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ABSTRACT

Non-negative matrix factorization (NMF) has gained sustaining attention due to its compact leaning 
ability. Cancer subtyping is important for cancer prognosis analysis and clinical precision treatment. 
Integrating multi-omics data for cancer subtyping is beneficial to uncover the characteristics of cancer 
at the system-level. A unified multi-view clustering method was developed via adaptive graph and 
sparsity regularized non-negative matrix factorization (multi-GSNMF) for cancer subtyping. The local 
geometrical structures of each omics data were incorporated into the procedures of common consensus 
matrix learning, and the sparsity constraints were used to reduce the effect of noise and outliers in 
bioinformatics datasets. The performances of multi-GSNMF were evaluated on ten cancer datasets. 
Compared with 10 state-of-the-art multi-view clustering algorithms, multi-GSNMF performed better 
by providing significantly different survival in 7 out of 10 cancer datasets, the highest among all the 
compared methods.

KeyWoRDS
Cancer Subtyping, Graph Regularized, Multi-View Clustering, Non-Negative Matrix Factorization, Sparsity 
Regularized

INTRoDUCTIoN

Due to the increasing number of new cancer cases and deaths, even with the rapid development of 
medical technology, cancer still seriously threatens human health and is an important cause of human 
death. The latest estimates for cancer from the International Agency for Research on Cancer (IARC, 
2021) show 19.3 million new cases of cancer worldwide and 10 million cancer deaths in 2020. Cancer 
is expected to surpass cardiovascular disease as the main cause of premature death in most countries 
in this century. The rapid development of high-throughput technologies such as deep sequencing 
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has enabled the discovery of mass amounts of biological information, which is conducive to better 
characterizing human diseases and facilitating personalized treatments. In oncology, analysis based 
on high-throughput biological data sets has discovered new cancer subtypes, which have been used 
for cancer treatment decisions (Parker et al., 2009; Prasad et al., 2016).

Machine learning technology is widely used in the analysis of bioinformatics data, which can 
support decision-making and treatment planning for the doctors (Amin et al., 2021; Kumar-Sinha & 
Chinnaiyan, 2018; Rajinikanth & Kadry, 2021). In order to improve cancer diagnosis and treatment, 
genomic and other molecular profiles of tumor biopsies have been analyzed for precision tumor 
therapy. By incorporating gene network interaction, a novel coclustering algorithm has been proposed 
for identifying cancer subtypes (Liu et al., 2014). However, the role of the human genome is complex 
and chaotic, and it can regulate biological processes at different levels. The human genome could be 
revealed by integrating various genomics, such as gene expression, copy number variation, and DNA 
methylation (Huang et al., 2017). Modern genomic and clinical research urgently needs integrated 
machine learning models of multiomics data to better utilize large amounts of heterogeneous 
information to deeply understand biological systems. Multiomics data can obtain information from 
different perspectives and levels, which is conducive to understanding complex biological systems 
(Li et al., 2016). The integration and clustering of multiomic data are some of the research hotspots 
of machine learning in the field of bioinformatics.

To take advantage of local geometrical structures and global structures of the bioinformatics 
data, a novel multiview clustering method based on nonnegative matrix factorization (NMF) is 
proposed for cancer subtyping. The local geometrical structures of each omics data set were encoded 
by generating a nearest neighbor graph. The global structures of a multiomics data set were captured 
by the sparsity regularized constraints. Then, the unified objective function was used by incorporating 
local geometrical structures of each omics data set and sparsity regularized common consensus matrix 
into the NMF-based framework. The novel multiview NMF-based method can obtain the common 
consensus representation of a multiomics data set, while the sparsity constraints are integrated to 
handle the noise and outliers in bioinformatics data. Figure 1 illustrates the framework of the unified 
multiview clustering method. The multiview NMF with graph-regularized and sparsity constraints 
was integrated to form a unified framework. The final clustering results were gained by spectral 
clustering. The main contributions are as follows:

1.  A unified framework for cancer subtyping by considering the feature of a cancer data set was 
proposed, which will be useful to identify cancer subtyping in precision medicine that would 
otherwise be obscured by noise and outliers in bioinformatics.

