
ar
X

iv
:1

01
1.

43
21

v1
  [

cs
.C

V
] 

 1
8 

N
ov

 2
01

0

A Fuzzy Clustering Model for Fuzzy Data with Outliers

M.H.Fazel Zarandi, Zahra.S.Razaee
Department of Industrial Engineering,

Amirkabir University of Technology, Tehran, Iran
zarandi@aut.ac.ir, razaei@aut.ac.ir

May 2010

Abstract

In this paper a fuzzy clustering model for fuzzy data with outliers is proposed. The model

is based on Wasserstein distance between interval valued data which is generalized to fuzzy

data. In addition, Keller’s approach is used to identify outliers and reduce their influences.

We have also defined a transformation to change our distance to the Euclidean distance. With

the help of this approach, the problem of fuzzy clustering of fuzzy data is reduced to fuzzy

clustering of crisp data. In order to show the performance of the proposed clustering algorithm,

two simulation experiments are discussed.

keywords: fuzzy clustering, fuzzy data, Wasserstein distance, outliers

1 Introduction

Clustering is a division of a given set of objects into subgroups or clusters, so that
objects in the same cluster are as similar as possible, and objects in different clusters
are as dissimilar as possible. From a machine learning perspective, clustering is
an unsupervised learning of a hidden data concept (Berkhin [3]). In conventional
(hard) clustering analysis, each datum belongs to exactly one cluster, whereas in
fuzzy clustering, data points can belong to more than one cluster, and associated
with each datum is a set of membership degrees.

Fuzzy data are imprecise data obtained from measurements, human judgements
or linguistic assessments. In cluster analysis, when there is simultaneous uncertainty
in both the partition and data, a fuzzy clustering model for fuzzy data should be
applied (D’Urso and Giordani [11]).

In recent literature, there are several works regarding the fuzzy clustering of fuzzy
data. Hathaway et al. [18] and Pedrycz et al. [29] introduced models that convert
parametric or non-parametric linguistic variables into generalized coordinates before
performing fuzzy c-means clustering. Yang and Ko [35] presented a fuzzy k-numbers
clustering model that uses a squared distance between each pair of fuzzy numbers.
Yang and Liu [38] extended the Yang and Ko work and proposed a fuzzy k-means
clustering model for conical fuzzy vectors. Yang et al. [36] proposed a fuzzy K-
means clustering model for handling both symbolic and fuzzy data. Hung and Yang
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[20] proposed an alternative fuzzy k-numbers clustering model which is based on
exponential-type distance measure. D’Urso and Giordani [11] proposed a weighted
fuzzy c-means clustering model which considers fuzzy data with a symmetric LR
membership function.

In this paper, we first propose a new distance measure for comparison of fuzzy
data. On account of the fact that all the α-cuts of fuzzy data are intervals, we obtain
the distance between two fuzzy data from the distances between their α-cuts. To
this purpose, a special case of Wasserstein distance is utilized. The choice of α-cuts
is motivated by the fact that, fuzzy data with different shapes can be used. After
introducing our distance, we use it for fuzzy clustering of fuzzy data. Moreover,
with the help of Keller’s [22] approach, an additional weighting factor is added
for each datum to identify outliers and reduce their effects. In other approach, by
definition of a transformation, triangular fuzzy data are changed to crisp data. With
this novel approch, after applying the transformation, any fuzzy clustering model
for crisp data can be used. Furthermore, for determining the optimal number of
clusters, there is no need to define a cluster validity index for fuzzy data. The ones
existing in literature for crisp data can be applied.

The rest of the paper is organized as follows. In Section 2, the concept of LR-
type fuzzy data is introduced. Some related works regarding metrics for fuzzy data
are reviewed in Section 3. We propose a distance measure for fuzzy data based on
Wasserstein Metric in Section 4; by means of this distance and following Keller’s ap-
proach, we propose a fuzzy clustering model for fuzzy data with outliers. Then, by
defining of a new transformation, we change the fuzzy data to crisp data and for the
sake of comparison, we again use Keller’s algorithm (Section 5). Successively, in Sec-
tion 6, the results of two simulation experiments are discussed. Finally, conclusions
and future works are presented in Section 7.

