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Abstract 

In this paper we discuss ways to reduce the execution time of a software Global Navigation Satellite 

System (GNSS) receiver that is meant for offline operation in a cloud environment. Client devices record 

satellite signals they receive, and send them to the cloud, to be processed by this software. The goal of 

this project is for each client request to be processed as fast as possible, but also to increase total 

system throughput by making sure as many requests as possible are processed within a unit of time. The 

characteristics of our application provided both opportunities and challenges for increasing 

performance. We describe the speedups we obtained by enabling the software to exploit multi-core 

CPUs and GPGPUs. We mention which techniques worked for us and which did not. To increase 

throughput, we describe how we control the resources allocated to each invocation of the software to 

process a client request, such that multiple copies of the application can run at the same time. We use 

the notion of effective running time to measure the system’s throughput when running multiple 

instances at the same time, and show how we can determine when the system’s computing resources 

have been saturated. 

 

1. Introduction 

Implementing a GNSS receiver completely in software has received attention due to the flexibility it 

provides [3]. Adding features, configuration changes, and defect fixing is done easier with a software 

receiver than a hardware one. The downside is that a software receiver usually processes signals slower 

than a hardware receiver because it tends to emulate the hardware, which may not be the most 

efficient way of designing the GNSS in software. This makes performance an important aspect of the 

design and implementation of a software receiver.  

 

Many operations in a GNSS receiver including but not limited to signal acquisition and tracking are 

inherently independent of each other and are run in parallel when a standard receiver is implemented in 

hardware [10]. A software receiver can exploit this same parallel execution possibility and benefit from 

multi-core CPUs and GPGPUs. For this reason this paper concentrates on parallelizing the execution 

using CPUs and GPUs. These two models have very different characteristics, which greatly affect the 

results.  

 

Another possible requirement for a software receiver is the ability to process data in real-time. This 

requirement is evidently related to the performance aspect, as real time operation implies processing 

data at least as fast as they are received. [1, 6] are examples of efforts to utilize modern parallel 

processing hardware to implement real time GNSS software. In this paper we focus on a software 

receiver which is meant for offline operation, in a cloud environment. However, we need to process 



many requests which must still be processed in a reasonable amount of time. For this reason, high 

performance is one of the main requirements of this project. Offline processing provides opportunities 

that we have exploited for performance increase. 

 

The target application is intended to be run in a cloud environment, where data, recorded on many 

clients, are received and processed. The results are then returned to the client to either directly provide 

the position estimates or assist with satellite acquisition. While real-time processing is not a strict 

requirement, reducing response time and increasing total throughput are very important. Not only each 

client must wait as little as possible to receive a response (low response time), but the system as a 

whole must make sure that as many requests as possible are processed per unit of time (high total 

throughput). In order to achieve these goals, the application must be able to fully utilize the available 

hardware. 

 

Since many instances of the application may be running at the same time, care should be taken to 

make sure all computational resources are used effectively and without conflicts. For example, starting 

many instances of the application with each of them running on all cores on a CPU with low first or 

second level cache may cause cache conflicts, where each thread would invalidate cache data from 

other threads. 

 

Cloud server instances running this application may be with or without GPUs. Servers are started as 

client requests increase. Each server then may run many instances of the application to process the 

requests. The application is passed a number of arguments that determine which resources are to be 

employed by it to process a request. 

 

When discussing GPUs, we focus on NVidia products because they were available to us for 

development, testing, and deployment. We chose the CUDA programming toolset because it appears to 

provide better performance than other GPU programming toolsets [8]. We employed CUDA 5.0, the 

latest version available at the time [14]. The paper’s descriptions and limitations may or may not apply 

to other GPU products or programming languages. 

 

The rest of the paper is organized as follows. In Section 2 we provide a brief introduction to the 

peculiarities and differences between GPU and CPU computing. Section 3 describes the application we 

targeted for acceleration. Sections 4 and 5 provide details on our efforts to make the application run 

faster on CPUs and GPUs, respectively. In Section 6 we summarize the paper and provide a list of future 

work. 

