
DOI: 10.4018/IJDCF.302878

International Journal of Digital Crime and Forensics
Volume 14 • Issue 2

This article published as an Open Access article distributed under the terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and production in any medium,

provided the author of the original work and original publication source are properly credited.

*Corresponding Author

1

ABSTRACT

Traditional software defenses take corresponding actions after the attacks are discovered. The
defenders in this situation are comparatively passive because the attackers may try many different
ways to find vulnerability and bugs, but the software remains static. This leads to the imbalance
between offense and defense. Software diversity alleviates the current threats by implementing a
heterogeneous software system. The N-Variant eXecution (NVX) systems, effective and applicable
runtime diversifying methods, apply multiple variants to imporove software security. Higher diversity
can lead to less vulnerabilities that attacks can exploit. However, runtime diversifying methods
such as address randomization and reverse stack can only provide limited diversity to the system.
Thus, the authors enhance the diversity of variants with a compiler-assisted approach. They use a
deep reinforcement learning-based algorithm to generate variants, ensuring the high diversity of the
system. For different numbers of variants, they show the results of the Deep Q Network algorithm
under different parameter settings.

Keywords
Deep Q Network, Multi-Compiling, N-Variant Execution, Software Diversity, Software Security, Variant
Generation

I. INTRODUCTION

Software monoculture means that software systems adopt a relatively static fixed architecture and
roughly similar operating mechanisms, which allows attacks that work on one system to be easily
applied to all similarly configured systems. Most monoculture computer systems are subject to
catastrophic failure in the event of a successful attack (Goth, 2003).

However, software diversity, a technical means that can effectively improve software security,
has been a concern in recent years. Software systems with high diversity tend to resist more complex
attacks, just as diverse biological populations form a safer and more stable ecosystem. This technology
increases the cost and difficulty of attackers. With the continuous improvement of attack methods,
the increasing variety of attack methods has led to an imbalance between offense and defense. A

Security Enhancement Through
Compiler-Assisted Software Diversity
With Deep Reinforcement Learning
Junchao Wang, National Digital Switching System Engineering Technological R&D Center, Zhengzhou, China*

Jin Wei, School of Computer Science, Fudan University, Shanghai, China, Fudan University Data Arena Institute,
Shanghai, China

Jianmin Pang, National Digital Switching System Engineering & Technological R&D Center, Zhengzhou, China

Fan Zhang, National Digital Switching System Engineering & Technological R&D Center, Zhengzhou, China

Shunbin Li, Zhejiang Lab, Hangzhou, China

International Journal of Digital Crime and Forensics
Volume 14 • Issue 2

2

single software diversifying method often fails to achieve the expected security effect (Bansal, 2006;
Massalin, 1987; Szekeres, 2013; Nergal, 2001; Bittau, 2014; Gras, 2017; Hund, 2013; Snow, 2013).
Comparatively, N-variant eXecution (NVX) systems (Cox, 2006; Berger, 2006; Novark, 2010; Bruschi,
2007; Hosek, 2013, 2015; Kim, 2015; Kwon, 2016; Koning, 2016; Lu, 2018; Maurer, 2012; Salamat,
2009; Volckaert, 2015; Volckaert, 2016; Volckaert, 2012; Xu, 2017; Osterlund, 2019; Voulimeneas,
2020; Wu, 2020) are more effective and adaptable. The work of Franz (2018) mentioned that NVX
technology tries to make a system achieve probabilistic security by introducing redundant variants.
The more considerable diversity between variants will make the system safer. The implementation
principle of this technology is to run different variants of the same program simultaneously and
watch the behaviors of these variants. The attackers need to simultaneously destroy multiple program
variants without causing system errors. In recent research, NVX systems have been widely used in
systems with high security requirements, but there are still some problems in existing NVX systems.
Most NVX systems only use runtime diversifying approaches, such as the disjoint code layout (DCL)
(Volckaert et al., 2015), reverse stack (Salamat, 2009), and address randomization (Berger, 2006; Lu,
2018), which only provide limited diversity. Thus, they are often incapable of attacks using program
structures or data flows, such as position-independent return-oriented programming (PIROP) attacks
(Göktas et al., 2018̧) and certain data-oriented programming (DOP) attacks (Hu et al., 2016).

Our approach proposed in this paper solves the above problem. We increase the diversity of the
NVX systems by using a multicompiling method and propose a compilation tree model to evaluate the
variants’ diversity. In addition, we present a variant generation algorithm based on deep reinforcement
learning, which is verified in the experimental part.

Applying multicompiling methods can increase the variants’ diversity and maintain their
functional equivalence. The traditional obfuscation methods used by attackers to protect them from
anti-virus software can also be applied for software protection. Thus, we can achieve multicompiling
on the source code of software by using existing obfuscation tools. The current obfuscation tools
provide many obfuscation approaches, so we can establish NVX systems with great diversity with
these existing obfuscation options. To quantitatively measure the diversity of variants, we propose a
compilation tree method. In our model, the tree’s nodes represent the variants with different compiling
methods, and the distances between the nodes represent the difference between the variants. In this
way, the problem of diversity measurement is transformed into calculating the distance between tree
nodes. The optimization goal of our algorithm is to maximize the variants’ diversity. We apply a
brute force algorithm and deep Q-learning network (DQN) (Mnih et al., 2013) algorithm to generate
variants. We also verify in the experiments that the DQN method is more practical than the brute
force method when the number of variants is large.

