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ABSTRACT

Traditional software defenses take corresponding actions after the attacks are discovered. The 
defenders in this situation are comparatively passive because the attackers may try many different 
ways to find vulnerability and bugs, but the software remains static. This leads to the imbalance 
between offense and defense. Software diversity alleviates the current threats by implementing a 
heterogeneous software system. The N-Variant eXecution (NVX) systems, effective and applicable 
runtime diversifying methods, apply multiple variants to imporove software security. Higher diversity 
can lead to less vulnerabilities that attacks can exploit. However, runtime diversifying methods 
such as address randomization and reverse stack can only provide limited diversity to the system. 
Thus, the authors enhance the diversity of variants with a compiler-assisted approach. They use a 
deep reinforcement learning-based algorithm to generate variants, ensuring the high diversity of the 
system. For different numbers of variants, they show the results of the Deep Q Network algorithm 
under different parameter settings.

Keywords
Deep Q Network, Multi-Compiling, N-Variant Execution, Software Diversity, Software Security, Variant 
Generation

I. INTRODUCTION

Software monoculture means that software systems adopt a relatively static fixed architecture and 
roughly similar operating mechanisms, which allows attacks that work on one system to be easily 
applied to all similarly configured systems. Most monoculture computer systems are subject to 
catastrophic failure in the event of a successful attack (Goth, 2003).

However, software diversity, a technical means that can effectively improve software security, 
has been a concern in recent years. Software systems with high diversity tend to resist more complex 
attacks, just as diverse biological populations form a safer and more stable ecosystem. This technology 
increases the cost and difficulty of attackers. With the continuous improvement of attack methods, 
the increasing variety of attack methods has led to an imbalance between offense and defense. A 

Security Enhancement Through 
Compiler-Assisted Software Diversity 
With Deep Reinforcement Learning
Junchao Wang, National Digital Switching System Engineering Technological R&D Center, Zhengzhou, China*

Jin Wei, School of Computer Science, Fudan University, Shanghai, China, Fudan University Data Arena Institute, 
Shanghai, China

Jianmin Pang, National Digital Switching System Engineering & Technological R&D Center, Zhengzhou, China

Fan Zhang, National Digital Switching System Engineering & Technological R&D Center, Zhengzhou, China

Shunbin Li, Zhejiang Lab, Hangzhou, China



International Journal of Digital Crime and Forensics
Volume 14 • Issue 2

2

single software diversifying method often fails to achieve the expected security effect (Bansal, 2006; 
Massalin, 1987; Szekeres, 2013; Nergal, 2001; Bittau, 2014; Gras, 2017; Hund, 2013; Snow, 2013). 
Comparatively, N-variant eXecution (NVX) systems (Cox, 2006; Berger, 2006; Novark, 2010; Bruschi, 
2007; Hosek, 2013, 2015; Kim, 2015; Kwon, 2016; Koning, 2016; Lu, 2018; Maurer, 2012; Salamat, 
2009; Volckaert, 2015; Volckaert, 2016; Volckaert, 2012; Xu, 2017; Osterlund, 2019; Voulimeneas, 
2020; Wu, 2020) are more effective and adaptable. The work of Franz (2018) mentioned that NVX 
technology tries to make a system achieve probabilistic security by introducing redundant variants. 
The more considerable diversity between variants will make the system safer. The implementation 
principle of this technology is to run different variants of the same program simultaneously and 
watch the behaviors of these variants. The attackers need to simultaneously destroy multiple program 
variants without causing system errors. In recent research, NVX systems have been widely used in 
systems with high security requirements, but there are still some problems in existing NVX systems. 
Most NVX systems only use runtime diversifying approaches, such as the disjoint code layout (DCL) 
(Volckaert et al., 2015), reverse stack (Salamat, 2009), and address randomization (Berger, 2006; Lu, 
2018), which only provide limited diversity. Thus, they are often incapable of attacks using program 
structures or data flows, such as position-independent return-oriented programming (PIROP) attacks 
(Göktas et al., 2018̧) and certain data-oriented programming (DOP) attacks (Hu et al., 2016).

Our approach proposed in this paper solves the above problem. We increase the diversity of the 
NVX systems by using a multicompiling method and propose a compilation tree model to evaluate the 
variants’ diversity. In addition, we present a variant generation algorithm based on deep reinforcement 
learning, which is verified in the experimental part.

