
International Journal of Web Services Research , Vol.X, No.X, 200X

The DeltaGrid Service Composition and Recovery Model

Yang Xiao and Susan D. Urban
Arizona State University

School of Computing and Informatics
Department of Computer Science and Engineering

Tempe, AZ 85287-8809
s.urban@asu.edu

ABSTRACT:

This research has defined an abstract execution model for establishing user-defined correctness
and recovery in a service composition environment. The service composition model defines a
flexible, hierarchical service composition structure, where a service is composed of atomic and/or
composite groups. The model provides multi-level protection against service execution failure by
using compensation and contingency at different composition granularity levels, thus maximizing
the potential for forward recovery of a process when failure occurs. The recovery procedures also
includes rollback as a recovery option, where incremental data changes known as deltas are
extracted from service executions and externalized by streaming data changes to a Process
History Capture System. Deltas can then be used to backward recover an operation through a
process known as Delta-Enabled Rollback. Our work defines the semantics of the service
composition model and the manner in which compensation, contingency, and DE-rollback are
used together to recover process execution. We also present a case study and describe a
simulation and evaluation framework for demonstrating the functionality of the recovery
algorithm and for evaluating the performance of the recovery command generation process.

KEY WORDS:
service composition, compensation, contingency, delta-enabled rollback, failure recovery

1. INTRODUCTION

In a service-based architecture, a process is composed of a series of calls to distributed Web
services and Grid services that collectively provide some specific functionality of interest to an
application (Singh and Huhns, 2005). In a traditional, data-oriented, distributed computing
environment, a distributed transaction is used to provide certain correctness guarantees about the
execution of a transaction over distributed data sources. In particular, a traditional, distributed
transaction provides all-or-nothing behavior by using the two-phase commit protocol to support
atomicity, consistency, isolation, and durability (ACID) properties (Kifer et al., 2006). A process
in a service-oriented architecture, however, is not a traditional ACID transaction due to the
loosely-coupled, autonomous, and heterogeneous nature of the execution environment. When a
process invokes a service, the service performs its function and then terminates, without regard
for the successful termination of the global process that invoked the service. If the process fails,
reliable techniques are needed to either 1) restore the process to a consistent state or 2) correct
critical data values and continue running.

Techniques such as compensation and contingency have been used as a form of recovery in
past work with transactional workflows (e.g., Worah and Sheth, 1997) and have also been
introduced into recent languages for service composition (e.g., Lin and Chang, 2005). In the
absence of a global log file, compensation provides a form of backward recovery, executing a

 1

mailto:s.urban@asu.edu

International Journal of Web Services Research , Vol.X, No.X, 200X

procedure that will “logically undo” the affects of completed and/or partially executed operations.
Contingency is a form of forward recovery, providing an alternate execution path that will allow a
process to continue execution. Some form of compensation may be needed, however, before the
execution of contingency plans. Furthermore, nested service composition specifications can
complicate the use of compensating and contingent procedures. To provide a reliable service
composition mechanism, it is important to fully understand the semantics and complementary
usage of compensation and contingency, as well as how they can be used together with local and
global database recovery techniques and nested service composition specifications.

This research has defined an abstract execution model for establishing user-defined
correctness and recovery in a service composition environment. The research has been conducted
in the context of the DeltaGrid project, which focuses on building a semantically-robust execution
environment for processes that execute over Grid Services (Xiao, 2006; Xiao, Urban, and
Dietrich, 2006; Xiao, Urban, and Liao, 2006; Xiao and Urban, 2007a). This paper is an extended
version of the work presented in (Xiao, Urban, and Liao, 2006), with a focus on the full
specification of the abstract service composition and recovery model for the DeltaGrid
environment.

The service composition model defines a flexible, hierarchical service composition structure,
where a service is composed of atomic and/or composite groups. An atomic group is a service
execution with optional compensation and contingency procedures. A composite group is
composed of two or more atomic and/or composite groups and can also have optional
compensation and contingency procedures. A unique aspect of the model is the provision of
multi-level protection against service execution failure by using compensation and contingency at
different composition granularity levels, thus maximizing the potential for forward recovery of a
process when failure occurs.

Another unique aspect of the model is the support it provides for rollback as a recovery option.
Distributed services in the DeltaGrid environment, referred to as Delta-Enabled Grid Services
(DEGS), are extended with the capability of recording incremental data changes, known as deltas
(Blake, 2005; Urban et al., 2007). Deltas are extracted from service executions and externalized
by streaming data changes out of the database to a Process History Capture System (PHCS)
(Xiao, Urban, and Dietrich, 2006). The PHCS merges deltas from distributed sources into a time-
ordered schedule of the data changes associated with concurrently executing processes. Deltas
can then be used to backward recover an operation through a process known as Delta-Enabled
Rollback (DE-Rollback) (Xiao, 2006). DE-rollback can only be used, however, if certain
recoverability conditions are satisfied, with the PHCS and the merged schedule of deltas
providing the basis for determining the applicability of DE-rollback based on data dependencies
among concurrently executing processes.

Our work defines the semantics of the service composition model and the manner in which
compensation, contingency, and DE-rollback are used together to recover process execution. The
results presented in this paper outline recovery algorithms in the context of single process
execution, defining procedures for the application of shallow versus deep compensation, and also
defining conditions for the applicability of the different recovery options. We also present a case
study and describe a simulation and evaluation framework that we developed to demonstrate the
functionality of the recovery algorithm and to also evaluate the performance of the recovery
command generation process.

The rest of the paper is organized as follows. After outlining related work in Section 2,
Section 3 gives an overview of the DeltaGrid system that provides the context and test bed for
this research. Section 4 provides an overview of the service composition and recovery model.
defines the compositional structure of the model and defines the semantics of each compositional
element of the model. Section 5 then elaborates on the semantics of the composition model,
Section 6 presents algorithms for service recovery based on the semantics of each execution
entity. A case study is given in Section 6, illustrating the use of the model in the context of an

 2

International Journal of Web Services Research , Vol.X, No.X, 200X

online shopping application. Section 7 describes our results with the simulation and evaluation of
the recovery algorithms. The paper concludes in Section 8 with a summary and discussion of
future research.

2. RELATED WORK

The traditional notion of transactions with ACID properties is too restrictive for the types of
complex transactional activities that occur in distributed applications, primarily because locking
resources during the entire execution period is not applicable for Long Running Transactions
(LRTs) that require relaxed atomicity and isolation (Cichocki, 1998). Advanced transaction
models have been proposed to better support LRTs in a distributed environment (deBy et al.,
1998; Elmagarmid, 1992), including the Nested Transaction Model, the Open Nested Transaction
Model, Sagas, the Multi-level Transaction Model and the Flexible Transaction Model. These
advanced transaction models relax the ACID properties of traditional transaction models to better
support LRTs and to provide a theoretical basis for further study of complex distributed
transaction issues, such as failure atomicity, consistency, and concurrency control. These models
have primarily been studied from a research perspective and have not adequately addressed
recovery issues for transaction failure dependencies in loosely-coupled distributed applications.

Transactional workflows contain the coordinated execution of multiple related tasks that
support access to heterogeneous, autonomous, and distributed data through the use of selected
transactional properties (Worah and Sheth, 1997). Transactional workflows require externalizing
intermediate results, while at the same time providing concurrency control, consistency
guarantees, and a failure recovery mechanism for a multi-user, multi-workflow environment.
Concepts such as rollback, compensation, forward recovery, and logging have been used to
achieve workflow failure recovery in projects such as the ConTract Model (Wachter and Reuter,
1992), the Workflow Activity Model (Eder and Liebhart, 1995), the CREW Project (Kamath and
Ramamritham, 1998), the METEOR Project (Worah and Sheth, 1997), and Units of Work
(Bennett et al., 2000). These projects expose the weaknesses of using ATM techniques alone to
support reliable transactional workflow execution, mainly due to the complexity of workflows.
Previous work also shows the weakness of ATMs in support of the isolation, failure atomicity,
timed constraints, and liveness requirements of distributed transactional workflows (Kuo et al.
2002). Similar concerns are voiced in papers addressing transactional issues for traditional
workflow systems (Alonso et al. 1997; Kamath and Ramamritham 1996; Kamath and
Ramamritham 1998) as well as workflow for loosely-coupled distributed sources such as Web
Services (Fekete et al. 2002; Kuo et al. 2002). More comprehensive solutions are needed to meet
the requirements of transactional workflows (Worah and Sheth 1997).

In the Web Services platform, WS-Coordination (2005) and WS-Transaction (2005) are two
specifications that enable the transaction semantics and coordination of Web Service composition
using Atomic Transactions (AT) for ACID transactions and Business Activity (BA) for long
running business processes. The Web Services Transaction Framework (WSTx) (Mikalsen et al.,
2002) introduces Transactional Attitudes, where service providers and clients declare their
individual transaction capabilities and semantics. Web Service Composition Action (WSCA)
(Tartanoglu, 2003) allows a participant to specify actions to be performed when other Web
Services in the WSCA signal an exception. An agent based transaction model (Jin and Goshnick,
2003) integrates agent technologies in coordinating Web Services to form a transaction. Tentative
holding is used in (Limthanmaphon and Zhang, 2004) to achieve a tentative commit state for
transactions over Web Services. Acceptable Termination States (Bhiri et al., 2005) are used to
ensure user-defined failure atomicity of composite services, where application designers specify
the global composition structure of a composite service and the acceptable termination states.