2 LR-type fuzzy data

The LR-type fuzzy data represent a general class of fuzzy data. When we are dealing
with univariate LR fuzzy data, this kind of data can be shown by a vector of LR-
fuzzy numbers. In the more general case of multivariate analysis, we have a matrix of
LR-fuzzy numbers (De Oliveria,Pedrycz [9]). To be more specific, let L (and R) be a
decreasing shape function, which map R

+ → [0, 1] with L(0) = 1; L(x) < 1, ∀x > 0;
L(x) > 0, ∀x < 1; L(1) = 0 or (L(x) > 0, ∀x and L(+∞) = 0) (Zimmerman, [42]).

Then, a fuzzy number Ã is of LR-type if for c, l > 0, r > 0 in R,

µÃ(x) =

{
L( c−x

l
) for x ≤ c,

R(x−c
r
) for x ≥ c.

(1)

where, c, l, r are the center, left and right spreads of Ã, respectively. Symbolically

we can write Ã = (c, l, r)LR.
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In LR-type fuzzy numbers, the triangular fuzzy numbers (TFNs) are most com-

monly used. An LR-type fuzzy number Ã is called triangular fuzzy number if
L(x) = R(x) = 1− x, characterized by the following membership function:

µÃ(x) =

{
1− c−x

l
for x ≤ c,

1− x−c
r

for x ≥ c.
(2)

3 Related works

In the recent literature, there are some distance measures for fuzzy data. We review
some of them in this section.
Definition: Considering two crisp sets A,B ⊆ R

k, and a distance d(x, y) where,
x ∈ A and y ∈ B, the Hausdorff distance is defined as follows:

dH(A,B) = max

{
sup
x∈A

inf
y∈B

d(x, y), sup
y∈B

inf
x∈A

d(x, y)

}
. (3)

According to the concept of α-cuts, the Hausdorff metric dH can be generalized to

fuzzy numbers F̃ , G̃, where F̃ (or G̃):R → [0, 1]:

dρ(F̃ , G̃) =





[∫ 1

0

(dH(Fα, Gα))
ρ dα

]1/ρ
if ρ ∈ [1,∞)

sup
α∈[0,1]

dH(Fα, Gα) if ρ = ∞,
(4)

where, the crisp set Fα ≡ {x ∈ R
k : F (x) ≥ α}, α ∈ [0, 1], is called the α-cut of F̃

(Näther,[26]).
Tran and Duckstein [33] proposed the following distance between two intervals:

dTD(A,B) =

∫ 1

2

− 1

2

∫ 1

2

− 1

2

{[(
a+ b

2

)
+ x(b− a)

]

−
[(

u+ v

2

)
+ y(v − u)

]}2

dx dy

=

[(
a+ b

2

)
−

(
u+ v

2

)]2
+

1

3

[(
b− a

2

)2

+

(
v − u

2

)2
]
. (5)

Then, they used it to formulate their distance measure for fuzzy numbers, but dTD

does not satisfy the reflexivity property (Irpino and Verde [21]):

dTD(A,A) =

[(
a + b

2

)
−

(
a + b

2

)]2
+

1

3

[(
b− a

2

)2

+

(
b− a

2

)2
]

=
2

3

(
b− a

2

)2

≥ 0. (6)
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A squared Euclidean distance between a pair of LR-type fuzzy data Ã1 = (c1, l1, r1)

and Ã2 = (c2, l2, r2) , where c denotes the center and l, r indicate, respectively, the
left and right spread, is defined by Yang and Ko [35]:

d2Y K(λ, ρ) = (c1 − c2)
2 + [(c1 − λl1)− (c2 − λl2)]

2 + [(c1 + ρr1)− (c2 + ρr2)]
2, (7)

where λ =
∫ 1

0
L−1(t) dt, ρ =

∫ 1

0
R−1(t) dt are parameters that summarize the shape

of the left and right tails of the membership function and L,R are decreasing shape
functions which were defined in Section 2.