The contributions of this paper are as follows:

•	 We increase the diversity of variants by using multicompiling methods to enhance the security
of the NVX systems.

•	 We propose a compilation tree model to represent the differences between the compiled variants.
The advantage of this method is that the differences between variants can be calculated through
the tree structure, which provides a basis for the variant generation algorithm.

•	 We propose a variant generation algorithm that can be applied in NVX systems. We use a brute
force algorithm and DQN algorithm to generate the combination of the most secure variant.

•	 We verify the applicability of our algorithm in the experiment. For different numbers of
multicompiling methods and required variants, we compare the diversity of variant sets and
analyze the DQN algorithm under different settings.

International Journal of Digital Crime and Forensics
Volume 14 • Issue 2

3

II. RELATED WORKS

We list the works related to our approach in this section. We find that most of the NVX systems use
runtime diversifying approaches, and we summarize the multicompiling methods that can be used to
enhance the diversity in the NVX systems. Moreover, compared with the existing variants’ diversity
measuring methods, we quantitatively analyze the diversity that our method brings to the system
from the compilation perspective.

A. NVX Systems

Since 2006, many NVX systems have been used in security scenarios, such as memory security
and kernel security. The variants of NVX run on the same (Cox, 2006; Berger, 2006; Novark, 2010;
Bruschi, 2007; Hosek, 2013, 2015; Kim, 2015; Kwon, 2016; Koning, 2016; Lu, 2018; Maurer, 2012;
Salamat, 2009; Volckaert, 2015; Volckaert, 2016; Volckaert, 2012; Xu, 2017; Osterlund, 2019) or
different (Voulimeneas, 2020; Wu, 2020) physical machines simultaneously. They provide the same
incentives to the variants and compare the variants’ output behavior through a monitor. The idea of
NVX systems has progressed rapidly in recent years. The authors of Berger and Zorn (2006), Novark
and Berger (2010) built Diehard and DieHarder architecture and probabilistic analysis to protect
memory security. The work of Kim et al. (2015) and Kwon et al. (2016) reduced the uncertainty
of offline comparison by comparing two variants in real time. The work of Osterlund et al. (2019)
protected kernel security through NVX systems. Moreover, Cox et al. (2006) first proposed the
N-variant system in 2006 and compared several variant generation strategies, such as disjoint layout
mapping and instruction set randomization. Salamat et al. (2009) proposed Orchestra, using reverse
stack growth to generate stacks in opposite directions. GHUMVEE (Volckaert, 2015; Volckaert,
2016; Volckaert, 2012) applied disjoint code layouts (DCLs) to introduce software diversity. This
method ensured no segment overlap in the address space of code variants so that there were no
coexisting gadgets during return-oriented programming (ROP) attacks. In 2015, Hosek and Cadar
(2015) proposed Varan, which relied on static binary tools to significantly improve the NVX systems’
performance, focusing more on software reliability than security. Similarly, Mx (Hosek & Cadarl,
2013) and Taychon (Maurer & Brumley, 2012) also focused more on the system’s performance. As a
new NVX system, MvArmor (Koning et al., 2016) realized a high-performance NVX system through
hardware assistance and virtualized processes, and they put the software in user-level privilege instead
of kernel-level privilege to protect the security of the monitor. In summary, existing NVX systems
use runtime diversifying approaches to introduce limited diversity.

B. Variants’ Diversity Measuring Methods

Homescu et al. (2017) mentioned that entropy and granularity are two critical indicators for variant
systems. The two indicators are large enough so that the attacker must spend many resources to brute
the force of the crack. Measuring the variants’ diversity. The authors of Liu et al. (2018), Gu et al.
(2017), and Tong et al (2019) divided variants into components such as processor, operating system,
application software, protocol stack, etc., and measured the differences of components separately.
From a security perspective, the works of Zhang et al. (2020), and Li et al. (2018) used symbiosis
vulnerabilities to compare the similarity between the two variants. The more common vulnerabilities
contained in the two variants, the smaller the diversity between the two variants. The authors of
Liu et al. (2018), and Gu et al. (2017) evaluated variant diversity by measuring the heterogeneity
or safety of the variant system. The work of Zhang et al. (2019) also considered the heterogeneity
and service quality of the generated variants. Software diversity can be easily introduced from the
compiling process, but we do not find any existing work evaluating the variants’ diversity from the
perspective of compilation.

