
	 Editorial Preface

i	 Web Services Composition
	 Liang-Jie Zhang, Kingdee International Software Group Company Limited, Hong Kong
	
	 Research Articles
	 	 	
1	 Analyzing and Characterizing Choreography Timed Compatibility
	 Nawal Guermouche, LORIA-Nancy University, France
	 Claude Godart, LORIA-Nancy University, France

27	 Reputation Management for Composite Services in Service-Oriented Systems
	 Surya Nepal, CSIRO, Australia
	 Zaki Malik, Wayne State University, USA
	 Athman Bouguettaya, RMIT University, Australia

51	 Using Markov Decision Process Model with Logic Scoring of Preference Model to
Optimize HTN Web Services Composition

	 Jiuyun Xu, China University of Petroleum and Beijing University of Posts and
	 Telecommunications, China
	 Kun Chen, China University of Petroleum, China
	 Stephan Reiff-Marganiec, University of Leicester, UK

72	 An Adaptive Approach to Optimizing Tradeoff Between Service Performance and
Security in Service-Based Systems

	 Stephen S. Yau, Arizona State University, USA
	 Yin Yin, Arizona State University, USA
	 Ho An, Arizona State University, USA

International Journal of
Web Services Research

Table of Contents

April-June 2011, Vol. 8, No. 2

International Journal of Web Services Research, 8(2), 51-71, April-June 2011 51

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Keywords:	 HTN Planning, Logic Scoring of Preference, Markov Decision Process, Services Composition,
Services Selection

Introduction

Web services are software “components” at
an abstraction level suitable for business level
reuse which are combined into larger systems,
often dynamically and only when need arises.
This is possible as their functionality is de-
scribed in a way that can be machine interpreted

Using Markov Decision Process
Model with Logic Scoring of

Preference Model to Optimize
HTN Web Services Composition

Jiuyun Xu, China University of Petroleum and Beijing University of Posts and
Telecommunications, China

Kun Chen, China University of Petroleum, China

Stephan Reiff-Marganiec, University of Leicester, UK

Abstract
Automatic Web services composition can be achieved using AI planning techniques. HTN planning has been
adopted to handle the OWL-S Web service composition problem. However, existing composition methods based
on HTN planning have not considered the choice of decompositions available to a problem, which can lead to
a variety of valid solutions. In this paper, the authors propose a model of combining a Markov decision process
model and HTN planning to address Web services composition. In the model, HTN planning is enhanced
to decompose a task in multiple ways and find more than one plan, taking into account both functional and
non-functional properties. Furthermore, an evaluation method to choose the optimal plan and experimental
results illustrate that the proposed approach works effectively. The paper extends previous work by refining
a number of aspects of the approach and applying it to a realistic case study.

(e.g., through a WSDL file or a Semantic Web
description). These combinations, which are
usually referred to as compositions, allow for
services that are part of different applications,
reside on different platforms, are developed
using diverse programming languages and are
possibly owned by different business partners
to cooperate smoothly. The need for composi-
tion arises as usually a single service cannot
fulfill the requirements of a user. Web service DOI: 10.4018/jwsr.2011040103

52 International Journal of Web Services Research, 8(2), 51-71, April-June 2011

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

composition provides a mechanism to combine
different services to handle a complex business
process. Automated Web service composition
allows to combine services without human
involvement in the planning and is valuable
in many domains, e-commerce is a typical ex-
ample. However, with the rapid increase of Web
services, increasingly complex requirement of
business process in the real world automatic ser-
vice composition requires a flexible mechanism
to deal with changing service availability. AI
planning has often been adopted for automated
Web services composition, as exemplified by
the methods presented in for example Sirin, Wu,
Hendler, and Nau (2004), Schuschel and Weske
(2004), Paik, Maruyama, and Huhns (2006),
and Akkiraju, Srivastava, Ivan, Goodwin, and
Syeda-Mahmood (2006) to handle this issue.

In Sirin et al. (2004), an HTN planning
method has been suggested to handle auto-
matic Web services composition. This method
translates OWL-S Web service descriptions to a
SHOP2 domain and then a given business plan is
achieved by decomposing complex tasks using
operators from the SHOP2 domain. Consider-
ing the procedure of task decomposition, this
method mainly is concerned with the feasibility
of task decomposition; that is can one plan be
found? However, a plan may fail for various
reasons, service instances may no longer exists
when they are about to be invoked, feature in-
teraction in Web services (Weiss, Esfandiari, &
Luo, 2007) may lead to undesired behavior or
the specific plan might simply not be the best
available for a user. There usually are several
possible plans which can solve one specific
high-level business process, so there is a natural
redundancy to avoid these problems, one only
needs to go a step further than just finding one
plan. For example, if a user wants to attend an
exhibition in another city in a few days. On the
condition of satisfying user’s requirements, he
can make a choice of taking a flight or a train to
the city and then attend the exhibition. In this
situation, the user always wants to know what

options he has and which is of the best quality
(that is satisfying his non-functional criteria
such as cost considerations or time saving).

This paper addresses the aspect of finding
multiple composition plans and then selecting
the most appropriate for a user. We propose an
enhanced approach for Web services composi-
tion based on the combination of HTN planning
and a Markov decision process model. With this
approach, several highly suitable Web service
plans will be obtained providing different solu-
tions to a business process using Web services
composition and hence offering much more
flexible solution to the customer. To make sure
these plans are indeed some of the best solutions
available we use an evaluation mechanism to
illustrate the optimal solution amongst those
multiple solutions using a Markovian decision
process. In this way, the optimal solution not
only meets the requirements of the business
process in its functional aspects, but also satis-
fied the expectations that the solution is of the
best quality based on requirements considering
the non-functional aspects.

This paper is an extension of our work
presented at ICWS 2009 (Chen, Xu, & Reiff-
Marganiec, 2009). The paper extends the pre-
vious work by addressing a number of issues
queried at the conference as well as on some
aspects which were planned as future work.
Specifically we present a more (1) realistic case
study with a more complete (2) analysis of the
approach in terms of its complexity. We have
also enhanced the (3) method to evaluate the non-
functional (or QoS) properties and addressed the
issue of choosing appropriate (4) values for the
threshold used in the control strategy.

The rest of the paper is organized as fol-
lows: in the next section, an overview of Web
services composition using HTN planning
is provided. The following sections describe
Markov Decision Process with Logic Scoring
for Preference model for HTN Web services
composition and detail the process of model
solving. A case study is introduced and experi-

International Journal of Web Services Research, 8(2), 51-71, April-June 2011 53

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

mental results are presented. Finally, we discuss
related work, conclude and provide an outline
of further research.

An Overview of Web
Services Composition
Using HTN Planning

HTN (Hierarchical Task Network) is a technique
of AI planning based on control knowledge
with a closed world assumption (informally,
that means that all “building blocks” are known
a-priori). HTN planning provides hierarchical
abstraction with a powerful strategy to deal
with the complexity of large and complicated
real world planning domains. The purpose of
an HTN planner is to produce a sequence of
actions that perform some activity or task.