Applying multicompiling methods can increase the variants’ diversity and maintain their 
functional equivalence. The traditional obfuscation methods used by attackers to protect them from 
anti-virus software can also be applied for software protection. Thus, we can achieve multicompiling 
on the source code of software by using existing obfuscation tools. The current obfuscation tools 
provide many obfuscation approaches, so we can establish NVX systems with great diversity with 
these existing obfuscation options. To quantitatively measure the diversity of variants, we propose a 
compilation tree method. In our model, the tree’s nodes represent the variants with different compiling 
methods, and the distances between the nodes represent the difference between the variants. In this 
way, the problem of diversity measurement is transformed into calculating the distance between tree 
nodes. The optimization goal of our algorithm is to maximize the variants’ diversity. We apply a 
brute force algorithm and deep Q-learning network (DQN) (Mnih et al., 2013) algorithm to generate 
variants. We also verify in the experiments that the DQN method is more practical than the brute 
force method when the number of variants is large.

The contributions of this paper are as follows:

•	 We increase the diversity of variants by using multicompiling methods to enhance the security 
of the NVX systems.

•	 We propose a compilation tree model to represent the differences between the compiled variants. 
The advantage of this method is that the differences between variants can be calculated through 
the tree structure, which provides a basis for the variant generation algorithm.

•	 We propose a variant generation algorithm that can be applied in NVX systems. We use a brute 
force algorithm and DQN algorithm to generate the combination of the most secure variant.

•	 We verify the applicability of our algorithm in the experiment. For different numbers of 
multicompiling methods and required variants, we compare the diversity of variant sets and 
analyze the DQN algorithm under different settings.
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II. RELATED WORKS

We list the works related to our approach in this section. We find that most of the NVX systems use 
runtime diversifying approaches, and we summarize the multicompiling methods that can be used to 
enhance the diversity in the NVX systems. Moreover, compared with the existing variants’ diversity 
measuring methods, we quantitatively analyze the diversity that our method brings to the system 
from the compilation perspective.

A. NVX Systems

Since 2006, many NVX systems have been used in security scenarios, such as memory security 
and kernel security. The variants of NVX run on the same (Cox, 2006; Berger, 2006; Novark, 2010; 
Bruschi, 2007; Hosek, 2013, 2015; Kim, 2015; Kwon, 2016; Koning, 2016; Lu, 2018; Maurer, 2012; 
Salamat, 2009; Volckaert, 2015; Volckaert, 2016; Volckaert, 2012; Xu, 2017; Osterlund, 2019) or 
different (Voulimeneas, 2020; Wu, 2020) physical machines simultaneously. They provide the same 
incentives to the variants and compare the variants’ output behavior through a monitor. The idea of 
NVX systems has progressed rapidly in recent years. The authors of Berger and Zorn (2006), Novark 
and Berger (2010) built Diehard and DieHarder architecture and probabilistic analysis to protect 
memory security. The work of Kim et al. (2015) and Kwon et al. (2016) reduced the uncertainty 
of offline comparison by comparing two variants in real time. The work of Osterlund et al. (2019) 
protected kernel security through NVX systems. Moreover, Cox et al. (2006) first proposed the 
N-variant system in 2006 and compared several variant generation strategies, such as disjoint layout 
mapping and instruction set randomization. Salamat et al. (2009) proposed Orchestra, using reverse 
stack growth to generate stacks in opposite directions. GHUMVEE (Volckaert, 2015; Volckaert, 
2016; Volckaert, 2012) applied disjoint code layouts (DCLs) to introduce software diversity. This 
method ensured no segment overlap in the address space of code variants so that there were no 
coexisting gadgets during return-oriented programming (ROP) attacks. In 2015, Hosek and Cadar 
(2015) proposed Varan, which relied on static binary tools to significantly improve the NVX systems’ 
performance, focusing more on software reliability than security. Similarly, Mx (Hosek & Cadarl, 
2013) and Taychon (Maurer & Brumley, 2012) also focused more on the system’s performance. As a 
new NVX system, MvArmor (Koning et al., 2016) realized a high-performance NVX system through 
hardware assistance and virtualized processes, and they put the software in user-level privilege instead 
of kernel-level privilege to protect the security of the monitor. In summary, existing NVX systems 
use runtime diversifying approaches to introduce limited diversity.

