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Abstract

This paper proposes a novel, exact approach that relies on inte-
ger programming for association rule hiding. A large panorama of
solutions exists for the complex problem of itemset hiding: from prac-
tical heuristic approaches to more accurate exact approaches. Exact
approaches provide better solutions while suffering from the lack of
performance and existing exact approaches still augment their meth-
ods with heuristics to make the problem solvable. In this case, the
solution may not be optimum. This work present a full-exact method,
without any need for heuristics. Extensive tests are conducted on 10
real datasets to analyze distance and information loss performances of
the algorithm in comparison to a former similar algorithm. Since the
approach provides the optimum solution to the problem, it should be
considered as a reference method.

Keywords Association rule hiding, itemset hiding, exact approach,
cost model, side effect

1 Introduction

Data mining field that aims to find interesting patterns from huge amounts
of data attracted the increasing interest of organizations, researchers and
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practitioners. However this growing use of data mining technology in different
domains increased the concern for privacy leading to an active research area
named privacy preserving data mining. From a general point of view, privacy
issues related to the application of data mining can be classified into two main
categories, namely data hiding and knowledge hiding. Data hiding aims to
remove confidential or private information from data prior to its publication.
Knowledge hiding, on the other hand is concerned with the sanitization of
data leading to disclosure of confidential and private knowledge (Gkoulalas-
Divanis and Verykios, 2010). The problem of knowledge hiding requires
sanitizing the input databaseD in such a way that a set of sensitive knowledge
KS is hidden, while most of the information in D is maintained.

Association rule mining or frequent itemset mining is a major data mining
methodology, mostly known in the area of market basket analysis and aims
to capture relationships present among items in a transactional database
(Agrawal et al., 1993) (Agrawal and Srikant, 1994). Despite its benefit in
modern business, frequent itemset mining can also pose a threat to pri-
vacy and security in a database sharing environment when precautions are
not taken in its implementation (Atallah et al., 1999) (Oliveira and Zaiane,
2002). Frequent itemset hiding is specialization of the generic knowledge
hiding problem where the main requirement asks for lowering the support of
sensitive itemsets in the input database D so that sanitized database D′

can
be produced. Secondary requirements are minimization of deleted items and
loss of nonsensitive frequent itemsets (Bonchi and Ferrari, 2011).

Large body of research emerged in the field of itemset hiding, since the
database owners are in need of sharing data with their competitors, for their
mutual benefit without revealing strategic patterns in the form of sensitive
itemsets. Due to combinatorial nature of the problem of itemset hiding,
proposed sanitization methodologies span from simple, time and memory ef-
ficient heuristics (Oliveira and Zaiane, 2002) (Oliveira and Zaiane, 2003a)
(Verykios et al., 2004) (Amiri, 2007) (Wu et al., 2007) (Keer and Singh,
2012) (Yildiz and Ergenc, 2012), border-based approaches (Sun and Yu,
2005) (Sun and Yu, 2007) (Moustakides and Verykios, 2008) and recon-
struction based approaches (Mielikainen, 2003) (Guo, 2007) (Lin and Liu,
2007) (Boora et al., 2009) (Mohaisen et al., 2010) to exact hiding (Menon
et al., 2005) (Gkoulalas-Divanis and Verykios, 2006) (Gkoulalas-Divanis and
Verykios, 2008) (Gkoulalas-Divanis and Verykios, 2009b) algorithms that of-
fer guarantees on the quality of the computed hiding solution at an increased
computational complexity cost. Whatever the technique used in sanitiza-
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tion; different attributes are used in selecting the transaction, itemset in the
transaction or the item in the itemset to modify. Sanitization techniques try
to minimize distance and/or information loss while the number of sensitive
itemsets, characteristics of the data sets or user defined support vary.

