomic group ag13. Similarly, cg11 and cg12 are composite groups that contain atomic groups. Each 
atomic/composite group can have an optional compensation plan and/or contingency plan. 
Operation execution failure can occur on an operation at any level of nesting.  The purpose of the 
DeltaGrid service composition model is to automatically resolve operation execution failure using 
compensation, contingency, and DE- rollback at different composition levels. 

 
 
 
 
 

 

 7



International Journal of Web Services Research ,   Vol.X, No.X, 200X 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

op11
cop11
top11

ag111

op12
cop12

op13
top13

ag113

cg11

cg11.cop

cg11.top

op14 (non-critical)ag121

op15
cop15

cg12.top

op16
cop16
top16

ag13

cg1.cop

cg1.top

p1 = cg1

cg12

ag112

ag122

Figure 4. An Abstract View of a Sample Process 
 
 

5. ENTITY EXECUTION SEMANTICS 
 
As the building block of a process, the behavior of a DEGS operation impacts the state of the 
higher-level execution entities that are composed of DEGS operations. An operation may need 
backward recovery either because of its own execution failure, or due to another operation’s 
failure within the context of composite group execution. Under these two cases, a DEGS 
operation can present different recoverability options that affect the recovery activities of the 
entire process. This section defines the execution semantics of a DEGS operation and addresses 
recoverability of a DEGS operation. 

As defined in the previous section, an operation is a DEGS service. The DeltaGrid system 
assumes that each DEGS that participates in the DeltaGrid service composition environment is an 
autonomous entity that guarantees its local correctness through a proper concurrency control 
mechanism, exposing serializablity or variations of serializability to the service composition 
environment. Due to different functionality and implementation provided by service vendors, a 
DEGS operation presents one of the following transaction semantics:  
1. A flat transaction or nested transaction. When an operation fails, the operation is 

automatically rolled back by the underlying database system. This type of DEGS operation 
as an ACID DEGS operation. 

2. A multi-level transaction. A multi-level transaction is composed of multiple subtransactions. 
Each subtransaction is an ACID transaction that can unilaterally commit. If a multi-level 
transaction fails due to failure of a subtransaction, rollback usually cannot be applied since 
some subtransactions might have committed. Instead, a local compensating transaction is 
executed to restore the system to a consistent state. This type of DEGS operation is referred 
to as a multi-level DEGS operation. The local compensating transaction is atomic and 
preserves serializablility as defined in the multi-level transaction model. 

This section elaborates on recoverability issues for a DEGS operation. We first compare the 
execution semantics of an ACID DEGS operation and a multi-level DEGS operation. Since the 
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compensating transaction of a multi-level DEGS operation might fail, we then specify the 
recovery options for a multi-level DEGS operation for the case where the operation fails before 
the commit process. This case is referred to as pre-commit recoverability. After an operation 
commits, the failed execution of a subsequent operation within the same process can cause a 
successfully committed operation to be compensated. This case is referred to as post-commit 
recoverability. We also present the post-commit recovery options for a DEGS operation.  
 
5.1 DEGS Operation Execution Semantics 
 
Figure 5 compares the execution semantics of an ACID DEGS operation, shown in (a), with a 
multi-level DEGS operation, shown in (b). An ACID DEGS operation has four states: {active, 
successful, failed, aborted}. An operation enters the active state when it is invoked. If the execution 
successfully terminates, the operation enters a successful state, otherwise it enters a failed state. A 
failed state means that a runtime failure occurs during the operation execution that makes the 
execution invalid. An ACID DEGS operation can automatically roll back to enter an aborted state. 
This rollback activity is supported by the underlying database system and we assume it is always 
successful. Thus an ACID DEGS operation’s termination state is either successful or aborted.  
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

Figure 5. Transaction Semantics of a DEGS Operation 
 

As shown in Figure 5 (b), a multi-level DEGS operation has four states: {active, successful, 
failed, compensated}. The difference is that when a multi-level DEGS operation fails, a 
compensating transaction is executed, possibly containing multiple compensation steps for 
subtransactions that have been executed. This local compensating transaction is invoked 
automatically by the DEGS as a multi-level transaction processing system, independent of the 
DeltaGrid recovery capability. From the service composition point of view, this compensating 
transaction is conducted before the commit of the entire DEGS operation as a multi-level 
transaction, and is referred to as pre-commit-compensation. 

Successful pre-commit-compensation leads to a compensated state. However in a realistic 
execution environment, a pre-commit-compensation might fail as well. As an atomic transaction, 
the failed pre-commit-compensation will be rolled back by the supporting transaction processing 
system and leaves no partial effect in the DEGS execution environment. So when a pre-commit-
compensation fails, a multi-level DEGS operation remains in a failed state. Thus the termination 
states of a multi-level DEGS operation include: {successful, compensated, failed}. When pre-
commit-compensation fails, another mechanism is needed to clean up the effect of the failed 
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operation execution. The pre-commit-compensation is a failure recovery mechanism provided by 
a multi-level DEGS, and not by the DeltaGrid environment. 

In the DeltaGrid system, an operation opij might need backward recovery if 1) opij fails before 
termination, or 2) opij successfully terminates, but another operation execution failure requires opij 
to be recovered in the context of composite group execution. In the former case, the recovery of 
opij happens before opij commits, which is referred to as pre-commit recovery. In the latter case, the 
recovery of opij happens after opij commits, which is referred to as post-commit recovery. In the 
following, we present the recovery capability of the operation in each case.  

 
5.1.1 Pre-commit Recoverability 
 
When the compensating transaction of a multi-level DEGS operation fails, the effect of the failed 
operation execution remains in the DEGS execution environment. Pre-commit recovery activities 
are applied to clean up the failed operation execution before the operation terminates.  
 