 3

International Journal of Web Services Research , Vol.X, No.X, 200X

In contrast, our research is among the first to provide a flexible hierarchical composition
structure with automatic execution failure recovery capability for service composition (Xiao,
2006). Our research maximizes the forward recovery of a process by allowing flexible
specification of multi-level contingency and compensation and addressing potential failure of
recovery procedures. More importantly, we capture process execution history based on
incremental data changes that can be used to backward recover a failed operation/process
execution, and to support application-dependent correctness for multi-process execution. This
paper presents the full details of the service composition model for the process specification and
automatic service failure recovery algorithms in the context of global process execution.

3. OVERVIEW OF THE DELTAGRID SYSTEM

A unique aspect of the service composition and recovery model presented in this paper is the
ability to use incremental data changes extracted from service executions as a log file to support
what we refer to as Delta-Enabled rollback (DE-rollback) as an additional option for recovery of
a failed process. Before presenting the composition and recovery model, this section provides an
overview of the DeltaGrid environment, describing Delta-Enabled Grid Services (DEGS) and the
manner in which they work together with the Process History Capture System to support the use
of DE-rollback.

3.1 Delta-Enabled Grid Services

A foundational component of the DeltaGrid environment is the notion of a Delta-Enabled Grid
Service (DEGS) (Blake, 2005; Urban et al., 2007). A DEGS is a Grid Service that has been
enhanced with an interface that provides access to the incremental data changes, or deltas,
associated with service execution in the context of globally executing process. A DEGS uses an
OGSA-DAI Grid Data Service (Foster, 2001; IBM, 2005) for database interaction, modifying the
SQLUpdate activity feature for database access to provide the functionality necessary for capturing
and returning delta values.

The database accessed by a DEGS captures deltas using capabilities provided by most
commercial database systems. Our own implementation has experimented with the use of triggers
as a delta capture mechanism, as well as the Oracle Streams capability (Oracle, 2005). Oracle
Streams is a feature that monitors database redo logs for changes and publishes these changes to a
queue to be used for replication or data sharing. Deltas captured from the source database are
stored in an associated delta repository. Deltas can then be sent to the DeltaGrid event processor
after the completion of an operation execution by push mode, or be requested by the DeltaGrid
system by pull mode.

A DEGS uses the object delta concept originally defined in (Sundermeir et al. 1997) to create
a conceptual view of relational deltas. As shown in Figure 1, each tuple of a relation can be
associated with an instance of a DeltaObject. A DeltaObject has a className indicating the name of
a class (i.e., relation) to which the associated object belongs, and an objectId (i.e., primary key) to
uniquely identify the associated object instance. A DeltaObject can have multiple DeltaProperty
objects, which correspond to the attributes of a relation. Each DeltaProperty object has a
PropertyName, and one or more PropertyValues (i.e., delta values). A PropertyValue contains an
oldValue and a newValue, representing the old attribute value and the new attribute value,
respectively. Each PropertyValue is associated with a DataChange object. The DataChange object
has a processId and an operationId, indicating the global process and operation that has created the
PropertyValue, with a timestamp to record the actual time of change. Deltas are extracted from the

 4

International Journal of Web Services Research , Vol.X, No.X, 200X

delta repository and communicated to the delta event processor in an XML format that captures
the object structure shown in Figure 1.

Figure 1. The Delta Structure of a DEGS

3.2 Delta-Enabled RollBack

Deltas generated by a DEGS are forwarded as a stream of information to the DeltaGrid event
processor and then communicated to a Process History Capture System (PHCS). The PHCS
maintains the execution context of each active process in the system. As an extension of the
execution context, the PHCS merges the deltas received from each DEGS in the environment to
create a time-ordered schedule of data changes for concurrently executing processes. The work in
(Xiao, 2006; Xiao, Urban, and Dietrich, 2006; Urban et al., 2007) elaborates on the structure and
formation of this merged schedule of data changes.

The delta schedule forms a global log file that is used for two primary purposes within the
DeltaGrid system. One use of the schedule is to analyze data dependencies among concurrently
executing processes when process failure occurs. In the DeltaGrid system, processes cannot
enforce serializability as a correctness criterion since a process is not an ACID transaction.
Processes are long running execution entities and do not lock data during the entire execution
period because of the autonomy of individual Grid Services. Due to relaxed isolation, multiple
processes might have interleaved access to the same data object. When one process fails, the
schedule of data changes can be used to identify data dependencies and determine how the failure
and recovery of one process potentially affects other executing processes that have accessed the
same data (Xiao, 2006; Xiao and Urban, 2007a).

Another use of the schedule is to support Delta-Enabled rollback (DE-rollback). DE-rollback
is the action of reversing the data changes that have been introduced by a service execution to
their before-execution images. DE-rollback can be used to reverse the results of a service
execution even after the execution has terminated.

Figure 2 illustrates the execution of two processes, p1 and p2. The process p1 is composed of
two service invocations, indicated by op11 and op12. The process p2 is composed of service
executions op21 and op22. Each process accesses X and Y, with the schedule of data changes shown
as x1, followed by x2 and x3, as well as y1 followed by y2. As shown in Figure 2, if DE-rollback is
invoked on op22, the object delta created by op22 (y2) will be removed, and the value of Y will be

op11

p1
Process

Object Deltas

X (x0) x1 x2

Y (y0) y1

op21

p2

x3

y2

op22op12

 5

International Journal of Web Services Research , Vol.X, No.X, 200X

Figure 2. Delta-Enabled Rollback

restored to the value y1. Likewise, DE-rollback can be applied to op21 to reverse the value of X
from x3 to x2.

Since DE-rollback restores object values based on the order of modification, DE-rollback can
only be invoked under semantic conditions that conform to the traditional notion of
recoverability. A recoverable schedule requires that, at the time when each transaction ti commits,
every other transaction tj that wrote values read by ti has already committed (Kifer et al., 2006).
Thus a recoverable schedule does not allow dirty writes to occur. In a recoverable schedule, a
transaction t1 cannot be rolled back if another transaction t2 reads or writes data items that have
been written by t1, since this may cause lost updates. When interleaved access to the same data
item disables the applicability of DE-rollback on an operation, compensation can be used to
semantically undo the effect of the operation.

The following section elaborates on the manner in which DE-rollback, compensation, and
contingency are used together to support process recovery.

4. SERVICE COMPOSITION AND RECOVERY MODEL

In the DeltaGrid environment, a process is hierarchically composed of different types of
execution entities. Table 1 shows seven execution entities defined in the service composition
model. Figure 3 uses a UML class diagram to graphically illustrate the composition relationship
among these execution entities. A process is a top-level execution entity that contains other
execution entities. A process is denoted as pi, where p represents a process and the subscript i
represents a unique identifier of the process. An Operation represents a service invocation, denoted
as opij, such that op is an operation, i identifies the enclosing process pi, and j represents the unique
identifier of the operation within pi. Compensation (denoted as copij) is an operation intended for
backward recovery, while contingency (denoted as topij) is an operation used for forward recovery.

Table 1. Execution Entities
Entity Name Definition
Operation A DEGS service invocation, denoted as opij
Compensation

An operation that is used to undo the effect of a committed
operation, denoted as copij

Contingency An operation that is used as an alternative of a failed operation
(opij), denoted as topij

Atomic Group An execution entity that is composed of a primary operation (opij),
an optional compensation (copij), and an optional contingency
operation (topij), denoted as agij = <opij [,copij] [,topij]>

Composite
Group

An execution entity that is composed of multiple atomic groups or
other composite groups. A composite group can also have an
optional compensation and an optional contingency, denoted as cgik
= <(agikm

 | cgikn)+ [,copik] [,topik])>
Process A top level composite group, denoted as pi
DE-rollback An action of undoing the effect of an operation by reversing the

data values that have been changed by the operation to their before
images, denoted as dopij

 6

International Journal of Web Services Research , Vol.X, No.X, 200X

Figure 3. Service Composition Structure

An atomic group and a composite group are logical execution units that enable the specification

of processes with complex control structure, facilitating service execution failure recovery by
adding scopes within the context of a process execution. An atomic group contains an operation, an
optional compensation, and an optional contingency. A composite group may contain multiple atomic
groups, and/or multiple composite groups that execute sequentially or in parallel. A composite group
can have its own compensation and contingency as optional elements. A process is essentially a top
level composite group.

An atomic group is denoted as agij, while a composite group is denoted as cgik. The subscripts in
the atomic group and composite group notation indicate the nesting levels of an atomic group or
composite group within the context of a process. For example, a process pi is a top-level composite
group denoted as cg1. Assume cg1 contains two composite groups and an atomic group. The
enclosed composite groups are denoted as cg11 and cg12, and the atomic group is denoted as ag13.
Assume cg11 contains two atomic groups. These atomic groups are denoted as ag111 and ag112,
respectively.

The only execution entity not shown in Figure 3 is the DE-rollback entity. DE-rollback is a
system-initiated operation that uses the deltas of the PHCS to reverse the execution of a
completed operation.

Figure 4 shows an abstract view of a sample process definition based on the DeltaGrid service
composition structure. This sample process will be used throughout the rest of the paper to
demonstrate different operation failure and recovery scenarios. A process p1 is the top level
composite group cg1. The process p1 is composed of two composite groups cg11 and cg12, and an
atomic group ag13. Similarly, cg11 and cg12 are composite groups that contain atomic groups. Each
atomic/composite group can have an optional compensation plan and/or contingency plan.
Operation execution failure can occur on an operation at any level of nesting. The purpose of the
DeltaGrid service composition model is to automatically resolve operation execution failure using
compensation, contingency, and DE- rollback at different composition levels.