Figure 1. Framework of the Proposed Algorithm
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2.  The local geometrical structures and sparsity constraints are incorporated into the multivew 
clustering process to form a unified objective function for cancer subtyping based on nonnegative 
matrix factorization.

3.  By incorporating the local geometrical structures of each omics data set and the sparsity constraints 
on a common consensus matrix into the clustering process, Multi-GSNMF provides a unified 
model and a novel solution to fuse multiview data for clustering.

ReLATeD WoRK

The advent of high-throughput sequencing technologies has allowed the development of numerous 
multiomics clustering methods. At the beginning, some multiomics methods were developed by 
extending basic clustering algorithms in the multiomics clustering field, for example, k-means (Bickel 
& Scheffer, 2004). Multiomics clustering has been divided into early integration, late integration, 
and intermediate integration. Early integration methods are to directly concatenate multiomics 
data to form a matrix with all features. For example, LRAcluster uses a low-rank approximation 
by probabilistic model to find the shared principal subspace across multiomics data sets (Wu et al., 
2015). The advantage is that it includes biological knowledge. The iCluster is also an early integration 
approach, which assumes a regularized joint latent variable and projects the data to a lower dimension 
by probabilistic modeling (Shen et al., 2009, 2012). As an extension of iCluster, iClusterBayes was 
proposed to concatenate multiomics data of different types by using a Bayesian latent variable for 
cancer subtypes (Mo et al., 2018). However, the early integration methods were unable to handle 
the different distributions of different omics data, which greatly affects the clustering effect of the 
correlation algorithm.

The late integration methods use existing single-view clustering on single omics data. Then, the 
different clustering results are integrated together. Cluster-of-cluster assignments (COCA, Hoadley 
et al., 2014) and data integration and cancer subtyping by perturbation clustering (PINS, Nguyen 
et al., 2017) fall into this category. The advantage of late integration is that different clustering 
algorithms can be chosen according to the characteristics of single-omics data. PINS first computes 
the binary matrix to gain a sample relationship matrix. Then, tests whether the obtained clusters can 
be split into smaller clusters. It integrates clusters by examining the connectivity matrices of different 
omics. The late integration methods divide multiview clustering into two steps, which can reduce the 
computational complexity of algorithms. However, it is difficult to make full use of the consistency 
and difference between each omics data set.

Intermediate integration methods try to construct a framework that integrates the information 
of all omics data, and most multiomics clustering methods fall into this category. Similarity-based 
methods and dimensionality reduction-based methods are intermediate integration methods. Similarity-
based methods include spectral (Chikhi, 2016), similarity network fusion (SNF, Wang et al., 2014), 
and neighborhood-based multiomics clustering (NEMO, Rappoport & Shamir, 2019). SNF builds 
a similarity matrix between samples for every omics and fuses all the matrices into one consensus 
matrix. NEMO performs fusion according to the distance similarity between samples to obtain a 
consensus matrix between multiomics data.

Dimensionality reduction-based methods transform data from a high-dimensional space into a low-
dimensional space. In bioinformatics applications, the omics data sets are often high dimensionality. 
The canonical correlation analysis method (CCA, Chaudhuri et al., 2009), partial least squares (PLSs) 
method (Lê et al., 2009), multiple kernel learning method (rMKL-LPP, Speicher & Pfeifer, 2015), 
and NMF method are the most widely used dimension reduction methods. However, CCA can only 
handle data from two views. MCCA uses multiset canonical correlation analysis by maximizing the 
sum of the pairwise correlation between projections, which extends CCA to more than two views 
(MCCA, Witten & Tibshirani, 2009).
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rMKL-LPP efficiently captured the similarity between different samples by mapping them 
to a high dimension. Multiple kernels were used to learn the information of each omics, and then 
they were linearly combined. NMF is a common dimensionality reduction method. An NMF-based 
multiview clustering method was proposed with consistency constraint, which integrates each view’s 
representation toward a common consensus, and was formulated to handle multiomics data clustering 
(MultiNMF, Liu et al., 2013). A unified model is used in dimensionality reduction methods, which 
makes full use of information within and between omics. At the same time, the computational 
complexity of the algorithms is also reasonable by using dimension reduction.