4 The proposed distance for fuzzy data

In this section, we first present a new distance measure for interval-valued data, and
then it is used to formulate the distance measure for fuzzy data. Let Ii = [ai, bi], be
an interval for i = 1, 2. We can parameterize Ii as follows:

Ii(t) = ai + t(bi − ai) 0 ≤ t ≤ 1. (8)

If we represent Ii by means of its midpoint mi =
ai+bi

2
and radius δi =

bi−ai
2

, Eq.8
can be rewritten as follows:

Ii(t) = mi + (2t− 1)δi 0 ≤ t ≤ 1. (9)

The distance measure between I1 and I2 can be defined as follows:

d2(I1, I2) =

∫ 1

0

[I1(t)− I2(t)]
2 dt

=

∫ 1

0

[(m1 −m2) + (δ1 − δ2)(2t− 1)]2 dt

= (m1 −m2)
2 +

1

3
(δ1 − δ2)

2. (10)

This distance takes into account all the points in both intervals. Irpino and Verde
[21] has derived Eq.10 from another point of view, using the Wasserstein distance.
To be more specific, let F1 and F2 be distribution functions, the Wasserstein L2

metric is defined as follows (Gibbs and Su [14]):

dWass(F1, F2) =

{∫ 1

0

(F−1
1 (t)− F−1

2 (t))
2
dt

}1/2

, (11)

where F−1
1 and F−1

2 are the quantile functions of the two distributions. If we assume
Fi for i = 1, 2 to be the uniform distribution function on [ai, bi], then F−1

i (t) is the
same as the parametric representation Ii(t) in Eq.8. Thus, the Wasserstein distance
coincides with the distance defined in Eq.10.
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Now we are ready to construct a distance between fuzzy data. According to α-

cuts, the Wasserstein distance dWass can be generalized to fuzzy numbers Ã1 and
Ã2:

d(Ã1, Ã2) =

{∫ 1

0

d2Wass

(
(Ã1)α, (Ã2)α

)
dα

} 1

2

. (12)

We calculate this distance for triangular fuzzy numbers. Let Ãi = (ci, li, ri), i = 1, 2

be triangular fuzzy numbers and (Ãi)α = [liα+(ci−li) −riα+(ci+ri)], the midpoint

and the radius of (Ãi)α are as follows:

m(Ãi)α
= ci +

1

2
(1− α)(ri − li). (13)

δ(Ãi)α
=

1

2
(1− α)(ri + li). (14)

Then we have:

d2(Ã1, Ã2) =

∫ 1

0

d2Wass( (Ã1)α, (Ã2)α) dα

=

∫ 1

0

{
[m(Ã1)α

−m(Ã2)α
]2 +

1

3
[δ(Ã1)α

− δ(Ã2)α
]2
}

dα

=

∫ 1

0

{(
(c1 − c2) +

1

2
(1− α)

[
(r1 − r2)− (l1 − l2)

])2

+
1

12
(1− α)2

[
(r1 − r2) + (l1 − l2)

]2
}
dα

= (c1 − c2)
2 +

1

9

[
(l1 − l2)

2 + (r1 − r2)
2 − (l1 − l2)(r1 − r2)

]

− 1

2
(c1 − c2) [(l1 − l2)− (r1 − r2)] . (15)

We can use the distance (15) to define a distance between any two vectors of fuzzy
numbers, by considering the sum of squared distances between individual elements.
[See equation (20) ahead for more details.] In the next section, this distance is used
for fuzzy clustering of fuzzy data.

5 Fuzzy clustering of fuzzy data with outliers

In this section we propose two approaches. In the first approach, based on our
distance, we propose a fuzzy clustering model for fuzzy data, by modifying Keller’s
algorithm [22]. In the second approach, by defining a transformation, we reduce the
problem of fuzzy clustering of fuzzy data to fuzzy clustering of crisp data. With the
help of the second approach, any fuzzy clutering algorithms for crisp data can be
used for fuzzy clustering of fuzzy data. For the sake of comparison with the first
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approach, we again use Keller’s algorithm. Before describing the approaches, let us
introduce some notations.

Let U ≡ {uik : i = 1, . . . , c; k = 1, . . . , n} be the c × n membership matrix,
where c is the number of clusters, n the number of data vectors and uik ∈ [0, 1]
the membership degree of the k-th object to the i-th cluster. We consider each data
point, denoted as x̃k, and each cluster prototype, denoted as ṽi, to be a p-dimensional
vector of triangular fuzzy data. This is in contrast to the Keller’s approach where
data elements and cluster prototypes are crisp.