 

 

 

2. CPU and GPU background 

Methods of increasing software performance on a CPU include algorithmic optimizations, tuning the 

code manually or automatically by the compiler to minimize wasted cycles, using vectorization to speed 

up mathematical processing on each core, and using multiple cores to run portions of the code in 



parallel. Parallelization has a big potential for performance improvement because the current focus of 

CPU manufacturers is on increasing the number of cores instead of adding complexity and speed to each 

core. Effective utilization of the available CPU cores depends to a large degree on the design of the 

application. In a multi-threaded application each core can run different, independent sections of code. 

The less synchronization and data exchange are needed among the threads, the better the resulting 

speedup [2]. 

 

A newer approach to software performance is the use of GPGPUs. Here hundreds or thousands of 

smaller and slower GPU cores are used to perform the same operation on different data. This is usually 

called the Single Instruction, Multiple Data (SIMD) paradigm [4]. Since GPUs do not share memory with 

the rest of the system, the challenge with GPGPU programming is minimizing the effects of data transfer 

to and from the graphics card. Data copying overhead can potentially undo any gains from running a 

particular code in parallel on a GPU. 

 

Recent GPU cores are capable of running nearly any application. For example, Kepler cards from 

NVidia [4] support recursion, removing some of the last remaining limits compared to CPUs. However, 

running an application on a single GPU core will result in a slow execution due to the core’s limited 

performance. On the other hand, GPUs have been successfully used to speed up mathematical 

operations that process large amounts of data. For example, performing a pair-wise vector 

multiplication or a dot product on large input arrays will potentially be sped up when using hundreds or 

thousands of GPU cores, where each core performs a few simple operations, on a small range of the 

data, at the same time. Using this massive parallelism to speed up the execution of specific portions of 

the code is the key to obtaining good speed up with a GPU. 

 

The system we used for tests reported in this paper had an Intel Xeon E5507 CPU with 4 cores (not 

hyper-threaded), running at 2.27 GHz, and 8 GB of RAM. It could boot into 64-bit Windows 7 and Linux. 

The GPU used was a NVIDIA GeForce GTX 550 Ti with 192 cores and 1GB of memory. 

 

3. Rx Network’s software navigation solution 

Figure 1 depicts the overall architecture of software GNSS receiver’s signal processing modules. 

Depending on the current status of the receiver, either acquisition or tracking channels are active for a 

satellite at an instance. Normally, acquisition channels are triggered first, producing the coarse signal 

detection parameters, namely signal Doppler and code phase. These parameters are fine tuned at a 

later stage with the help of tracking channels. There exists an acquisition and a tracking channel for each 

satellite and they all are independent of each other, hence they are good candidates for parallelism.  



 

Figure 1. Acquisition and tracking channels of software GNSS receiver.
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Figure 2. Anatomy of acquisition channel. 
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Doing so utilizes a GPU’s parallelism, and at the same time reduces the load on the CPU. Because we did 

not want to change the application’s architecture, GPU code basically mimics IPP code used on the CPU. 

 

4. CPU Performance 

Our efforts were focused on better utilization of CPU cores, as well as transparent support of GPUs, if 

available. Algorithmic changes such as block processing resulted in considerable decrease in running 

time. Beyond that, we replaced most of the loops (iterative schemes) in the code with equivalent IPP 

functions to benefit from the CPU’s vectorization abilities. We noticed that with a small number of 

iterations, calling an IPP function may take longer than the original loop, so we have a minimum number 

of iterations, below which normal loops are used, and above which IPP functions are called. 

 

In addition to the native threads already implemented in the code, we added threading mechanisms 

using OpenMP [2], which has more overhead than native threads, but results in much simpler code. The 

application uses either native threads or OpenMP threads.  

 

In order to hide OpenMP’s extra overhead, parallel loops must be as long-running as possible. If this 

is not the case, then using OpenMP to parallelize small loops may actually result in a slow-down. The 

main processing loops of the application looked as in Listing 1 below. In a first attempt, OpenMP threads 

were used to parallelize the execution of the two for-loops.  We noticed a significantly slower execution 

for OpenMP compared to native threads because the threads were being started and stopped between 

the for-loops.  