 7

International Journal of Web Services Research , Vol.X, No.X, 200X

op11
cop11
top11

ag111

op12
cop12

op13
top13

ag113

cg11

cg11.cop

cg11.top

op14 (non-critical)ag121

op15
cop15

cg12.top

op16
cop16
top16

ag13

cg1.cop

cg1.top

p1 = cg1

cg12

ag112

ag122

Figure 4. An Abstract View of a Sample Process

5. ENTITY EXECUTION SEMANTICS

As the building block of a process, the behavior of a DEGS operation impacts the state of the
higher-level execution entities that are composed of DEGS operations. An operation may need
backward recovery either because of its own execution failure, or due to another operation’s
failure within the context of composite group execution. Under these two cases, a DEGS
operation can present different recoverability options that affect the recovery activities of the
entire process. This section defines the execution semantics of a DEGS operation and addresses
recoverability of a DEGS operation.

As defined in the previous section, an operation is a DEGS service. The DeltaGrid system
assumes that each DEGS that participates in the DeltaGrid service composition environment is an
autonomous entity that guarantees its local correctness through a proper concurrency control
mechanism, exposing serializablity or variations of serializability to the service composition
environment. Due to different functionality and implementation provided by service vendors, a
DEGS operation presents one of the following transaction semantics:
1. A flat transaction or nested transaction. When an operation fails, the operation is

automatically rolled back by the underlying database system. This type of DEGS operation
as an ACID DEGS operation.

2. A multi-level transaction. A multi-level transaction is composed of multiple subtransactions.
Each subtransaction is an ACID transaction that can unilaterally commit. If a multi-level
transaction fails due to failure of a subtransaction, rollback usually cannot be applied since
some subtransactions might have committed. Instead, a local compensating transaction is
executed to restore the system to a consistent state. This type of DEGS operation is referred
to as a multi-level DEGS operation. The local compensating transaction is atomic and
preserves serializablility as defined in the multi-level transaction model.

This section elaborates on recoverability issues for a DEGS operation. We first compare the
execution semantics of an ACID DEGS operation and a multi-level DEGS operation. Since the

 8

International Journal of Web Services Research , Vol.X, No.X, 200X

compensating transaction of a multi-level DEGS operation might fail, we then specify the
recovery options for a multi-level DEGS operation for the case where the operation fails before
the commit process. This case is referred to as pre-commit recoverability. After an operation
commits, the failed execution of a subsequent operation within the same process can cause a
successfully committed operation to be compensated. This case is referred to as post-commit
recoverability. We also present the post-commit recovery options for a DEGS operation.

5.1 DEGS Operation Execution Semantics

Figure 5 compares the execution semantics of an ACID DEGS operation, shown in (a), with a
multi-level DEGS operation, shown in (b). An ACID DEGS operation has four states: {active,
successful, failed, aborted}. An operation enters the active state when it is invoked. If the execution
successfully terminates, the operation enters a successful state, otherwise it enters a failed state. A
failed state means that a runtime failure occurs during the operation execution that makes the
execution invalid. An ACID DEGS operation can automatically roll back to enter an aborted state.
This rollback activity is supported by the underlying database system and we assume it is always
successful. Thus an ACID DEGS operation’s termination state is either successful or aborted.

Figure 5. Transaction Semantics of a DEGS Operation

As shown in Figure 5 (b), a multi-level DEGS operation has four states: {active, successful,
failed, compensated}. The difference is that when a multi-level DEGS operation fails, a
compensating transaction is executed, possibly containing multiple compensation steps for
subtransactions that have been executed. This local compensating transaction is invoked
automatically by the DEGS as a multi-level transaction processing system, independent of the
DeltaGrid recovery capability. From the service composition point of view, this compensating
transaction is conducted before the commit of the entire DEGS operation as a multi-level
transaction, and is referred to as pre-commit-compensation.

Successful pre-commit-compensation leads to a compensated state. However in a realistic
execution environment, a pre-commit-compensation might fail as well. As an atomic transaction,
the failed pre-commit-compensation will be rolled back by the supporting transaction processing
system and leaves no partial effect in the DEGS execution environment. So when a pre-commit-
compensation fails, a multi-level DEGS operation remains in a failed state. Thus the termination
states of a multi-level DEGS operation include: {successful, compensated, failed}. When pre-
commit-compensation fails, another mechanism is needed to clean up the effect of the failed

 9

International Journal of Web Services Research , Vol.X, No.X, 200X

operation execution. The pre-commit-compensation is a failure recovery mechanism provided by
a multi-level DEGS, and not by the DeltaGrid environment.

In the DeltaGrid system, an operation opij might need backward recovery if 1) opij fails before
termination, or 2) opij successfully terminates, but another operation execution failure requires opij
to be recovered in the context of composite group execution. In the former case, the recovery of
opij happens before opij commits, which is referred to as pre-commit recovery. In the latter case, the
recovery of opij happens after opij commits, which is referred to as post-commit recovery. In the
following, we present the recovery capability of the operation in each case.

5.1.1 Pre-commit Recoverability

When the compensating transaction of a multi-level DEGS operation fails, the effect of the failed
operation execution remains in the DEGS execution environment. Pre-commit recovery activities
are applied to clean up the failed operation execution before the operation terminates.

Definition 1 (Pre-commit Recoverability): Pre-commit recoverability specifies how a DEGS
operation should be recovered when an execution failure occurs before the DEGS operation as an
execution unit commits.

Table 2 presents pre-commit recovery options for a DEGS operation. Ideally, a DEGS
operation’s pre-commit recoverability is automatic rollback for an ACID DEGS operation, or
pre-commit-compensation for a multi-level DEGS. Realistically, a pre-commit-compensation of a
multi-level DEGS operation might fail. With the delta capture capability, a DEGS can reverse the
effect of the original operation through DE-rollback if the recoverability conditions are satisfied.
If DE-rollback cannot be applied due to the violation of the semantic conditions for DE-rollback,
the service composition model requires a DEGS provider to offer a service reset function. The
service reset function cleans up the effect of a failed operation and prepares the DEGS execution
environment for the next service invocation. A service reset typically requires a special program
or a human agent to resolve the failed operation execution.

Table 2. A DEGS Pre-commit Recoverability Options

Option Meaning
Automatic rollback The failed service execution can be automatically rolled

back by a service provider
Pre-Commit-
Compensation

A pre-commit-compensation is invoked by a service
provider to backward recover a failed operation.

DE-rollback A failed operation can be reversed by executing DE-
rollback

Service Reset The service provider offers a service reset function to
clean up the service execution environment.

Figure 6 shows the state diagram of a DEGS operation with pre-commit recoverability.

Compared with Figure 5, Figure 6 adds support for pre-commit-compensation failure handling
and eliminates the failed state as a termination state. As shown in Figure 6, a DEGS operation
enters the successful state when the operation successfully executes. If the operation fails, the
operation transits to different states depending on whether the operation is an ACID DEGS
operation or a multi-level DEGS operation. If an ACID operation fails, the operation enters the
aborted state. Otherwise if a multi-level operation fails, the operation enters the compensated state
when the pre-commit compensation succeeds. If the pre-commit compensation fails, the operation
stays in the failed state.

 10

International Journal of Web Services Research , Vol.X, No.X, 200X

When a pre-commit-compensation fails, the DeltaGrid system will initiate recovery activities.
The first recovery option adopted by the DeltaGrid system is DE-rollback. The DeltaGrid system
will determine if the semantic conditions for DE-rollback hold. If yes, DE-rollback is invoked,
leading the operation to the DE-rollback state. Otherwise, the service reset function will be
invoked, leading the operation to the service-reset state. By performing DE-rollback or service
reset, a DEGS operation exits the failed state. DE-rollback and service reset as recovery activities
are initiated by the DeltaGrid system. The pre-commit recovery activities, namely automatic
rollback, pre-commit-compensation, DE-rollback, and service reset, transform a failed operation
execution to a pre-commit recovered state, which represents one of four concrete states: aborted,
compensated, DE-rollback, service-reset. Thus the termination state of a DEGS operation is either
successful or pre-commit recovered.

Figure 6. A DEGS Operation with Pre-Commit-Compensation Failure Considered

5.1.2 Post-Commit Recoverability

Contrary to pre-commit recoverability, which defines how to clean up a failed operation
execution, post-commit recoverability specifies how to semantically undo the effect of a
successfully terminated operation due to another operation’s execution failure. This section
defines post-commit recoverability of a DEGS operation and discusses different post-commit
recoverability options.

Definition 2 (Post-commit Recoverability): Post-commit recoverability specifies how an
operation’s effect can be semantically undone after the operation successfully terminates.

Post-commit recoverability is considered when a completed operation inside of a composite
group needs to be undone due to runtime failure of another operation. Table 3 defines three post-
commit recoverability options: reversible (through DE-rollback), compensatable, or dismissible.
Since post-commit recovery is only applicable in the context of composite group execution, the

 11

International Journal of Web Services Research , Vol.X, No.X, 200X

invocation condition of post-commit recovery is addressed in Section 5.3 on Composite Group
Execution Semantics.