The motivation for this work is to find a full exact solution to the problem
of itemset hiding. Although exact approaches claim to model the itemset hid-
ing as optimization problem whose objective is to find the optimum solution,
the ones proposed by Menon (Menon et al., 2005) and Divanis (Gkoulalas-
Divanis and Verykios, 2008) cannot be considered as entirely exact since they
rely not only on integer programming but also some heuristics. To the best
of authors’ knowledge, this work is the first one that models the entire prob-
lem as integer programming so that an optimum solution can be achieved
without requiring any heuristics. Evaluation tests are carried out to mea-
sure distance and information loss performance of the proposed approach in
comparison to an existing algorithm.

Organization of the paper is as follows; Section 2 gives preliminary infor-
mation related to the problem definition of itemset hiding, metrics for side
effects and a motivating example that will be used to explain the algorithms
in the following sections. Section 3 starts with the explanation of the full ex-
act approach of itemset hiding problem. Section 4 gives detailed performance
analysis of the proposed method on UCI benchmark datasets (Coenen, 2003)
while changing the number of sensitive itemsets in comparison to a similar
exact algorithm. Section 5 is dedicated to the survey of existing approaches.
Finally, Section 6 covers the conclusion remarks.

2 Preliminaries and Motivating Example

In this section, formulation of the problem of itemset hiding and metrics used
in minimizing the side effect during sanitization process will be described. In
the last part, a motivating example is presented, that example will be used
in the following section to better explain exact itemset hiding algorithms.

2.1 Problem Formulation

Let I = {a1, a2, . . . , am} be a set of literals, called items. Any subset of
I : Ik ⊆ I is called an itemset. Let D denote a transactional database,
where each transaction Ti is a tuple < i, Ii > where Ii is an itemset and i
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is the transaction ID. D can be represented as D = {T1, T2, . . . , Tn}. The
database is represented in binary form as follows:

D = (dij)n×m (1)

such that

dij =

{
1 if aj ∈ Ii
0 otherwise

(2)

It can be simply said that frequent itemsets are the ones whose support
values, i.e., frequencies of co-occuring items in D are above the minimum
support value. Frequent itemsets can be represented as

F(D,ψ) = {Ik : σ(Ik) ≥ ψ} (3)

where σ(Ik) denotes the support value of the itemset Ik and ψ denotes the
minimum support value. The set of sensitive frequent itemsets is denoted
with FS(D,ψ), which is the subset of frequent itemsets. The set of non-sensitive

frequent itemsets is also denoted with FN(D,ψ), i.e.,

F(D,ψ) = FS(D,ψ) ∪ FN(D,ψ)

In order to represent sensitive frequent itemsets, another matrix is also de-
fined such that:

S = (skj)r×m (4)

such that

skj =

{
1 if aj ∈ Ik
0 otherwise

(5)

where r is the number of sensitive frequent itemsets, i.e., r = |FS(D,ψ)|. The
goal of hiding sensitive frequent itemsets is to transform database D into D′
such that:

i) σ(Ik) < ψ, ∀Ik ∈ FS(D′,ψ),

ii) Side effect is minimized.

The first requirement (privacy requirement) lowers the support of sensitive
itemsets below the support threshold ψ, so that they are sanitized when the
dataset is mined at support threshold ψ. The second requirement assures
minimizing one or more distortion metrics explained next.

4



2.2 Metrics for Side Effect

There are two common performance metrics that can be used to minimize
the side effect of sanitization. The first metric is distance or data distortion,
and it relies on the number of items removed during the sanitization process:∑

i,j

dij − d′ij (6)

The second metric, frequent pattern distortion gives an information about
how many nonsensitive frequent itemsets in the original dataset become in-
frequent after the sanitization:

|FN(D,ψ)| − |FN(D′,ψ)| (7)

Both metrics fulfill the property of “the smaller the better”, although they
measure different aspects of data/knowledge distortion.