 

   bool doneProcessing = false; 

   while( !doneProcessing ) 

   { 

        doneProcessing = true; 
        #pragma omp parallel for num_threads((numThreads) 

        for(int i = 0; i < numTasks; i++) 

            task1[i]->Execute();  

 

        // next loop must execute after the first one 

 

        #pragma omp parallel for num_threads((numThreads) 

        for(int i = 0; i < numTasks; i++) { 

             task2[i]->Execute();  

             if(ProcessingComplete(i)) 

                  doneProcessing = false; 

        } 
   } 

Listing 1. Original code to parallelize the main computing loops of the application using OpenMP 

 

To avoid thread management overheads we kept the threads running outside of the for-loops, and 

used barriers to make sure the for-loops were executed sequentially. This had a positive impact on code 

performance. Another modification with high impact was using dynamic scheduling for the OpenMP 

threads, which allows each thread to be assigned loop iterations as they become available. With the 

default static scheduling, some threads may run out of work while others are busy with processing loop 

iterations. We also noticed that assigning high priority to threads reduces the running time because it 

reduces the number of context switches. Listing 2 below shows the resulting code. 



volatile bool doneProcessing = false;    

#pragma omp parallel num_threads((numThreads) 

{ 

    setThreadPriority(HIGH_PRIORITY); 

    while( !doneProcessing ) 

    { 

        #pragma omp barrier 

        doneProcessing = true; 

        #pragma omp for schedule(dynamic) 

        for(int i = 0; i < numTasks; i++) 
           task1[i]->Execute();  

        #pragma omp barrier 

        // next loop must execute after the first one 

        #pragma omp for schedule(dynamic) 

        for(int i = 0; i < numTasks; i++) 

            task2[i]->execut();  

            if(ProcessingComplete(i)) 

                doneProcessing = false; 

        } 

        #pragma omp barrier 

     } 

} 

Listing 2. Improved OpenMP parallelization. 

 

The un-optimized code would create as many threads as channels, so there was a one to one 

relationship between them. We added the ability to limit the number of CPU threads running at the 

same time. This was done in consideration for the requirement of having high throughput on the server. 

Running an application on N cores which are not fully utilized and/or in a sustained manner may allow 

the execution to finish sooner than when running on M < N cores with better utilization. However, we 

may achieve better throughput when using less cores, because we can run multiple instances of the 

application at the same time. The result is that multiple instances of the aplication use the CPU fully. Of 

course each instance will run slower than if it was running on all cores, but throughput will increase. 

 

As a baseline, we ran the original and optimized versions of the application with different number of 

threads using native and OpenMP threads. The running times, in seconds, appear in Figure 4. Numbers 

represent the average of 10 runs. We include tests with 12 threads because the particular input file we 

processed had 12 channels. 

 

 

Figure 4. Windows running times, in seconds, with different number of cores 
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The above Figure shows that, as expected, performance with low number of threads is similar 

between the two threading mechanisms. For our application, native threads result in better 

performance than OpenMP as the number of threads increases. This is due to the extra thread 

management overhead of OpenMP. In our tests we noticed that when running a single instance with 12 

threads, using native threads would result in a CPU utilization that varied between 75% and 90%. With 

OpenMP, CPU utilization was sustained very close to 100%. This indicates that OpenMP threads are 

more resource consuming, and explains the performance degradation when many of them are running 

at the same time. 

 

As mentioned before, in the production environment multiple instances of the application will be run 

simultaneously. We define the effective running time be the total running time of N instances of the 

application, divided by N, and use it to determine a configuration with the best throughput when 

running multiple instances of the application at the same time.  

 

To provide a baseline for measuring performance improvements, Figure 5 shows the effective 

running times when multiple invocations of the original application are running at the same time. 

Because of memory constraints, we could not run more than 8 CPU instances of the application at the 

same time. 

 

 

Figure 5. Windows effective running times for the original version. 