Definition 1 (Pre-commit Recoverability): Pre-commit recoverability specifies how a DEGS 
operation should be recovered when an execution failure occurs before the DEGS operation as an 
execution unit commits.   
 

Table 2 presents pre-commit recovery options for a DEGS operation. Ideally, a DEGS 
operation’s pre-commit recoverability is automatic rollback for an ACID DEGS operation, or 
pre-commit-compensation for a multi-level DEGS. Realistically, a pre-commit-compensation of a 
multi-level DEGS operation might fail. With the delta capture capability, a DEGS can reverse the 
effect of the original operation through DE-rollback if the recoverability conditions are satisfied. 
If DE-rollback cannot be applied due to the violation of the semantic conditions for DE-rollback, 
the service composition model requires a DEGS provider to offer a service reset function. The 
service reset function cleans up the effect of a failed operation and prepares the DEGS execution 
environment for the next service invocation. A service reset typically requires a special program 
or a human agent to resolve the failed operation execution.  

 
Table 2. A DEGS Pre-commit Recoverability Options 

Option Meaning 
Automatic rollback The failed service execution can be automatically rolled 

back by a service provider 
Pre-Commit-
Compensation 

A pre-commit-compensation is invoked by a service 
provider to backward recover a failed operation. 

DE-rollback A failed operation can be reversed by executing DE-
rollback 

Service Reset The service provider offers a service reset function to 
clean up the service execution environment.  

 
Figure 6 shows the state diagram of a DEGS operation with pre-commit recoverability. 

Compared with Figure 5, Figure 6 adds support for pre-commit-compensation failure handling 
and eliminates the failed state as a termination state. As shown in Figure 6, a DEGS operation 
enters the successful state when the operation successfully executes. If the operation fails, the 
operation transits to different states depending on whether the operation is an ACID DEGS 
operation or a multi-level DEGS operation. If an ACID operation fails, the operation enters the 
aborted state. Otherwise if a multi-level operation fails, the operation enters the compensated state 
when the pre-commit compensation succeeds. If the pre-commit compensation fails, the operation 
stays in the failed state.  
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When a pre-commit-compensation fails, the DeltaGrid system will initiate recovery activities. 
The first recovery option adopted by the DeltaGrid system is DE-rollback. The DeltaGrid system 
will determine if the semantic conditions for DE-rollback hold. If yes, DE-rollback is invoked, 
leading the operation to the DE-rollback state. Otherwise, the service reset function will be 
invoked, leading the operation to the service-reset state. By performing DE-rollback or service 
reset, a DEGS operation exits the failed state. DE-rollback and service reset as recovery activities 
are initiated by the DeltaGrid system. The pre-commit recovery activities, namely automatic 
rollback, pre-commit-compensation, DE-rollback, and service reset, transform a failed operation 
execution to a pre-commit recovered state, which represents one of four concrete states: aborted, 
compensated, DE-rollback, service-reset. Thus the termination state of a DEGS operation is either 
successful or pre-commit recovered. 

 
Figure 6. A DEGS Operation with Pre-Commit-Compensation Failure Considered 
 

5.1.2 Post-Commit Recoverability 
 
Contrary to pre-commit recoverability, which defines how to clean up a failed operation 
execution, post-commit recoverability specifies how to semantically undo the effect of a 
successfully terminated operation due to another operation’s execution failure. This section 
defines post-commit recoverability of a DEGS operation and discusses different post-commit 
recoverability options. 
 
Definition 2 (Post-commit Recoverability): Post-commit recoverability specifies how an 
operation’s effect can be semantically undone after the operation successfully terminates.  
 

Post-commit recoverability is considered when a completed operation inside of a composite 
group needs to be undone due to runtime failure of another operation. Table 3 defines three post-
commit recoverability options: reversible (through DE-rollback), compensatable, or dismissible. 
Since post-commit recovery is only applicable in the context of composite group execution, the 
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invocation condition of post-commit recovery is addressed in Section 5.3 on Composite Group 
Execution Semantics.  

 
Table 3. DEGS Post-Commit Recoverability Options 

Option Meaning 
Reversible (DE-rollback) A completed operation can be undone by reversing the data 

values that have been modified by the operation execution. 
Compensatable A completed operation can be semantically undone by 

executing another operation, referred to as post-execution 
compensation. 

Dismissible A completed operation does not need any cleanup activities. 
 
5.2 Atomic Group Execution Semantics 
 
An atomic group (ag) maximizes the success of an operation execution by providing a 
contingency plan. If necessary, an ag can be semantically undone by executing a post-commit 
recovery activity, such as compensation or DE-rollback, depending on the primary operation’s 
post-commit recoverability.  

With relaxed atomicity, the success of a process execution can be application-dependent and 
might not require every operation to be successfully executed. The DeltaGrid service composition 
model offers the flexibility of marking execution entities where failure does not affect the 
execution of the enclosing composite group using a criticality decorator. By default, an 
operation’s post-commit recoverability is compensatable. 

 
Definition 3 (Criticality): An atomic group is critical if its successful execution is mandatory for 
the enclosing composite group. A non-critical group indicates that the failure of this group will 
not impact the state of the enclosing composite group, and the composite group can continue 
execution. When runtime execution failure occurs, contingency must be executed for critical 
groups, while contingency is not necessary for a non-critical group. By default, a group is critical. 
  

As an example, in Figure 4, if ag121 fails, cg12 will continue executing since ag121 is non-critical. 
Thus in the specification, there is no need to define a compensation and contingency plan for ag121. 

Figure 7 describes the execution semantics of an atomic group ag. An ag enters the active state 
if the primary operation is invoked. If the primary operation successfully terminates, the primary 
operation enters the successful state, as described in Figure 6, leading ag to enter the ag successful 
state. If the primary operation fails, ag enters the pre-commit recovered state, as defined in Figure 6.  