As with any planning approach, there is
a need to express the terms of the application
domain in the language understood for the
planner. In order to adopt HTN planning as
an approach to web service composition the
planning domain, planning problem and the
process of planning need to be married to the
relevant concepts of the web service domain.
The description of a planning domain includes
a set of operators (which will be web service
operations), and also a set of methods, each of
which is a prescription for how to decompose
a task into its subtasks (smaller tasks). The
description of a planning problem will contain
an initial state which in classical planning is a
goal formula but here it will be the problem
specification. The problem specification is
expressed as a partially ordered set of tasks to
accomplish.

The process of HTN planning proceeds by
using the methods to decompose tasks recur-
sively into smaller and smaller subtasks, until
the planner reaches primitive tasks that can be
performed directly using the planning opera-
tors. For each non-primitive task, the planner
chooses an applicable method, instantiates it
to decompose the task into subtasks, and then
chooses and instantiates methods to decompose
the subtasks even further. When the constraints

on the subtasks or the interactions among them
prevent the plan from being feasible, the plan-
ning system will backtrack and try alternative
methods. More details on HTN planning can
be found in Nau, Au, Ilghami, Kuter, Murdock,
Wu, and Yaman (2003).

OWL-S (World Wide Web Consortium,
2004) is a set of ontologies for describing the
properties and capabilities of Web services.
Currently, OWL-S is used to describe web ser-
vices since it supports effective automation of
various web services related activities including
service discovery, composition, execution, and
monitoring (it provides a richer framework than
WSDL). Especially, the structure of OWL-S is
propitious to exploit AI planning techniques
for automatic service composition by treating
service composition as a planning problem.
In OWL-S, services can be described as com-
posite or atomic processes with preconditions
and effects. The concept of composite process
decomposition in OWL-S process ontology is
very similar to the concept of task decomposition
in HTN planning. Hierarchical modelling is the
core of the OWL-S process model to the point
where the OWL-S process model constructs
can be directly mapped to HTN methods and
operators. Thus, HTN planning is especially
promising for OWL-S Web services composi-
tion, which has been shown in Sirin et al. (2004),
Kuter, Sirin, Parsia, Nau, and Hendler (2005),
and Lin, Kuter, and Hendler (2007).

Formal MDP-LSP Model
for HTN Web Services
Composition

Current automatic web services composition
techniques including those based on HTN plan-
ning are usually concerned with finding one
solution that functionally fulfills the demands.
However, with many functionally equivalent
services being available work in other areas
has considered selecting the best service for a
given situation based on non-functional proper-
ties. Furthermore, having a choice also means
that there is normally more than one possible

54 International Journal of Web Services Research, 8(2), 51-71, April-June 2011

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

solution to address given requirements. Our ap-
proach addresses these, but requires extensions
to the composition model used by SHOP2 in
Sirin et al. (2004). Our approach of combining
HTN with MDP-LSP (Markov Decision Pro-
cess Model with Logic Scoring of Preference)
identifies a choice of Web services composition
plans and considers the non-functional aspects
of Web services, which enhances the flexibility
of automatic Web services composition. The
approach is supported by a formal model as
follows.

Definition 1 (MDP-LSP Model for HTN Web
Services Composition): An OWL-S Web
services composition problem is defined by
a quintuple <S, T, D, Q, P>, where
◦◦ S is the initial state of the problem.
◦◦ T is the task list, which contains the

tasks that the user needs to solve.
◦◦ D is the description of a planning do-

main including a set of operators and
a set of decomposition methods, and
D can be derived from a collection of
OWL-S process models.

◦◦ Q is the context information about
services quality, which covers a wide
range of non-functional properties.

◦◦ P is a set of optimal solutions which
are available in the solution space.

On the basis of the above definition, solving
the 5-tuple can return an optimal plan Poptimal =
(o1o2…on), that is a sequence of instantiated
operators that will achieve T from S in D,
with the best quality with respect to the non-
functional aspects Q.

The model solving consists of three main
steps. First, the initialization of the description
of the planning domain; second, the search for
the best plans in the solution space based on
HTN planning and thirdly, the evaluation of the
optimality of the found plans. The next section
will describe these in detail.

The Approach for Solving
the MDP-LSP Model

This section describes the approach of finding
optimal plans, which in technical terms can be
seen as finding solutions to the models presented
in the previous section. As this section is quite
lengthy due to describing all 5 major steps in
the process, we want to present an overview
first before going into the details. The first
step is to initialize the planning domain and
is based on work by Sirin et al. (2004). Essen-
tially the knowledge about available operators
and methods is extracted from the OWL-S
service descriptions to create a model of the
planning domain. While this step does need
to be repeated frequently to obtain the latest
available service methods, it does not have to
be executed before each planning process, or
even as part of each planning process. The next
three steps are concerned with finding several
plans, calculating the quality of a branch (its
immediate reward) and controlling how much
of the state space should be explored. The
respective sections describe the approach for
planning with multi-decomposition, the method
for evaluating non-functional properties and the
control strategy. Finally we turn our attention
to finding the best plan.

Initialization of the Description
of the Planning Domain

As stated earlier, we will be using HTN planning
which has proven successful in earlier work
(Sirin et al., 2004). The first step in the approach
is to translate the description of OWL-S services
to a description of the planning domain.

There are many planning domain descrip-
tion languages, examples are PDDL (Gerevini
& Long, 2005) and SHOP2 (Nau, Muñoz-Avila,
Cao, Lotem, & Mitchell, 2001) descriptions.
PDDL is used by many classical planers as
standard description language, but for HTN
SHOP2 is more suitable because the control

International Journal of Web Services Research, 8(2), 51-71, April-June 2011 55

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

knowledge base for HTN planning consists
of operators and methods, which are naturally
expressed in the SHOP2 domain description
(Nau et al., 2003; Sirin et al., 2004).

Recall that operators are basic building
blocks out of which the final plan would be
build, while methods describe possible de-
compositions of larger tasks. The definitions
of operators and methods are equivalent to
what was defined in Sirin et al. (2004) and are
as follows:

Definition 2 (Operator). An operator is an
expression of the form (h(v→) Pre Del
Add) where
◦◦ h(v→) is a primitive task with a list

of input parameters v→,
◦◦ Pre represents the operator ’s

preconditions,
◦◦ Del represents the operator’s delete list

which is described as a conjunction of
logical atoms that will become false
after operator’s execution, and

◦◦ Add represents the operator’s add list
which is described as a conjunction
of logical atoms that will become true
after operator’s execution.

Definition 3 (Method). A method is an expres-
sion of the form (h(v→) Pre1 T1 Pre2 T2
…) where
◦◦ h(v→) is a compound task with a list

of input parameters (v→),
◦◦ each Prei is a precondition expres-

sion, and
◦◦ each Ti is a partially ordered set of

subtasks.