 

Figure 6 shows effective running times when different numbers of instances, with varying number of 

threads, are executed. Native threads were used for these tests because under Windows OpenMP did 

not provide a clear performance advantage. In our tests, the running times of the concurrent instances 

were very close, so multiplying the number of instances by the effective running time provides an 

approximate value for the running time of each instance.  
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Figure 6. Windows effective running times with native threads. 

 

There is a clear trend in the effective running times. When underutilizing the hardware, effective 

running times are long because few simultaneous instances are being processed. As the number of 

simultaneous instances increases, effective running time decreases until it reaches a plateau, which 

indicates the computer’s resource saturation. In this mode, effective running times are close, but it 

should be noted that with more instances, individual instances take longer to run.  

 

From Figure 6, the optimum configuration seems to be running 4 instances with one thread each, 

because it provides a low effective running time, and each instance is finished sooner than when more 

instances are run simultaneously. This observation is easy to justify. On an N core CPU, running N 

instances in a single thread lessens competition for resources among the threads. 

 

We tried the application with OpenMP threads too, with the results appearing in Figure 7. As can be 

seen, using many OpenMP threads simultaneously results in a degradation of performance. This is 

another symptom of OpenMP threads’ bigger overhead. Our tests would consistently fail when running 

8 instances with 12 threads each because of a lack of resources on the test machine. 

 

 

 

Figure 7. Windows effective running times with OpenMP threads. 

 

0

20

40

60

80

100

120

2 instances

4 instances

8 instances

0

50

100

150

200

250

1 

thread 

each

2 

threads 

each

4 

threads 

each

8 

threads 

each

12 

threads 

each

2 instances

4 instances

8 instances



Under Windows, OpenMP’s performance generally degrades as the number of threads in each 

instance increases, while the running times with native threads remain relatively stable after a 

saturation of computing resources.  

 

In a production environment, different instances may be of different importance levels. For example, 

high priority customers’ instances may get priority over others. Figure 7 indicates that if we want some 

jobs to take shorter to run, we should run fewer simultaneous instances, but with more threads each. In 

this case system resources will be underutilized.  

 

4.1 Windows vs. Linux 

Determining the effects of the operating system and compiler on the application’s performance is 

also of interest. Different operating systems’ schedulers, memory allocation policies, and I/O driver 

performance can affect the running times.  

 

The same PC used for the Windows tests was booted into Linux, and we performed the same tests. 

Figure 8 compares the running times of the original version of the application, hard-coded to run with 12 

threads, and the optimized version using pthreads and OpenMP.  

 

 

Figure 8. Linux running times of the application with different number of cores 

 

The application performs better under Linux than Windows. Also, OpenMP’s performance scales 

better under Linux.  

 

As a baseline, Figure 9 shows the effective running times when multiple invocations of the original 

application are running simultaneously under Linux. 
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Figure 9. Linux effective running times for the original version. 

 

Because of memory constraints, running more than 6 instances of the original application was not 

possible under Linux. As can be seen, running multiple instances of the original application reduces the 

running time, but performance is still less than that of the optimized versions. 

 

Figures 10 and 11 shows the running times for multiple simultaneous invocations of the optimized 

application, when using native and OpenMP threads respectively. 

 

 

Figure 10. Linux effective running times for the optimized version with native threads. 

 

 

Figure 11. Linux effective running times for the optimized version with OpenMP threads. 

 

84

86

88

90

92

2 instances 4 instances 6 instances

12 threads each

12 threads 

each

0

10

20

30

40

50

60

1 

thread

2 

threads

4 

threads

8 

threads

12 

threads

2 instances

4 instances

8 instances

0

50

100

150

200

250

300

350

400

450

1 

thread

2 

threads

4 

threads

8 

threads

12 

threads

2 instances

4 instances

8 instances



With OpenMP under Linux, there is a “resonance” effect happening when each application uses 4 

threads. This effect was seen in all of our many trials. Since this effect was not seen under Windows, the 

cause may be the operating system’s cache management and thread scheduling issues. It is interesting 

to note that when running multiple instances at the same time, OpenMP has no advantage over native 

threads. We observed that CPU utilization was generally higher when using OpenMP, implying more 

overhead with OpenMP threads. This observation explains why having many OpenMP threads could 

reduce performance. 