International Journal of Digital Crime and Forensics
Volume 14 • Issue 2

4

C. Multicompiling Methods

Multicompiling can be regarded as a program compiling algorithm that takes a particular program as
input, and the output is a functionally equivalent program but more challenging to understand. The
work of Banescu and Pretschner (2018) lists many compiling techniques currently in use, including
opaque predicate, variable division/merging, control flow flattening, instruction replacement, garbage
code injection, virtualization obfuscation, etc. The current multicompiling methods have been
integrated into automation tools. For C language, for example, obfuscator-llvm (OLLVM)1, Hikari2,
Armariris3, Tigresss4, etc., they mainly support control flow flattening, instruction replacement,
bogus control flow, and other means. These tools are easy to transplant to other tools. Multicompiler5
supports more obfuscation methods than other tools, including code randomization, such as function
sorting, CPU register variable allocation, instruction scheduling, insertion of NOP instructions and
instruction replacement; stack layout randomization, such as reordering stack elements, filling stack
elements and frames; global variables randomizing, such as rearranging the order of global variables,
randomly adding padding values to destroy global variables attack. Additionally, ProGuard6 can
obfuscate the files in the format of jars, aars, wars, ears, zips, apks, or directories; PyArmor7 uses
the encrypted command to achieve the purpose of protection; Obfuscator.io8 supports obfuscation of
JavaScript; Yakpro PO9 supports obfuscation of PHP language; SharpLoader10 supports obfuscation
of C# language.

Multicompiling methods always have many applications in computer security. Jacob et al.
(2008) proposed the idea of a “superdiversifier”, a super performance compiler aimed at improving
computer security. Giuffrida et al. (2012) used multicompiling methods to protect kernel-level
system security by transforming the layout of code and data. Their code conversion mainly included
function shuffling and reordering of basic blocks in functions. Homescu et al. (2017) proposed a
compiler-based software automatic diversification technology by considering the two indicators of
entropy and granularity. Two obfuscation methods were discussed: insertion of NOP instructions
and instruction scheduling. The vast number of multicompiling options can provide us with enough
diversifying options to build a compilation tree.

Figure 1. Framework of our method

International Journal of Digital Crime and Forensics
Volume 14 • Issue 2

5

III. COMPILATION TREE

A. Compilation Tree Framework
As shown in Figure 1, our method’s input is the source code of a software and users’ security
requirements, and the output is a set of compiled binaries named variants. Based on the heterogeneous
variants generated by multicompiling methods, we can build a robust software diversity system. To
compile the source code of the software, we can use the different compiling options provided by
existing compiling tools, such as control flow flattening, variable division, instruction replacement,
and bogus control flow. We can also use different parameters in the same method or a combination
of different compilation methods. Thus, we propose a compilation tree model to represent the
differences between different variants. We also apply a DQN algorithm to generate variants; this part
is introduced in detail in section IV.

The notation in our model and their description are listed in Table 1.

We define the following terms and their meanings in our proposed compilation tree model.

Definition 1 node vi: The i-th node in the tree, representing a variant generated by using a specific
compiling method or several compiling methods.

Definition 2 root node v0: A node without a predecessor node in a nonempty tree, representing a
variant that does not use the multicompiling method to compile.

Definition 3 edge: the edges connect two adjacent nodes.
Definition 4 edge weight d (vi, vj): the weight of edges, used to represent the distance between the

two variants connected by the edge. For adjacent nodes v1 and v2, the distance between them is d
(v1, v2). It should be noted that in the compilation tree, any two nodes cannot be generated with

Table 1. Notation and their descriptions in our algorithm

International Journal of Digital Crime and Forensics
Volume 14 • Issue 2

6

the same multicompiling methods. This is mainly because the same multicompiling methods
cannot introduce diversity.

Our compilation tree model is shown in Fig. 2. v
0

 is the root node, meaning the source code of
software; v

1
~ v

8
 denote the variants compiled by the single or combined compiling methods. The

edges of the tree model represent several compiling methods, including instruction replacement,
bogus control flow, and string encryption. In this tree structure, the edge weights represent the distance
between the two connected nodes.

When using multicompiling options to achieve different code obfuscation levels, we need to
define the parameters of multicompiling options. For example, in OLLVM, the instruction replacement
option can be expressed as “-sub” or “-sub_loop=num1”. “-sub” means to perform instruction
replacement with the default value. “-sub_loop=num1” means that the number of replacement loops
is num1. num1 can be any integer, and the default value of num1 is 1. The bogus control flow option
is to add a basic block before the current basic block to modify the function call graph or fill the
original basic block with randomly selected garbage commands. This option can be expressed as
“-bcf” or “-bcf_prob=num2”. “-bcf” means to perform bogus control flow with the default value.
“-bcf_prob=num2” means this method covers num2 percent blocks. Therefore, each method’s
parameters can also introduce diversity to the variants. As an example, nodes v

1
, v

2
, v

3
, v

4
and v

5

represent the variants realized by the single compiling methods. v
1
and v

4
 indicate the variants

generated using the instruction replacement method. Since num1 can be any number except the default
value, v

1
and v

4
 are also different. Similarly, the number of blocks applied by the bogus control

flow command is different, so that v
2
 and v

5
 are different. The distance between v

4
 and v

5
 can be

expressed in Eq.