Before using HTN planning to compose
Web services, we need to translate all OWL-S
Web services descriptions into SHOP2 de-
scriptions. In order to achieve this, the profile
description of each service is translated to an
element in the task ontology1 and the service
process model is translated to a set of methods
and operators.

In the OWL-S process ontology, operations
are modeled as processes, which can have two
sorts of non-exclusive effects. First, an operation

can generate and return some new information
based on information it is given and the world
state; Information production is described by the
inputs and outputs of the process. Second, it can
produce a change in the world; this transition
is described by the preconditions and effects
of the process.

There are three types of processes in
OWL-S, including atomic processes, compos-
ite processes and simple processes. An atomic
process is a model of a single-step Web service
that can be executed to accomplish some task
directly. A composite process is a compound
Web service which can be decomposed into
other atomic processes, composite processes or
simple processes. The decomposition of a com-
posite process is specified through its control
constructs. A simple process is not invocable
and not associated with a service grounding
-- simple processes are used as elements of
abstraction. They may be used either to provide
a view of (a specialized way of using) some
atomic process, or a simplified representation
of some composite process (World Wide Web
Consortium, 2004). The following will give
an introduction to the translation algorithm as
introduced in Sirin et al. (2004).

Let K = {K1, K2, …, Km} be a collection
of OWL-S process models. Then, we define
the description of the planning domain D
to be the results of the TRANSLATE_PRO-
CESS_MODEL(K) operation defined by Sirin
et al. (2004). Details of the translation and
assumptions the translation based on are all
kept unchanged and we will not describe the
translation algorithm in detail here. Briefly,
the process translates atomic processes into
operators and translates composite processes or
simple processes into domain methods respec-
tively. Especially, the composite processes are
translated according to their control constructs
like Sequence, If-Then-Else, Repeat-While and
so on. Each control construct corresponds to a
sub-translating algorithm.

After the completion of this process, the
element D needed for our model is complete
and provides us with the needed set of operators
and decomposition methods. Each operator is

56 International Journal of Web Services Research, 8(2), 51-71, April-June 2011

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

a description of what needs to be done to ac-
complish some primitive task, and each method
tells us how to decompose some compound task
into a set of partially ordered subtasks.

Clearly this initialization phase does not
have to be executed every time a solution is
sought – in general we can assume that the set of
available services changes much less frequently
then there is a need to find a new plan for a spe-
cific problem. Note that the initialization phase
does need to be executed regularly to ensure
that any change in the OWL-S process models
and also new service arrivals are reflected in
the domain description.

Planning with Multi-
Decomposition for Tasks

In this paper, the process of HTN planning is
improved in the second step, which is search-
ing for plans. Initial ideas for this have been
presented in Chen et al. (2009). This enhance-
ment means that we are able to produce more
than one good solution within the available
solution space. Specific details of the improve-
ment focus on decomposition for non-primitive
tasks when a task can be decomposed by more
than one method.

The improved decomposition method
changes the way of decomposing when a task
can be decomposed by multiple methods. The

method chooses each method to decompose
a non-primitive task instead of choosing any
one of the ones applicable in the current state.
Also, a control strategy is embedded into the
planning process to decide whether a branch
will be decomposed further. Figure 1 presents
an overview of the improved non-primitive
tasks decomposition.

The improved decomposition is superior
to the decomposition presented in Sirin et al.
(2004) on the strategy of searching for solutions
as it does not just find one solution but finds
many already pre-filtering for quality with a
view to allowing to finally choose the best
solution. For decomposing a non-primitive task
with every available method, the current state
(S) and task list (T) must be copied, and the
number of the replications is the same as the
number of available methods. After this, every
branch can be considered by the planning
method. If one branch cannot be decomposed
further, that is all the subtasks are primitive
tasks, the found plan will be added to the set
of plans (P). In the subsequent recursive process,
a similar situation that a subtask may have more
than one available method to be decomposed
will occur. With the number of such situations
increasing, the solution space that will be
searched is growing and the planning process
will be more and more complex. So, we apply

Figure 1. Decomposing a non-primitive task

International Journal of Web Services Research, 8(2), 51-71, April-June 2011 57

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

a control strategy to decide whether a branch
will be decomposed further.

Before the definition of the control strategy,
the concept of immediate reward needs to be
introduced.

An immediate reward is a utility value to
measure the quality of a decomposition method.
A method decomposes a task into primitive
subtasks or non- primitive subtasks. A primitive
task can be performed directly using a service
operation (or planning operator in planning
terms). Clearly, operations suggested by a de-
composition method have a direct impact on the
overall quality of the solution. On the basis of
this, the immediate reward of a decomposition
method can be calculated by using the service
QoS details (Q), and the corresponding Web
services are mapped into operators produced
on the certainty branch, which does not have a
subtask that can be decomposed by more than
one method in the remaining decomposition
process until planning is completed.

A Method for Calculating
Immediate Reward

In our former work (Chen et al., 2009), we
used a fitness function using an average weight
mechanism to calculate the immediate reward
based on standard QoS criteria including cost,
response time, availability and reliability
(Canfora, Di Penta, Esposito, & Villani, 2005).
However, a UDDI repository usually does not
contain the information about standard QoS
data. Even if it does, the data is stored for hu-
man consideration rather than in the machine
readable form required for automatic services
selection. In any approach where decisions have
to be made in decomposition whether to include
a particular service into the set of solutions we
clearly encounter a service selection problem.

As we said before, in our previous work
we relied on a simplified QoS model assum-
ing data for these to be available, however
one of the significant extensions in this paper
is the adoption of a service selection method
(Reiff-Marganiec, Yu, & Tilly, 2009; Yu &
Reiff-Marganiec, 2008) used to obtain data

about non-functional properties automatically
considering user context information. We use
the scores provided through this framework
and then calculate the immediate reward for
choosing which branches to extend.

The development of the selection method
was motivated by the fact that the complexity
of business processes and the dynamic nature
of the co-operations make it difficult for the
business modeler or planner to select appropriate
services, manage the compositions efficiently
and understand requirements within a dynamic
context correctly. The method considers that
a service’s suitability depends largely on the
user’s context and does change over time with
changes to the user’s context as well as the
currently available services. For this paper,
choosing this selection method is mainly based
on three merits. Firstly, it combines evaluation
and selection activities, which is consistent
with the purpose of choosing a decomposition
branch. Secondly, it can deal with a wider range
of non-functional attributes than the basic QoS
non-functional attributes, in fact it is open so that
any non-functional aspect that makes sense for
a group of services can be included and not all
services need to have the same non-functional
properties. Thirdly, this method incorporates
the Logic Scoring of Preferences (LSP) method
(Dujmovic & Larsen, 2004) which captures the
logic relations between criteria rather than just
simply using an average weight mechanism thus
ensuring that even if large numbers of criteria are
considered critical criteria are never overruled
by high scores of others and the like (these are
termed simultaneity and replacability).