From the pre-commit recovered state, contingency will be executed if the atomic group is 
critical, as a transition initiated by the DeltaGrid system. Similar to a pre-commit-compensation, 
the contingency is enforced as an atomic transaction in a DEGS. If the contingency succeeds, the 
ag enters the ag successful state. Otherwise, the contingency is aborted, which leads the ag to the 
ag aborted state. If the atomic group is non-critical, ag enters the ag aborted state. The termination 
state of an atomic group is either ag successful or ag aborted. Compensation and DE-rollback as 
post-commit recovery techniques for an atomic group are addressed in the context of composite 
group execution semantics as described in the following subsection. 
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Figure 7. Atomic Group Execution Semantics 

 
 
5.3 Composite Group Execution Semantics 
 
The recoverability of a composite group can be defined using the concepts of shallow 
compensation and deep compensation. The terms shallow and deep compensation were originally 
defined in (Laymann, 1995). Our research extends these concepts for use with nested service 
composition. 
 
Definition 4 (Shallow Compensation): Assume a composite group cgik is defined as cgik = <(agikm

 

| cgikn)+, copik [,topik])>. Shallow compensation of cgik is the invocation of the compensation 
operation defined for the composite group cgik, which is copik.  

 
Definition 5 (Deep Compensation): Assume a composite group cgik is defined as cgik = <(agikm

 | 
cgikn)+, copik [,topik])>. Within the context of a composite group cgik, a subgroup is either an atomic 
group defined as agikm = <opij, copij [,topij]>, or a composite group defined as cgikn = <(agiknx

 | cgikny)+, 
copikn [,topikn])>. Deep compensation of cgik is the invocation of post-commit recovery activity 
(compensation or DE-rollback) for each executed subgroup within the composite group, such as 
copij for an atomic group, and copikn for a nested composite group.  

 
Shallow compensation is invoked when a composite group successfully terminates but needs a 

semantic undo due to the failure of another operation execution. A deep compensation is invoked 
if: 1) a composite group fails due to a subgroup execution failure, and needs to trigger the post-
commit recovery of executed subgroups, or 2) a composite group successfully terminates, but no 
shallow compensation is defined for the composite group.  

As a backward recovery mechanism for a successfully executed composite group, shallow 
compensation has higher priority than deep compensation. For example, in Figure 4, the failure of 
a critical subgroup ag13 (both op16 and top16 fail) within the enclosing composite group cg1 causes 
the two executed composite groups cg11 and cg12 to be compensated. Since cg11 has a pre-defined 
shallow compensation, the shallow compensation cg11.cop will be executed. cg12’s deep 
compensation will be invoked since cg12 does not have shallow compensation. 
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Figure 8 (a) presents the execution semantics of a composite group cgi composed of only 
atomic subgroups, denoted as cgi = <agik+ [,copi] [,topi])>. cgi remains active during a subgroup’s 
execution. If all the subgroups terminate successfully, cgi enters the cgi successful state. If a 
particular subgroup agik fails, agik enters the agik aborted state. cgi then enters different states 
depending on whether agik is the first subgroup of cgi. If agik is the first subgroup of cgi, the pre-
commit recovery of agik leads cgi to enter the cgi aborted state. Otherwise all of the previously 
executed subgroups (agi,1..k-1) will be post-commit recovered, leading cgi to the cgi deep 
compensated state. To simplify the state diagram, the cgi extended abort state is introduced to 
represent either the cgi aborted state or the cgi deep compensated state. The cgi extended abort state 
indicates that the partial result of a composite group cgi’s execution has been cleaned up, and the 
contingency for the composite group can be executed.  

From the cgi extended abort state, cgi’s contingency can be executed. If the contingency 
succeeds, cgi enters the cgi successful state. If the contingency fails, the contingency rolls back as 
an atomic transaction, and cgi remains in the cgi extended abort state.  

 

 
Figure 8. Composite Group Execution Semantics 

 
In Figure 8 (a), the cgi deep compensated state can be reached only if every step during a deep 

compensation process succeeds. In another words, compensation of every executed subgroup 
(agi,1..k-1) must succeed. Realistically a subgroup’s compensation might fail. When a subgroup’s 
compensation fails during a deep compensation, DE-rollback or the service reset function will be 
applied, in the same manner as a pre-commit-compensation failure is handled. DE-rollback is the 
first recovery option when a subgroup’s compensation fails. If the semantic condition for DE-
rollback holds, DE-rollback can be invoked to reach the cgi deep compensated state. If not, the 
service reset function will be invoked as the second recovery option. 

Figure 8 (b) presents the execution semantics of a composite group cgi composed of subgroups 
sgik that can be either atomic groups or composite groups, denoted as cgi = < sgik

+ [,copi] [,topi])>. 
Similar to Figure 8 (a), cgi remains in the active state when a subgroup is executing. If all the 
subgroups succeed, cgi enters the cgi successful state. Otherwise, if any subgroup sgik fails, sgik 
enters the sgik extended abort state, as defined in Figure 7 (if sgik is an atomic group) and in Figure  
8 (a) (if sgik is a composite subgroup). Depending on whether sgik is the first subgroup of cgi, cgi 
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enters either the cgi aborted state or the cgi deep compensated state, following the same transition 
defined in Figure 8 (a). The state transition caused by the contingency execution is the same as 
that presented in Figure 8 (a). 
 