2.3 Motivating Example

Throughout the text, a sample 10-transaction-database given in Table 1
will be used to present the Full-Exact method. This database has 62
non-singleton frequent itemsets under ψ = 2 (20%). These itemsets are
given in Table 2. We mark 4 itemsets with bold as sensitive, i.e., FS(D,ψ) =

{{a, b, c}, {c, h}, {h, i}, {f, g}} and strike the supersets of the sensitive item-
sets. S matrix defines sensitive itemsets as shown in Table 3.

3 Full Exact Approach to Itemset Hiding Prob-

lem

In this section, full exact solution to the itemset hiding problem is presented.
The solution satisfies the privacy requirement of the problem, i.e., the sup-
port of sensitive itemsets are reduced below a given support threshold. This
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Table 1: Sample dataset with 10 transactions and 10 items

dij a b c d e f g h i j

T1 1 1 1 0 0 0 1 1 0 1

T2 0 0 1 0 0 0 0 0 1 1

T3 0 0 0 1 1 1 0 0 0 0

T4 1 1 1 0 0 1 1 1 1 0

T5 1 1 1 0 0 1 1 0 0 0

T6 0 0 0 0 0 0 0 0 0 1

T7 0 0 0 1 0 0 0 0 0 0

T8 0 0 1 0 0 1 1 1 1 0

T9 0 0 1 0 0 0 0 1 1 0

T10 0 0 0 0 1 1 1 0 0 0

Table 2: Frequent itemsets of sample dataset

I1−15 σ(I) I16−30 σ(I) I31−45 σ(I) I46−60 σ(I) I61−62 σ(I)

bc 3 ef 2 gh 2 ach 2 abcgh 2

ac 3 cj 2 ch 2 afg 2 cfghi 2

cf 3 ah 2 abh 2 fgh 2

cg 4 ab 3 abf 2 cfh 2

abc 3 bh 2 abg 2 cgh 3

bcf 2 bf 2 bgh 2 cfgh 2

acf 2 bg 3 bch 2 abgh 2

bcg 3 fg 4 bfg 2 abch 2

acg 3 hi 3 fhi 2 abfg 2

cfg 3 fi 2 ghi 2 bcgh 2

abcf 2 gi 2 chi 3 fghi 2

abcg 3 ci 4 fgi 2 cfhi 2

bcfg 2 af 2 cfi 2 cghi 2

acfg 2 ag 3 cgi 2 cfgi 2

abcfg 3 fh 2 agh 2 acgh 2

optimization problem can be written as follows:

min
n∑
i=1

m∑
j=1

dijxij +
n∑
i=1

o∑
k=1

yik (8)
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Table 3: Sensitive Itemsets

skj a b c d e f g h i j

I5 1 1 1 0 0 0 0 0 0 0

I23 0 0 1 0 0 0 0 1 0 0

I24 0 0 0 0 0 0 0 1 1 0

I32 0 0 0 0 0 1 1 0 0 0

Table 4: Nonsensitive Itemsets

skj a b c d e f g h i j

I1 0 1 1 0 0 0 0 0 0 0

I2 1 0 1 0 0 0 0 0 0 0

I3 0 0 1 0 0 1 0 0 0 0
...

...
...

...
...

...
...

...
...

...
...

I45 1 0 0 0 0 0 1 1 0 0

s.t.
n∑
i=1

yik ≥ σ(Ik)− ψ + 1, ∀k : Ik ∈ FS(D,ψ), (9)

s.t.
m∑
j=1

skjxij ≥ yik, (10)

∀ (i, k) : i ∈ {1, . . . , n}, Ik ∈ FS(D,ψ),

s.t.
n∑
i=1

zik ≤ σ(Ik)− ψ, ∀k : Ik ∈ FN(D,ψ), (11)

s.t.
m∑
j=1

nkjxij ≤M1 zik, (12)

∀ (i, k) : i ∈ {1, . . . , n}, Ik ∈ FN(D,ψ),

xij, yij, zik ∈ {0, 1}, (13)

where xij are decision variables indicating the items to be removed. p and
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o represent the number of sensitive and nonsensitive itemsets respectively,
i.e., p = |FS(D,ψ)| and similarly, o = |FN(D,ψ)|. xij = 1 means that item dij
will be removed. yik are the decision variables that indicate the sensitive
patterns to be removed. Similarly, zik are the decision variables that indicate
the nonsensitive patterns to be removed. Since all the variables are binary
integers, this problem falls into the category of integer programming and
there are mature techniques to solve it (Jèunger et al., 2010).