The process using the enhanced selection
method to calculate immediate rewards involves
4 steps and is as follows:

Step 1: Obtain relevant non-functional properties

The first step is concerned with gaining
values for the relevant non-functional proper-
ties. These values are gained from the context
information and which non-functional proper-
ties are relevant is based on details about the
service operations. This had been discussed in

58 International Journal of Web Services Research, 8(2), 51-71, April-June 2011

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

detail in (ICWS09). What is relevant here is to
understand that all non-functional criteria are
defined through a tuple {Name, Type, Weight,
Value}, where Name is a unique string for
identifying the criteria, Type is the data type of
the criterion (e.g., Boolean, Integer, Set) and
is crucial in automatically selecting the right
evaluation function (see step 2). The Weight
reflects the importance of the criterion and has
an initial value created at the same time as the
criteria, but the actual value might have been
modified by the end-users. The Value is the
current evaluation value of the service. Values
are obtained from the context information (or
in some cases can be directly queried from
the service, in which case a query expression
would be given here) and might be more or less
static (e.g., for a printing service the fact that
it is “black and white” is quite static, while the
length of the print queue is highly dynamic).

Step 2: Metrics for non-functional properties

Having obtained the current values for each
non-functional criterion, we need to calculate
the evaluation score E for each criterion for every
service. Because there may be many types of
values there is a number of evaluation functions
dependent on the data type of the criterion.

For example, if the type of the criterion
is numerical the evaluation function shown in
formula (1) is used.

E

v v

v v
if w

v v

v v

max

max min

max

max min

=

−
−

−











≥

−

−






1 0�


















�otherwise

 (1)

In formula (1), vmin and vmax are the minimum
and maximum value of all services which are
options based on the values gathered in step 1,
v is the value for the current service and w is
the weight of the current criterion. A negative
weight would mean that a smaller value is
desirable (e.g., for cost).

If the criterion is of Boolean type, then an
exact match will be used as seen in formula (2):

E
if criteria ismet

otherwise
=







1

0

� � �

�
	 (2)

If the criterion is a set type, then the size
of the overlapping subset is of interest (see
formula (3)):

 (3)

Step 3: Calculate all aspects of criteria

After step 2 we have scores for all criteria
of all services. These need to be aggregated into
a score for each service, which is achieved us-
ing a global preference calculation function L:

	
(4)

In this formula each Ei is one of the in-
dividual scores obtained in step 2 (with 1 < i
< n, and n being the total number criteria for
this service). w is the weight of each criteria.
r is the logic power value adopted from the
LSP method and obtained automatically by a
method introduced in Yu and Reiff-Marganiec
(2008) – r captures the logical relations between
the criteria.

Step 4: Calculate the reward value for each
decomposition method

The fourth and final step calculates the im-
mediate reward for evaluating the quality of a
decomposition method which is determined by
the services coming out in a plan. The immedi-
ate reward function is shown as formula (5):

R L S L S L S n
n

= ()+ ()+ + ()()1 2
 / (5)

International Journal of Web Services Research, 8(2), 51-71, April-June 2011 59

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

In formula (5), L(Si) is a global evaluation
value for a service Si as obtained in step 3. S1,
S2 … Sn are the services which are options for
decomposition at the current point in the plan.
As R captures a normalized score for all services
involved in the decomposition, a higher value
of R reflects that all services are more desirable
and hence the overall solution involving these
services is more desirable.

Control Strategy for
Planning Process

Because of the complexity of business process,
especially the availability and suitability of
services, planning processes to find feasible
composition plans may do much unnecessary
work. One of the extremes is to find just one
plan (as in most traditional approaches). The
other extreme would be to compute all plans
– that is to fully extend all decomposition
methods. However, this does not benefit the
user as many plans might not be suitable for
the current situation, or at least not of sufficient
quality and in addition the process to finding
them takes possibly quite long. So, it is crucial
to get a balance between the number of plans
found and the computational effort of finding
them by introducing a control strategy.

In our former work, we used a control
strategy by comparing a threshold value λ (with
λ ≥ 0) to the immediate reward value R of a
decomposition method. If R ≥ λ, the planner
uses the method to decompose further, else
if R < λ the planner stops to decompose this
branch. This approach requires the user to set
the value for λ, allowing them to control how
many plans would be retrieved. The case of λ =
0 would mean that all the branches will be fully
extended and hence all possible plans would be
found. If a too large value is chosen, it might
be that no plans are found.

One of the difficulties with that approach
was choosing an appropriate value for λ.
Furthermore, choosing the right value for λ in
dynamic settings, such as the one proposed here
where the reward function is based on dynamic
data and context information becomes even

more difficult, as it involves a rich reward cal-
culation. We are proposing a reviewed strategy
here and will later on discuss choosing good
values for λ.

Definition 4 (Control Strategy). There is a
threshold value λ with λ ∈ N which
determines the number of decomposition
branches that can be extended at a specific
decomposition point.

At every decomposition point, that is a node
in the tree which has to be decomposed further,
a decision has to be made as to how many of
the possible methods we wish to decompose. At
each such point the planer calculates the immedi-
ate reward value for all feasible decomposition
methods and ranks them in descending order
of immediate reward values. The ranks will
be indexed starting from 1. If a decomposition
method rank index is i and i ≤ λ the planner
will decompose the method further. Otherwise,
that is if i > λ, the planner will not decompose
the branch further. More colloquially, the first
λ branches will be decomposed.

Figure 2 shows an example search tree
for a planning problem. Let us assume λ = 2.
Now, let’s consider node 2, where we identify
3 possible methods to decompose the node:
m21, m22 and m23. These are already conve-
niently ranked by their immediate reward, that
is R(m21) ≥ R(m22) ≥ R(m23). As λ = 2 we will
only decompose the first two, which equal to
the best two choices at this point. m23 will not be
decomposed further. A similar situation arises
at node 4, where again there are 4 methods for
further decomposition, and this time m43 and
m44 will not be decomposed further. Node 3 is
another case: there are two options here and both
would be decomposed further (albeit details are
not shown in the figure).

The control strategy ensures that we reduce
the size of the solution space that is searched
in such a way that the explored solutions will
be better suited to demands of the users. In the
control strategy previously proposed λ was
directly compared to the immediate reward of
a method, which meant that it was difficult (if

60 International Journal of Web Services Research, 8(2), 51-71, April-June 2011

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

not impossible) to judge what a good value of
λ was without knowing the values of the im-
mediate reward calculations. Furthermore, the
immediate reward might vary from method to
method so that some nodes might have had a
many methods further expanded while other
might have had very few expanded, leading to
a very unbalanced situation. This is even more
critical if the immediate rewards are calculated
using a framework such as the one presented
in this paper where the reward values are much
more dynamically gathered.

In Figure 2 methods are shown as labels
on branches and nodes are labeled with both
a number and a text at the side n = (T, π). The
number is for convenience, the term in brackets
is the list of tasks T which needs to be solved
and π is the current partial plan (essentially a
sequence of operators) – note that once T is
empty, π is a feasible solution and hence a final
plan. A node can be reached from the initial state
S following the operators in the current (partial)
plan π. The algorithm for HTN planning used
is as shown in Figure 3.