 

4.2 Single precision computing 

We performed a number of tests and determined that our application can utilize single precision 

variables without loss of accuracy. The reason behind this is the limitation on sampling frequency in our 

application. Due to the limited resolution of the samples coming from the front-end, the receiver is not 

losing any information by performing signal processing operations in single precision. As a result we 

decided to use single precision variables in both IPP and GPU computations.  

 

With IPP, we noticed a marked performance improvement when switching from double precision to 

single precision. This is against the popular belief that double and single precision performances are 

comparable in modern CPUs, but there are a number of reasons for this improvement. Other than 

smaller data sizes which fit better in L1 caches, IPP’s vectorized instructions can operate on four single 

precision variables in parallel, vs. 2 double precision variables [15]. On a GPU, using single precision 

variables allows faster data copying and cache utilization. Additionally, most current GPUs process single 

precision variables faster than double precision variables.  

 

5. Performance on GPUs 

GPU programming currently needs considering certain limitations compared with CPU programming. 

For example, there is usually less memory available on a GPU, and access to a GPU’s computing and 

memory resources involves copying code to execute on the GPU (called a kernel) and data between the 

CPU and GPU memory. Given our requirement for preserving the multi-threaded architecture of the 

code, we could not follow the usual route in GPU software design, which is to transfer all data to the 

GPU, process them using one or more kernel executions, and return the results to CPU-accessible 

memory, all done within a single CPU thread. Instead, we mirrored the multi-threaded CPU code by 

identifying the sections of code that were utilizing IPP to process data, and re-implementing the IPP 

functions with equivalent GPU code. 

 

The CPU code utilizes FFT for frequency domain calculations, and vector multiplications and dot 

products for time domain computations. Such operations, especially when performed on large sets of 

data, are good candidates for running on a GPU. We started our work by using libraries such as CUFFT, 

NPP, CUBLAS [11], and Thrust [7] instead of writing our own custom GPU kernels. The main benefit of 

doing so was a much shorter development time. With the exception of CUFFT, we noticed a number of 

problems with these libraries. NPP and Thrust do not support a multi-threaded application in their 

current versions, so different threads cannot issue GPU operations to be executed in parallel. They do 

not support CUDA Streams which, as explained below, form the mechanism for identifying GPU code 



that can be executed in parallel on a GPU. CUFFT does support streams, so we used it for frequency 

domain computations. CUBLAS supports streams too, but we achieved better performance with our 

custom kernels. These kernels support streams and perform pair-wise vector multiplication and dot-

product for time domain calculations. 

 

Another problem we encountered with GPU computing is high latency in memory copy operations. 

Our application needed to perform operations on a relatively small amount of data (1 millisecond, or 

about 8000 single precision variables) at a time. Due to high latency, the time it takes to copy the data to 

the GPU, and copy the results back, hinders gains from faster computation. We tried to counter this 

effect by keeping intermediate results on the GPU as much as possible. We also tried to find algorithmic 

ways of increasing the size of processed data (e.g. batch processing of signals for the entire coherent 

integration time) to offset the performance losses due to latency [10, 13]. 

 

Ironically, the main obstacle to obtaining good speedup with a GPU was the same mechanism for 

obtaining good speed up on a CPU: multi-threading. Multiple CPU threads active in the application 

would issue FFT and vector operations independently of each other to the GPU. In a CPU environment 

the operations can run in parallel in multiple cores, but pre-K20 GPUs have an inherent limitation on the 

number of threads that can use them at the same time. With most GPUs this limit is one kernel and copy 

operation at a time. As a result, the many threads of the application have to take turn to copy small 

amounts of data and run their GPU code, so the GPU becomes a point of serialization. The stream 

mechanism in a GPU is used to indicate potential parallelism on the GPU [5]. Different instructions 

running in different streams can potentially run in parallel, but current GPUs ignore this hint from the 

programmer because of their hardware cannot run multiple streams at the same time. 