The NMF has been introduced as a dimension reduction method (Lee & Seung, 1999). In the 
real world, many data are nonnegative, such as gene expression data and image pixel data. Thus, 
NMF assumes that data have a low-dimensional nonnegative representation, which has been widely 
used in pattern recognition (Wen et al., 2018; Sun et al., 2016), bioinformatics (Want et al., 2022), 
and computer vision (Li et al., 2021). Based on the MultiNMF methods proposed by Liu et al. 
(2013), many manifold learning and pairwise measurement technologies are used on NMF-based 
multiview clustering methods (Wang et al., 2019; Liang et al., 2020). However, with the increase of 
data dimensions, it becomes increasingly difficult to find meaningful clustering results (Janeja et al., 
2020). For the clustering of high-dimensional data sets, sparsity constraints are usually used to identify 
the global structures of data sets (Huang & Wu, 2022). The distinguishing feature of bioinformatics 
data is the small number of samples relative to the large number of features. In the biological process, 
different levels of omics data have different statistical properties and distribution structures. How to 
make full use of the local features of each omics data set to construct a global consensus matrix for 
all omics data is a challenging research problem.

A Unified Multiview Clustering Framework via NMF
Multiview Nonnegative Matrix Factorization

Given a nonnegative data matr ix,  X x x x R
n

M N= 

 ∈

×
1 2
, , ,� ,  where each column 

x R i n
i

m∈ =( )1 2, , ,�  represents a data point where M is the dimension of the feature and N refers 

to the number of data points, NMF aims to find two nonnegative matrix factors U U R
i k

M k= 

 ∈

×
,

 

and V V R
j k

N k= 

 ∈

×
,

, whose product is a good approximate to X ; X UVT≈ , and k is the designed 

dimensionality, k M N� min ,( ) . On account of learning compact representation, U denotes the 
basis matrix and V can be interpreted as a coefficient matrix.

Frobenius norm (Paatero & Tapper, 1994) and Kullback–Leibler divergence (Lee & Seung, 2000) 
are the two commonly used cost functions for quantifying the quality of the approximation of X . 
The Frobenius norm cost function is used in this paper, which is defined as:

min

. . ,
,U V

T

F
X UV

s t U V

−

≥ ≥

2

0 0 
 (1)

Multiview clustering via joint NMF was proposed by searching for a factorization that gives 
compatible clustering solutions across multiple views to integrate information from multiple views 
in the unsupervised setting (Liu et al., 2013). In single-view NMF, coefficient matrix V can be 
regarded as a low-rank representation of data points in terms of the new basis U. The loss function 
D V V V Vv v

F
, * *( ) = − 2  is used as a measure of the disagreement between coefficient matrixes V v  

and V * , which denote the coefficient matrix of the v-th view and the consensus matrix, respectively. 
The joint minimization problem for multiview NMF is as follows:
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where λ
v

 is the parameter to adjust the relative weight among different views while adjusting the 
standard NMF reconstruction error and disagreement term D V Vv , *( )  and n

v
 is the number of 

views. A diagonalatrix Qv  is introduced to simplify the computation to remove the equality 
constraint on Uv :
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where Diag *( )  denotes a diagonal matrix with nonzero elements equal to the values in the parenthesis 
sequentially. Then the equality constraint on Uv  can be removed and the objective function for 
multiview NMF can be defined as follows:

v

n

v v v
T

F
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n
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F
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X U V V Q V
= =
∑ ∑− ( ) + −
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The coefficient matrix is learned from factorization of each view and is regularized toward a 
common consensus matrix. The consensus matrix is thought to reflect the underlying clustering 
structure shared by different views.