To be more specific, let x̃kj denote the j-th component of x̃k, the k-th data point.
Then, x̃kj can be represented as a 3-vector collecting its center, left spread and right
spread. In symbols, we have

x̃kj :=
[
cx̃kj

lx̃kj
rx̃kj

]T ∈ R
3, (16)

x̃k :=
[
x̃T
k1 x̃

T
k2 · · · x̃T

kp

]T ∈ R
3p, (17)

for k = 1, . . . , n. In other words, we may view each data point, x̃k, either as a
p-dimensional vector of fuzzy elements x̃kj or as a 3p-dimensional vector of real
numbers. Both viewpoints are helpful and will be used interchangeably in what
follows. A similar representation will be used for cluster prototypes, ṽi. That is,

ṽij :=
[
cṽij lṽij rṽij

]T ∈ R
3, (18)

ṽi :=
[
ṽTi1 ṽ

T
i2 · · · ṽTip

]T ∈ R
3p, (19)

for i = 1, . . . , c.
As mentioned earlier, we consider the following (squared) distance between fuzzy

vectors x̃k and ṽi,

d2(ṽi, x̃k) =

p∑

j=1

d2(ṽij, x̃kj), (20)

where, d2(ṽij , x̃kj) is the (squared) distance (15) between fuzzy numbers ṽij and x̃kj.

5.1 Approach I

Following Keller, we minimize the objective function:

J (U, Ṽ ; X̃) =

c∑

i=1

n∑

k=1

um
ik .

1

ωq
k

. d2(ṽi, x̃k). (21)

subject to the constraints
n∑

k=1

ωk = ω, (22)

c∑

i=1

uik = 1, (23)

6



where, m is the degree of fuzziness and d2(ṽi, x̃k) is as defined in (20).
The factor ωk represents the weight of the kth datum and ω is a constant real

valued parameter. According to Keller, the introduction of these weight factors
helps in identifying outliers and reducing their effects. With constant parameter
q, the influence of the outlier weight factors can be controlled. For this purpose,
outliers are assigned a large weight ωk, so

1
ωq

k

is small in this case.

The necessary conditions for minimizing the objective function are as follows:

cṽij =

n∑

k=1

um
ik ·

1

ωq
k

[
2cx̃kj

+
1

2

[
(lṽij − lx̃kj

)− (rṽij − rx̃kj
)
]]

2
n∑

k=1

um
ik ·

1

ωq
k

. (24)

lṽij =

n∑

k=1

um
ik · 1

ωq
k

[
2

9
lx̃kj

+
1

9
(rṽij − rx̃kj

) +
1

2
(cṽij − cx̃kj

)

]

2

9

n∑

k=1

um
ik · 1

ωq
k

. (25)

rṽij =

n∑

k=1

um
ik · 1

ωq
k

[
2

9
rx̃kj

+
1

9
(lṽij − lx̃kj

)− 1

2
(cṽij − cx̃kj

)

]

2

9

n∑

k=1

um
ik · 1

ωq
k

. (26)

ωk =

( c∑

i=1

um
ik . d

2(ṽi, x̃k)

) 1

q+1

n∑

l=1

( c∑

i=1

um
il . d

2(ṽi, x̃l)

) 1

q+1

· ω. (27)

uik =
1

c∑

r=1

(
d2(ṽi, x̃k)

d2(ṽr, x̃k)

) 1

m−1

. (28)

As it is observed, the membership degrees are left unchanged, while the cluster
centers take into account the weights; points with high representativeness are more
effective than outliers. On the basis of the necessary conditions, we can construct
an iterative algorithm as follows:

Algorithm:

Step 1. Fix the degree of fuzziness (m), the number of clusters (c), ω and q. Choose
an initial fuzzy c-partition U (0). Also, choose initial spreads and weights for each

7



datum subject to Eq.(22). Set t=0.