Table 3. DEGS Post-Commit Recoverability Options

Option Meaning
Reversible (DE-rollback) A completed operation can be undone by reversing the data

values that have been modified by the operation execution.
Compensatable A completed operation can be semantically undone by

executing another operation, referred to as post-execution
compensation.

Dismissible A completed operation does not need any cleanup activities.

5.2 Atomic Group Execution Semantics

An atomic group (ag) maximizes the success of an operation execution by providing a
contingency plan. If necessary, an ag can be semantically undone by executing a post-commit
recovery activity, such as compensation or DE-rollback, depending on the primary operation’s
post-commit recoverability.

With relaxed atomicity, the success of a process execution can be application-dependent and
might not require every operation to be successfully executed. The DeltaGrid service composition
model offers the flexibility of marking execution entities where failure does not affect the
execution of the enclosing composite group using a criticality decorator. By default, an
operation’s post-commit recoverability is compensatable.

Definition 3 (Criticality): An atomic group is critical if its successful execution is mandatory for
the enclosing composite group. A non-critical group indicates that the failure of this group will
not impact the state of the enclosing composite group, and the composite group can continue
execution. When runtime execution failure occurs, contingency must be executed for critical
groups, while contingency is not necessary for a non-critical group. By default, a group is critical.

As an example, in Figure 4, if ag121 fails, cg12 will continue executing since ag121 is non-critical.
Thus in the specification, there is no need to define a compensation and contingency plan for ag121.

Figure 7 describes the execution semantics of an atomic group ag. An ag enters the active state
if the primary operation is invoked. If the primary operation successfully terminates, the primary
operation enters the successful state, as described in Figure 6, leading ag to enter the ag successful
state. If the primary operation fails, ag enters the pre-commit recovered state, as defined in Figure 6.

From the pre-commit recovered state, contingency will be executed if the atomic group is
critical, as a transition initiated by the DeltaGrid system. Similar to a pre-commit-compensation,
the contingency is enforced as an atomic transaction in a DEGS. If the contingency succeeds, the
ag enters the ag successful state. Otherwise, the contingency is aborted, which leads the ag to the
ag aborted state. If the atomic group is non-critical, ag enters the ag aborted state. The termination
state of an atomic group is either ag successful or ag aborted. Compensation and DE-rollback as
post-commit recovery techniques for an atomic group are addressed in the context of composite
group execution semantics as described in the following subsection.

 12

International Journal of Web Services Research , Vol.X, No.X, 200X

Figure 7. Atomic Group Execution Semantics

5.3 Composite Group Execution Semantics

The recoverability of a composite group can be defined using the concepts of shallow
compensation and deep compensation. The terms shallow and deep compensation were originally
defined in (Laymann, 1995). Our research extends these concepts for use with nested service
composition.

Definition 4 (Shallow Compensation): Assume a composite group cgik is defined as cgik = <(agikm

| cgikn)+, copik [,topik])>. Shallow compensation of cgik is the invocation of the compensation
operation defined for the composite group cgik, which is copik.

Definition 5 (Deep Compensation): Assume a composite group cgik is defined as cgik = <(agikm

 |
cgikn)+, copik [,topik])>. Within the context of a composite group cgik, a subgroup is either an atomic
group defined as agikm = <opij, copij [,topij]>, or a composite group defined as cgikn = <(agiknx

 | cgikny)+,
copikn [,topikn])>. Deep compensation of cgik is the invocation of post-commit recovery activity
(compensation or DE-rollback) for each executed subgroup within the composite group, such as
copij for an atomic group, and copikn for a nested composite group.

Shallow compensation is invoked when a composite group successfully terminates but needs a

semantic undo due to the failure of another operation execution. A deep compensation is invoked
if: 1) a composite group fails due to a subgroup execution failure, and needs to trigger the post-
commit recovery of executed subgroups, or 2) a composite group successfully terminates, but no
shallow compensation is defined for the composite group.

As a backward recovery mechanism for a successfully executed composite group, shallow
compensation has higher priority than deep compensation. For example, in Figure 4, the failure of
a critical subgroup ag13 (both op16 and top16 fail) within the enclosing composite group cg1 causes
the two executed composite groups cg11 and cg12 to be compensated. Since cg11 has a pre-defined
shallow compensation, the shallow compensation cg11.cop will be executed. cg12’s deep
compensation will be invoked since cg12 does not have shallow compensation.

 13

International Journal of Web Services Research , Vol.X, No.X, 200X

Figure 8 (a) presents the execution semantics of a composite group cgi composed of only
atomic subgroups, denoted as cgi = <agik+ [,copi] [,topi])>. cgi remains active during a subgroup’s
execution. If all the subgroups terminate successfully, cgi enters the cgi successful state. If a
particular subgroup agik fails, agik enters the agik aborted state. cgi then enters different states
depending on whether agik is the first subgroup of cgi. If agik is the first subgroup of cgi, the pre-
commit recovery of agik leads cgi to enter the cgi aborted state. Otherwise all of the previously
executed subgroups (agi,1..k-1) will be post-commit recovered, leading cgi to the cgi deep
compensated state. To simplify the state diagram, the cgi extended abort state is introduced to
represent either the cgi aborted state or the cgi deep compensated state. The cgi extended abort state
indicates that the partial result of a composite group cgi’s execution has been cleaned up, and the
contingency for the composite group can be executed.

From the cgi extended abort state, cgi’s contingency can be executed. If the contingency
succeeds, cgi enters the cgi successful state. If the contingency fails, the contingency rolls back as
an atomic transaction, and cgi remains in the cgi extended abort state.

Figure 8. Composite Group Execution Semantics

In Figure 8 (a), the cgi deep compensated state can be reached only if every step during a deep

compensation process succeeds. In another words, compensation of every executed subgroup
(agi,1..k-1) must succeed. Realistically a subgroup’s compensation might fail. When a subgroup’s
compensation fails during a deep compensation, DE-rollback or the service reset function will be
applied, in the same manner as a pre-commit-compensation failure is handled. DE-rollback is the
first recovery option when a subgroup’s compensation fails. If the semantic condition for DE-
rollback holds, DE-rollback can be invoked to reach the cgi deep compensated state. If not, the
service reset function will be invoked as the second recovery option.

Figure 8 (b) presents the execution semantics of a composite group cgi composed of subgroups
sgik that can be either atomic groups or composite groups, denoted as cgi = < sgik

+ [,copi] [,topi])>.
Similar to Figure 8 (a), cgi remains in the active state when a subgroup is executing. If all the
subgroups succeed, cgi enters the cgi successful state. Otherwise, if any subgroup sgik fails, sgik
enters the sgik extended abort state, as defined in Figure 7 (if sgik is an atomic group) and in Figure
8 (a) (if sgik is a composite subgroup). Depending on whether sgik is the first subgroup of cgi, cgi

 14

International Journal of Web Services Research , Vol.X, No.X, 200X

enters either the cgi aborted state or the cgi deep compensated state, following the same transition
defined in Figure 8 (a). The state transition caused by the contingency execution is the same as
that presented in Figure 8 (a).

5.4 Backward Recovery of an Atomic Group and a Composite Group

Figure 9 presents the backward recovery semantics of an atomic group. A completed atomic
group might need a backward recovery caused by the execution failure of another entity during
process execution. Backward recovery of an atomic group ag cancels the effect of a successfully
executed atomic group, thus backward recovery of ag starts from the state ag successful in Figure
7. An atomic group has three backward recovery options: compensation, DE-rollback, or service
reset, which are invoked based on post-commit recoverability of the primary operation. If the
primary operation is compensatable, compensation is invoked. If compensation succeeds, ag
enters the ag compensated state. If compensation fails, ag remains in the ag successful state since
the effect of compensation will be removed by the DEGS execution environment. When
compensation fails, DE-rollback can be invoked if DE-rollback is applicable, which leads ag to
the ag DE-rollback state. If DE-rollback is not applicable, service reset can be performed, leading
ag to the ag service-reset state. Thus the execution of backward recovery activity will leave ag in
the ag post-commit recovered state, which represents one of three concrete states: ag compensated,
ag DE-rollback, or ag service-reset.

Figure 9. Atomic Group Backward Recovery Semantics

Figure 10 (a) presents the backward recovery semantics of a composite group that is

composed of only atomic groups. The backward recovery of a composite group cgi starts from the
cgi successful state of Figure 8 (a). If cgi has a shallow compensation and the shallow compensation
succeeds, cgi enters the cgi shallow compensated state. If cgi does not have shallow compensation, or
if shallow compensation fails, deep compensation can be executed on cgi by executing backward
recovery activity for each enclosed atomic group agik. According to the backward recovery

 15

International Journal of Web Services Research , Vol.X, No.X, 200X

semantics of an atomic group presented in Figure 9, backward recovery of agik is guaranteed to
terminate in the agik post-commit recovered state, thus lead cgi to the cgi deep compensated state.

Figure 10. Composite Group Backward Recovery Semantics

Figure 10 (b) presents the backward recovery semantics of a composite group cgi that is

composed of atomic groups and/or nested composite groups, denoted as subgroup sgik. As in
Figure 10 (a), shallow compensation is invoked first if available. When deep compensation is
needed, there are several possible intermediate states based on sgik. If sgik is an atomic group,
backward recovery of sgik leads sgik to the sgik post-commit recovered state. If sgik is a composite
group, sgik terminates in the sgik shallow compenated state or the sgik deep compensated state, as
shown in Figure 10 (b). Thus every subgroup is successfully backward recovered, leading cgi to
the cgi deep compensated state.