5.4 Backward Recovery of an Atomic Group and a Composite Group 
 
Figure 9 presents the backward recovery semantics of an atomic group. A completed atomic 
group might need a backward recovery caused by the execution failure of another entity during 
process execution. Backward recovery of an atomic group ag cancels the effect of a successfully 
executed atomic group, thus backward recovery of ag starts from the state ag successful in Figure 
7. An atomic group has three backward recovery options: compensation, DE-rollback, or service 
reset, which are invoked based on post-commit recoverability of the primary operation. If the 
primary operation is compensatable, compensation is invoked. If compensation succeeds, ag 
enters the ag compensated state. If compensation fails, ag remains in the ag successful state since 
the effect of compensation will be removed by the DEGS execution environment. When 
compensation fails, DE-rollback can be invoked if DE-rollback is applicable, which leads ag to 
the ag DE-rollback state. If DE-rollback is not applicable, service reset can be performed, leading 
ag to the ag service-reset state. Thus the execution of backward recovery activity will leave ag in 
the ag post-commit recovered state, which represents one of three concrete states: ag compensated, 
ag DE-rollback, or ag service-reset. 

 
Figure 9. Atomic Group Backward Recovery Semantics 

 
Figure 10 (a) presents the backward recovery semantics of a composite group that is 

composed of only atomic groups. The backward recovery of a composite group cgi starts from the 
cgi successful state of Figure 8 (a). If cgi has a shallow compensation and the shallow compensation 
succeeds, cgi enters the cgi shallow compensated state. If cgi does not have shallow compensation, or 
if shallow compensation fails, deep compensation can be executed on cgi by executing backward 
recovery activity for each enclosed atomic group agik. According to the backward recovery 
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semantics of an atomic group presented in Figure 9, backward recovery of agik is guaranteed to 
terminate in the agik post-commit recovered state, thus lead cgi to the cgi deep compensated state.  

 

 
Figure 10. Composite Group Backward Recovery Semantics 

 
Figure 10 (b) presents the backward recovery semantics of a composite group cgi that is 

composed of atomic groups and/or nested composite groups, denoted as subgroup sgik. As in 
Figure 10 (a), shallow compensation is invoked first if available. When deep compensation is 
needed, there are several possible intermediate states based on sgik. If sgik is an atomic group, 
backward recovery of sgik leads sgik to the sgik post-commit recovered state. If sgik is a composite 
group, sgik terminates in the sgik shallow compenated state or the sgik deep compensated state, as 
shown in Figure 10 (b). Thus every subgroup is successfully backward recovered, leading cgi to 
the cgi deep compensated state. 

 
 
6. RECOVERY ALGORITHM 
 
This section presents algorithms for the recovery of a failed operation execution in the context of 
a process composed of nested composite groups. The recovery process requires deep 
compensation of a composite group, which will eventually invoke the post-commit recovery of 
atomic groups. The algorithm is divided into three main steps: 1) the atomic group post-commit 
recovery algorithm for backward recovery of an atomic group after the successful execution of its 
primary operation, 2) the composite group deep compensation algorithm, which invokes the post-
commit recovery of executed atomic subgroups, and 3) the top-level algorithm for recovery of a 
failed operation execution within the context of process execution. 
 
6.1 Atomic Group Post-Commit Recovery Algorithm 
 
An atomic group ag is complete if ag contains necessary compensation and contingency plans for 
its primary operation op, depending on op’s post-commit recoverability and ag’s criticality in the 
context of the immediately enclosing composite group. A complete non-critical atomic group 
only contains the primary operation, while a complete critical atomic group requires a 
contingency plan. The post-commit recoverability determines if a compensation plan is needed 
for a complete critical atomic group. If the primary operation is compensatable, the atomic group 
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should contain a compensation plan. If the primary operation is reversible or dismissible, no 
compensation is needed. However in a process definition, an atomic specification might be 
incomplete if compensation is required but not provided by the service provider. Under this 
circumstance, DE-rollback or service reset will be invoked, depending on whether the semantic 
conditions for DE-rollback hold.  

Figure 11 outlines the algorithm to determine whether to invoke DE-rollback or service reset 
on an operation. The input to the procedure is a failed operation to be backward recovered. After 
the execution of the procedure, the effect of the given operation is eliminated either through DE-
rollback or service reset. The algorithm begins with checking if the semantic conditions for DE-
rollback of the given operation holds. If yes, DE-rollback will be invoked. Otherwise service reset 
will be called on a DEGS. This procedure is used in the atomic group post-commit recovery 
algorithm when compensation is not available, or when compensation fails. 

 
Figure 11. Procedure to Invoke DE-Rollback or Service Reset on an Operation 

 
Figure 12 presents the algorithm to recover an atomic group after its successful termination 

based on the atomic group’s criticality and its primary operation’s post-commit recoverability 
specification. The input to the algorithm is an atomic group to be post-commit recovered. After 
execution of the algorithm, the given atomic group is post-commit recovered through 
compensation, DE-rollback, or service reset.  

The atomic group post-commit recovery algorithm corresponds to the recovery semantics in 
Figure 9, starting the backward recovery of agij from the state agij successful (the end state of 
Figure 7 and the start state of Figure 9). The successful execution of compensation (case 1.1.1) 
leads agij to the state agij compensated. If compensation fails (case 1.1.2), compensation is not 
defined for agij (case 1.2), or compensation is not necessary (case 2), DE-rollback or service reset 
will be invoked, which leads agij to the state agij DE-rollback or agij service-reset.  In case 3, agij does 
not need a backward recovery.  As a result, the atomic group post-commit recovery algorithm 
guarantees agij to be in the state agij post-commit recovery of the state diagram in Figure 9, if any 
backward recovery activity is necessary. 

As an example, an atomic group is defined as agij = <opij [,copij] [,topij]>. The algorithm first 
checks the post-commit recoverability of the given atomic group’s primary operation opij. There 
are three possible options based on opij’s post-commit recoverability:  
1) opij is compensatable. If agij has compensation copij, copij will be invoked. If copij succeeds, agij is 

compensated and the algorithm returns. Otherwise if copij fails, the algorithm will invoke DE-
rollbackOrServiceReset(opij) presented in Figure 11 to recover opij through DE-rollback or 
service reset.  