The problem has several constraints. First, (9) defines a constraint for
each sensitive itemset to ensure that the frequency of that itemset is below
the support threshold. The number of constraints is p. Next, (10) defines
one constraint for each occurrence of the sensitive itemsets over the whole
database to ensure that at least one item in a sensitive itemset is removed
if the itemset is set to be removed, i.e., yik = 1. The total number of these
constraints depend on the dataset, yet its maximum value would be n× p.

Constraint (11) ensures that the frequency of nonsensitive itemsets are
still above the threshold. The total number of these constraints is the number
of nonsensitive itemsets, that is o.

Constraint (12) is known as big-M constraint and it ensures that zik = 1
if any item of the nonsensitive itemset is set to be removed. The constant
M should be big enough for this purpose. In our case, M can be assigned
the number of items, i.e., M = m. The total number of these constraints
again depend on the dataset, yet the maximum value would be n × o. The
size of the problem, that is the number of decision variables and the number
of constraints highly depend on the size of the dataset.

Constraints (9) and (11) are contradictory and in almost all cases, there
is no solution to this integer programming problem. Thus, solution can be
found by relaxing or simply removing some of the constraints. This relaxation
can be done through constraints (11) since constraints (9) are essential for
the privacy preservation. Thus, solution can be found by relaxing or simply
removing this constraint. Such a relaxation was also proposed by (Gkoulalas-
Divanis and Verykios, 2006). However, removing both constraint (11) and its
associated constraint (12) yields to ignoring the preservation of nonsensitive
itemsets in this case. Instead, this constraint can be relaxed by introducing
a new decision variable Rk in constraint (11) and adding another big-M
constraint associated to this altered constraint:

s.t.
n∑
i=1

zik ≤ σ(Ik)− ψ +Rk, ∀k : Ik ∈ FN(D,ψ), (14)
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s.t. Rk ≤M2 uk, ∀Ik ∈ FN(D,ψ), (15)

uk ∈ {0, 1}, (16)

0 ≤ Rk ≤ n, Rk ∈ N. (17)

Note that for any nonsensitive itemset Ik, it is desired that Rk remains
always zero to ensure that the frequency is above the support threshold. If
Rk > 0, one can say that the nonsensitive itemset is also hidden as a side-
effect. If all Rk is zero, in most cases, there is no solution to the above
problem due to constraint (11).

Constraint 15 is another big-M constraint and it guarantees that uk = 1
when Rk > 0. Since Rk cannot exceed n, M2 can be assigned n + 1. The
objective function given in (8) becomes

min
n∑
i=1

m∑
j=1

dijxij +
n∑
i=1

o∑
k=1

yik +
n∑
i=1

o∑
k=1

uk (18)

For our sample database, the inequality (9) constructs the first group of
constraints as follows:

y1,1 + y4,1 + y5,1 ≥ 3− 2 + 1 (19)

y1,2 + y4,2 + y8,2 + y9,2 ≥ 4− 2 + 1 (20)

y4,3 + y8,3 + y9,3 ≥ 3− 2 + 1 (21)

y4,4 + y5,4 + y8,4 + y10,4 ≥ 4− 2 + 1 (22)

where a1, for example, represents the decision variable x11 in the context of
this example. The inequality (10) constructs the second group of constraints
as follows:
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a1 + b1 + c1 ≥ y1,1,