6. RECOVERY ALGORITHM

This section presents algorithms for the recovery of a failed operation execution in the context of
a process composed of nested composite groups. The recovery process requires deep
compensation of a composite group, which will eventually invoke the post-commit recovery of
atomic groups. The algorithm is divided into three main steps: 1) the atomic group post-commit
recovery algorithm for backward recovery of an atomic group after the successful execution of its
primary operation, 2) the composite group deep compensation algorithm, which invokes the post-
commit recovery of executed atomic subgroups, and 3) the top-level algorithm for recovery of a
failed operation execution within the context of process execution.

6.1 Atomic Group Post-Commit Recovery Algorithm

An atomic group ag is complete if ag contains necessary compensation and contingency plans for
its primary operation op, depending on op’s post-commit recoverability and ag’s criticality in the
context of the immediately enclosing composite group. A complete non-critical atomic group
only contains the primary operation, while a complete critical atomic group requires a
contingency plan. The post-commit recoverability determines if a compensation plan is needed
for a complete critical atomic group. If the primary operation is compensatable, the atomic group

 16

International Journal of Web Services Research , Vol.X, No.X, 200X

should contain a compensation plan. If the primary operation is reversible or dismissible, no
compensation is needed. However in a process definition, an atomic specification might be
incomplete if compensation is required but not provided by the service provider. Under this
circumstance, DE-rollback or service reset will be invoked, depending on whether the semantic
conditions for DE-rollback hold.

Figure 11 outlines the algorithm to determine whether to invoke DE-rollback or service reset
on an operation. The input to the procedure is a failed operation to be backward recovered. After
the execution of the procedure, the effect of the given operation is eliminated either through DE-
rollback or service reset. The algorithm begins with checking if the semantic conditions for DE-
rollback of the given operation holds. If yes, DE-rollback will be invoked. Otherwise service reset
will be called on a DEGS. This procedure is used in the atomic group post-commit recovery
algorithm when compensation is not available, or when compensation fails.

Figure 11. Procedure to Invoke DE-Rollback or Service Reset on an Operation

Figure 12 presents the algorithm to recover an atomic group after its successful termination

based on the atomic group’s criticality and its primary operation’s post-commit recoverability
specification. The input to the algorithm is an atomic group to be post-commit recovered. After
execution of the algorithm, the given atomic group is post-commit recovered through
compensation, DE-rollback, or service reset.

The atomic group post-commit recovery algorithm corresponds to the recovery semantics in
Figure 9, starting the backward recovery of agij from the state agij successful (the end state of
Figure 7 and the start state of Figure 9). The successful execution of compensation (case 1.1.1)
leads agij to the state agij compensated. If compensation fails (case 1.1.2), compensation is not
defined for agij (case 1.2), or compensation is not necessary (case 2), DE-rollback or service reset
will be invoked, which leads agij to the state agij DE-rollback or agij service-reset. In case 3, agij does
not need a backward recovery. As a result, the atomic group post-commit recovery algorithm
guarantees agij to be in the state agij post-commit recovery of the state diagram in Figure 9, if any
backward recovery activity is necessary.

As an example, an atomic group is defined as agij = <opij [,copij] [,topij]>. The algorithm first
checks the post-commit recoverability of the given atomic group’s primary operation opij. There
are three possible options based on opij’s post-commit recoverability:
1) opij is compensatable. If agij has compensation copij, copij will be invoked. If copij succeeds, agij is

compensated and the algorithm returns. Otherwise if copij fails, the algorithm will invoke DE-
rollbackOrServiceReset(opij) presented in Figure 11 to recover opij through DE-rollback or
service reset.

2) opij is reversible. There will be no compensation in the atomic group. DE-
rollbackOrServiceReset(opij) is invoked to recover the atomic group.

3) opij is dismissible. No recovery action is needed in this case.

 17

International Journal of Web Services Research , Vol.X, No.X, 200X

Figure 12. Atomic Group Post-Commit Recovery Algorithm

6.2 Composite Group Deep Compensation Algorithm

As discussed previously, deep compensation of a composite group cgi is executed either due to a
subgroup execution failure before cgi completes, or due to an operation failure outside of cgi after
cgi completes but cgi has no shallow compensation.

In the context of composite group execution, the failure of an atomic group agik means that the
atomic group’s primary operation and the contingency plan (if it exists) fail, and the atomic group
ends in the ag aborted state. If the atomic group is non-critical, failure of the group will not affect
the execution of the enclosing composite group cgi. However, if a critical atomic group agik fails
and the immediately enclosing composite group cgi is critical, cgi needs to be deep compensated.

Figure 13 presents an algorithm to deep compensate a composite group cgi. This algorithm
recursively invokes the deep compensation of an immediately enclosing composite group of a
subgroup if the contingency of the subgroup fails. The input to the algorithm is the composite
group to be deep compensated. After the execution of the algorithm, the effect of cgi is
semantically undone by invoking post-commit recovery of executed subgroups in reverse
execution order, if a subgroup is critical to cgi’s execution.

The algorithm begins with getting a list of executed critical subgroups sgik in reverse execution
order. The algorithm then iterates through each subgroup sgik. If sgik is an atomic group, post-
commitRecoverAtomicGroup(sgik) will be invoked. Otherwise if sgik is a composite group and sgik has

 18

International Journal of Web Services Research , Vol.X, No.X, 200X

shallow compensation csgik, csgik will be executed. If sgik does not have shallow compensation or
shallow compensation fails, the algorithm will recursively invoke deep compensation on sgik.

public void deepCompensate(CompositeGroup cgi)
{

//get a list of executed critical subgroups of cgi in reverse execution order
C = [sgik | sgik � cgi] (k = n ..1)

//iterate through every executed subgroup of cgi

FOR EACH sgik � C
{

//check if sgik is an atomic group
CASE:

1. sgik is an atomic group
EXECUTE post-commitRecoverAtomicGroup(sgik);
CONTINUE;

2. sgik is a composite group:
//check if sgik has shallow compensation csgik

CASE:
2.1 sgik has csgik:

EXECUTE csgik ;
//check csgik execution result
CASE:

2.1.1 csgik SUCCEEDS:
CONTINUE;

2.1.2 csgik FAILS:
EXECUTE deepCompensate(sgik);

END CASE;
2.2 sgik has no csgik:

EXECUTE deepCompensate(sgik) ;
CONTINUE;

END CASE;
END CASE;

}//END FOR;
}

Figure 13. Composite Group Deep Compensation Algorithm

As we have discussed, the deep compensation of a composite group cg is invoked if 1) a
critical subgroup of cg fails before cg completes, or 2) cg successfully completes, cg does not have
a pre-defined shallow compensation, and cg needs to be backward recovered due to the failure of
another operation execution. In either case, the deep compensation process contains the post-
commit recovery of executed critical subgroups. For example, in Figure 4, if ag112 fails, ag111 will
be compensated, which is the deep compensation of the enclosing composite group cg11 before
cg11 completes. If ag13 fails, cg12 and cg11 will be compensated, which is the deep compensation of
cg1 before cg1 completes. cg12 needs to be deep compensated by executing ag122 since cg12 does not
have a shallow compensation. cg11 can be shallow compensated by executing cg11.cop.

The composite group deep compensation algorithm leads a completed composite group cgi to
the state cgi deep compensated, conforming to the backward recovery semantics shown in Figure
10 (b). The algorithm starts with cgi in the state cgi successful. If a subgroup sgik is an atomic group
(case 1), sgik enters the state sgik post-commit recovered, by executing the post-commit recovery
algorithm for sgik. If sgik is a composite group and shallow compensation is available (case 2.1.1),
the successful invocation of shallow compensation leads sgik to the state sgik shallow compensated. If
shallow compensation fails (case 2.1.2), or shallow compensation is unavailable (case 2.2), the

 19

International Journal of Web Services Research , Vol.X, No.X, 200X

deep compensation algorithm will be invoked on sgik, which leads sgik to the state sgik deep
compensated. Thus the execution of the algorithm guarantees cgi to enter one of the concrete states
of the state cgi deep compensated, as shown in Figure 10 (b).

If cgi needs a deep compensation due to a subgroup failure before its completion, the
composite group deep compensation algorithm starts from the state sgik extended abort in Figure 8
(b). Every executed subgroup performs a backward recovery, which leads cgi to the state cgi
extended abort in Figure 8 (b). As a summary, the execution of the composite group deep
compensation algorithm leads a composite group cgi to the state cgi deep compensated if cgi
successfully completed prior to compensation, or to the state cgi extended abort if cgi is in the
process of execution when failure occurs. In either case, the algorithm execution conforms to the
state transitions shown in Figures 8 and 10.

6.3 Operation Execution Failure Recovery Algorithm

Figure 14 presents the operation execution failure recovery algorithm which recovers a failed
operation execution in the context of a process execution. The input to the algorithm is a failed
operation opij. The output of the algorithm is a Boolean value indicating whether the process with
an operation execution failure can be forward recovered or not. If the method returns true, the
process has been recovered and can continue with the next execution entity. Returning false
means that the entire process has been backward recovered.