Framework overview of Multi-GSNMF

Let X X Xnv1 2, , ,�  be the data of all views, v n
v

= 1 2, , ,� , and k be the desired reduced 
dimension. The numbers of samples are the same for all the views, while different numbers 
of the features are allowed. The goal of Multi-GSNMF is to form a consensus matrix among 
all views by integrating the relationship between sample data from different views. The same 
as multiview NMF, the inconsistency penalty function is incorporated into the NMF framework. 
In order to make full use of the intrinsic geometric information between samples, the local 
geometric structures are used for each view NMF, which is inspired by graph-regularized 
nonnegative matrix factorization (GNMF, Cai et al., 2011). GNMF constructs a nearest neighbor 
graph to model the manifold structures and provides a principled way for incorporating the 
geometrical structures into the model. By using the Euclidean distance, the objective function 
of GNMF is as follows:

X UV Tr V LVT T− + ( )2 τ  (5)
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where τ  adjust the smoothness of the presentation. In the equation, Tr(.) is the trace of a matrix and 

D is a diagonal matrix, which is defined as D W
ij

i

N

ij
=∑  and denotes the degree matrix L D W= − .

Therefore, by incorporating the local geometric structures, the multiview NMF can be formulated as:
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where a
v
 is the parameter to adjust the weights between NMF and local geometric structures for each 

view. Considering that the weights of each omics data set in the object function should be the same, 
the a

v
 is used in the consistency loss punishment function of each omics data set. The η  is used to 

balance the effect of Multi-GSNMF and the consistency loss punishment function, and the final 
weights of each omics for consistency loss punishment function is η *a

v
.

Many studies have shown that sparse constraints can achieve better robustness and improve the 
clustering performances (Hoyer, 2004; Elhamifar & Vidal 2013). Similar to other high-dimensional 
data, there are noises and outliers in bioinformatics data. However, in the objective function of NMF, 
the error of each sample point is the square residual, which leads to outliers with large errors that 
will greatly affect the objective function (Liu et al., 2018). �

2 1,
-norm is robust to noise and outliers; 

therefore, the spare constraints by �
2 1,

 regularization is added to the consensus matrix V * , which is 
widely used in many applications (Li et al., 2021). Therefore, the optimization goal can be attained 
as follows by integrating the above parts into a unified objective function:
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where λ  is the parameter to adjust the weight of sparse constraints.

optimization Algorithm for Multi-GSNMF

Fixing V *  and Minimizing   Over Uv  and V v

Each view is independent when V *  is given. The calculation of Uv  does not rely on Uv '  or V v ' , 
v v' ≠ . Therefore, X, U , V, and Q are used to denote Xv , Uv , V v , and Qv  for simplicity in this 
subsection. Then, the objective function   in Equation (7) can be minimized as follows:


1

2 2 0 0= − + ( )+ − > >X UV a Tr V LV aVQ V s t U VT
F v

T
v F

v vη * . . ,*    (8)

The objective function 
1

 in Equation (8) is not convex with U  and V. As Paatero & Tapper 
(1994) suggested, finding the global minima is difficult. The following procedures updates the 
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values of appointed variables by fixing some variables sequentially and alliteratively to achieve 
the local minima.

Fixing V *  and V v  and Updating Uv

Let ϕ
ik

 be the Lagrangian multiplier for constraint u
ik
≥ 0  and ψ ϕ= 


ik . 