c1 + h1 ≥ y1,2

a4 + b4 + c4 ≥ y4,1,

c4 + h4 ≥ y4,2, h4 + i4 ≥ y4,3,

f4 + g4 ≥ y4,4

a5 + b5 + c5 ≥ y5,1,

f5 + g5 ≥ y5,4

c8 + h8 ≥ y8,2,

h8 + i8 ≥ y8,3, f8 + g8 ≥ y8,4

c9 + h9 ≥ y9,2,

h9 + i9 ≥ y9,3

f10 + g10 ≥ y10,4

the inequality (11) constructs the first group of constraints as follows:

z1,1 + z4,1 + z5,1 ≤ 3− 2 +R1

z1,2 + z4,2 + z5,2 ≤ 4− 2 +R2

...

z1,45 + z4,45 ≤ 4− 2 +R45

The inequality (12) constructs the second group of constraints as follows:

b1 + c1 ≤ 10z1,1, a1 + c1 ≤ 10z1,2, · · · ,
a1 + g1 + h1 ≤ 10z1,45

b4 + c4 ≤ 10z4,1, a4 + c4 ≤ 10z4,2, · · · ,
a4 + g4 + h4 ≤ 10z4,45

...

e10 + f10 ≤ 10z10,16

The inequality (15) constructs the second group of constraints as follows:
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R1 ≤ 11u1, R2 ≤ 11u2, · · · , R45 ≤ 11u45 (23)

Thus, for our sample database, the objective function is:

min a1 + b1 + c1 + h1 + . . .+ h9 + i9 + f10

+y1,1 + y1,2 + y4,1 + . . .+ y8,4 + y10,4

+u1 + u2 + u3 + . . .+ u45 (24)

The solution of the problem is, c1 = b5 = g5 = f8 = h8 = h9 = g10 = 1
where the rest is zero. The distance is 7 and the number of frequent itemsets

Table 5: Sanitized database by Full-Exact

dij a b c d e f g h i j

T1 1 1 ×1 0 0 0 1 1 0 1

T2 0 0 1 0 0 0 0 0 1 1

T3 0 0 0 1 1 1 0 0 0 0

T4 1 1 1 0 0 1 1 1 1 0

T5 1 ×1 1 0 0 1 ×1 0 0 0

T6 0 0 0 0 0 0 0 0 0 1

T7 0 0 0 1 0 0 0 0 0 0

T8 0 0 1 0 0 ×1 1 ×1 1 0

T9 0 0 1 0 0 0 0 ×1 1 0

T10 0 0 0 0 1 1 ×1 0 0 0

of the distorted dataset is 20. One should recall that when we exclude 4
sensitive itemsets and its 28 supersets from the initial 62 frequent itemsets, 30
frequent itemsets are expected to survive after the hiding process. However,
the 10 of 30 itemsets could not be preserved in the optimum solution. On
the other hand, according to Menon’s approach, the solution would be c1 =
c4 = g4 = h4 = g8 = h8 = g7 = 1 where the rest is zero. The distance is
again 7 yet the number of frequent itemsets is 11 in this case resulting in
the loss of 9 more non-sensitive itemsets compared to Full-Exact method.
The resulting database is shown in Figure 6.
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4 Performance Evaluation

In this section, a performance evaluation is performed using 10 real datasets
arbitrarily chosen from UCI repository (Coenen, 2003). The characteristics
of these datasets are given in Table 7. The Full-Exact method is per-
formed together with a popular existing algorithm chosen from the literature
for comparison purposes. The reference method is Menon’s exact approach
(Menon et al., 2005). The first part of the method proposed in Menon (Menon
et al., 2005) decides about the minimum number of transactions that have to