The algorithm first gets the enclosing atomic group agij of the failed operation opij. Then the
algorithm checks if agij is critical. If agij is not critical, the algorithm returns true. If agij is critical
and agij has a contingency topij, topij is invoked. If topij succeeds, the algorithm returns true.
However if topij fails or agij has no contingency topij, the fault will be propagated to the
immediately enclosing composite group of agij by executing a procedure propagateFailure(agij). The
procedure propagateFailure(agij) will recover the failed atomic group within the scope of the
enclosing composite group.

Figure 15 presents the algorithm for handling the propagation of a failed atomic group in the
context of nested composite group execution. The input to the algorithm is a failed atomic group
agij. The output is a Boolean value indicating whether failure of the atomic group can be forward
recovered. If the method returns true, the enclosing process of the atomic group has been
recovered. Otherwise the process is backward recovered.

As shown in Figure 15, the first step of the atomic group failure propagation algorithm is
obtaining the immediate enclosing composite group cgi of the failed atomic group agij. Then the
algorithm checks if cgi is critical. If cgi is not critical, the algorithm returns true. Otherwise,
deepCompensate(cgi) is invoked followed by checking the availability of cgi’s contingency. If cgi
has contingency topi and topi succeeds, the algorithm returns true. However if cgi has no
contingency topi or if topi fails, the fault is propagated to the immediate enclosing composite group
cgi, then the process of recovering the cgi starts again. The fault propagation repeats until either
the contingency of a composite group succeeds, or the top-level composite group (the process) is
reached. In the former case, the process is successfully forward recovered, and can continue with
the next execution entity. In the latter case, the entire process is backward recovered.

The operation failure recovery algorithm starts the recovery from the state pre-commit recovered
for operation opij in Figure 7. If the enclosing atomic group agij is non-critical (case 1), no
contingency is necessary, and agij enters the state ag aborted. If agij is critical and contingency
succeeds (case 2.1.1), agij enters the state ag successful. In either case, the algorithm returns true
and the enclosing process continues with the next operation execution. However if the
contingency fails (case 2.1.2), or contingency is unavailable (case 2.2), the failure of agij is
propagated to the enclosing composite group by invoking the atomic group failure propagation
algorithm propagateFailure in Figure 15.

 20

International Journal of Web Services Research , Vol.X, No.X, 200X

Figure 14. Operation Failure Recovery Algorithm

The algorithm propagateFailure starts the recovery of agij from the state ag aborted in Figure 8
(a). If the immediately enclosing composite group cgi of agij is non-critical (case 1),
propagateFailure returns true and the process continues with the next step. Otherwise, deep
compensation is invoked on cgi, leading cgi to the state cgi extended abort. If cgi has a contingency
and contingency succeeds (case 2.1.1), cgi enters the state cgi successful. The algorithm returns true
and the enclosing process continues with the next operation execution. However if cgi has no
contingency (case 2.2) or contingency fails (case 2.1.2), cgi remains in the state cgi extended abort,
which is sgik extended abort in Figure 8 (b), where propagateFailure starts recursive invocation. The
failure of sgik causes the immediate enclosing composite group cgi to be deep compensated, and
contingency executed if available. If contingency succeeds (case 2.1.1), cgi enters the state cgi
successful, the algorithm returns true, and the process continues with the next operation. If
contingency is unavailable (case 2) or contingency fails (case 2.1.2), the algorithm is again
recursively invoked until cgi reaches the top level composite group (the process). If the top level
composite group has a contingency and the contingency succeeds, the process enters the state cgi
successful. Otherwise the process enters the state cgi deep compensated state and ends. In summary,
the invocation of the operation failure recovery algorithm either forward recovers a process so the
process can continue with the next operation, or backward recovers a process, thus a process is
deep compensated, conforming to the state transitions shown in Figures 7, 8, and 10.

Using the process defined in Figure 4 as an example, when op15 fails, since ag122 does not have
a contingency plan, the enclosing composite group cg12 will be deep compensated. Since ag121 is a
non-critical subgroup of cg12 and requires no post-commit recovery, no action is invoked as the
deep compensation procedure of cg12. The deep compensation will be followed by cg12’s
contingency. If cg12’s contingency succeeds, the process will continue with ag13. However if cg12’s
contingency fails, the enclosing composite group of cg12, cg1 will be deep compensated. The deep
compensation of cg1 first invokes the shallow compensation of cg11. If cg11’s shallow compensation

 21

International Journal of Web Services Research , Vol.X, No.X, 200X

fails, cg11 will be deep compensated. After cg1’s deep compensation, cg1’s contingency will be
executed. If the contingency is successful, the process terminates successfully. Otherwise, the
process is backward recovered.

Figure 15. Atomic Group Failure Propagation Algorithm

7. CASE STUDY

This section introduces a placeClientOrder process in the context of an online shopping application
to illustrate the use of the service composition and recovery model. The online shopping
application contains typical business processes that describe the activities conducted by shoppers,
the store and vendors. For example, the process placeClientOrder is responsible for invoking
services that place client orders and decrease the inventory quantity.

Figure 16 presents a graphical view of the placeClientOrder process, using the same notation as
the abstract process example presented in Figure 4. As shown in Figure 16, the process
placeClientOrder is hierarchically composed of composite groups and atomic groups. An atomic
group has an operation, an optional compensation (cop) and contingency (top).

The placeClientOrder process starts when a client submits a client order by invoking a DEGS
operation receiveClientOrder. The next operation creditCheck verifies if the client has a good credit

 22

International Journal of Web Services Research , Vol.X, No.X, 200X

standing to pay for the order. If the client passes the creditCheck, the inventory will be checked to
see if there are sufficient inventory items to fill the order by executing checkInventory. If the client
does not pass the credit check, the order will be rejected. If there are sufficient inventory items,
the operation chargeCreditCard is to be executed to charge the client’s credit card, and the
operation decInventory is executed to decrease inventory. These two operations are grouped into a
composite group indicating that both operations should be successfully executed as a unit. Then
the order will be packed through operation packorder and shipped through operation upsShipOrder.
If the inventory is not sufficient to fill the order, the order will be marked as a backorder through
operation addBackorder, and the client will be charged the full amount.

receiveClientOrderag11

checkCreditag12

ag13

chargeCreditcard

ag14

Process placeClientOrder (p1 = cg1)

cg15

checkInventory

cop:creditBack
top:eCheckPay

ag151

good credit? rejectClientOrder

decInventory
cop:incInventory

ag152

chargeCreditcard
cop:creditBack
top:eCheckPay

ag161

addBackorder
cop:rmvBackorder

ag162

cg16

packOrder
cop:unpackOrderag17

upsShipOrder
cop:upsShipback

top:fedexShipOrder
ag18

cop:chgOrderStatus

yes

no

sufficient
inventory items?

yes

no

Figure 16. placeClientOrder Process Definition

When there is a service execution failure during process execution, the process will be
recovered based on the recovery specification embedded in the process definition, such as
compensation and contingency, as well as the recovery semantics of the service composition and
recovery model. For example, if operation upsShipOrder fails, the contingency fedexShipOrder will
be invoked, sending the order package through Fedex instead of UPS. If a client requests to
cancel the order after the operation packOrder but before upsShipOrder, each executed operation
will be backward recovered in the reverse execution order using the following list of recovery
commands: [cop:unpackOrder, cop:incInventory, cop:creditBack, DE-rollback:checkInventory, DE-
rollback:checkcredit, cop:chgOrderStatus]. DE-rollback is to be performed on operations
checkInventory and checkCredit since these two operations do not have pre-defined compensation

 23

International Journal of Web Services Research , Vol.X, No.X, 200X

and no other concurrently executing processes are write dependent on these two operations.
Furthermore, since these two operations do not modify any data, no recovery actions will be
performed for these two operations. Thus the final recovery commands for cancellation of an
order is: [cop:unpackOrder, cop:incInventory, cop:creditBack, cop:chgOrderStatus].

8. SIMULATION AND EVALUATION OF THE
COMPOSITION AND RECOVERY MODEL

The abstract model provides a theoretical foundation for building a semantically robust execution
environment for processes that execute over distributed DEGSs. To support the concepts and
algorithms defined in the composition and recovery model, this research has designed and
implemented a DeltaGrid simulation framework, using DEVSJAVA (Zeigler and Sarjoughian
2004), a Java-based modeling and simulation tool for discrete event system specification.

Figure 17 shows the major components of the simulation framework, including fully
implemented components for the PHCS and the Process Recovery System (PRS), as well as
simulated components for DEGS and the execution engine. To support the correctness of multiple
process execution, our research has also revised the recovery algorithms presented in this paper to
support the recovery of concurrently executing processes that are affected by the recovery of a
failed process (Xiao, 2006). The recoverQ in Figure 17 is a component that is used to schedule
recovery operations for concurrently executing processes. The work in (Xiao, 2006; Xiao and
Urban 2007a) describes our results with identification and recovery of concurrent processes that
are either read or write dependent on a failed process.

Figure 17. The DeltaGrid Simulation Framework

The execution engine invokes recovery algorithms implemented in the PRS to generate
recovery commands for an operation execution failure, and invoke these recovery commands on
DEGSs through the recoverQ. The execution engine also generates process execution context
such as start time, end time, and execution state. DEGSs execute service operations and

 24

International Journal of Web Services Research , Vol.X, No.X, 200X

associated recovery activities, such as contingency, compensation, DE-rollback, and service reset.
After each operation execution, a DEGS generates a delta file, and updates the operation
execution context. The PHCS receives delta files from DEGSs and builds the process execution
history, integrating the deltas and process/operation execution context. The PRS generates the
recovery commands to recover a process when a service execution failure occurs, implementing
the recovery algorithms introduced in Section 6.