2) opij is reversible. There will be no compensation in the atomic group. DE-
rollbackOrServiceReset(opij) is invoked to recover the atomic group.  

3) opij is dismissible. No recovery action is needed in this case.  
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Figure 12. Atomic Group Post-Commit Recovery Algorithm 

 
6.2 Composite Group Deep Compensation Algorithm 
 
As discussed previously, deep compensation of a composite group cgi is executed either due to a 
subgroup execution failure before cgi completes, or due to an operation failure outside of cgi after 
cgi completes but cgi has no shallow compensation.  

In the context of composite group execution, the failure of an atomic group agik means that the 
atomic group’s primary operation and the contingency plan (if it exists) fail, and the atomic group 
ends in the ag aborted state. If the atomic group is non-critical, failure of the group will not affect 
the execution of the enclosing composite group cgi. However, if a critical atomic group agik fails 
and the immediately enclosing composite group cgi is critical, cgi needs to be deep compensated.  

Figure 13 presents an algorithm to deep compensate a composite group cgi. This algorithm 
recursively invokes the deep compensation of an immediately enclosing composite group of a 
subgroup if the contingency of the subgroup fails. The input to the algorithm is the composite 
group to be deep compensated. After the execution of the algorithm, the effect of cgi is 
semantically undone by invoking post-commit recovery of executed subgroups in reverse 
execution order, if a subgroup is critical to cgi’s execution.  

The algorithm begins with getting a list of executed critical subgroups sgik in reverse execution 
order. The algorithm then iterates through each subgroup sgik. If sgik is an atomic group, post-
commitRecoverAtomicGroup(sgik) will be invoked. Otherwise if sgik is a composite group and sgik has 
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shallow compensation csgik, csgik will be executed. If sgik does not have shallow compensation or 
shallow compensation fails, the algorithm will recursively invoke deep compensation on sgik. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

public void deepCompensate(CompositeGroup cgi)
{

//get a list of executed critical subgroups of cgi in reverse execution order
C = [sgik | sgik � cgi] (k = n ..1)

//iterate through every executed subgroup of cgi

FOR EACH sgik � C 
{

//check if sgik  is an atomic group
CASE:

1. sgik is an atomic group
EXECUTE post-commitRecoverAtomicGroup(sgik); 
CONTINUE;

2. sgik is a composite group:
//check if sgik  has shallow compensation csgik

CASE:
2.1 sgik has csgik:

EXECUTE csgik ; 
//check csgik execution result 
CASE:

2.1.1 csgik SUCCEEDS: 
CONTINUE;

2.1.2 csgik FAILS:
EXECUTE deepCompensate(sgik);

END CASE;
2.2 sgik has no csgik:

EXECUTE deepCompensate(sgik) ; 
CONTINUE;

END CASE;
END CASE;

}//END FOR;
}

Figure 13. Composite Group Deep Compensation Algorithm 
 

As we have discussed, the deep compensation of a composite group cg is invoked if 1) a 
critical subgroup of cg fails before cg completes, or 2) cg successfully completes, cg does not have 
a pre-defined shallow compensation, and cg needs to be backward recovered due to the failure of 
another operation execution. In either case, the deep compensation process contains the post-
commit recovery of executed critical subgroups. For example, in Figure 4, if ag112 fails, ag111 will 
be compensated, which is the deep compensation of the enclosing composite group cg11 before 
cg11 completes. If ag13 fails, cg12 and cg11 will be compensated, which is the deep compensation of 
cg1 before cg1 completes. cg12 needs to be deep compensated by executing ag122 since cg12 does not 
have a shallow compensation. cg11 can be shallow compensated by executing cg11.cop. 

The composite group deep compensation algorithm leads a completed composite group cgi to 
the state cgi deep compensated, conforming to the backward recovery semantics shown in Figure 
10 (b). The algorithm starts with cgi in the state cgi successful. If a subgroup sgik is an atomic group 
(case 1), sgik enters the state sgik post-commit recovered, by executing the post-commit recovery 
algorithm for sgik. If sgik is a composite group and shallow compensation is available (case 2.1.1), 
the successful invocation of shallow compensation leads sgik to the state sgik shallow compensated. If 
shallow compensation fails (case 2.1.2), or shallow compensation is unavailable (case 2.2), the 
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deep compensation algorithm will be invoked on sgik, which leads sgik to the state sgik deep 
compensated. Thus the execution of the algorithm guarantees cgi to enter one of the concrete states 
of the state cgi deep compensated, as shown in Figure 10 (b).  

If cgi needs a deep compensation due to a subgroup failure before its completion, the 
composite group deep compensation algorithm starts from the state sgik extended abort in Figure 8 
(b). Every executed subgroup performs a backward recovery, which leads cgi to the state cgi 
extended abort in Figure 8 (b). As a summary, the execution of the composite group deep 
compensation algorithm leads a composite group cgi to the state cgi deep compensated if cgi 
successfully completed prior to compensation, or to the state cgi extended abort if cgi is in the 
process of execution when failure occurs. In either case, the algorithm execution conforms to the 
state transitions shown in Figures 8 and 10. 

 
6.3 Operation Execution Failure Recovery Algorithm 
 
Figure 14 presents the operation execution failure recovery algorithm which recovers a failed 
operation execution in the context of a process execution. The input to the algorithm is a failed 
operation opij. The output of the algorithm is a Boolean value indicating whether the process with 
an operation execution failure can be forward recovered or not. If the method returns true, the 
process has been recovered and can continue with the next execution entity. Returning false 
means that the entire process has been backward recovered. 