Step 2. Calculate Ṽ (t) = (c
(t)
ṽ , l

(t)
ṽ , r

(t)
ṽ ) using U (t), spreads, weights and Eqs.(24-26)

Step 3. Update ω
(t)
k , k = 1, · · · , n using Eq.(27) and update U (t) by U (t+1) using

Ṽ (t) = (c
(t)
ṽ , l

(t)
ṽ , r

(t)
ṽ ) and Eq.(28)

Step 4. If ‖U (t+1) −U (t)‖ < ε , where ε is a non-negative small number fixed by the
researcher, the algorithm has converged. Otherwise, set t = t + 1 and go to step 2.

5.2 Approach II

This approach is based on a different view of the distance (20). With some linear
algebra, one can reduce this distance to the usual 3p-dimensional Euclidean distance.

For any N -vector, say y = (y1, . . . , yN) ∈ R
N , let ‖y‖2 :=

(∑N
i=1 y

2
i

)1/2
denote its

Euclidean norm.
Consider two triangular fuzzy numbers Ãi = (ci, li, ri), i = 1, 2. Letting c = c1−c2,

l = l1 − l2, r = r1 − r2 and z = [c, l, r]T , Eq. (15) can be rewritten as:

d2(Ã1, Ã2) = c2 +
1

9
l2 +

1

9
r2 − 1

9
lr − 1

2
cl +

1

2
cr (29)

or equivalently as:

d2(Ã1, Ã2) = [c, l, r]




1 −1
4

1
4

−1
4

1
9

− 1
18

1
4

− 1
18

1
9





c
l
r


 (30)

Let us denote the matrix above as Q. The eigenvalues of Q are λ1 = 7+
√
43

12
, λ2 =

1
18

and λ3 = 7−
√
43

12
. Since Q is a real symmetric matrix, it is diagonalizable by

orthogonal matrices. That is, there is an orthogonal 3× 3 matrix U (whose columns
are orthonormal eigenvectors of Q) for which we have

Q = U



λ1 0 0
0 λ2 0
0 0 λ3




︸ ︷︷ ︸
Λ

UT . (31)

Let T be the (symmetric) square root of Q, i.e.,

T := Q1/2 = UΛ1/2UT . (32)

Then, we may write

d(Ã1, Ã2) =
√

zTQz =
√
zTQ1/2Q1/2z =

√
zTT TTz = ‖Tz‖2. (33)
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Now, recalling definitions (16) and (18) of x̃kj and ṽij , consider the following
transformations

x̂kj := T x̃kj, v̂ij := T ṽij (34)

where x̃kj and ṽij are treated as 3-vectors. Furthermore, let us stack {x̂kj}j and
{v̂ij}j into 3p-dimensional vectors as usual, i.e.,

x̂k :=
[
x̂T
k1 x̂T

k2 · · · x̂T
kp

]T ∈ R
3p,

v̂i :=
[
v̂Ti1 v̂Ti2 · · · v̂Tip

]T ∈ R
3p.

Combining (20), (33) and the definitions of x̂k and v̂k, we obtain

d(x̃k, ṽi) :=

√√√√
p∑

j=1

d2(x̃kj, ṽij) =

√√√√
p∑

j=1

‖x̂kj − v̂ij‖22 = ‖x̂k − v̂i‖2. (35)

Equation (35) shows that the distance between fuzzy vectors x̃k and ṽi is the same as
the Euclidean distance between the transformed vectors x̂k and v̂i. In other words,
we have reduced the problem of fuzzy clustering of fuzzy data to fuzzy clustering of
crisp data. Thus, after applying transformations (34), any fuzzy clutering algorithm
for crisp data can be used.

In particular, we can directly apply Keller’s algorithm to {x̂k} by minimizing the
objective function

J (U, V̂ ; X̂) =

c∑

i=1

n∑

k=1

um
ik .

1

ωq
k

‖x̂k − v̂i‖22, (36)

under the same constraints (22) and (23) on {ωk} and {uik}.
Necessary conditions for minimizing (36) are as follows:

v̂i =

n∑

k=1

um
ik ·

1

ωq
k

x̂k

n∑

k=1

um
ik ·

1

ωq
k

. (37)

ωk =

( c∑

i=1

um
ik . d

2(v̂i, x̂k)

) 1

q+1

n∑

l=1

( c∑

i=1

um
il . d

2(v̂i, x̂l)

) 1

q+1

· ω. (38)

uik =
1

c∑

r=1

(
d2(v̂i, x̂k)

d2(v̂r, x̂k)

) 1

m−1

. (39)
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After iterations, equation (37) provides cluster prototypes in the transformed do-
main. To retrieve the fuzzy prototypes, one should apply the inverse transformation
T−1, i.e. ṽij = T−1 v̂ij , for i = 1, . . . , c and j = 1, . . . , p.