Figure 2. Compilation tree realized by compiling methods

International Journal of Digital Crime and Forensics
Volume 14 • Issue 2

7

d v v d v v d v v d v v
4 1 1 0 0 2 2 5
, , , ,()+ ()+ ()+ () 	 (1)

When using two or more methods to compile the variants, we find that it can produce a strong
effect, and there are many combined compilation technologies in many practice to improve the security
of the variants’ environment (Naumovich et al., 2006; Forte et al., 2017) Nodes v

6
, v

7
 and v

8

represent the variants compiled by the combined compiling methods. Starting from the root node
v

0
, reaching the v

6
node needs to pass through v

1
 and v

4
, which indicates that v

6
 is obtained after

v
4

 implementing control flow flattening (-fla). In the same way, to reach node v
7

, we first need to
use bogus control flow to compile the variants and then apply basic block division (-split) to the
variant. The difference between v

7
 and v

8
 is the difference in the divided instruction blocks. The

distance between v
6
 and v

8
is presented in Eq. 2, where d v v

4 5
,() can be calculated by Eq.

d v v d v v d v v d v v
6 8 6 4 4 5 5 8
, , , ,() = ()+ ()+ () 	 (2)

B. Problem Formulation
Our purpose is to solve the problem of variant generation to achieve the maximum diversity. Here
are a few terms that we will use in our optimization problem.

Definition 5 set V: The variant set is generated by our method, which is also the output variant
combination in Figure 1.

Definition 6 variants’ diversity dv: the diversity of variants set.
Definition 7 selecting factor x

i
: x

i
 indicates whether variant v

i
 is included in variant set V generated

by our algorithm.

x
x V

x Vi
i

i

=
∈
∉















1

0

,

,
	 (3)

It is worth noting that the distance between two nodes v
i
 and v

j
 is the sum of weights of edges

along the shortest path between two nodes. In our model, there is no variant of the repeated compiling
method in the generated variant set V. We can define our optimal function as:

max ,dv x x d v v i j
i

m

i

m

i j i j
= () ≠

= =
∑∑�

1 1

	 (4)

m is the number of nodes in the compilation tree. This formula means that the diversity of set V
is the sum of distances between nodes in V.

The simplest way to solve this optimization problem is to traverse each combination of variants
to find the node set with the largest d

k
. The time complexity of this brute forcing method is

International Journal of Digital Crime and Forensics
Volume 14 • Issue 2

8

O C O
m

k m km
k() (

!

!()!
)=

−
 . Therefore, the size of the search space is related to the compilation trees’

scale and the number of required variants.

Algorithm 2

Algorithm 1

International Journal of Digital Crime and Forensics
Volume 14 • Issue 2

9

IV. Our Algorithm

For a given number of variants k, our algorithm’s goal is to maximize the diversity of the system.
The security of the system is directly proportional to the variants’ diversity. To achieve this goal,
we need to select the most diverse combination of variants. Therefore, there are two difficulties that
need to be solved:

1) 	 How to quantify the variants’ diversity?
2) 	 How can the most diverse combination of variants be generated?

For the first problem, we use the distance of the variant’s combination to define the variants’
diversity. For the second problem, we introduce two variant generation algorithms: the brute force
method and the DQN method.

A. Variant Generation Method Based on Brute Force Algorithms
For a compilation tree, all nodes can be regarded as a method of variant generation. Therefore, in the
brute force algorithm, we permutate all possible combinations and find the most diverse combination
of variants. By using Eq. 4 to calculate the variants’ diversity, this process is presented in Algorithm 1.

B. Variants Generation Method based on DQN Algorithm
Q-learning is a typical algorithm for value-based solutions in reinforcement learning (Sutton & Barto,
2018). We can use the Q-table or Q-function to store the action-value function (Q value) corresponding
to each state action to make the next action selection. Q s a* (,) can be defined as the optimal action-
value function, which means the maximum expected return achievable by any following strategy, in
state s for action a. The optimal action-value function obeys the Bellman equation:

Q s a E reward Q s a
a

* max *,() = + ()











′ ′
′

³ 	 (5)

y is the discount factor, and max (', ')
'a i
Q s a means the optimal value in the next state for all

possible actions a '
We can use an iterative update for the Bellman equation:

Q E reward Q s a
i s a a+ () ′

= + ()





′ ′
1�

*

,
maxg 	 (6)

It can be proved that Q Q as i
i
→ →∞* (Sutton & Barto, 1998).

International Journal of Digital Crime and Forensics
Volume 14 • Issue 2

10

The work of Mnih et al. (2013) proposed the deep Q network (DNN), which combines a deep
neural network (DNN) (Miikkulainen et al., 2019) and Q-learning. As shown in Fig. 3, the input
of the DNN with weight θ is the current state, and the output is an action that can be selected. The
environment gives the corresponding reward value to guide the agent to complete a specific purpose or
make a profit maximized action. The DQN algorithm also encourages many algorithms that combine
DNN and Q-learning, such as the double deep Q network (DDQN) (Hasselt et al., 2016), Du Lin
DQN (Wang et al., 2019), Noisy DQN (Fortunato et al., 2017), and Rainbow (Hessel et al., 2018).

Algorithm 1 is not applicable when the number of nodes is enormous. Thus, we apply the DQN
to generate variants. In our algorithm, the state space is discrete. When training the neural network, to
train more variant combinations, we map the entire state space into a one-dimensional array. The input
to the neural network is a state, which is a combination of variants of the required number. Our network
starts with two 100-way fully connected layers with the ReLU function and ends with a 3-way fully
connected layer with a linear function. We define the symbols used in the DQN algorithm as follows:

Definition 8 node combination: a combination of k nodes, where k is the number of variants required
by the user.

Definition 9 state s: each node combination corresponds to a state. s
i
 is the i-th state in state array.