The new strategy provides greater transpar-
ency to the user in that it is clear how many
methods will be expanded at each place (as-
suming that at least that number exists, otherwise

all options will be explored). However, it still
ensures that the best options are expanded
further, as the explored branches will be those
with the highest value to the user due to the
ranking by immediate reward gained. It may
be possible that branches which could lead to
better utility further down the line will be cut
away prematurely, but that has little conse-
quence to the better quality plans found. In view
of the reliability of plans during actual execu-
tion, the partial plan composed of the operators
which are found on an anterior branch is more
important than the one found on the posterior
branch. Consequently the plans produced by
the HTN planning algorithm for complete de-
composition are ensuring best quality.

Since the immediate reward value R mea-
sures the quality of a decomposition method, it
can also be used to evaluate the quality of plans,
and we will come back to this in the next step
when we decide on best plans.

Optimality Evaluation Using MDP

After the completion of the HTN planning
step, several good plans can be provided to
the user, but it is the optimal plan that users
are most concerned about. Hence, we proposed

Figure 2. A search tree for a planning problem

International Journal of Web Services Research, 8(2), 51-71, April-June 2011 61

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

a method to evaluate the optimality using a
Markov decision process (MDP) is proposed.
MDPs provide a mathematical framework for
modeling decision-making in situations where
outcomes are partly random and partly under
the control of the decision maker. MDPs are
useful for solving a wide range of optimiza-
tion problems.

In the process of HTN planning, the choice
of multiple decomposition methods can be seen
as a decision-making process and the decision-
making only connects with the current state.
So we construct an MDP model by introducing
the probability and reward value for choosing

a decomposition method and solve the model
to find the optimal plan. The time to choose a
method is at decision-making time in the plan-
ning process, such as the nodes (, , ,)1 2 3 4 in
Figure 2. First, a list of four objects in MDP
should be described as (S, A, Pa(·,·), Ra(·,·)),
where:

•	 S is the state space,
•	 A is the available action set (which is

identical to the available decomposition
methods set),

•	 Pa(s,s’) is the probability that action a in
state s will lead to state s’.

Figure 3. HTN planning algorithm for complete decomposition

62 International Journal of Web Services Research, 8(2), 51-71, April-June 2011

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

•	 Ra(s,s’) is the immediate reward received
after transition to state s’ from state s.

Calculation of Transition
Probability and Reward

In the MDP process, the calculation of the
transition probability and reward is core. The
probability for choosing a decomposition
method in HTN planning is related to the pre-
conditions of the method. Fewer constraints
in terms of fewer preconditions will lead to a
smaller risk of failure in the actual execution
process. Hence, a less restrictive method has a
higher probability of being selected.

Assume that a task can be decomposed by
k methods M. Each method mi ∈ M (with 1 < i
< k) has ni parameters in its set of preconditions
Prei. Then, the transition probability from s to
s’ is defined by formula (6):

	

 (6)

Obviously considering non-functional
properties helps in selecting among services
with the same functionality and allows for
evaluation of alternative execution paths for
process adaptation. Moreover, non-functional
properties can be used as a basis for cost mod-
els that drive process optimization (Garcia &
de Toledo, 2006). This motivates us to use the
same immediate reward function introduced
earlier, (formula (1)) here. This comes with the
added advantage that we do not calculate yet a
different value.

Solving the MDP by Way
of Policy Iteration

The solution to a Markov Decision Process can
be expressed as a policy π, a function from states
to actions. The standard family of algorithms
to calculate the policy calculates two variables
repeatedly: one is value V, the utility value
of state s, and the other is the policy π which
contains actions A. s’ is the next state achieved
by executing an action a ∈ A from the current
state s. The two variables are calculated by
formulae (7) and (8):

 (7)
ð argmax , ’ ’

’

s P s s V s
a

s
a() = () ()∑ 	 (8)

After completing the second step of the
HTN planning process, the plan set P has n plans.
In this stage policies, the set of available actions
A and state space S required for the MDP can be
determined. To obtain the policies, we simply
assume each plan to be a policy. For example
the plan p1 from Figure 2 can be expressed as a
policy π1:{(s1,m11),(s2,m21)}, and the expected
utility of a policy reflects the quality of the plan,
and is calculated by formula (9):

E s R s ã P s s E s
i i

s
sð

’
ð

, ’ ’ ,() = ()+ () ()∑ () (9)

E s R s ã P s s E s
i i

s
sð

’
ð

, ’ ’ ,() = ()+ () ()∑ () 	

where s is the state in policy π1. Formula
(9) calculates all the rewards on non-primitive
tasks decompositions during the production of
a whole plan. As each layered decomposition
is considered, the high layers gain more impact
for the plan than the low ones.

The policy iteration algorithm is used to
find the optimal policy, details are shown in
Figure 4. The process is known to converge in

International Journal of Web Services Research, 8(2), 51-71, April-June 2011 63

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

a finite number of iterations and ends with the
optimal policy (for a proof, we refer to Ke,
2004).

Policy Iteration:

start with an arbitrary policy πfor i=1,2,…
compute E s

sð
() for every s:

E s R s s ã P s s E s
i i

i
s S

sð
’

ð
,ð , ’ ’() = ()()+ () ()

∈
()∑ 	

for every s:

ð argmax , ’ ’
’

s P s s V s
a A

s S
a() = () ()

∈
∈
∑ 	

if ð ð
i i+ =1 then breakrof	

�ð
i+1 is the optimal policy	

Evaluation

A Reality-Based Scenario

To demonstrate the feasibility of our composi-
tion approach, we use a reality-based scenario
which illustrates an online shopping process.

Supposed that a customer wants to buy
a digital camera online and he has several
requirements which are: the brand and model
(Canon IXUS85), the price (it should be lower
than 1400￥) and the place of delivery (the
Economic Development Zone of Qingdao,
China). There will clearly be many feasible
plans after services composition as we expect
many shops to sell and deliver cameras. The
number of plans will immediately reduced,
because the reward function will not explore
options where the specific model is not stocked,
where it is too expensive or where carriers to
not deliver to Qingdao.

Looking at the case study from a more
technical level, we have a several items. First
of all we have the definition of the goal and
initial state, with the first two elements being
the initial state and buy camera being the initial
task in the task list:

(defproblem problem shopping	
((toHasGood camera) (hasMoney 2500)) 	
((buy camera 2500)))	

The first step of the planning process was
concerned with extracting domain knowledge
from the service descriptions; recall that we
distinguished between operators (mapping

Figure 4. Policy iteration algorithm for MDP

64 International Journal of Web Services Research, 8(2), 51-71, April-June 2011

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

to atomic processes which can be executed
directly) and methods (describing how to de-
compose composite processes). In our domain
description file, we have 19 operators and 29
methods. Examples of these are:

(:operator (!using_TaoBao ?x) ((toHas-

Good	 ?x)) () ((environment ?z)))

(:operator (!using_eBay ?x) ((toHas-

Good ?x)) () ((environment ?z)))	

(:operator (!shop_1 ?x) () () (inShop

?z))	

(:method (chooseEnvirionment ?x ?y)	

	 ((toHasGood ?x))	

	 ((!using_TaoBao ?x) (doshop_TaoBao

?x ?y))	

)	

(:method (buy ?x ?y)	

	 ((toHasGood ?x) (hasMoney?y))

	 ((chooseEnvirionment ?x ?y) (de-

liver ?x ?y) (!evaluate ?x))

)	

Operators have a name, a precondition and
if that is fulfilled an effect on the environment.
For example the operator using_TaoBao has
the precondition (toHasGood ?x), and if the
precondition is satisfied, it will add the (envi-
ronment ?z) into the state .