B. Variants’ Diversity Measuring Methods

Homescu et al. (2017) mentioned that entropy and granularity are two critical indicators for variant 
systems. The two indicators are large enough so that the attacker must spend many resources to brute 
the force of the crack. Measuring the variants’ diversity. The authors of Liu et al. (2018), Gu et al. 
(2017), and Tong et al (2019) divided variants into components such as processor, operating system, 
application software, protocol stack, etc., and measured the differences of components separately. 
From a security perspective, the works of Zhang et al. (2020), and Li et al. (2018) used symbiosis 
vulnerabilities to compare the similarity between the two variants. The more common vulnerabilities 
contained in the two variants, the smaller the diversity between the two variants. The authors of 
Liu et al. (2018), and Gu et al. (2017) evaluated variant diversity by measuring the heterogeneity 
or safety of the variant system. The work of Zhang et al. (2019) also considered the heterogeneity 
and service quality of the generated variants. Software diversity can be easily introduced from the 
compiling process, but we do not find any existing work evaluating the variants’ diversity from the 
perspective of compilation.
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C. Multicompiling Methods

Multicompiling can be regarded as a program compiling algorithm that takes a particular program as 
input, and the output is a functionally equivalent program but more challenging to understand. The 
work of Banescu and Pretschner (2018) lists many compiling techniques currently in use, including 
opaque predicate, variable division/merging, control flow flattening, instruction replacement, garbage 
code injection, virtualization obfuscation, etc. The current multicompiling methods have been 
integrated into automation tools. For C language, for example, obfuscator-llvm (OLLVM)1, Hikari2, 
Armariris3, Tigresss4, etc., they mainly support control flow flattening, instruction replacement, 
bogus control flow, and other means. These tools are easy to transplant to other tools. Multicompiler5 
supports more obfuscation methods than other tools, including code randomization, such as function 
sorting, CPU register variable allocation, instruction scheduling, insertion of NOP instructions and 
instruction replacement; stack layout randomization, such as reordering stack elements, filling stack 
elements and frames; global variables randomizing, such as rearranging the order of global variables, 
randomly adding padding values to destroy global variables attack. Additionally, ProGuard6 can 
obfuscate the files in the format of jars, aars, wars, ears, zips, apks, or directories; PyArmor7 uses 
the encrypted command to achieve the purpose of protection; Obfuscator.io8 supports obfuscation of 
JavaScript; Yakpro PO9 supports obfuscation of PHP language; SharpLoader10 supports obfuscation 
of C# language.

Multicompiling methods always have many applications in computer security. Jacob et al. 
(2008) proposed the idea of a “superdiversifier”, a super performance compiler aimed at improving 
computer security. Giuffrida et al. (2012) used multicompiling methods to protect kernel-level 
system security by transforming the layout of code and data. Their code conversion mainly included 
function shuffling and reordering of basic blocks in functions. Homescu et al. (2017) proposed a 
compiler-based software automatic diversification technology by considering the two indicators of 
entropy and granularity. Two obfuscation methods were discussed: insertion of NOP instructions 
and instruction scheduling. The vast number of multicompiling options can provide us with enough 
diversifying options to build a compilation tree.

Figure 1. Framework of our method
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III. COMPILATION TREE

A. Compilation Tree Framework
As shown in Figure 1, our method’s input is the source code of a software and users’ security 
requirements, and the output is a set of compiled binaries named variants. Based on the heterogeneous 
variants generated by multicompiling methods, we can build a robust software diversity system. To 
compile the source code of the software, we can use the different compiling options provided by 
existing compiling tools, such as control flow flattening, variable division, instruction replacement, 
and bogus control flow. We can also use different parameters in the same method or a combination 
of different compilation methods. Thus, we propose a compilation tree model to represent the 
differences between different variants. We also apply a DQN algorithm to generate variants; this part 
is introduced in detail in section IV.

The notation in our model and their description are listed in Table 1.

We define the following terms and their meanings in our proposed compilation tree model.

Definition 1 node vi: The i-th node in the tree, representing a variant generated by using a specific 
compiling method or several compiling methods.

Definition 2 root node v0: A node without a predecessor node in a nonempty tree, representing a 
variant that does not use the multicompiling method to compile.