Definition 10 action a: selecting different node combinations in the state space array, the corresponding
action values are different. The new node combination is randomly selected, and each variant in
the combination may be different from the previous state. Suppose the current state is s

i
, and

the state after selecting the variant in the next step is s
j
. Then, we can define the value of action:

action

j i

j i

j i

i=
=
=
=
− ≠



















0

1

2

0

,

,

,

	 (7)

Figure 3. Schematic diagram of DQN algorithm

International Journal of Digital Crime and Forensics
Volume 14 • Issue 2

11

Definition 11 reward: the reward score given by the environment when taking different actions.
Assuming that the current state is s

i
 and the state obtained after taking action is s

j
, the expression

of reward is represented as follows:

reward d s d s
i j

= ()− () 	 (8)

The loss function is defined as:

L reward Q s a Q s a
a

θ γ θ θ() = + ()− ()()′ ′ ′ ′
′

max ; ;* 	 (9)

y is the discount factor; the larger the value is, the more critical it is to historical experience.
When y=0, only the current benefit (reward) is considered; is the optimal value that can be obtained
in the next state.

We perform a gradient descent step on the equation to update the weight ¸ . Moreover, in Eq.
9, we choose off-policy temporal-difference (TD) learning (Sutton & Barto, 1998) to update the
Q-value as follows:

Q s a lr Q s a lr reward Q s a
a

′ ′ ′ ′() = −() ()+ + ()
)′

; , ; max (;]θ θ γ θ1 * 	 (10)

where ir Î (,)0 1 in Eq.10 is the learning rate. The TD algorithm is the central and novel part of
reinforcement learning, which can update the knowledge of the agent at every timestep. It contains
two policies: on-policy TD control (Sarsa) and off-policy TD control (Q-learning).

Referring to work (Mnih et al., 2013), we introduce the variant generation method illustrated
in Algorithm 2.

V. Experiments

A. Experimental Setup and Dataset
The experiments are performed on a server with an Intel(R) Xeon(R) Gold 5218 CPU @ 2.30 GHz
16-core CPU and 250 GB RAM.

We analyze different factors that can affect variant generation. Thus, we benchmark the
performance of our proposed algorithm under different settings. To evaluate the experimental data,
we randomly generate a tree structure with different numbers of node and edge weights.

B. Experimental Results

1) 	 different numbers of compiling options

To compare the impact of different compilation options on the experimental results, we generated
compilation trees with 10, 50, 100, 500, and 1000 nodes. In our model, each node represents a
compilation option.

The following experimental results are all obtained under the condition of the required number
of variants k=3. The brute force and the DQN algorithms use the same tree model.

Table 2 shows the experimental results of the brute force algorithm.

International Journal of Digital Crime and Forensics
Volume 14 • Issue 2

12

Figure 4, Figure 5, and Figure 6 show the effect of the learning rate, discount factor, and episode
on the DQN algorithm result. The x-axis is the number of nodes in the compiled tree. As the number
of nodes increases, the diversity of the generated variants increases.

Table 2. The results of the brute force algorithm

Figure 4. The results of different learning rate in the DQN algorithm

Figure 5. The results of different discount factor in the DQN algorithm

International Journal of Digital Crime and Forensics
Volume 14 • Issue 2

13

In Figure 4, the red line represents the brute force algorithm’s experimental results, and the five
black lines represent the diversity of generated variants when the learning = 0.5, 0.6, 0.7, 0.8, and
0.9. The default factor = 0.95; episodes = 100. The value of the learning rate affects the experimental
results. When the learning rate is equal to 0.7, the generated variants’ diversity is the largest.

The six black lines in Figure 5 represent the diversity of generated variants when the discount
factor Y takes different values. The default parameters are lr = 0.8 and episodes = 100. When the
number of nodes is small, the variants’ diversity is largest when Y= 0.7, and when the number of
variants is large, Y= 0.9 is better.

Figure 6 shows that when the number of episodes is set to 1000, the generated variant combination
has greater diversity, and larger training times can obtain better experimental results.

2) 	 different numbers of required variants

When the number of nodes is 50, we compare the impact of different required variant numbers k
on the generated variant diversity. As shown in Figure 7, the parameters of the DQN algorithm are .
When k increases, the gap of diversity between the DQN algorithm and the brute force decreases, and
our algorithm has strong applicability. We can also conclude that as the number of required variants
increases, the diversity of generated variants will also increase.

Figure 6. The results of different episode in the DQN algorithm

International Journal of Digital Crime and Forensics
Volume 14 • Issue 2

14

It can be seen from the experimental results that if the cost permits, we can appropriately increase
the number of compilation options and required variants to obtain high diversity. In addition, although
the DQN algorithm cannot obtain the optimal solution every time, it is more efficient and can achieve
better results when the number of variants is large.

VI. Conclusion

In this paper, we enhance the diversity of NVX systems by using the multicompiling method. We
present a compilation tree model to measure the variants’ diversity and apply the DQN algorithm to
generate variants. Our variant generation algorithm ensures the high diversity of the NVX systems
to improve the system’s resistance to attacks. In the experiment, we compare the results of the DQN
algorithm with different settings and analyze the impact of variant numbers and compiling option
numbers on variant diversity.

In future work, we will generate the weights of the edges in the compilation tree based on
techniques such as binary diffing analysis. We will also consider system performance and more
factors when generating variants.