1
 is the Lagrangian 

L O= + ( )1
Tr Uψ , where Tr *( )  is the trace function. When it is neglecting the constants, the 

Lagrangian function is written as follows:


1

2= ( )− ( )+ + ( )Tr UV VU Tr XVU a R Tr UT T T
v

η ψ*  (9)

where R Tr VQQ V VQ VT T
T

= − ( )











2 * . And the derivative of R with respect to U  is:
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m k j

N

j k j
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j k j k,
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= −
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1 1

2

1
 (10)

The partial derivatives of 
1
 with respect to U  is:

∂

∂
= − + +


1 2 2
U

UV V XV a PT
v

η ψ*  (11)

Using the Karush–Kuhn–Tucker (KKT) (Boyd & Vandenberghe, 2004) conditions ϕ
ik ik
u = 0 , 

the following updating rule is obtained:

u u
XV a V V

UV V a U
i k i k

i k v j
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j k j k
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i k v m
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η
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2
,

 (12)

Fixing V *  and Uv  and Updating V v

When computing V v , the column vectors, Uv  and V v , are normalized first using Qv  as Equation 
(4) defined:

U UQ← −1 , V VQ←  (13)

Let φ
jk

 be the Lagrangian multiplier for constraint v
jk
≥ 0  and Φ = 


φjk . The Lagrangian 

function is written as follows:


2

2 2= −( )+ ( )+ − ( )





Tr UV VU XVU a Tr V LV a Tr VV V VT T T

v
T

v
T

T
η * * ++ ( )Tr VΦ  (14)

The partial derivatives of 
2
 with respect to V  are:
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By using the KKT condition, φ
jk jk
v = 0 , the solution results in the updating rule as follows:

v v
XU aV a WV

VU U aV a DV
j k j k

j k v j k v j k
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j k v v
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,

,
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η
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 (16)

where W is a weight matrix and D is a diagonal matrix. The entries of D are the column sums of the 
weight matrix W.

Fixing Uv  and V v  and Updating V *

When Uv  and V v  are fixed, minimizing the objective equation   is equivalent to solving the 
minimum values of the equation:


2
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2
2 1
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=
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Let Σv  be the Lagrangian multiplier for nonnegative constraint V * ≥ 0 . The Lagrangian function 
of Equation (17) can be rewritten as follows:
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The partial derivatives of 
3

 with respect to V *  were calculated, and the KKT conditions 
ς
ij
v
ij
v* = 0  were used to obtain the equation:
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Finally, the updating rule for v
ij
*  is:
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The steps of updating were repeated until convergence or the maximal iterations. The convergence 
condition is defined as the relative change ratio of objective function:   

t t t
− ≤−1

/ δ , which is 
set to 10−3 in all experiments. The maximal iterations µ

max
 is simultaneously set to 50.

The Uv , V v , and V *  for each omics data set need to be initialized before the loop iteration. To 
get the manifold structures for each omics data set, the Uv  and V v  are calculated by the graph-
regularized nonnegative matrix factorization (Cai et al., 2011). And the heat kernel weighting is 
chosen for constructing the weight matrix. After the Uv  and V v  have been initialized, the initial 
matrix of V *  can be gained by the mean of all the coefficient matrix for each view.

experiment
We present the procedures of the proposed Multi-GSNMF approach in Algorithm 1 (see Table 1). 
Multi-GSNMF was implemented on the Matlab 2020a platform. To demonstrate the ability of Multi-
GSNMF on multiview clustering, the performance of Multi-GSNMF on 10 multiomics cancer data 
sets has been evaluated.

Parameter estimation

The three parameters were k , a
v
, η , and λ . k  is the clusters number of the multiomics data. η  

and λ  represent the inconsistency punishment function and the sparsity regularization constants for  

Table 1. Algorithm 1: Procedures of the Multi-GSNMF for Cancer Subtyping

Require: Multiomics data set X
v

v

nv( )

=
{ }

1

�

, parameters k, a
v

, η , and λ .

Ensure: Consensus Matrix V * .

1. Normalizing each view X
v( ) , such that X

v( ) =
1

1

2. Initialization: Uv , V v , and V *  1≤ ≤( )v n
v

� , δ = −10 3 , µ
max

� = 50.