6 Simulation experiments

In order to show how well our method works, two simulation experiments are con-
ducted; one in an environment without outliers and the other one in presence of
outliers. We almost obtained the same results with both approaches.

6.1 Clustering fuzzy data without outliers

We now discuss the results of a simulation study carried out in order to compare
the performance of our model with existing models able to handle fuzzy data. These
models are proposed by D’Urso and Giordani [11], by Yang et al. [36], by Hathaway
et al. [18] and by Yang and Liu [38]. In order to compare the models, 2160 fuzzy data
sets were randomly generated. After running several models for different values of q
and ω, we chose q = 1, ω = 200. The other parameters for clustering algorithm were
set as follows: Number of objects (n = 10, 50, 100), number of variables (k = 2, 8, 16)
and the weighting exponent (m = 2, 3). We constructed the data sets in such a way
that c = 2 patterns can be found all over the simulation. To this purpose, the centers
corresponding to the first n/2 objects were generated from the uniform distribution
in [0, 1], and those corresponding to the latter n/2 from the uniform distribution
in [0 + θ, 1 + θ]. All the spreads were generated from the uniform distribution in
[0, 1] (case α). On the other hand, in case β, all the centers were generated from the
uniform distribution in [0, 1], while the spreads corresponding to the first n/2 objects
were generated from the uniform distribution in [0, 1], and those corresponding to
the latter n/2 from the uniform distribution in [0 + θ, 1 + θ]. θ was set to 1.5 and
0.75. In case of θ = 1.5, the clusters are separated, whereas they are overlapped
when θ is set to 0.75. Moreover, three sizes of centers with respect to the ones of the
spreads were considered by defining a parameter h having the values 1/2,1,2. This
parameter means that the size of the spreads is h times that of the centers.

In tables 1 and 2, the percentage of well-classified objects by the models are
given. This is done by fixing one parameter at a time and averaging over the rest.
So, the left columns of table 1 and 2 display the fixed parameters. Inasmuch as
the cluster membership functions were known in advance, it is presumed that an
object is assigned to a cluster correctly if the membership degree was the highest
among all (u = 0.5). In addition, membership degrees higher than 0.75 and 0.9
are reported so that the strength of our model can be evaluated . It can be seen
that our model works better in most of the conditions. As a case in point, when
θ = 1.5 and in conditions n = 10, 50, 100, k = 2, 8, 16, α, m = 2, 3, our model
had better performance for u = 0.5, 0.75, 0.9. When θ = 0.75 and in conditions n =
10, 50, 100, k = 2, 8, 16, m = 2, 3, our model worked better, whereas in case β the
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models proposed by Hathaway et al. and Yang and Liu, had the best performance.
As reported in the tables 3,4, when θ = 1.5, the average percentage of well-classified
objects for our model is 97.39 (u = 0.5), 71.38 (u = 0.75) and 33.69 (u = 0.9). The
model proposed by D’Urso and Giordini had the second highest performance after
our model with 93.25 (u = 0.5), 60.81 (u = 0.75), 27.93 (u = 0.9). When θ passed
from 1.5 to 0.75, the average performance of all models got worse. In this case,
the average percentage of well-classified objects for our model is 91.12 (u = 0.5),
37.70 (u = 0.75) and 11.09 (u = 0.9) and for the model proposed by D’Urso and
Giordini is 89.00 (u = 0.5), 32.56 (u = 0.75) and 7.35 (u = 0.9). As mentioned
earlier, the simulation study showed that our model had much better results than
the other existing models.