 

Starting with Kepler K20 devices, it is possible to run multiple kernels and copy operations in parallel 

on the GPU, provided they are issued to different streams. Kepler GPUs with Hyper-Q technology [4], 

can perform up to 32 operations at the same time. This will potentially remedy the problem of the GPU 

becoming a serialization bottleneck. Lower GPUs do not have this capability, but can still overlap 

memory copying and kernel executions, so they support a limited form of parallelism, which we 

exploited by staggering copy and compute operations from different streams in our code and increased 

GPU performance. However, GPU performance was still not satisfactory. Figure 12 shows the results of 

profiling a short run of the application. Different threads are performing short bursts of GPU work, 

which cannot compensate for the overhead of data copy. The bulk of the computation is still done on 

the CPU.  

 



Figure 12. Results of profiling a short run of the application.
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Figure 13. Linux effective running times
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Figure 14. Linux effective running times with Frequency domain calculations only on GPU 

 

 

In both runs native CPU threads were used. Resulting running times indicate an advantage when 

running multiple instances of the application on the GPU. GPU utilization values when running one and 

two instances was close, implying that most of the speedup is due to reduction of the CPU portion of the 

code’s running time, with the GPU still being the point of serialization. 

 

Another observation is that performing time-domain operations on the GPU results in lower 

performance. The reason is that the speedup of processing 1 ms worth of data on a GPU is not enough 

to cover the overheads inherent in using a GPU. One solution for improving GPU performance, both for 

time domain and frequency domain operations is to execute fewer, but bigger operations on the GPU. 

For example, to perform a single FFT operation on 10 different sets of inputs one can use the pseudo 

code in Listing 3 (a) or (b). In (a), copying data to and from the card, and performing an FFT operation 

are done N times in independent threads. In (b), the input are coalesced and copied to the GPU once, 

FFT is performed on all of them using the batch mode (supported by the CUFFT library), and the results 

are brought back to CPU memory in one operation, thus reducing data transfer latency. The other 

benefit of doing so is that there is a single invocation of FFT on the GPU, reducing function invocation 

overhead. 

 

Each of the N independent threads { 

        Copy data to graphics card 

        Perform FFT on GPU 

        Copy the results back 

} 

One single thread { 

          Place data for all N FFTs in contiguous memory 

          Perform FFT in batch mode.  

          Copy back all N FFTs results to CPU memory 

} 

Listing 3. (a) Many independent GPU operations. (b) Batch mode operation 

 

The problem with the approach in Listing 3(b) is that implementing it would require a major change 

in the architecture of the software. Given our requirements, doing so was not possible, so only the 

algorithm in 3(a) was implemented.  
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6. Summary and future work 

In this project we used different optimization techniques to decrease software GNSS application’s 

running time. Working within the constraints of this application, we achieved different degrees of 

performance gains. Our results on the CPU showed a considerable speedup. We observed that 

compared to OpenMP, native CPU threads generally provide better performance and a graceful 

performance drop when compute resources are saturated. However they are harder to implement and 

tune. Our GPU results beat that of the original code, but lag behind the optimized CPU version. 

 

We ran the same performance tests as above in an Amazon cloud environment. The outcomes, 

omitted to keep the paper of reasonable length, match what we report in this paper. 

 

Going forward, we are interested in measuring the performance of new-generation GPUs with 

multiple execution units. Our code is designed with streaming support, and theoretically should benefit 

from such GPUs. It would also be interesting to see how effective alternative many-core solutions would 

be for an application such as ours. One such alternative is Intel’s Xeon Phi. It contains many (e.g. 32) 

conventional CPU cores, and thus provides a more familiar environment for high performance 

computing. A potential problem with such CPU-based solutions comes from Amdahl’s law, which is the 

observation that obtaining appreciable speedup as the number of cores increases is usually a challenge 

[2], so the effectiveness of such solutions should be verified. 

  

We are also interested in investigating other approaches to increasing GPU performance and 

utilization by algorithmic improvements, including but not limited to performing low-level signal 

processing tasks like Doppler removal on  GPGPUs. 
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