Definition 3 edge: the edges connect two adjacent nodes.
Definition 4 edge weight d (vi, vj): the weight of edges, used to represent the distance between the 

two variants connected by the edge. For adjacent nodes v1 and v2, the distance between them is d 
(v1, v2). It should be noted that in the compilation tree, any two nodes cannot be generated with 

Table 1. Notation and their descriptions in our algorithm
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the same multicompiling methods. This is mainly because the same multicompiling methods 
cannot introduce diversity.

Our compilation tree model is shown in Fig. 2. v
0

 is the root node, meaning the source code of 
software; v

1
~ v

8
 denote the variants compiled by the single or combined compiling methods. The 

edges of the tree model represent several compiling methods, including instruction replacement, 
bogus control flow, and string encryption. In this tree structure, the edge weights represent the distance 
between the two connected nodes.

When using multicompiling options to achieve different code obfuscation levels, we need to 
define the parameters of multicompiling options. For example, in OLLVM, the instruction replacement 
option can be expressed as “-sub” or “-sub_loop=num1”. “-sub” means to perform instruction 
replacement with the default value. “-sub_loop=num1” means that the number of replacement loops 
is num1. num1 can be any integer, and the default value of num1 is 1. The bogus control flow option 
is to add a basic block before the current basic block to modify the function call graph or fill the 
original basic block with randomly selected garbage commands. This option can be expressed as 
“-bcf” or “-bcf_prob=num2”. “-bcf” means to perform bogus control flow with the default value. 
“-bcf_prob=num2” means this method covers num2 percent blocks. Therefore, each method’s 
parameters can also introduce diversity to the variants. As an example, nodes v

1
, v

2
, v

3
, v

4
and v

5
 

represent the variants realized by the single compiling methods. v
1
and v

4
 indicate the variants 

generated using the instruction replacement method. Since num1 can be any number except the default 
value, v

1
and v

4
 are also different. Similarly, the number of blocks applied by the bogus control 

flow command is different, so that v
2
 and v

5
 are different. The distance between v

4
 and v

5
 can be 

expressed in Eq.

Figure 2. Compilation tree realized by compiling methods
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d v v d v v d v v d v v
4 1 1 0 0 2 2 5
, , , ,( )+ ( )+ ( )+ ( ) 	 (1)

When using two or more methods to compile the variants, we find that it can produce a strong 
effect, and there are many combined compilation technologies in many practice to improve the security 
of the variants’ environment (Naumovich et al., 2006; Forte et al., 2017) Nodes v

6
, v

7
 and v

8
 

represent the variants compiled by the combined compiling methods. Starting from the root node 
v

0
, reaching the v

6
node needs to pass through v

1
 and v

4
, which indicates that v

6
 is obtained after 

v
4

 implementing control flow flattening (-fla). In the same way, to reach node v
7

, we first need to 
use bogus control flow to compile the variants and then apply basic block division (-split) to the 
variant. The difference between v

7
 and v

8
 is the difference in the divided instruction blocks. The 

distance between v
6
 and v

8
is presented in Eq. 2, where d v v

4 5
,( )  can be calculated by Eq.

d v v d v v d v v d v v
6 8 6 4 4 5 5 8
, , , ,( ) = ( )+ ( )+ ( ) 	 (2) 

B. Problem Formulation
Our purpose is to solve the problem of variant generation to achieve the maximum diversity. Here 
are a few terms that we will use in our optimization problem.

Definition 5 set V: The variant set is generated by our method, which is also the output variant 
combination in Figure 1.

Definition 6 variants’ diversity dv: the diversity of variants set.
Definition 7 selecting factor x

i
: x

i
 indicates whether variant v

i
 is included in variant set V generated 

by our algorithm.

x
x V

x Vi
i

i

=
∈
∉















1

0

,

,
	 (3) 

It is worth noting that the distance between two nodes v
i
 and v

j
 is the sum of weights of edges 

along the shortest path between two nodes. In our model, there is no variant of the repeated compiling 
method in the generated variant set V. We can define our optimal function as:

max ,dv x x d v v i j
i

m

i

m

i j i j
= ( ) ≠

= =
∑∑�

1 1

	 (4) 

m is the number of nodes in the compilation tree. This formula means that the diversity of set V 
is the sum of distances between nodes in V.