Methods similarly do have a name, a pre-
condition and a list of subtasks. So for example
(buy ?x ?y) can decompose the task named
‘buy’ if the conditions (toHasGood ?x) and
(hasMoney ?y) are satisfied into the subtasks
(chooseEnvirionment ?x ?y), (deliver ?x ?y)
and (!evaluate ?x).

The final piece of domain description avail-
able is the information about the non-functional
properties of the services. Examples are:

!using_TaoBao	

time 25 availability 0.9 cost 1.5 lan-

guage 	 English,Chinese	

!using_eBay	

time 35 availability 0.95 cost 2.5

language 	 Chinese	

!shop_1	

safty high cost 20 bankcard

ICBC,CCB,ABC 	 privacy high	

While in a real operating environment these
might be obtained in a more dynamic fashion,
we provide these as a description file for our
experiments. The file, of which the above is an
extract, contains two lines per service: the first
line is the service name(operator), the second
line contains the non-functional attributes for-
mulated as name value pairs. So for example
the operator using_TaoBao has non-functional
attributes ‘time’, ‘availability’, ‘cost’ and ‘lan-
guage’ with respective values of ‘25’, ‘0.9’,
‘1.5’ and ‘English,Chinese’.

We have design a system to simulate the
services composition by using our method.
Using the system involves three steps. First,
before planning starts we initialize the system
by providing the SHOP2 domain description
and the services quality context information
(an example was shown above). After that,
users submit their requirements and the plan-
ning begins which is the core process for
services composition. This stage includes the
planning, service evaluation and the expected
utility calculation. As this system is intended
for experimental use, the plans are shown
when planning has finished and the expected
utility value and execution sequence for each
plan can be viewed. Obviously the plan with
the highest utility value is the best plan. An
example of services composition plans based
on the case study is shown in Figure 5, and we
can see that there are six plans satisfying the
customer’s requirements.The whole planning
process is shown in Figure 6.

Analysis

There are a number of areas to be analyzed. Of
course there is the issue of gathering and evalu-
ating the criteria value for the non-functional
properties: The actual calculations are quite
straight forward, but of course for each service
each criteria needs to be looked at. However,
this has been shown to be quite feasible and
efficient in Yu (2009). Furthermore, for this

International Journal of Web Services Research, 8(2), 51-71, April-June 2011 65

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

specific aspect it can be commented that taking
a little longer but identifying the right services
will still be much faster than executing services
which form part of process, especially if we
realize during execution that a chosen service
is simply not suitable.

More crucially, and much closer related to
the key aspect of this paper is the complexity
of the planning task. It is obvious that tasks
with different complexity have different sizes
of solution space. Users would expect that suf-
ficient and better plans can be provided – naively
assuming that all possible solutions would be
considered. However a task might be so com-
plex that the search time will be extremely long
and there will be many redundant plans. We
can control the search space by adjusting the
threshold value λ which by allowing or hindering
decomposition of certain branches controls the
maximum number of extended decomposition
branches and hence the overall search space.

We have conducted some experiments to
show the effect of control strategy and gain an
understanding of the complexity involved –
while this could be done theoretically we have
chosen the more practical approach as we feel
that it provides a good understanding and is

more aligned with the aim of the overall work:
to be suitable for us in reality.

The hardware environment for the experi-
ment was a standard PC with a Pentium 4 CPU
running at 2.8 GHZ with 512MB Memory.
The setup was such that we have searched the
whole solution space as a reference value and
then gradually reduced the threshold value λ.

The results for the shopping example
presented earlier can be found in Table 1. Obvi-
ously, the threshold value λ is directly propor-
tional to the planning time t and the number of
found plans n. In each set of plans found, we
had indicated the optimal plan according to its
expected utility value. We observed that each
set contained the same optimal plan both in
terms of services selected and their ordering
(note that kept the environment stable, that is
the non-functional properties are always evalu-
ated to the same scores; changing that would
obviously lead to different plans). The optimal
plan is the service sequence:

“!using_DanDang!shop_1!bank_

ICBC!Alipay!sendBy_Express_

STO!evaluate”.

Figure 5. A shopping example of services composition in E-Commerce

66 International Journal of Web Services Research, 8(2), 51-71, April-June 2011

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Figure 6. The planning process for services composition

International Journal of Web Services Research, 8(2), 51-71, April-June 2011 67

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

To identify suitable values for λ, we need
to consider the tradeoff between finding suf-
ficient plans and being economical on the time
used. Figure 7 shows two lines depicting these
issues. One line indicates the relation between
threshold λ and the number n of plans found;
the other indicates the relation between thresh-
old λ and the reciprocal of the planning time
1/t. Clearly these two lines will intersect (one
will always increase, the other decrease) and
the intersection point will fall into an interval
[λi,λi+1]. In the given scenario the interval is
[2,3]. Manually analyzing the result sets, we
determined that setting λ to a boundary value
of the interval determined by the interaction
point, a good number of plans with little redun-
dancy is found while maintaining a good search
time. We conclude that the intersection point
of the two graphs determines good values for
λ. In general we found from this and a number
of other case studies that values of 2 or 3 are
generally best for λ.

Related Work

Kuter et al. (2005) present an HTN planning
algorithm, ENQUIRER, designed for planning
domains and in which the information about the
initial state of the world may not be complete.
By using ENQUIRER, information is discover-
able through planning-time information gather-
ing queries. In ENQUIRER, some limitations

in their previous work (Sirin et al., 2004) are
overcome, which makes service composition
sound and complete. Our work is based on that
presented by Sirin et al. (2004). Our approach
improves the composition method to provide
multiple plans and also to consider the non-
functional properties of Web services in the
planning process in addition to provide the best
solution for each user in their given situation.

The work by Lécué (2009) and Lécué, Del-
teil, and Leger (2008) focuses on casual links,
that is the functional dependencies between
services. This is formulated as an Integer Pro-
gramming problem and the solver is entrusted
with finding a sequence of operations, that is
one plan. The work presented here uses HTN
planning rather than a constraint based solution,
but more crucially enhances on two aspects: we
are looking for the best plan in that the planning
part of our work searches for multiple plans,
not just one and furthermore does not consider
non-functional properties at all.