The algorithm first gets the enclosing atomic group agij of the failed operation opij. Then the 
algorithm checks if agij is critical. If agij is not critical, the algorithm returns true. If agij is critical 
and agij has a contingency topij, topij is invoked. If topij succeeds, the algorithm returns true. 
However if topij fails or agij has no contingency topij, the fault will be propagated to the 
immediately enclosing composite group of agij by executing a procedure propagateFailure(agij). The 
procedure propagateFailure(agij) will recover the failed atomic group within the scope of the 
enclosing composite group. 

Figure 15 presents the algorithm for handling the propagation of a failed atomic group in the 
context of nested composite group execution. The input to the algorithm is a failed atomic group 
agij. The output is a Boolean value indicating whether failure of the atomic group can be forward 
recovered. If the method returns true, the enclosing process of the atomic group has been 
recovered. Otherwise the process is backward recovered. 

As shown in Figure 15, the first step of the atomic group failure propagation algorithm is 
obtaining the immediate enclosing composite group cgi of the failed atomic group agij. Then the 
algorithm checks if cgi is critical. If cgi is not critical, the algorithm returns true. Otherwise, 
deepCompensate(cgi) is invoked followed by checking the availability of cgi’s contingency. If cgi 
has contingency topi and topi succeeds, the algorithm returns true. However if cgi has no 
contingency topi or if topi fails, the fault is propagated to the immediate enclosing composite group 
cgi, then the process of recovering the cgi starts again. The fault propagation repeats until either 
the contingency of a composite group succeeds, or the top-level composite group (the process) is 
reached. In the former case, the process is successfully forward recovered, and can continue with 
the next execution entity. In the latter case, the entire process is backward recovered. 

The operation failure recovery algorithm starts the recovery from the state pre-commit recovered 
for operation opij in Figure 7. If the enclosing atomic group agij is non-critical (case 1), no 
contingency is necessary, and agij enters the state ag aborted. If agij is critical and contingency 
succeeds (case 2.1.1), agij enters the state ag successful. In either case, the algorithm returns true 
and the enclosing process continues with the next operation execution. However if the 
contingency fails (case 2.1.2), or contingency is unavailable (case 2.2), the failure of agij is 
propagated to the enclosing composite group by invoking the atomic group failure propagation 
algorithm propagateFailure in Figure 15.  
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Figure 14. Operation Failure Recovery Algorithm 
 

The algorithm propagateFailure starts the recovery of agij from the state ag aborted in Figure 8 
(a). If the immediately enclosing composite group cgi of agij is non-critical (case 1), 
propagateFailure returns true and the process continues with the next step. Otherwise, deep 
compensation is invoked on cgi, leading cgi to the state cgi extended abort. If cgi has a contingency 
and contingency succeeds (case 2.1.1), cgi enters the state cgi successful. The algorithm returns true 
and the enclosing process continues with the next operation execution. However if cgi has no 
contingency (case 2.2) or contingency fails (case 2.1.2), cgi remains in the state cgi extended abort, 
which is sgik extended abort in Figure 8 (b), where propagateFailure starts recursive invocation. The 
failure of sgik causes the immediate enclosing composite group cgi to be deep compensated, and 
contingency executed if available. If contingency succeeds (case 2.1.1), cgi enters the state cgi 
successful, the algorithm returns true, and the process continues with the next operation. If 
contingency is unavailable (case 2) or contingency fails (case 2.1.2), the algorithm is again 
recursively invoked until cgi reaches the top level composite group (the process). If the top level 
composite group has a contingency and the contingency succeeds, the process enters the state cgi 
successful. Otherwise the process enters the state cgi deep compensated state and ends. In summary, 
the invocation of the operation failure recovery algorithm either forward recovers a process so the 
process can continue with the next operation, or backward recovers a process, thus a process is 
deep compensated, conforming to the state transitions shown in Figures 7, 8, and 10.   

Using the process defined in Figure 4 as an example, when op15 fails, since ag122 does not have 
a contingency plan, the enclosing composite group cg12 will be deep compensated. Since ag121 is a 
non-critical subgroup of cg12 and requires no post-commit recovery, no action is invoked as the 
deep compensation procedure of cg12. The deep compensation will be followed by cg12’s 
contingency. If cg12’s contingency succeeds, the process will continue with ag13. However if cg12’s 
contingency fails, the enclosing composite group of cg12, cg1 will be deep compensated. The deep 
compensation of cg1 first invokes the shallow compensation of cg11. If cg11’s shallow compensation 
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fails, cg11 will be deep compensated. After cg1’s deep compensation, cg1’s contingency will be 
executed. If the contingency is successful, the process terminates successfully. Otherwise, the 
process is backward recovered. 

 

 
Figure 15. Atomic Group Failure Propagation Algorithm 

 
 

7. CASE STUDY 
 
This section introduces a placeClientOrder process in the context of an online shopping application 
to illustrate the use of the service composition and recovery model. The online shopping 
application contains typical business processes that describe the activities conducted by shoppers, 
the store and vendors. For example, the process placeClientOrder is responsible for invoking 
services that place client orders and decrease the inventory quantity.  

Figure 16 presents a graphical view of the placeClientOrder process, using the same notation as 
the abstract process example presented in Figure 4. As shown in Figure 16, the process 
placeClientOrder is hierarchically composed of composite groups and atomic groups. An atomic 
group has an operation, an optional compensation (cop) and contingency (top).  