VII. Acknowledgments

This research is supported by the National Key Research and Development Program of China
(2017YFB0803202), Major Scientific Research Project of Zhejiang Lab (No. 2018FD0ZX01),
National Core Electronic Devices, High-end Generic Chips and Basic Software Major Projects
(2017ZX01030301), the National Natural Science Foundation of China (No. 61309020) and the
National Natural Science Fund for Creative Research Groups Project (No. 61521003).

Figure 7. The results of different required variants numbers

International Journal of Digital Crime and Forensics
Volume 14 • Issue 2

15

REFERENCES

Banescu, S., & Pretschner, A. (2018). A tutorial on software obfuscation. Advances in Computers, 108, 283–353.

Bansal, S., & Aiken, A. (2006). Automatic generation of peephole superoptimizers. ACM SIGARCH Computer
Architecture News, 34(5), 394–403. doi:10.1145/1168919.1168906

Berger, E. D., & Zorn, B. G. (2006). DieHard: Probabilistic memory safety for unsafe languages. ACM SIGPLAN
Notices, 41(6), 158–168. doi:10.1145/1133255.1134000

Bruschi, D., Cavallaro, L., & Lanzi, A. (2007, April). Diversified process replicæ for defeating memory error
exploits. In 2007 IEEE International Performance, Computing, and Communications Conference (pp. 434-441).
IEEE.

Cox, B., Evans, D., Filipi, A., Rowanhill, J., Hu, W., Davidson, J., & Hiser, J. (2006, August). N-Variant Systems:
A Secretless Framework for Security through Diversity. In USENIX Security Symposium (pp. 105-120).

Forte, D., Bhunia, S., & Tehranipoor, M. M. (Eds.). (2017). Hardware protection through obfuscation. Springer
International Publishing.

Fortunato, M., Azar, M. G., Piot, B., Menick, J., Osband, I., Graves, A., & Legg, S. (2017). Noisy networks for
exploration. arXiv preprint arXiv:1706.10295.

Franz, M. (2018). Making multivariant programming practical and inexpensive. IEEE Security and Privacy,
16(3), 90–94.

Franz, M. (2018). Making multivariant programming practical and inexpensive. IEEE Security and Privacy,
16(3), 90–94.

Giuffrida, C., Kuijsten, A., & Tanenbaum, A. S. (2012). Enhanced operating system security through efficient
and fine-grained address space randomization. In 21st USENIX Security Symposium (USENIX Security 12) (pp.
475-490). USENIX.

Göktas, E., Kollenda, B., Koppe, P., Bosman, E., Portokalidis, G., Holz, T., & Giuffrida, C. (2018, April).
Position-independent code reuse: On the effectiveness of aslr in the absence of information disclosure. In 2018
IEEE European Symposium on Security and Privacy (EuroS&P) (pp. 227-242). IEEE.

Goth, G. (2003). Addressing the monoculture. IEEE Security and Privacy, 1(6), 8–10. doi:10.1109/
MSECP.2003.1253561

Gu, Z. Y., Zhang, X. M., & Lin, S. j. (2017). Research on load-aware dynamic scheduling mechanism based on
security strategies. Jisuanji Yingyong, 37(11), 3304–3310.

Hessel, M., Modayil, J., Van Hasselt, H., Schaul, T., Ostrovski, G., Dabney, W., & Silver, D. (2018, April).
Rainbow: Combining improvements in deep reinforcement learning. Thirty-second AAAI conference on artificial
intelligence.

Homescu, A., Jackson, T., Crane, S., Brunthaler, S., Larsen, P., & Franz, M. (2015). Large-scale automated
software diversity—Program evolution redux. IEEE Transactions on Dependable and Secure Computing, 14(2),
158–171. doi:10.1109/TDSC.2015.2433252

Hosek, P., & Cadar, C. (2013, May). Safe software updates via multi-version execution. In 2013 35th International
Conference on Software Engineering (ICSE) (pp. 612-621). IEEE. doi:10.1109/ICSE.2013.6606607

Hosek, P., & Cadar, C. (2015). Varan the unbelievable: An efficient n-version execution framework. ACM
SIGARCH Computer Architecture News, 43(1), 339–353. doi:10.1145/2786763.2694390

Hu, H., Shinde, S., Adrian, S., Chua, Z. L., Saxena, P., & Liang, Z. (2016, May). Data-oriented programming:
On the expressiveness of non-control data attacks. In 2016 IEEE Symposium on Security and Privacy (SP) (pp.
969-986). IEEE.