The simplest way to solve this optimization problem is to traverse each combination of variants 
to find the node set with the largest d

k
. The time complexity of this brute forcing method is
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 . Therefore, the size of the search space is related to the compilation trees’ 

scale and the number of required variants.

Algorithm 2

Algorithm 1
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IV. Our Algorithm

For a given number of variants k, our algorithm’s goal is to maximize the diversity of the system. 
The security of the system is directly proportional to the variants’ diversity. To achieve this goal, 
we need to select the most diverse combination of variants. Therefore, there are two difficulties that 
need to be solved:

1) 	 How to quantify the variants’ diversity?
2) 	 How can the most diverse combination of variants be generated?

For the first problem, we use the distance of the variant’s combination to define the variants’ 
diversity. For the second problem, we introduce two variant generation algorithms: the brute force 
method and the DQN method.

A. Variant Generation Method Based on Brute Force Algorithms
For a compilation tree, all nodes can be regarded as a method of variant generation. Therefore, in the 
brute force algorithm, we permutate all possible combinations and find the most diverse combination 
of variants. By using Eq. 4 to calculate the variants’ diversity, this process is presented in Algorithm 1.

B. Variants Generation Method based on DQN Algorithm
Q-learning is a typical algorithm for value-based solutions in reinforcement learning (Sutton & Barto, 
2018). We can use the Q-table or Q-function to store the action-value function (Q value) corresponding 
to each state action to make the next action selection. Q s a* ( , ) can be defined as the optimal action-
value function, which means the maximum expected return achievable by any following strategy, in 
state s for action a. The optimal action-value function obeys the Bellman equation:

Q s a E reward Q s a
a

* max *,( ) = + ( )











′ ′
′

³ 	 (5) 

y  is the discount factor, and max ( ', ')
'a i
Q s a  means the optimal value in the next state for all 

possible actions a '  
We can use an iterative update for the Bellman equation:

Q E reward Q s a
i s a a+ ( ) ′

= + ( )





′ ′
1�

*

,
maxg 	 (6) 

It can be proved that Q Q as i
i
→ →∞*    (Sutton & Barto, 1998).
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The work of Mnih et al. (2013) proposed the deep Q network (DNN), which combines a deep 
neural network (DNN) (Miikkulainen et al., 2019) and Q-learning. As shown in Fig. 3, the input 
of the DNN with weight θ is the current state, and the output is an action that can be selected. The 
environment gives the corresponding reward value to guide the agent to complete a specific purpose or 
make a profit maximized action. The DQN algorithm also encourages many algorithms that combine 
DNN and Q-learning, such as the double deep Q network (DDQN) (Hasselt et al., 2016), Du Lin 
DQN (Wang et al., 2019), Noisy DQN (Fortunato et al., 2017), and Rainbow (Hessel et al., 2018).

Algorithm 1 is not applicable when the number of nodes is enormous. Thus, we apply the DQN 
to generate variants. In our algorithm, the state space is discrete. When training the neural network, to 
train more variant combinations, we map the entire state space into a one-dimensional array. The input 
to the neural network is a state, which is a combination of variants of the required number. Our network 
starts with two 100-way fully connected layers with the ReLU function and ends with a 3-way fully 
connected layer with a linear function. We define the symbols used in the DQN algorithm as follows:

Definition 8 node combination: a combination of k nodes, where k is the number of variants required 
by the user.

Definition 9 state s: each node combination corresponds to a state. s
i
 is the i-th state in state array.

Definition 10 action a: selecting different node combinations in the state space array, the corresponding 
action values are different. The new node combination is randomly selected, and each variant in 
the combination may be different from the previous state. Suppose the current state is s

i
, and 

the state after selecting the variant in the next step is s
j
. Then, we can define the value of action:

action

j i

j i

j i

i=
=
=
=
− ≠



















0

1

2

0

,

,

,

	 (7)

Figure 3. Schematic diagram of DQN algorithm
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Definition 11 reward: the reward score given by the environment when taking different actions. 
Assuming that the current state is s

i
 and the state obtained after taking action is s

j
, the expression 

of reward is represented as follows:

reward d s d s
i j

= ( )− ( ) 	 (8)

The loss function is defined as:

L reward Q s a Q s a
a

θ γ θ θ( ) = + ( )− ( )( )′ ′ ′ ′
′

max ; ;* 	 (9)

y is the discount factor; the larger the value is, the more critical it is to historical experience. 
When y=0, only the current benefit (reward) is considered; is the optimal value that can be obtained 
in the next state.