We developed different scenarios to demonstrate that the PRS can generate recovery
commands for a failed process according to the specification of the service composition and
recovery model. The execution scenarios also show the coordination among the execution engine,
DEGSs, the PHCS, and the PRS in the context of single process failure recovery.

Figure 18 presents one test scenario of an abstract process. A process p1 is the top level
composite group cg1. p1 is composed of two composite groups cg11 and cg12, and an atomic group
ag13. Similarly, cg11 and cg12 are composite groups that contain atomic/composite groups. Each
atomic/composite group can have an optional compensation plan and/or contingency plan.
Operation execution failure can occur on an operation at any level of nesting.

This process is chosen to demonstrate the operation failure recovery since this process
contains the following important cases for a process recovery: non-critical group (ag121), atomic
group without contingency (ag112, ag122), atomic group without compensation and contingency
(ag113), nested composite group (cg11), and composite group without shallow compensation (cg11,
cg111, cg12). The recovery procedure for the operation op16 covers all the above cases. Thus in the
simulation run, we inject operation execution failure on op16 to demonstrate the capability of the
recovery algorithm in handling the different cases listed above.

To run the scenario, we start a process instance p1 as defined in Figure 18. We conducted
several simulation runs and each time injected operation execution failure on different operations.
We expect the following result from this set of simulation runs:

1. The PRS generates the recovery commands for operation execution failure according to
the semantics defined in the service composition model.

2. When operation execution failure occurs, the execution engine suspends the failed
process. The execution engine then invokes the PRS to generate recovery commands, and
add these recovery commands to the recovery queue. After the recovery activities in the
recovery queue are executed, forward execution activity in the suspended queue is added
to the execution queue.

Table 4 presents the failure recovery commands generated by the PRS when the process fails
at different operations in simulation runs. After the operation failure is recovered within the scope
of a composite group, the process continues its execution from the operation at the same level of
recovered composite group, indicated by the forward execute activity column in Table 4. The
discussion column of Table 4 justifies why the recovery commands are correct in each case.

We also evaluated the PRS with respect to performance. Recovery command generation time
is affected by two factors: 1) the number of concurrent processes (n) since n affects the time to
evaluate the applicability of DE-rollback and the time to retrieve an operation execution context;
2) the nesting level of a process, which represents the complexity of a process’s structure. The
evaluation was conducted by varying concurrency and process complexity. To vary the number of
concurrent processes, we tested on two different ranges: 10~100 processes (medium) and
100~1000 processes (large). To vary a process’s complexity, we tested on processes with nesting
levels from 1-5. Figure 19 indicates that recovery command generation time has a linear increase
when the number of concurrent processes grows. Our experiments showed that a flat process
(with nesting level 1) required less than a millisecond of recovery command generation time, no
matter how many concurrent processes are running. When the process nesting level is greater
than 1, there is a 13% increase in processing time, under medium and large levels of concurrency.
This increase is because of the need to increase write dependency retrieval time for nested
processes. This set of results shows the recovery command generation for the failed process only.

 25

International Journal of Web Services Research , Vol.X, No.X, 200X

As an extension of single process recovery presented in this paper, multiple process recovery
command generation time is evaluated and discussed in (Xiao 2006, Xiao and Urban 2007b).

op12
cop12

op13ag113

cg11

cg11.top

op14 (non-critical)ag121

op15
cop15

cg12.top

op16
cop16

ag13

cg1.cop

cg1.top

p1 = cg1

cg12

ag112

ag122

op11
cop11
top11

op17
cop17
top11

ag1111

cg111

cg111.top

ag1112

Figure 18. A Process Definition to Demonstrate the Functionality of the Recovery Algorithm

We also evaluated read/write dependency retrieval time. This evaluation is important for
single process recovery since write dependency is needed to determine whether DE-rollback is
applicable when compensation is not provided. Multiple process recovery performance is largely
dependent on read/write dependency retrieval time due to the need to construct process
dependency graphs. Our result shows that when the number of concurrent processes falls into two
ranges: medium (10~100) and large (100~1000), read and write dependency retrieval time
increases exponentially when the number of concurrent process grows. However when we
optimize write dependency retrieval by segmenting the global delta object schedule into several
smaller pieces and merge the result, linear increase has been achieved, as shown in Figure 20.

 26

International Journal of Web Services Research , Vol.X, No.X, 200X

Table 4. Operation Execution Failure Recovery

Failed
operation

Backward
recovery
activity

Forward
execution
activity

Next
operation

Discussion

op11 none top11 op17 Contingency is available, execute
contingency, continue p1 with the next
operation op17

op17 none top17 op12 Contingency is available, execute
contingency, continue p1 with the next
operation op12

op12 [cop12,cop17,
cop11]

cg11.top op14 Contingency is not available, deep
compensate cg111, continue p1 with the
next operation op14

op13 [dop13, cop12,
cop17, cop11]

cg11.top op14 Compensation and contingency are not
available, DE-rollback op13, compensate
op12, deep compensate cg111, continue p1
with the next operation op14

op14 None op15 op16 No need to recover a non-critical group,
continue p1 with the next operation op15

op15 [cop15]

cg12.top op16 Deep compensate cg12, execute
contingency of cg12, continue p1 with the
next operation op16

op16 [cop15, dop13,
cop12,
cop17,cop11]

cg11.top None op16 does not have contingency, deep
compensate cg1, and execute the
contingency of cg1. p1 is forward
recovered.

Recover y Command Gener at i on Ti me (n: 10~100)

0

100

200

300

400

10 20 30 40 50 60 70 80 90 100

Number of concur r ent pr ocesses

Pr
oc

es
si

ng
 t

im
e

(M
il

li
se

co
nd

) Nest i ng l evel 1
Nest i ng l evel 2
Nest i ng l evel 3
Nest i ng l evel 4
Nest i ng l evel 5

Recover y Command Gener at i on Ti me (n: 100~1000)

0

1000

2000

3000

4000

100 200 300 400 500 600 700 800 900 100
0

Number of concur r ent pr ocesses

Pr
oc

es
si

ng
 t

im
e

(M
il

li
se

co
nd

)

Nest i ng l evel 1
Nest i ng l evel 2
Nest i ng l evel 3
Nest i ng l evel 4
Nest i ng l evel 5

Figure 19. Recovery Command Generation Time

 27

International Journal of Web Services Research , Vol.X, No.X, 200X

Wr i t e Dependency Ret r i val Ti me (n: 100~1000)

0
20000
40000
60000
80000

100000
120000

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

Number of concur r ent pr ocesses
Pr

oc
es

si
ng

 t
im

e
(M

il
li

se
co

nd
)

100obj ect s
1000obj ect s
segment

Figure 20. Write Dependency Retrieval Time

9. SUMMARY AND FUTURE DIRECTIONS
This research has defined a service composition and recovery model to support flexible,
automatic process recovery in a loosely-coupled, distributed service composition environment.
Different from existing solutions, the model provides a flexible hierarchical composition structure.
Forward recovery is maximized through compensation or DE-rollback at different granularity
levels, followed by contingency plans. The model includes detailed recovery algorithms to
generate recovery commands whenever a service fails in the context of a process execution. This
research has included the implementation of the DeltaGrid simulation framework to verify and
support the service composition and recovery model, including an evaluation of the performance
of the recovery command generation process.

This research has been extended to support multiple process recovery in a concurrent process
execution environment, where the recovery of a failed process can cause read dependent or write
dependent processes to also invoke recovery activities based on user-defined semantic conditions.
When one process determines that it needs to execute compensating procedures, data changes
introduced by compensation or DE-rollback of a process might affect other concurrently
executing processes that have either read or written data that have been produced by the failed
process. We refer to this situation as process interference. A robust service execution
environment should recover a failed process and effectively handle process interference based on
data dependencies and application semantics. To support correctness of multiple process
execution, our research has revised the recovery algorithms presented in this paper to support the
recovery of concurrently executing processes that are affected by the recovery of a failed process
(Xiao, 2006; Xiao and Urban, 2007).

The performance of multi-process recovery is heavily dependent on read/write dependency
retrieval in PHCS. When there is large number of processes in the environment, the PHCS can
become a bottleneck, even with optimization. One of our future directions is to design a
distributed PHCS system where the global delta object schedule is distributed over several sites
and only related dependency information is transferred between sites. This can significantly
reduce read/write dependency construction and retrieval time and improves system performance.

Another future direction is to study a more dynamic approach to service composition
environment and revise the service composition model to support the use of events and rules.
Events are needed for responding to exceptional conditions and to application exceptions, while
rules are needed to define more flexible ways of responding to event. In many business processes,
application exceptions frequently occur and require manual processing based on process
execution status and/or read and write dependencies on other processes. Adding rule-based
application exception handling will provide a more complete notion of process failure recovery
for business processes that execute over distributed services. We have already experimented with

 28

International Journal of Web Services Research , Vol.X, No.X, 200X

the use of events and rules for the integration of distributed services in (Jin et al., 2006; Jin et al.,
2007).

REFERENCES

Alonso, G., C. Hagen, H.-J. Schek, and M.Tresh (1997) Towards a platform for distributed application

development. In Workflow Management Systems and Interoperability, edited by A. Dogac, L.
Kalinichenko, M. Ozsu and A. Sheth: Springer Verlag.