The placeClientOrder process starts when a client submits a client order by invoking a DEGS 
operation receiveClientOrder. The next operation creditCheck verifies if the client has a good credit 
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standing to pay for the order. If the client passes the creditCheck, the inventory will be checked to 
see if there are sufficient inventory items to fill the order by executing checkInventory. If the client 
does not pass the credit check, the order will be rejected. If there are sufficient inventory items, 
the operation chargeCreditCard is to be executed to charge the client’s credit card, and the 
operation decInventory is executed to decrease inventory. These two operations are grouped into a 
composite group indicating that both operations should be successfully executed as a unit. Then 
the order will be packed through operation packorder and shipped through operation upsShipOrder. 
If the inventory is not sufficient to fill the order, the order will be marked as a backorder through 
operation addBackorder, and the client will be charged the full amount.  

 

receiveClientOrderag11

checkCreditag12

ag13

chargeCreditcard

ag14

Process placeClientOrder (p1 = cg1)

cg15

checkInventory

cop:creditBack
top:eCheckPay
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upsShipOrder
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inventory items?

yes

no

 
 

Figure 16. placeClientOrder Process Definition 
 

When there is a service execution failure during process execution, the process will be 
recovered based on the recovery specification embedded in the process definition, such as 
compensation and contingency, as well as the recovery semantics of the service composition and 
recovery model. For example, if operation upsShipOrder fails, the contingency fedexShipOrder will 
be invoked, sending the order package through Fedex instead of UPS. If a client requests to 
cancel the order after the operation packOrder but before upsShipOrder, each executed operation 
will be backward recovered in the reverse execution order using the following list of recovery 
commands: [cop:unpackOrder, cop:incInventory, cop:creditBack, DE-rollback:checkInventory, DE-
rollback:checkcredit, cop:chgOrderStatus]. DE-rollback is to be performed on operations 
checkInventory and checkCredit since these two operations do not have pre-defined compensation 
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and no other concurrently executing processes are write dependent on these two operations. 
Furthermore, since these two operations do not modify any data, no recovery actions will be 
performed for these two operations. Thus the final recovery commands for cancellation of an 
order is: [cop:unpackOrder, cop:incInventory, cop:creditBack, cop:chgOrderStatus]. 
 
 
8. SIMULATION AND EVALUATION OF THE 
COMPOSITION AND RECOVERY MODEL 
 
The abstract model provides a theoretical foundation for building a semantically robust execution 
environment for processes that execute over distributed DEGSs. To support the concepts and 
algorithms defined in the composition and recovery model, this research has designed and 
implemented a DeltaGrid simulation framework, using DEVSJAVA (Zeigler and Sarjoughian 
2004), a Java-based modeling and simulation tool for discrete event system specification.  

Figure 17 shows the major components of the simulation framework, including fully 
implemented components for the PHCS and the Process Recovery System (PRS), as well as 
simulated components for DEGS and the execution engine. To support the correctness of multiple 
process execution, our research has also revised the recovery algorithms presented in this paper to 
support the recovery of concurrently executing processes that are affected by the recovery of a 
failed process (Xiao, 2006). The recoverQ in Figure 17 is a component that is used to schedule 
recovery operations for concurrently executing processes. The work in (Xiao, 2006; Xiao and 
Urban 2007a) describes our results with identification and recovery of concurrent processes that 
are either read or write dependent on a failed process.   
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 

 
 
 
 

Figure 17. The DeltaGrid Simulation Framework 
 

The execution engine invokes recovery algorithms implemented in the PRS to generate 
recovery commands for an operation execution failure, and invoke these recovery commands on 
DEGSs through the recoverQ. The execution engine also generates process execution context 
such as start time, end time, and execution state. DEGSs execute service operations and 
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associated recovery activities, such as contingency, compensation, DE-rollback, and service reset. 
After each operation execution, a DEGS generates a delta file, and updates the operation 
execution context. The PHCS receives delta files from DEGSs and builds the process execution 
history, integrating the deltas and process/operation execution context. The PRS generates the 
recovery commands to recover a process when a service execution failure occurs, implementing 
the recovery algorithms introduced in Section 6.  

We developed different scenarios to demonstrate that the PRS can generate recovery 
commands for a failed process according to the specification of the service composition and 
recovery model. The execution scenarios also show the coordination among the execution engine, 
DEGSs, the PHCS, and the PRS in the context of single process failure recovery. 

Figure 18 presents one test scenario of an abstract process. A process p1 is the top level 
composite group cg1. p1 is composed of two composite groups cg11 and cg12, and an atomic group 
ag13. Similarly, cg11 and cg12 are composite groups that contain atomic/composite groups. Each 
atomic/composite group can have an optional compensation plan and/or contingency plan. 
Operation execution failure can occur on an operation at any level of nesting. 

This process is chosen to demonstrate the operation failure recovery since this process 
contains the following important cases for a process recovery: non-critical group (ag121), atomic 
group without contingency (ag112, ag122), atomic group without compensation and contingency 
(ag113), nested composite group (cg11), and composite group without shallow compensation (cg11, 
cg111, cg12). The recovery procedure for the operation op16 covers all the above cases. Thus in the 
simulation run, we inject operation execution failure on op16 to demonstrate the capability of the 
recovery algorithm in handling the different cases listed above. 

To run the scenario, we start a process instance p1 as defined in Figure 18. We conducted 
several simulation runs and each time injected operation execution failure on different operations. 
We expect the following result from this set of simulation runs: 

1. The PRS generates the recovery commands for operation execution failure according to 
the semantics defined in the service composition model. 

2. When operation execution failure occurs, the execution engine suspends the failed 
process. The execution engine then invokes the PRS to generate recovery commands, and 
add these recovery commands to the recovery queue. After the recovery activities in the 
recovery queue are executed, forward execution activity in the suspended queue is added 
to the execution queue. 

Table 4 presents the failure recovery commands generated by the PRS when the process fails 
at different operations in simulation runs. After the operation failure is recovered within the scope 
of a composite group, the process continues its execution from the operation at the same level of 
recovered composite group, indicated by the forward execute activity column in Table 4. The 
discussion column of Table 4 justifies why the recovery commands are correct in each case.  