Table 6: Sanitized database by Menon’s method

dij a b c d e f g h i j

T1 1 1 ×1 0 0 0 1 1 0 1

T2 0 0 1 0 0 0 0 0 1 1

T3 0 0 0 1 1 1 0 0 0 0

T4 1 1 ×1 0 0 1 ×1 ×1 1 0

T5 1 1 1 0 0 1 1 0 0 0

T6 0 0 0 0 0 0 0 0 0 1

T7 0 0 0 1 0 0 0 0 0 0

T8 0 0 1 0 0 1 ×1 ×1 1 0

T9 0 0 1 0 0 0 0 1 1 0

T10 0 0 0 0 1 1 ×1 0 0 0

Table 7: DB Parameters

DB n m ψ |F(D,ψ)|
Dermatology 366 49 164 (45%) 98
Auto 205 137 102 (50%) 63
Waveform 5000 101 2000 (40%) 50
Soybean 683 118 498 (73%) 98
Hepatitis 155 56 100 (65%) 85
Breast 699 20 384 (55%) 45
Glass 214 48 42 (20%) 132
Zoo 101 42 60 (60%) 40
Congres 435 34 174 (40%) 71
HorseColic 368 27 147 (40%) 43
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be sanitized, with the objective of minimizing accuracy using linear program-
ming. The results are then used by the heuristic part for actual sanitization
trying to make minimum harm on actual database. Tests are done to see
the performance of the algorithms in terms of distance, information loss and
time while the number of sensitive itemsets vary.

All evaluations are performed on an Intel R© CoreTM i7−2600 @ 3.40GHz
CPU, 16 GB RAM, Linux version 2.6.32-35-server (gcc version 4.4.3) stan-
dard computer. For the evaluation of the methods presented in this work, we
developed various utilities that constitute the toolkit PPDM that is entirely
available as a GNU open source project (Ayav, 2013). This toolkit has two
dependencies, Borgelt’s apriori utility (Borgelt, 2003) and the GNU Linear
Programming Kit (GLPK) package (GLPK, 2000). The apriori utility is used
to compute the frequent itemsets of a given dataset and the GLPK package
allows us to solve the linear programming models. PPDM contains software
that allows us to select the sensitive itemsets according to the specified cri-
teria, to compute the cost matrix, to generate various matrices that GLPK
and other programs need to work.

The results of the tests carried out on the benchmark datasets are given in
Table 8. The table shows the distance and the number of nonsensitive item-
sets in the distorted datasets after performing Full-Exact and Menon’s
approach. Note that time results are not included in the table since time
performance issue is out of the scope of this work. It is known that exact
approaches are quite expensive, which makes them usually impractical yet
achieving the optimum solution may be quite useful especially when com-
paring the newly introduced algorithms. As seen, in all experiments, Full-
Exact achieves better results in terms of both distance and information
loss. For example, in Dematology dataset, the number of nonsensitive item-
sets is 98. Ideally, this number minus the number of sensitive itemsets, i.e.,
98 − 2 = 96 itemsets should be preserved after distortion. Full-Exact’s
distortion reduces this number to 73 whereas Menon’s distortion reduces it
to 45. On the other hand, distance gives the number of items removed dur-
ing distortion process and should as small as posssible. Again, Full-Exact
removed 60 items whereas Menon’s method removed 98 items.
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5 Related Work