6.2 Clustering fuzzy data with Outliers

In order to evaluate how our model is able to detect the prototypes in case of possi-
ble presence of observations that can be seen as outliers, we added some outliers to
cases α and β, mentioned above. After running several models for different values
of q and ω, we chose q = 2, ω = 200. The other parameters for clustering algorithm
were set as follows: Number of objects (n = 100, 200, 300), where n/10 of them are
outliers and the rest of the them are inliers, number of variables k = (2, 8, 16) and
the weighting exponent (m = 2). The modified cases α and β are as follows:

• case α: The centers corresponding to the first 1/2 of inliers were generated
from the uniform distribution in [0, 1], and those corresponding to the rest of
the inliers from the uniform distribution in [1.5, 2.5]. The number of outliers
is n/10. The centers of outliers were generated from Normal distribution with
mean=-2 and variance=2. The left and the right spreads were generated from
the uniform distribution in [0, 1]

• case β: The left and the right spreads corresponding to the first 1/2 of inliers
were generated from the uniform distribution in [0, 1], and those corresponding
to the rest of the inliers from the uniform distribution in [1.5, 2.5]. The number
of outliers is n/10. The left and the right spreads of outliers were generated
from Normal distribution with mean=5 and variance=2. All the centers were
generated from the uniform distribution in [0, 1].

The mean square errors (MSE) between prototypes obtained by performing our
clustering model and the ideal prototypes are shown in tables 5 and 6. From these
tables, it can be observed that MSE of the centers are more than MSE of left spreads
and right spreads in case α, while MSE of spreads are higher than those of centers
in case β. In both cases, small weighting factors ωk (large values for

1
ωq

k

) are assigned

to data points fitting well to one of the clusters whereas large ωk (small values for
1
ωq

k

) are assigned to outliers. Thus, outliers can be easily identified by their large

weighting factors.
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7 Conclusion and future works

This paper presented a fuzzy clustering model for fuzzy data based on a new dis-
tance. We have modified Keller’s approach so that our model can be used in noisy
environments. The weighting factors reduce the influence of outliers and enable us
to identify them. Necessary conditions for the objective function to receive an opti-
mum have been derived to calculate a partition of data. Also, in another approach,
we transformed our distance to the Euclidean distance and reduced the problem of
fuzzy clustering of fuzzy data to fuzzy clustering of crisp data. Finally, two simula-
tion experiments were considered; one for comparing the performance of our model
with those of other existing clustering models for fuzzy data and one for testing how
well our model behaves in noisy environments.

Our model can be applied in settings where the presence of outliers can drastically
affect the results. An example is the process control problem in which the presence
of outliers usually represents that the process has been out of control.

Another problem that can be explored is to study in depth fuzzy clustering for
interactive fuzzy data and determining the optimal weighting exponent (m).

12



Table 1: Percentages of well-classified objects with membership higher than u = 0.5, u = 0.75, u = 0.9 (θ = 1.5)

Our model D’Urso and Giordani (2007) Hathaway et. al. (1996) Yang et. al. (2004)
Yang and Liu (1999)

u = 0.5 u = 0.75 u = 0.9 u = 0.5 u = 0.75 u = 0.9 u = 0.5 u = 0.75 u = 0.9 u = 0.5 u = 0.75 u = 0.9

n = 10 97.53 74.94 38.14 94.11 66.22 31.78 94.78 56.61 19.11 84.83 54.94 24.39
n = 50 97.86 70.14 32.03 94.18 58.47 26.14 94.34 48.36 15.32 85.97 47.81 19.74
n = 100 97.68 69.12 31.16 91.45 57.74 25.87 92.88 47.21 14.82 85.57 46.27 18.90
k = 2 93.33 73.17 38.02 84.36 64.74 31.08 85.05 53.29 18.16 82.18 55.59 24.33
k = 8 98.95 70.86 31.89 96.11 59.95 27.15 98.26 49.17 15.67 86.50 47.80 19.59
k = 16 99.68 70.21 31.11 99.27 58.73 25.56 98.69 49.71 15.42 87.69 45.64 19.11
α 100.00 98.83 52.63 100.00 97.30 51.32 93.36 50.91 16.47 100.00 87.29 39.82
β 94.78 43.69 15.33 86.49 24.32 4.54 94.64 50.54 16.37 70.91 12.06 2.20
m = 2 97.13 81.64 62.27 93.12 71.75 53.56 94.34 69.79 32.62 85.50 60.51 40.90
m = 3 97.49 60.48 4.43 93.37 49.87 2.30 93.66 31.66 0.21 85.41 38.84 1.13
h = 1/2 91.94 55.20 29.02 91.96 51.79 25.44 91.96 51.31 21.95 76.28 54.23 27.59
h = 1 99.72 70.65 29.88 100.00 74.77 28.33 99.94 50.65 5.29 82.29 52.24 25.01
h = 2 100.00 88.96 42.06 87.78 55.87 30.01 90.10 50.21 22.01 97.79 42.55 10.43