3. Repeat

4.     For v = 1  to  n
v

5.         Repeat

6.            Update Uv  by Equation (12)

7.            Normalizing Uv  and V v  by Equation (13)

8.            Update V v  by Equation (16)

9.         Until Equation (8) convergence.

10.    End for

11. Update V *  by Equation (20)

12. Until Equation (7) convergence or reach maximal iterations.
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the Multi-GSNMF method, respectively, and a
v
 is the parameter used to adjust the weights between 

different omics data sets.
The proper parameters need to be chosen for Multi-GSNMF before being evaluated on the 

real-world cancer data sets. As cancer subtyping is continuously optimized, there is no standard 
subtyping for biological data sets. A small number of samples versus a large number of features and 
the low-dimensional representation are the two prominent characteristics of biological data sets. The 
3 Sources Dataset (April 2009) has similar characteristics with biological data sets, so it is chosen 
as a training set for parameters tuning. The 3 Sources Dataset is a data set of news articles collected 
from the British Broadcasting Corporation (BBC), Reuters, and The Guardian. There are 169 articles 
across six topic categories from all three sources. Similar to bioinformatics data sets, each article has 
thousands of features specific to the news sources. Accuracy (AC, Xu et al., 2003) was selected as the 
criterion to evaluate the performances of Multi-GSNMF with different parameters. AC calculates the 
consistency between the clustering results of Multi-GSNMF and the actual classification.

In order to choose the proper initial parameters for the proposed algorithm, a wide ranges of 
grids 0 001 0 005 0 01 0 05 0 1 0 5 1 5 10 50 100 500 1000. , . , . , . , . , . , , , , , , ,{ }  have been searched for the initial 
a
v
, η , and λ . The 3 Sources Dataset was used as the training set for parameter tuning. Figure 2 

shows the performance of Multi-GSNMF on the 3 Sources Dataset, some results are not displayed 
due to the size of the figure. η  and λ  are the trade-off parameters. Each small figure represents the 
AC value of a

v
 by alternately varying the parameters η  and λ . The horizontal axis represents the 

Figure 2. ACC of Multi-GSNMF With Different a
v

, η , and λ  in a Wide Range of Grids
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change of η , and the vertical axis represents λ . The higher the value of AC, the brighter the picture. 
As we can see in Figure 2(c), Multi-GSNMF gains better performance for a block of higher AC values 
when a

v
= 0 01.  and a striped highlight area when λ = 1 . And the value η = 0 05.  in the middle 

of the striped highlight area is chosen. When a
v
= 0 01. , η = 0 05. , and λ = 1 , Multi-GSNMF 

achieves a better AC value on the training set, and the AC values around it do not decrease seriously. 
So, the initial parameters chosen for the real cancer data set were a

v
= 0 01. , η = 0 05. , and λ = 1 .

Computational Complexity and Convergence Analysis
For each single view, Steps from 6 to 8 are repeated until convergence in Algorithm 1 (see Table 1). 
The computational complexity of each iteration for each view is O MNk( ) , where M is the dimension 
of the feature and N refers to the number of data points, k  is the number of clusters. There are t

in
 

loops and n
v
 views, so the computational complexity of Steps 4 to 10 is O t n MNk

in v( ) . Multi-GSNMF 
also needs O n Nk

v( )  to compute the consensus matrix according to Equation (20). Assume there are 
t
out

 loops for Steps 3 to 12 in Algorithm 1, the overall computational complexity of Multi-GSNMF 
is O t t n MNk n Nk

out in v v
+( )( ) .