Privacy preserving association rule hiding problem was first introduced in
(Atallah et al., 1999). The authors proposed heuristic algorithms and gave
the proof of NP-Hardness of optimal sanitization. Since then, many ap-
proaches have been proposed to preserve privacy for sensitive patterns or
sensitive association rules in database. Different categorizations of rule hid-
ing or itemset hiding approaches can be done according to various attributes
of the solution process. Their difference is their ability to hide i) single or
multiple itemsets, ii) exclusive or overlapped itemsets, iii) itemsets of single
or multiple thresholds, iv) according to support or confidence, v) depend-
ing on no pre-hiding process, vi) by removal of sensitive transaction or not.
Besides these categorizations, widely known classification is done according
to the nature of the base algorithm and following classes appear; heuristic
based approaches, border based approaches, exact approaches, reconstruc-
tion based approaches and cryptography based approaches.
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Heuristic Based Approaches: Hiding problem is generalized as to consider
the hiding of both sensitive frequent itemsets and sensitive association rules
in (Dasseni et al., 2001). The authors propose three single rule heuristic
hiding algorithms that are based on the reduction of either the support or
the confidence of the sensitive rules, but not both. The sanitization frame-
work and four different sanitization algorithms that follow similar steps but
differ in selecting the item in victim itemset are proposed by (Oliveira and
Zaiane, 2002). Two more sanitization algorithms are proposed in (Oliveira
and Zaiane, 2003a); Round Robin Algorithm and Random Algorithm which
try to distort items equally while decreasing of the support of the items in
sensitive rules. The algorithm in (Oliveira and Zaiane, 2003b), called SWA,
is an efficient, scalable, one-scan heuristic which aims at providing a balance
between the needs for privacy and knowledge discovery in association rule
hiding. Three effective, multiple association rule hiding heuristic algorithms
are proposed by (Amiri, 2007) and shown that they outperform SWA by
offering higher data utility and lower distortion. Five heuristic algorithms
based on two strategies are proposed in (Verykios et al., 2004); first approach
prevents rules from being generated, by hiding the frequent sets from which
they are derived whereas the second approach reduces the importance of the
rules by setting their confidence below a user-specified threshold. An inter-
esting heuristic proposition comes from (Wu et al., 2007) where they classify
all the valid modifications such that every class of modifications is related
with the sensitive rules, nonsensitive rules, and spurious rules that can be af-
fected after the modifications. Template based hiding strategy of (Kuo et al.,
2008) is interesting since sensitive frequent patterns with multiple sensitive
thresholds are sanitized aiming fulfill user requirements in real applications.
Co-occuring frequent itemset hiding framework with different heuristic algo-
rithms is the contribution of (Abul, 2009). Pattern Inversion Tree is used
to store related information in (Wang et al., 2008). DSC (Decrease Support
and Confidence) decreases confidence of a rule and/or decrease the support
of the large itemset of a rule. Similarly a matrix structure is used in (Yildiz
and Ergenc, 2012).They propose an integrated itemset hiding algorithm that
eliminates the need of pre-mining and post-mining and uses a simple heuristic
in selecting the itemset and the item in itemset for distortion.

All above techniques are data distortion based; they try to hide associ-
ation rules by decreasing or increasing support (or confidence). To increase
or decrease support (or confidence), they replace 0’s by 1’s or vice versa in
selected transactions. Majority of research belongs to this group since they
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are efficient and scalable but they produce side effect in new database (i.e.
lost rules, ghost rules).There is another group of heuristic techniques named
data blocking based; they replace the 0’s and 1’s by unknowns (“?”) in se-
lected transaction instead of inserting or deleting items (Saygin et al., 2001;
Yeh and Hsu, 2010). So it is difficult for an adversary to know the value
behind “?”. Although blocking based techniques minimize the side effects, it
is difficult to reproduce the original dataset.

Border Based Approaches: Borders allow for a condense representation
of the frequent itemsets in a database, effectively identifying those key item-
sets in the lattice which separate the frequent patterns from their infrequent
counterparts (Mannila and Toivonen, 1997). The process of border revision
facilitates the minimum harm in the hiding of the sensitive itemsets.These
approaches preprocess the sensitive rules so that minimum numbers of rules
are given as input to hiding process. So, they maintain database quality
while minimizing side effects. Border revision process is proposed by ((Sun
and Yu, 2005) and (Sun and Yu, 2007)). Hiding process greedily selects those
modifications that lead to minimal side effects by assigning dynamic weights
to each itemset on pozitive border. On the other hand another methodol-
ogy which relies on max-min criterion for hiding sensitive itemsets is given
in (Moustakides and Verykios, 2008). Revised positive border of frequent
itemsets is used to keep track of the impact of each tentative item modifi-
cation. Border based approaches maintain data quality by greedily selecting
the modification by minimum side effect. They bring improvement over pure
heuristic approaches but still they are unable to identify optimal hiding so-
lution.