1
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Table 2: Percentages of well-classified objects with with membership higher than u = 0.5, u = 0.75, u = 0.9 (θ = 0.75)

Our model D’Urso and Giordani (2007) Hathaway et. al. (1996) Yang et. al. (2004)
Yang and Liu (1999)

u = 0.5 u = 0.75 u = 0.9 u = 0.5 u = 0.75 u = 0.9 u = 0.5 u = 0.75 u = 0.9 u = 0.5 u = 0.75 u = 0.9

n = 10 89.86 47.72 17.47 89.78 39.89 12.39 88.72 32.28 6.06 81.89 37.39 10.33
n = 50 91.34 35.28 8.23 89.43 29.17 5.07 87.87 20.81 1.73 79.39 28.37 4.71
n = 100 92.26 32.08 7.19 87.78 28.86 4.58 86.27 19.91 1.61 80.20 27.63 4.76
k = 2 82.82 44.91 18.49 81.40 41.03 13.75 78.98 32.25 7.67 74.43 39.50 11.97
k = 8 93.25 35.11 8.96 88.95 29.18 4.99 89.11 21.31 1.12 82.85 27.67 4.41
k = 16 97.17 32.49 6.53 96.64 27.71 3.29 94.78 19.43 0.61 84.20 26.22 3.44
α 98.52 60.97 18.29 98.97 55.20 12.57 86.33 24.77 2.93 98.99 54.97 11.39
β 83.32 14.01 3.15 79.02 10.07 2.12 88.91 23.89 3.34 61.99 7.28 1.81
m = 2 90.58 59.62 20.41 89.14 55.50 14.44 87.89 43.68 6.18 80.64 50.71 12.95
m = 3 91.94 16.16 1.95 88.86 9.77 0.25 87.35 4.99 0.09 80.34 11.54 0.25
h = 1/2 83.88 38.21 14.67 84.75 29.75 4.04 84.75 29.75 4.04 75.21 38.71 11.62
h = 1 91.75 35.84 11.44 97.62 31.66 5.29 96.87 14.71 1.22 75.90 31.06 6.22
h = 2 97.94 38.60 7.74 84.63 36.51 12.71 81.24 28.53 4.13 90.37 23.61 1.97

1
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Table 3: Average percentage of well-classified objects (θ = 1.5)

u = 0.5 u = 0.75 u = 0.9

Our model 97.39 71.38 33.69
D’Urso and Giordani 93.25 60.81 27.93
Hathaway et.al. 94.00 50.72 16.42
Yang et.al. 85.46 49.67 21.01

Table 4: Average percentage of well-classified objects (θ = 0.75)

u = 0.5 u = 0.75 u = 0.9

Our model 91.12 37.70 11.09
D’Urso and Giordani 89.00 32.56 7.35
Hathaway et.al. 87.62 24.33 3.13
Yang et.al. 80.49 31.13 6.60

Table 5: Mean Square Error (MSE) for cluster prototypes - case(α)(with outliers)

Centers (MSE) Left Spreads (MSE) Right Spreads (MSE)

n = 100 0.0035 0.0015 0.0016
n = 200 0.0025 0.0007 0.0007
n = 300 0.0022 0.0005 0.0005
k = 2 0.0025 0.0014 0.0013
k = 8 0.0024 0.0007 0.0007
k = 16 0.0034 0.0006 0.0006

Table 6: Mean Square Error (MSE) for cluster prototypes - case(β)(with outliers)

Centers (MSE) Left Spreads (MSE) Right Spreads (MSE)

n = 100 0.0031 0.1365 0.1363
n = 200 0.0014 0.1447 0.1441
n = 300 0.0010 0.1481 0.1482
k = 2 0.0033 0.0140 0.0140
k = 8 0.0010 0.1232 0.1227
k = 16 0.0010 0.2937 0.2932
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