Jacob, M., Jakubowski, M. H., Naldurg, P., Saw, C. W. N., & Venkatesan, R. (2008, November). The
superdiversifier: Peephole individualization for software protection. In International Workshop on Security
(pp. 100-120). Springer.

http://dx.doi.org/10.1145/1168919.1168906
http://dx.doi.org/10.1145/1133255.1134000
http://dx.doi.org/10.1109/MSECP.2003.1253561
http://dx.doi.org/10.1109/MSECP.2003.1253561
http://dx.doi.org/10.1109/TDSC.2015.2433252
http://dx.doi.org/10.1109/ICSE.2013.6606607
http://dx.doi.org/10.1145/2786763.2694390

International Journal of Digital Crime and Forensics
Volume 14 • Issue 2

16

Kim, D., Kwon, Y., Sumner, W. N., Zhang, X., & Xu, D. (2015). Dual execution for on the fly fine grained execution
comparison. ACM SIGARCH Computer Architecture News, 43(1), 325–338. doi:10.1145/2786763.2694394

Koning, K., Bos, H., & Giuffrida, C. (2016, June). Secure and efficient multi-variant execution using hardware-
assisted process virtualization. In 2016 46th Annual IEEE/IFIP International Conference on Dependable Systems
and Networks (DSN) (pp. 431-442). IEEE. doi:10.1109/DSN.2016.46

Kwon, Y., Kim, D., Sumner, W. N., Kim, K., Saltaformaggio, B., Zhang, X., & Xu, D. (2016, March).
Ldx: Causality inference by lightweight dual execution. In Proceedings of the Twenty-First International
Conference on Architectural Support for Programming Languages and Operating Systems (pp. 503-515).
doi:10.1145/2872362.2872395

Li, W., Zhang, Z., Wang, L., & Wu, J. (2018). The modeling and risk assessment on redundancy adjudication
of mimic defense. Journal of Cyber Security, 3(5), 64–74.

Lu, K., Xu, M., Song, C., Kim, T., & Lee, W. (2018). Stopping memory disclosures via diversification and
replicated execution. IEEE Transactions on Dependable and Secure Computing.

Massalin, H. (1987). Superoptimizer: A look at the smallest program. ACM SIGARCH Computer Architecture
News, 15(5), 122–126. doi:10.1145/36177.36194

Maurer, M., & Brumley, D. (2012). TACHYON: Tandem execution for efficient live patch testing. In 21st
{USENIX} Security Symposium ({USENIX} Security 12) (pp. 617-630).

Miikkulainen, R., Liang, J., Meyerson, E., Rawal, A., Fink, D., Francon, O., & Hodjat, B. (2019). Evolving deep
neural networks. In Artificial intelligence in the age of neural networks and brain computing (pp. 293–312).
Academic Press.

Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D., & Riedmiller, M. (2013). Playing
atari with deep reinforcement learning. arXiv preprint arXiv:1312.5602.

Naumovich, G., Yalcin, E., Memon, N. D., Yu, H. H., & Sosonkin, M. (2006). U.S. Patent No. 7,150,003.
Washington, DC: U.S. Patent and Trademark Office.

Novark, G., & Berger, E. D. (2010, October). DieHarder: securing the heap. In Proceedings of the 17th ACM
conference on Computer and communications security (pp. 573-584).

Österlund, S., Koning, K., Olivier, P., Barbalace, A., Bos, H., & Giuffrida, C. (2019, April). kMVX: Detecting
kernel information leaks with multi-variant execution. In Proceedings of the Twenty-Fourth International
Conference on Architectural Support for Programming Languages and Operating Systems (pp. 559-572).
doi:10.1145/3297858.3304054

Qinrang, L. I. U., Senjie, L. I. N., & Zeyu, G. U. (2018). Heterogeneous redundancies scheduling algorithm for
mimic security defense. Journal of Communication, 39(7), 188.

Salamat, B., Jackson, T., Gal, A., & Franz, M. (2009, April). Orchestra: intrusion detection using parallel
execution and monitoring of program variants in user-space. In Proceedings of the 4th ACM European conference
on Computer systems (pp. 33-46). doi:10.1145/1519065.1519071

Snow, K. Z., Monrose, F., Davi, L., Dmitrienko, A., Liebchen, C., & Sadeghi, A. R. (2013, May). Just-in-time
code reuse: On the effectiveness of fine-grained address space layout randomization. In 2013 IEEE Symposium
on Security and Privacy (pp. 574-588). IEEE. doi:10.1109/SP.2013.45

Sutton, R. S., & Barto, A. G. (1998). Reinforcement learning: an introduction. MIT Press.

Szekeres, L., Payer, M., Wei, T., & Song, D. (2013, May). Sok: Eternal war in memory. In 2013 IEEE Symposium
on Security and Privacy (pp. 48-62). IEEE. doi:10.1109/SP.2013.13

Thrun, S., & Littman, M. L. (2000). Reinforcement learning: An introduction. AI Magazine, 21(1), 103–103.

Tong, Q., Guo, Y., Hu, H., Liu, W., Cheng, G., & Li, L. S. (2019). A Diversity Metric Based Study on the
Correlation between Diversity and Security. IEICE Transactions on Information and Systems, 102(10), 1993–2003.

Van Hasselt, H., Guez, A., & Silver, D. (2016, March). Deep reinforcement learning with double q-learning.
Proceedings of the AAAI Conference on Artificial Intelligence, 30(1).

http://dx.doi.org/10.1145/2786763.2694394
http://dx.doi.org/10.1109/DSN.2016.46
http://dx.doi.org/10.1145/2872362.2872395
http://dx.doi.org/10.1145/36177.36194
http://dx.doi.org/10.1145/3297858.3304054
http://dx.doi.org/10.1145/1519065.1519071
http://dx.doi.org/10.1109/SP.2013.45
http://dx.doi.org/10.1109/SP.2013.13

International Journal of Digital Crime and Forensics
Volume 14 • Issue 2

17

Volckaert, S., Coppens, B., & De Sutter, B. (2015). Cloning your gadgets: Complete ROP attack immunity with
multi-variant execution. IEEE Transactions on Dependable and Secure Computing, 13(4), 437–450. doi:10.1109/
TDSC.2015.2411254

Volckaert, S., Coppens, B., Voulimeneas, A., Homescu, A., Larsen, P., De Sutter, B., & Franz, M. (2016).
Secure and efficient application monitoring and replication. In 2016 {USENIX} Annual Technical Conference
({USENIX}{ATC} 16) (pp. 167-179).