In our method, the Uv , V v , and V *  update in each iteration. To show the convergence property 
of Multi-GSNMF, the objective function values of the 3 Sources Dataset in each iteration are shown 
in Figure 3. It shows that the objective function values drop rapidly and converge quickly.

evaluation and Comparison on the Cancer Data Set
The Multi-GSNMF algorithm was evaluated on 10 multiomics cancer data sets. The bioinformatics 
data are publicly available at The Cancer Genome Atlas (TCGA), which provides a massive amount 
of bioinformatics data (Weinstein et al., 2013). The Acute Myeloid Leukemia (AML), Breast invasive 
carcinoma (BIC), Colon adenocarcinoma (COAD), Glioblastoma multiforme (GBM), Kidney renal 
clear cell carcinoma (KIRC), Liver hepatocellular carcinoma (LIHC), Lung squamous cell carcinoma 
(LUSC), Skin cutaneous melanoma (SKCM), Ovarian serous cystadenocarcinoma (OV), and Sarcoma 
(SARC) are used for algorithm comparison, which are provided by Rappoport and Shamir (2018). 
The number of samples in each cancer data set range from 170 for AML to 621 for BIC, which all 
contain three omics: gene expression, DNA methylation, and miRNA expression.

Figure 3. The Convergence Curves of the Objective Values With Respect to Iteration Time
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Several typical multiomics clustering methods were chosen to compare the performances on 10 
cancer data sets with Multi-GSNMF. All comparison algorithms have been evaluated based on the 
platform developed by Rappoport and Shamir (2018), while NEMO used the source code provided 
by the authors. The parameters suggested by the authors were used. Each method determines the 
number of clusters for each data set. However, to choose the number of clusters used by MCCA and 
LRAcluster, Rappoport and Shamir mistakenly used the minimal silhouette score. The maximal 
silhouette score suggested by the authors led to worse performances for both methods, so we used 
the version provided by Rappoport and Shamir (2018).

The actual clustering numbers are unknown for each real-world cancer data set. Different survival 
rates between the subtyping for each cancer data set has been measured using the log-rank test. We 
assumed that if patients between different subtypes have significantly different survival rates, they 
were different in determining the biological significance of the clustering numbers. Therefore, the p 
value derived for the log-rank test is used as a metric for the choice of the clustering numbers. The 
proposed algorithm has been run with 2–10 clusters. The minimum of the p values was chosen as the 
suggested cluster’s number, which are presented in Table 2. The final performances of Multi-GSNMF 
are based on the chosen cluster’s number.

The numbers of enriched clinical labels and the clustering with significantly different survival 
rates are used as the criteria to evaluate the performance of each clustering method (Rappoport and 
Shamir (2018)). The survival rate differences between patients of different subtyping are computed 
by a log-rank test. A clustering is considered as biologically significant if the patients of different 
subtyping have significant survival rate differences (p £ .05). Meanwhile, enrichment of clinical 
labels for the patient with different subtyping are computed. The χ2 test of independence is calculated 
for enrichment of discrete variables, and Kruskal−Wallis test for enrichment of numeric variables.

Figure 4 shows the performances of Multi-GSNMF and the other 10 compared methods on 
the 10 real-world cancer data sets. The -log10 values of survival rate difference by log-rank test 
between subtyping are shown on the x-axis, while the y-axis corresponds to the numbers of enriched 
clinical labels. The dotted line parallel to the y-axis is the dividing line for whether the survival 
rate difference is significant or not. Values on the x-axis greater than the dividing line indicate that 
the cancer subtyping of the clustering algorithm has significant survival rate differences. For the 
COAD and LUSC data sets, all tested algorithms failed to find clustering with significant survival 
rate differences. Multi-GSNMF found clustering with significant survival rate differences in 7 out 
of 10 cancer types, except COAD, LUSC, and SKCM. Multi-GSNMF outperforms the compared 
methods at finding clustering with significant survival rate differences, while all the other methods 
found clustering with significantly different survival rates in at most six cancer data sets.

On the OV data set, the subtyping of Multi-GSNMF was found to have significantly different 
survival rates, and at the same time, one enriched clinical label. Multi-GSNMF gained the largest 
number of enriched clinical labels on the KIRC data set and was also found to have the smallest p value 
of different survival rates on the GBM and OV cancer data sets. However, the proposed algorithm 
fails to find an enriched clinical label on SKCM.