Bennett, B., B. Hahm, A. Leff, T. Mikalsen, K. Rasmus, J. Rayfield, and I. Rouvellou (2000) “A
Distributed Object-Oriented Famework to Offer Transactional Support for Long Running Business
Processes,” Proc. of Int. Conf. on Distributed Systems Platforms Middleware.

Bhiri, S., O. Perrin, and C. Godart (2005) “Ensuring Required Failure Atomicity of Composite Web
Services,” Proc. of the 14th Int. Conf. on the World Wide Web.

Blake, L. (2005) Design and implementation of Delta-Enabled Grid Services, MS Thesis, Department of
Computer Science and Engineering, Arizona State University.

Cichocki, A., A. Helal, M. Rusinkiewicz, and D. Woelk (1998) Workflow and Process Automation
Concepts and Technology: Kluwer Academic Publishers.

de By, R., W. Klas, and J. Veijalainen (1998) Transaction Management Support for Cooperative
Applications: Kluwer Academic Publishers.

Eder, J. and W. Liebhart (1995) "The Workflow Activity Model WAMO," Proc. of the the 3rd Int.
Conference on Cooperative Information Systems (CoopIs).

Elmagarmid, A. (1992) Database Transaction Models for Advanced Applications: Morgan Kaufmann.
Fekete, A., P. Greenfield, D. Kuo, and J. Jang. (2002) Transactions in loosely coupled distributed systems.

In proceedings of Australia Database Conference (ADC2003).
Foster, I. (2001) The Anatomy of the Grid: Enabling Scalable Virtual Organizations, Int. Journal of

Supercomputer Applications.
IBM. (2005) University of Edinburgh. OGSA-DAI WSRF 2.1 User Guide.

http://www.ogsadai.org.uk/docs/WSRF2.1/doc/index.html.
Jin, T., and S. Goschnick (2003) “Utilizing Web Services in an Agent Based Transaction Model (ABT),”

Proc. of the 1st Int. Workshop on Web Services and Agent-based Engineering.
Jin, Y., S. Urban, S. Dietrich, and A. Sundermier (2006) “An Integration Rule Processing Algorithm and

Execution Environment for Distributed Component Integration,” vol. 30, Informatica, pp. 193-212.
Jin, Y., S. Urban, and S. Dietrich (2007) “A Concurrent Rule Scheduling Algorithm for Active Rules,”

Data and Knowledge Engineering, vol. 60, no. 1, pp. 530-546.
Kamath, M., and K. Ramamritham (1996) Correctness issues in workflow management. Distributed

Systems Engineering 3(4):213-221.
Kamath, M. and K. Ramamritham (1998) "Failure handling and coordinated execution of concurrent

workflows," Proc. of the IEEE Int. Conference on Data Engineering.
Kifer, M., A. Bernstein, and P. M. Lewis (2006) Database systems: an Application-oriented approach. 2nd

ed: Pearson.
Kuo, D., A. Fekete, P. Greenfield, and J. Jang. (2002) Towards a framework for capturing transactional

requirements of real workflows. In proceedings of the 2nd Int. Workshop on Cooperative Internet
Computing, at Hong Kong.

Laymann, F. (1995) "Supporting business transactions via partial backward recovery in workflow
management," Proc. of the GI-Fachtagung für Datenbanksysteme in Business, Technologie und Web
(BTW'95).

Lin, F., Chang, H. (2005) "B2B E-commerce and enterprise Integration: the development and evaluation of
exception handling mechanisms for order fulfillment process based on BPEL4WS," Proc. of the the 7th
IEEE Int. Conference on Electronic commerce.

Limthanmaphon, B., and Y. Zhang (2004) “Web Service Composition Transaction Management,” Proc. of
the 15th Australasian Database Conf.

 29

http://www.ogsadai.org.uk/docs/WSRF2.1/doc/index.html

International Journal of Web Services Research , Vol.X, No.X, 200X

Mikalsen, T., S. Tai, and I. Rouvellou (2002) "Transactional attitudes: reliable composition of autonomous
Web Services," Proc. of the Workshop on Dependable Middleware-based Systems (WDMS), part of the
Int. Conference on Dependable Systems and Networks (DSN).

Oracle. (2005) Oracle9i Streams Release 2 (9.2). http://download-
west.oracle.com/docs/cd/B10501_01/server.920/a96571/toc.htm.

Singh, M and M. Huhns (2005) Service-Oriented Computing: Semantics, Processes, and Agents, J. Wiley
& Sons, 2005.

Sundermeir, A., Ben Abdellatif, T., Dietrich, S. W., Urban, S. D. (1997) Object Deltas in an Active
Database Development Environment, in:the Deductive,Object-Oriented Database Workshop. pp. 211-
229.

Tartanoglu, F., V. Issarny, A. Romanovsky, and N. Levy (2003) “Dependability in the Web Services
Architecture,” Proc. of Architecting Dependable Systems, LNCS 2677.

Wachter, H. and A. Reuter (1992) "The ConTract model," in Database transaction models for advanced
applications, A. Elmagarmid, Editor.

WS-Coordination (2005) Web Services Coordination, http://www-106.ibm.com/developerworks/library/
ws-coor/.

WS-Transaction (2005) Web Services Transaction, http://www.ibm.com/developerworks/library/ws-
transpec/.

Worah, D., and A. Sheth (1997) “Transactions in Transactional Workflows,” Advanced Transaction
Models and Architectures, edited by S. Jajodia and L. Kershberg: Springer.

Urban, S. D., Y. Xiao, L. Blake. and S. Dietrich (2007) “Monitoring Data Dependencies in Concurrent
Process Execution through Delta-Enabled Grid Services,” under review for journal publication.

Xiao, Y. (2006) Using deltas to support semantic correctness of concurrent process execution, Ph.D
Dissertation, Department of Computer Science and Engineering, Arizona State University.

Xiao, Y., Urban, S. D., and Dietrich, S. W. (2006) “A Process History Capture System for Analysis of Data
Dependencies in Concurrent Process Execution,” Proc. Second Int. Workshop on Data Engineering in
E-Commerce and Services, San Francisco, California, pp. 152-166.

Xiao, Y., Urban, S. D., and Liao, N. (2006) “The DeltaGrid Abstract Execution Model: Service
Composition and Process Interference Handling,” Proc. of the Int. Conf. on Conceptual Modeling (ER
2006), pp. 40-53.

Xiao, Y. and Urban, S. D. (2007a) “Process Dependencies and Process Interference Rules for Analyzing
the Impact of Failure in a Service Composition Environment,” Proc. of the 10th Int. Conf. on Business
Information Systems, Poznan, Poland, pp. 67-81.

Xiao, Y. and S. D. Urban (2007b) "Using Data Dependencies to Support Recovery of Concurrent Processes
in a Service Composition Environment," under review for conference publication.

Zeigler, B. P., and H. S. Sarjoughian (2004) DEVSJAVA. Available from
http://acims.eas.asu.edu/SOFTWARE/software.shtml#DEVSJAVA.

ABOUT THE AUTHORS

Yang Xiao received the Ph.D degree in computer science from the Arizona State University in 2006. She is currently a
software testing engineer at Microsoft, focusing on integrated development environment testing methodologies and
practices. Her research interests include process failure recovery and application-dependent correctness in Grid/Web
service composition environment.

Susan D. Urban is a professor in the School of Computing and Informatics at Arizona State University. She received
the Ph.D. degree in computer science from the University of Louisiana at Lafayette in 1987. She is the co-author of An
Advanced Course in Database Systems: Beyond Relational Databases (Upper Saddle River, NJ: Prentice Hall, 2005).
Her research interests include Active/Reactive Behavior in Data-Centric Distributed Computing Environments; Event,
Rule, and Transaction Processing for Grid/Web Service Composition; Integration of Event and Stream Processing. Dr.
Urban is a member of the Association for Computing Machinery, the IEEE Computer Society, and the Phi Kappa Phi
Honor Society.

 30

http://download-west.oracle.com/docs/cd/B10501_01/server.920/a96571/toc.htm
http://download-west.oracle.com/docs/cd/B10501_01/server.920/a96571/toc.htm
http://www.ibm.com/developerworks/library/ws-transpec/
http://www.ibm.com/developerworks/library/ws-transpec/
http://acims.eas.asu.edu/SOFTWARE/software.shtml#DEVSJAVA

	1. INTRODUCTION
	2. RELATED WORK
	5.1 DEGS Operation Execution Semantics
	5.2 Atomic Group Execution Semantics
	5.3 Composite Group Execution Semantics
	5.4 Backward Recovery of an Atomic Group and a Composite Group
	6.1 Atomic Group Post-Commit Recovery Algorithm
	6.2 Composite Group Deep Compensation Algorithm
	6.3 Operation Execution Failure Recovery Algorithm
	This research has defined a service composition and recovery model to support flexible, automatic process recovery in a loosely-coupled, distributed service composition environment. Different from existing solutions, the model provides a flexible hierarchical composition structure. Forward recovery is maximized through compensation or DE-rollback at different granularity levels, followed by contingency plans. The model includes detailed recovery algorithms to generate recovery commands whenever a service fails in the context of a process execution. This research has included the implementation of the DeltaGrid simulation framework to verify and support the service composition and recovery model, including an evaluation of the performance of the recovery command generation process.
	REFERENCES