We perform a gradient descent step on the equation to update the weight ¸ . Moreover, in Eq. 
9, we choose off-policy temporal-difference (TD) learning (Sutton & Barto, 1998) to update the 
Q-value as follows:

Q s a lr Q s a lr reward Q s a
a

′ ′ ′ ′( ) = −( ) ( )+ + ( )
 )′

; , ; max ( ; ]θ θ γ θ1 * 	 (10)

where ir Î ( , )0 1 in Eq.10 is the learning rate. The TD algorithm is the central and novel part of 
reinforcement learning, which can update the knowledge of the agent at every timestep. It contains 
two policies: on-policy TD control (Sarsa) and off-policy TD control (Q-learning).

Referring to work (Mnih et al., 2013), we introduce the variant generation method illustrated 
in Algorithm 2.

V. Experiments

A. Experimental Setup and Dataset
The experiments are performed on a server with an Intel(R) Xeon(R) Gold 5218 CPU @ 2.30 GHz 
16-core CPU and 250 GB RAM.

We analyze different factors that can affect variant generation. Thus, we benchmark the 
performance of our proposed algorithm under different settings. To evaluate the experimental data, 
we randomly generate a tree structure with different numbers of node and edge weights.

B. Experimental Results

1) 	 different numbers of compiling options

To compare the impact of different compilation options on the experimental results, we generated 
compilation trees with 10, 50, 100, 500, and 1000 nodes. In our model, each node represents a 
compilation option.

The following experimental results are all obtained under the condition of the required number 
of variants k=3. The brute force and the DQN algorithms use the same tree model.

Table 2 shows the experimental results of the brute force algorithm.
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Figure 4, Figure 5, and Figure 6 show the effect of the learning rate, discount factor, and episode 
on the DQN algorithm result. The x-axis is the number of nodes in the compiled tree. As the number 
of nodes increases, the diversity of the generated variants increases.

Table 2. The results of the brute force algorithm

Figure 4. The results of different learning rate in the DQN algorithm

Figure 5. The results of different discount factor in the DQN algorithm
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In Figure 4, the red line represents the brute force algorithm’s experimental results, and the five 
black lines represent the diversity of generated variants when the learning = 0.5, 0.6, 0.7, 0.8, and 
0.9. The default factor = 0.95; episodes = 100. The value of the learning rate affects the experimental 
results. When the learning rate is equal to 0.7, the generated variants’ diversity is the largest.

The six black lines in Figure 5 represent the diversity of generated variants when the discount 
factor  Y takes different values. The default parameters are lr = 0.8 and episodes = 100. When the 
number of nodes is small, the variants’ diversity is largest when Y= 0.7, and when the number of 
variants is large, Y= 0.9 is better.

Figure 6 shows that when the number of episodes is set to 1000, the generated variant combination 
has greater diversity, and larger training times can obtain better experimental results.

2) 	 different numbers of required variants

When the number of nodes is 50, we compare the impact of different required variant numbers k 
on the generated variant diversity. As shown in Figure 7, the parameters of the DQN algorithm are . 
When k increases, the gap of diversity between the DQN algorithm and the brute force decreases, and 
our algorithm has strong applicability. We can also conclude that as the number of required variants 
increases, the diversity of generated variants will also increase.

Figure 6. The results of different episode in the DQN algorithm
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It can be seen from the experimental results that if the cost permits, we can appropriately increase 
the number of compilation options and required variants to obtain high diversity. In addition, although 
the DQN algorithm cannot obtain the optimal solution every time, it is more efficient and can achieve 
better results when the number of variants is large.

VI. Conclusion

In this paper, we enhance the diversity of NVX systems by using the multicompiling method. We 
present a compilation tree model to measure the variants’ diversity and apply the DQN algorithm to 
generate variants. Our variant generation algorithm ensures the high diversity of the NVX systems 
to improve the system’s resistance to attacks. In the experiment, we compare the results of the DQN 
algorithm with different settings and analyze the impact of variant numbers and compiling option 
numbers on variant diversity.

In future work, we will generate the weights of the edges in the compilation tree based on 
techniques such as binary diffing analysis. We will also consider system performance and more 
factors when generating variants.
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