Table 2. Clustering Numbers Chosen by the Multi-GSNMF on 10 Cancer Data Sets
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Table 3 presents the number of enriched clinical labels found by the 11 algorithms. Six clinical 
labels have been selected for significant clinical analysis, such as pathologic stage, age at diagnosis, 
gender, and pathologic TMN. However, not all cancer data sets have data with all clinical labels. The 
total number of enriched clinical labels found by each algorithm is shown in Table 3. The rMKL-
LPP gained the largest number with 17 enriched labels. NEMO ranked second with 15 enriched 
labels, while Multi-GSNMF and LRAcluster tied for fourth with 13 enriched labels. However, it 
is unreasonable to measure the performance of the algorithms by the count of the enriched clinical 
labels alone, because the number of clinical labels varies greatly among different cancer data sets.

The Kaplan−Meier (KM) survival rate curves of the subtyping identified by Multi-GSNMF on 10 
cancer data sets are shown as Figure 5. The subtyping of the proposed algorithm were found to have 
significantly different survival rates on the 10 cancer data sets except COAD, LUSC, and SKCM, which 
is the greatest number of compared methods. As we can see in Figure 5(i), Multi-GSNMF suggested 
that the subtypes of cancer patients in the OV data set be divided into four classes. The KM survival 
rate curves of the subtyping show significantly different survival rates (p value = 6 0215 5. e− ).

Table 4 summarizes the performance of the 10 algorithms on the 10 real-world data sets. 
The numbers of cancer types with significantly different survival rates for each algorithm of 10 

Figure 4. Performances of all the Testing Methods on 10 Multiomics Cancer Data Sets

Table 3. Number of Enriched Clinical Labels of the 11 Algorithms
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Figure 5. The KM Survival Rate Curves of the Subtyping by Multi-GSNMF on 10 Cancer Data Sets
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testing data sets are shown in the first row, while the second row is the number of data sets with 
no less than one enriched clinical label by each algorithm. Multi-GSNMF obtained the highest 
of the seven cancer types whose clustering results have significantly different prognosis, whereas 
the 10 other methods found up to six cancer types. Meanwhile, Multi-GSNMF gained eight 
cancer data sets with no less than one enriched clinical label, which is one of the most among 
the compared algorithms. In this view, the Multi-GSNMF outperformed the other methods on 
the 10 testing cancer data sets.

CoNCLUSIoN

A unified multiview clustering algorithm was proposed for cancer subtyping based on MultiNMF. 
By incorporating the local geometrical structures and sparsity constraints into a unified objective 
function, Multi-GSNMF showed great advantages in processing bioinformatics data with noise 
and outliers. Multi-GSNMF is an intermediate integration method based on the NMF dimension 
reduction. Multi-GSNMF can adaptively obtain the local geometrical structures of each omics 
data set, which is different from early integration methods without considering the different data 
distribution in different omics. Compared with late integration methods, an iterative process is 
used to the continuous optimization of the consensus matrix by Multi-GSNMF, which is beneficial 
to find the proper low-dimensional representation for each omics data set and consensus matrix 
for multiomics data sets.

Multi-GSNMF was evaluated on 10 real-world multiomics cancer data sets. While 
comparing with state-of-the-art multiomics clustering algorithms, Multi-GSNMF obtained 
cancer subtyping with significantly different survival rates in 7 out of 10 cancer data sets, 
which was the highest. Multi-GSNMF gained one of the largest numbers of enriched clinical 
labels on KIRC, while it also achieved the smallest p value of different survival rates on GBM 
and OV cancer data sets. This result has important guiding implications for cancer subtyping 
and precise treatment. However, in the bioinformatics data, part of the omics data of some 
samples are missing. Traditional multiomics clustering methods can only remove samples with 
the missing parts of omics data. Further research is still needed to develop new approaches to 
deal with incomplete samples.

Table 4. Numbers of Data Sets With Significant Results for all the Testing Algorithms
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