Exact Approaches: Exact approaches formulate the hiding problem to
constraint satisfaction problem (CSP) and solve it by using binary integer
programming (BIP). They provide an exact (optimal) solution that satisfies
all the constraints. However if no exact solution exists in database, some of
the constraint are relaxed. The approach presented in (Menon et al., 2005)
finds minimum number of transactions that have to be sanitized by formu-
lating CSP. Set of transactions found by CSP are used by two different item
selecting heuristic strategies. Higher sanitization granularity is proposed by
(Gkoulalas-Divanis and Verykios, 2006); inline algorithm finds optimal solu-
tion for rule hiding problem without using any heuristics. Two-phase iter-
ative algorithm of (Gkoulalas-Divanis and Verykios, 2009a) proposes a par-
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titioning approach for the scalability of the inline algorithm. A framework
that is suitable for decomposition and parallelization of the exact hiding algo-
rithms given in ((Gkoulalas-Divanis and Verykios, 2006), (Gkoulalas-Divanis
and Verykios, 2008) and (Gkoulalas-Divanis and Verykios, 2009b)) is pre-
sented in (Gkoulalas-Divanis and Verykios, 2008). A new exact approach
is proposed by (Leloglu and Ergenc, 2014) where the idea is to use coeffi-
cients in the inequalities of integer programming to prevent the deletion of
non-sensitive itemsets in sanitization process. Exact approaches guarantee
quality for hiding sensitive information than other approaches but they re-
quire very high time comlexity due to integer programming.

Reconstruction Based Approaches: Reconstruction based approaches gen-
erate privacy aware database by extracting sensitive characteristics from the
original database. These approaches generate lesser side effects in database
than heuristic approaches. A FP tree based algorithm which reconstructs
the original database by using non characteristic database is demonstrated
in (Guo, 2007). A fake transaction randomization method is presented in
(Abul, 2009). The method of (Lin and Liu, 2007) ensures the privacy of data
by mixing real transactions with fake transactions. Another similar method
is given by (Boora et al., 2009) where transaction randomization method
is a combination of the fake transaction randomization method and a new
per-transaction randomization method. These approaches provide less side
effect than heuristic approaches but open problem is to restrict the number
of fake transactions in the new database.

Cryptography Based Approaches: These approaches are used for multi-
party computation in case database is distributed among sites. Multiple
parties may wish to share their private data, without leaking any sensitive
information at their end.In these approaches, instead of distortion, database
is encrypted before sharing. A secure approach where database is vertically
partitioned is proposed by (Vaidya, 2001). Communication for large datasets
is high in this approach. Secure mining of association rules over horizontal
partitioned data is addressed in (Kantarcioglu and Clifton, 2004). Commu-
nication and computation cost is claimed to be reasonable. Cryptography
based approaches provide secure mining of association rules over partitioned
databases but they fall short of providing complete answer to the problem of
privacy preserving data mining.
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After having in-depth analysis of existing itemset approach we can make
following remarks: i) majority of the solutions are based on heuristics, ii) in
most of them the objective is to minimize distance during hiding process, iii)
distance and information loss is aimed to be provided by completely different
objectives, iv) exact methods provide better results in terms of distance or
information loss, v) there is no full exact method which aims to find the
optimal solution without using heuristics.

6 Conclusion

This work presents a novel full exact approach for itemset hiding problem
in the context of association rule hiding. The approach utilizes integer pro-
gramming that optimize two common side effects, distance and information
loss in the sanitization process. 10 real but relatively small datasets are used
for performance evaluations. The results show that Full-Exact achieves
similar results in terms of distance. However information loss performance
of Full-Exact approach is distinctively better than the similar approach.
This work disregards the time performance of the method since the size
and nature of the problem makes it impractical yet this full exact approach
should be considered as a reference that provides the optimum solution to
the itemset hiding problem without any heuristics.
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