We also evaluated the PRS with respect to performance. Recovery command generation time 
is affected by two factors: 1) the number of concurrent processes (n) since n affects the time to 
evaluate the applicability of DE-rollback and the time to retrieve an operation execution context; 
2) the nesting level of a process, which represents the complexity of a process’s structure. The 
evaluation was conducted by varying concurrency and process complexity. To vary the number of 
concurrent processes, we tested on two different ranges: 10~100 processes (medium) and 
100~1000 processes (large). To vary a process’s complexity, we tested on processes with nesting 
levels from 1-5. Figure 19 indicates that recovery command generation time has a linear increase 
when the number of concurrent processes grows. Our experiments showed that a flat process 
(with nesting level 1) required less than a millisecond of recovery command generation time, no 
matter how many concurrent processes are running. When the process nesting level is greater 
than 1, there is a 13% increase in processing time, under medium and large levels of concurrency. 
This increase is because of the need to increase write dependency retrieval time for nested 
processes.  This set of results shows the recovery command generation for the failed process only. 
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As an extension of single process recovery presented in this paper, multiple process recovery 
command generation time is evaluated and discussed in (Xiao 2006, Xiao and Urban 2007b). 
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Figure 18. A Process Definition to Demonstrate the Functionality of the Recovery Algorithm 
 

We also evaluated read/write dependency retrieval time. This evaluation is important for 
single process recovery since write dependency is needed to determine whether DE-rollback is 
applicable when compensation is not provided.  Multiple process recovery performance is largely 
dependent on read/write dependency retrieval time due to the need to construct process 
dependency graphs. Our result shows that when the number of concurrent processes falls into two 
ranges: medium (10~100) and large (100~1000), read and write dependency retrieval time 
increases exponentially when the number of concurrent process grows. However when we 
optimize write dependency retrieval by segmenting the global delta object schedule into several 
smaller pieces and merge the result, linear increase has been achieved, as shown in Figure 20.  
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Table 4. Operation Execution Failure Recovery 
 

Failed 
operation 

Backward 
recovery 
activity 

Forward 
execution 
activity 

Next 
operation 

Discussion 

op11 none top11 op17 Contingency is available, execute 
contingency, continue p1 with the next 
operation op17 

op17 none top17 op12 Contingency is available, execute 
contingency, continue p1 with the next 
operation op12 

op12 [cop12,cop17, 
cop11] 

cg11.top op14 Contingency is not available, deep 
compensate cg111, continue p1 with the 
next operation op14 

op13 [dop13, cop12, 
cop17, cop11] 

cg11.top op14 Compensation and contingency are not 
available, DE-rollback op13, compensate 
op12, deep compensate cg111, continue p1 
with the next operation op14 

op14 None op15 op16 No need to recover a non-critical group, 
continue p1 with the next operation op15 

op15 [cop15] 
 

cg12.top op16 Deep compensate cg12, execute 
contingency of cg12, continue p1 with the 
next operation op16 

op16 [cop15, dop13, 
cop12, 
cop17,cop11] 

cg11.top None op16 does not have contingency, deep 
compensate cg1, and execute the 
contingency of cg1. p1 is forward 
recovered. 
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Figure 19. Recovery Command Generation Time 
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Figure 20. Write Dependency Retrieval Time 
  
9. SUMMARY AND FUTURE DIRECTIONS 
This research has defined a service composition and recovery model to support flexible, 
automatic process recovery in a loosely-coupled, distributed service composition environment.  
Different from existing solutions, the model provides a flexible hierarchical composition structure. 
Forward recovery is maximized through compensation or DE-rollback at different granularity 
levels, followed by contingency plans. The model includes detailed recovery algorithms to 
generate recovery commands whenever a service fails in the context of a process execution. This 
research has included the implementation of the DeltaGrid simulation framework to verify and 
support the service composition and recovery model, including an evaluation of the performance 
of the recovery command generation process.  

This research has been extended to support multiple process recovery in a concurrent process 
execution environment, where the recovery of a failed process can cause read dependent or write 
dependent processes to also invoke recovery activities based on user-defined semantic conditions. 
When one process determines that it needs to execute compensating procedures, data changes 
introduced by compensation or DE-rollback of a process might affect other concurrently 
executing processes that have either read or written data that have been produced by the failed 
process. We refer to this situation as process interference. A robust service execution 
environment should recover a failed process and effectively handle process interference based on 
data dependencies and application semantics. To support correctness of multiple process 
execution, our research has revised the recovery algorithms presented in this paper to support the 
recovery of concurrently executing processes that are affected by the recovery of a failed process 
(Xiao, 2006; Xiao and Urban, 2007).  

The performance of multi-process recovery is heavily dependent on read/write dependency 
retrieval in PHCS. When there is large number of processes in the environment, the PHCS can 
become a bottleneck, even with optimization. One of our future directions is to design a 
distributed PHCS system where the global delta object schedule is distributed over several sites 
and only related dependency information is transferred between sites. This can significantly 
reduce read/write dependency construction and retrieval time and improves system performance. 

Another future direction is to study a more dynamic approach to service composition 
environment and revise the service composition model to support the use of events and rules. 
Events are needed for responding to exceptional conditions and to application exceptions, while 
rules are needed to define more flexible ways of responding to event. In many business processes, 
application exceptions frequently occur and require manual processing based on process 
execution status and/or read and write dependencies on other processes. Adding rule-based 
application exception handling will provide a more complete notion of process failure recovery 
for business processes that execute over distributed services. We have already experimented with 
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the use of events and rules for the integration of distributed services in (Jin et al., 2006; Jin et al., 
2007). 
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