Further, Zhang, Zhang, Cao, and Mou
(2004) propose an enhanced HTN planning
method combined with partial-order planning
(POP) for service composition in which action
decompositions are used as plan refinements
in POP. Compared to the pure HTN planning,
their approach can solve certain tasks, which
are novel conjunctive goals. In our approach,
we also focus on the decomposition in HTN
planning, improving the decomposition for

Table 1. Planning results under different threshold (a)

λ n t(ms) optimal plan

8 128 250 plan_98

7 112 234 plan_86

6 96 219 plan_74

5 80 203 plan_62

4 64 188 plan_50

3 27 141 plan_20

2 8 78 plan_5

1 1 31 plan_1

0 0 - -

68 International Journal of Web Services Research, 8(2), 51-71, April-June 2011

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

non-primitive tasks, but rather than trying to
solve new types of goals, we wish to search
more potential feasible solutions.

Paik et al. (2006) suggest a combined
architecture, which consists of HTN planning
and Constraint Satisfaction Problem (CSP) as
an underlying problem-solving engine to auto-
mate Web service composition, especially for
composition problems with many parameters.
In the architecture, a complete semantic concept
for CSP is defined using OWL, which allows
for solver agents to automatically solve a given
problem with greater flexibility and more intel-
ligently. This work focuses using CSP for the
semantic web. The CSP solver is part of the
combined architecture, but not tightly integrated
into the HTN planning.

Doshi, Goodwin, Akkiraju, and Verma
(2004) model the workflow composition
problem as an MDP, which handles non-deter-
ministic behaviors of Web services in dynamic
environments during the plan execution phase.
A policy computed by MDP for generating
workflows is capable of optimally recovering
from Web service failures. MDPs have been
used by other for related problems as well, for

example for the selection of single services
(Cai, Luo, Qian, & Gao, 2005). We use MDP
to evaluate optimality of plans when selecting
among multiple available plans.

Thiagarajan and Stumptner (2007) consider
service composition as configuration tasks,
assuming an abstract workflow (that is the
structure of a composition). In their work they
use constraint based generation of the plans
representing the composition problem as a
constraint based meta model. They also discuss
the inclusion of cost-based optimisation and
preferences. Similar efforts are presented by
Hassine, Matsubara, and Ishida (2006) use a
CSP solver to find a solution of instantiating an
abstract workflow with concrete ones with the
goal of satisfying the users’ requirements at a
global level. User requirements are expressed as
constraints. Our work differs from these efforts
in that we do not require an abstract workflow.

Conclusion and
Future Work

In this paper, a novel composition model based
on HTN planning with MDP-LSP has been

Figure 7. Planning results under different threshold (b)

International Journal of Web Services Research, 8(2), 51-71, April-June 2011 69

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

proposed. With this model, more than one plan
is found and the evaluation mechanism in the
model provides the optimal plan based on non-
functional aspects.

MDP is an efficient method to solve opti-
mization problems, like choosing the best plan
in service composition. In order to demonstrate
the feasibility and validity for using MDP in
conjunction with HTN to find the optimal plan,
we experimented on an e-travel composition
example with random QoS data in our former
work (Chen et al., 2009). In that experiment,
we have found that while this returned the
right result and worked well, there were some
aspects that could be improved. In this paper,
we presented a new immediate reward function
to adjust to dynamic context information for
service evaluation. The general problem with
identifying a cut-off threshold in the reward
function and the further complication of that
matter due to the more dynamic utility values
led to the consideration of a new control strategy.
This has been presented in this paper and has
been applied to a larger, more realistic case study.

With a choice of Web services composition
plans, users can be more flexible in accomplish-
ing their tasks in the most suitable way. They
can adopt the optimal plan that our method
provides, but they can also choose freely ac-
cording to their own preference from a number
of alternatives. Moreover, when executing the
selected plan results in failure, candidate plans
can ensure the tasks will be completed without
constraints slacking or premises increasing.

While our method can provide multiple
plans for users, we will explore a re-planning
mechanism to be used when plan execution re-
sults in failure. Using this mechanism, a process
of plan execution can be continued automati-
cally from an appropriate service node and the
negative impact of a failure will be minimized.

Acknowledgment

This work is jointly supported by the Na-
tional Natural Science Foundation of China
(No.60672121), National Key Basic Re-

search Program of China (973 Program)
(2009CB320406) and the Foundation for
Innovative Research Groups of the National
Natural Science Foundation of China (Grant
No. 60821001).

References

Akkiraju, R., Srivastava, B., Ivan, A.-A., Goodwin,
R., & Syeda-Mahmood, T. (2006, September).
SEMAPLAN: Combining Planning with Semantic
Matching to Achieve Web Service Composition. In
Proceedings of the IEEE International Conference
on Web Services, Chicago, IL (pp. 37-44).

Cai, D., Luo, Z., Qian, K., & Gao, Y. (2005, Novem-
ber). Towards efficient selection of Web services with
reinforcement learning process. In Proceedings of
the 17th IEEE International Conference on Tools
with Artificial Intelligence (ICTAI 05), Hong Kong
(pp. 372-276).

Canfora, G., Di Penta, M., Esposito, R., & Villani,
M. L. (2005, June). An approach for QoS-aware
service composition based on genetic algorithms.
In Proceedings of the 2005 Conference on Genetic
and Evolutionary Computation, Washington, DC
(pp. 1069-1075).

Chen, K., Xu, J., & Reiff-Marganiec, S. (2009, July).
Markov-HTN Planning Approach to Enhance Flex-
ibility of Automatic Web Service Composition. In
Proceedings of the IEEE International Conference
on Web Services, Los Angeles, CA (pp. 9-16).

Doshi, P., Goodwin, R., Akkiraju, R., & Verma, K.
(2005). Dynamic Workflow Composition: Using
Markov Decision Processes. International Journal
of Web Services Research, 2(1), 1–17. doi:10.4018/
jwsr.2005010101

Dujmovic, J. J., & Larsen, H. (2004). Properties
and modeling of partial conjunction/disjunction. In
Current Issues in Data and Knowledge Engineering:
Proceedings of the Eurofuse Workshop on Data and
Knowledge Engineering (pp. 215-224).

Garcia, D. Z. G., & de Toledo, M. B. F. (2006,
November). Semantics-enriched QoS policies for
web service interactions. In Proceedings of the 12th
Brazilian Symposium on Multimedia and the Web
(WebMedia 2006) (pp. 35-44).

Gerevini, A., & Long, D. (2005). Plan Constraints
and Preferences in PDDL3 (Tech. Rep.). Brescia,
Italy: Department of Electronics for Automation,
University of Brescia.

70 International Journal of Web Services Research, 8(2), 51-71, April-June 2011

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Hassine, A. B., Matsubara, S., & Ishida, T. (2006).
A Constraint-Based Approach to Horizontal Web
Service Composition. In Proceedings of the 2006
International Semantic Web Conference (ISWC
2006) (pp. 130-143).