Volckaert, S., De Sutter, B., De Baets, T., & De Bosschere, K. (2012, October). GHUMVEE: efficient, effective,
and flexible replication. In International Symposium on Foundations and Practice of Security (pp. 261-277).
Springer, Berlin, Heidelberg.

Voulimeneas, A., Song, D., Parzefall, F., Na, Y., Larsen, P., Franz, M., & Volckaert, S. (2020, June). Distributed
heterogeneous n-variant execution. In International Conference on Detection of Intrusions and Malware, and
Vulnerability Assessment (pp. 217-237). Springer, Cham. doi:10.1007/978-3-030-52683-2_11

Wang, Z., Schaul, T., Hessel, M., Hasselt, H., Lanctot, M., & Freitas, N. (2016, June). Dueling network
architectures for deep reinforcement learning. In International conference on machine learning (pp. 1995-2003).
PMLR.

Wojtczuk, R. (2001). The advanced return-into-lib (c) exploits: Pax case study. Phrack Magazine, Volume 0x0b,
Issue 0x3a, Phile# 0x04 of 0x0e, 70. Bittau, A., Belay, A., Mashtizadeh, A., Mazieres, D., & Boneh, D. (2014,
May). Hacking blind. In 2014 IEEE Symposium on Security and Privacy (pp. 227-242). IEEE. Gras, B., Razavi,
K., Bosman, E., Bos, H., & Giuffrida, C. (2017, February). ASLR on the Line: Practical Cache Attacks on the
MMU. In NDSS (Vol. 17, p. 26). Hund, R., Willems, C., & Holz, T. (2013, May). Practical timing side channel
attacks against kernel space ASLR. In 2013 IEEE Symposium on Security and Privacy (pp. 191-205). IEEE.

Wu, J. (2020). Cyberspace mimic defense. Springer International Publishing. doi:10.1007/978-3-030-29844-9

Xu, M., Lu, K., Kim, T., & Lee, W. (2017). Bunshin: compositing security mechanisms through diversification.
In 2017 {USENIX} Annual Technical Conference ({USENIX}{ATC} 17) (pp. 271-283).

Zhang, J. X., Pang, J. M., & Zhang, Z. (2020). Quantification method for heterogeneity on Web server with
mimic construction. Journal of Software, 31(2), 564–577.

Zhang, J. X., Pang, J. M., Zhang, Z., Tai, M., Zhang, H., & Nie, G. L. (2019). The Executors Scheduling Algorithm
for the Web Server with Mimic Construction. Computer Engineering, 45(08), 14–21.

ENDNOTES

1 	 https://github.com/obfuscator-llvm/obfuscator/wiki/
2 	 https://github.com/HikariObfuscator/Hikari/wiki/Usage
3 	 https://github.com/GoSSIP-SJTU/Armariris
4 	 https://tigress.wtf/
5 	 https://github.com/securesystemslab/multicompiler
6 	 https://www.guardsquare.com/en/products/proguard
7 	 https://pyarmor.readthedocs.io/zh/latest/usage.html
8 	 https://obfuscator.io/
9 	 https://github.com/pk-fr/yakpro-po
10 	 https://github.com/Zaczero/SharpLoade

http://dx.doi.org/10.1109/TDSC.2015.2411254
http://dx.doi.org/10.1109/TDSC.2015.2411254
http://dx.doi.org/10.1007/978-3-030-52683-2_11
http://dx.doi.org/10.1007/978-3-030-29844-9

International Journal of Digital Crime and Forensics
Volume 14 • Issue 2

18

Jianmin Pang is a professor in National Digital Switching System Engineering Technological R&D Center. His
research interests include high performance computing, cyber security, and quantum computing.

Zhang Fan was born in Wuhu, Anhui, China, on September 24, 1981. He was Ph. D., associate researcher,
doctoral supervisor. His main research areas are information communication network and high efficiency computer
architecture. He presided over 1 projects on the National Natural Science Foundation, 2 provincial ministerial
projects and Participated 6 national level projects and 9 provincial and ministerial projects. He applied for 15
national technical invention patents and, 8 rights were authorized. He published 15 thesis.7 thesis had been
retrieves. He written 6 books or textbooks. He was granted one of the First-level Prize of provincial ministerial
Hi-tech Progress, one of the Second-level Prize of provincial ministerial Hi-tech Progress and Special-level Prize
of Zhengzhou Hi-tech Progress.

Shunbin Li received the PhD degree in information and communication engineering from Zhejiang University,
Hangzhou, China, in 2018. He is currently working as an associate research fellow in Zhejiang laboratory. His
research interests include VLSI circuits, security, and reconfigurable computing.