Kuter, U., Sirin, E., Parsia, B., Nau, D. S., & Hen-
dler, J. A. (2005). Information gathering during
planning for Web Service composition. Journal of
Web Semantics, 3(2-3), 183–205. doi:10.1016/j.
websem.2005.07.001

Lécué, F. (2009, October). Optimizing QoS-Aware
Semantic Web Service Composition. In Proceedings
of the 2009 International Semantic Web Conference
(ISWC 2009), Chantilly, VA (pp. 375-191).

Lécué, F., Delteil, A., & Leger, A. (2008). Optimiz-
ing Causal Link Based Web Service Composition.
In Proceedings of the 18th European Conference on
Artificial Intelligence (ECAI’08) (pp. 45-49).

Lin, N., Kuter, U., & Hendler, J. (2007, July). Web
Service Composition via Problem Decomposition
across Multiple Ontologies. In Proceedings of the
IEEE Conference on Services, Salt Lake City, UT
(pp. 65-72).

Nau, D., Muñoz-Avila, H., Cao, Y., Lotem, A., &
Mitchell, S. (2001, August). Total-Order Planning
with Partially Ordered Subtasks. In Proceedings of
the IJCAI 2001 Conference, Seattle, WA.

Nau, D. S., Au, T.-C., Ilghami, O., Kuter, U., Mur-
dock, J. W., Wu, D., & Yaman, F. (2003). SHOP2:
An HTN Planning System. Journal of Artificial
Intelligence Research, 20, 379–404.

Paik, I., Maruyama, D., & Huhns, M. N. (2006, Sep-
tember). A Framework for Intelligent Web Services:
Combined HTN and CSP Approach. In Proceedings
of the IEEE International Conference on Web Ser-
vices, Chicago, IL (pp. 959-962).

Reiff-Marganiec, S., Yu, H. Q., & Tilly, M. (2009).
Service Selection based on Non-Functional Proper-
ties. In Proceedings of the ICSOC 2007 Workshops
(LNCS 4907, pp. 128-138).

Schuschel, H., & Weske, M. (2004, June). Automated
Planning in a Service-Oriented Architecture. In Pro-
ceedings of the 13th IEEE International Workshops
on Enabling Technologies: Infrastructure for Col-
laborative Enterprises, Modena, Italy (pp. 75-80).

Sirin, E., Parsia, B., Wu, D., Hendler, J. A., & Nau,
D. S. (2004). HTN planning for Web Service com-
position using SHOP2. Journal of Web Semantics,
1(4), 377–396. doi:10.1016/j.websem.2004.06.005

Thiagarajan, R., & Stumptner, M. (2007). Service
Composition With Consistency-based Matchmak-
ing: A CSP-based Approach. In Proceedings of the
ECOWS 2007 Conference (pp. 22-32).

Weiss, M., Esfandiari, B., & Luo, Y. (2007). Towards
a classification of web service feature interactions.
International Journal of Computer and Telecom-
munications Networking, 51(2), 359–381.

World Wide Web Consortium. (2004). OWL-S:
Semantic Markup for Web Services. Retrieved Janu-
ary 27, 2010, from http://www.w3.org/Submission/
OWL-S/

Yu, H. Q. (2009). Context Aware Automatic Service
Selection. Unpublished doctoral dissertation, Uni-
versity of Leicester, UK.

Yu, H. Q., & Reiff-Marganiec, S. (2008, July). A
Method for Automated Web Service Selection. In
Proceedings of the 2nd International Workshop on
Web Service Composition and Adaptation (WSCA-
2008) (pp. 513-520).

Zhang, J., Zhang, S., Cao, J., & Mou, Y. (2004,
September). Improved HTN Planning Approach for
Service Composition. In Proceedings of the IEEE
International Conference on Services Computing,
Shanghai, China (pp. 609-612).

Endnote
1 	 In this paper, HTN planning is based on the

Close World assumption, which is means all
the tasks for expressing users’ requirements
must be one of the elements in task ontology.

International Journal of Web Services Research, 8(2), 51-71, April-June 2011 71

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Jiuyun Xu is a professor at School of Computer & Communication Engineering located at
China University of Petroleum. He obtained his PhD in Computer Science in 2004 from Beijing
University of Posts & Telecommunications. He was as an honorary research fellow visiting
University of Leicester, which is sponsored by China Overseas Scholarship Committee. In his
PhD, Jiuyun investigated Feature Interactions in Next Generation Networks. His research in-
terests are focused on Semantic Web Service Composition with a specific view of using Immune
Algorithm, Markov Decision Process and other AI techniques which are not only to find suitable
compositions, but to find the best possible plans based on non-functional properties. Another
keen area of interest is that of Feature Interactions, where Jiuyun is looking at runtime detection
and resolution mechanisms. Jiuyun is also interested in semi-automatic or automatic generate
ontology, ontology mapping in Semantic Web and natural language understanding. Jiuyun has
extensively published in these areas. Jiuyun is a session Chair of the third International Confer-
ence on Natural Computation. And Jiuyun is the member of Yocsef (China Computer Federation
Young Computer Scientists & Engineers Forum) QingDao Academic Committee.

Kun Chen has obtained a Bachelor degree of Computer Science at China University of Petro-
leum in 2007. He is currently a master student under the supervision of Jiuyun Xu. His main
research interests concern Semantic Web services, particularly investigating services composi-
tion and feature interaction among services. The type of problem he looks at is how to enhance
the services composition based on AI planning techniques and how to solve the conflicts during
the services execution.

Stephan Reiff-Marganiec is a Senior Lecturer in the Department of Computer Science at the
University of Leicester, which he joined in 2003. He worked in the computer industry in Germany
and Luxembourg for several years. From 1998 to 2001, he worked as a Research Assistant on
the EPSRC HFIG project at the University of Glasgow, while at the same time reading for a PhD
in Computing Science. The work performed at Glasgow investigated hybrid approaches to the
feature interaction problem. From 2001 to 2003 Stephan worked as a Research Fellow on the
EPSRC ACCENT project at the University of Stirling, investigating policies, emerging features
and associated conflict resolution techniques. Stephan has since been working in the areas of
services and features considering service selection based on non-functional properties as well
as policies as mechanisms for system flexibility. Stephan has in the order of 40 publications in
international conferences and journals in these areas. Stephan was responsible for organising
the British Colloquium for Theoretical Computer Science in 2001 and again in 2004 and since
2004 has been treasurer of BCTCS. He was also co-Chair of the 8th and 10th International
Conference on Feature Interactions in Telecommunications and Software Systems (ICFI05 and
ICFI09), co-Chair of the second, third and fourth Young Researchers Workshop in Service Ori-
ented Computing (YR-SOC 2007, 08 and 09) and is senior member of the steering committee for
YR-SOC. Stephan was principal investigator of the project “Ad-Hoc Web Applications” funded
by the Nuffield foundation and leader of workpackages and tasks in the EU funded projects
Leg2Net, Sensoria and inContext focusing on automatic service adaption, context aware service
selection, workflows and rule based service composition. He is co-editor of the Handbook on
Non-functional properties for Service oriented Systems to appear in 2011.

