
Accelerating a Cloud-Based Software GNSS Receiver
Kamran Karimi, Aleks G. Pamir, M. Haris Afzal

Rx Networks Inc.

800-1201 W. Pender Street, Vancouver, Canada

{kkarimi, apamir, hafzal}@rxnetworks.com

Abstract

In this paper we discuss ways to reduce the execution time of a software Global Navigation Satellite

System (GNSS) receiver that is meant for offline operation in a cloud environment. Client devices record

satellite signals they receive, and send them to the cloud, to be processed by this software. The goal of

this project is for each client request to be processed as fast as possible, but also to increase total

system throughput by making sure as many requests as possible are processed within a unit of time. The

characteristics of our application provided both opportunities and challenges for increasing

performance. We describe the speedups we obtained by enabling the software to exploit multi-core

CPUs and GPGPUs. We mention which techniques worked for us and which did not. To increase

throughput, we describe how we control the resources allocated to each invocation of the software to

process a client request, such that multiple copies of the application can run at the same time. We use

the notion of effective running time to measure the system’s throughput when running multiple

instances at the same time, and show how we can determine when the system’s computing resources

have been saturated.

1. Introduction

Implementing a GNSS receiver completely in software has received attention due to the flexibility it

provides [3]. Adding features, configuration changes, and defect fixing is done easier with a software

receiver than a hardware one. The downside is that a software receiver usually processes signals slower

than a hardware receiver because it tends to emulate the hardware, which may not be the most

efficient way of designing the GNSS in software. This makes performance an important aspect of the

design and implementation of a software receiver.

Many operations in a GNSS receiver including but not limited to signal acquisition and tracking are

inherently independent of each other and are run in parallel when a standard receiver is implemented in

hardware [10]. A software receiver can exploit this same parallel execution possibility and benefit from

multi-core CPUs and GPGPUs. For this reason this paper concentrates on parallelizing the execution

using CPUs and GPUs. These two models have very different characteristics, which greatly affect the

results.

Another possible requirement for a software receiver is the ability to process data in real-time. This

requirement is evidently related to the performance aspect, as real time operation implies processing

data at least as fast as they are received. [1, 6] are examples of efforts to utilize modern parallel

processing hardware to implement real time GNSS software. In this paper we focus on a software

receiver which is meant for offline operation, in a cloud environment. However, we need to process

many requests which must still be processed in a reasonable amount of time. For this reason, high

performance is one of the main requirements of this project. Offline processing provides opportunities

that we have exploited for performance increase.

The target application is intended to be run in a cloud environment, where data, recorded on many

clients, are received and processed. The results are then returned to the client to either directly provide

the position estimates or assist with satellite acquisition. While real-time processing is not a strict

requirement, reducing response time and increasing total throughput are very important. Not only each

client must wait as little as possible to receive a response (low response time), but the system as a

whole must make sure that as many requests as possible are processed per unit of time (high total

throughput). In order to achieve these goals, the application must be able to fully utilize the available

hardware.

Since many instances of the application may be running at the same time, care should be taken to

make sure all computational resources are used effectively and without conflicts. For example, starting

many instances of the application with each of them running on all cores on a CPU with low first or

second level cache may cause cache conflicts, where each thread would invalidate cache data from

other threads.

Cloud server instances running this application may be with or without GPUs. Servers are started as

client requests increase. Each server then may run many instances of the application to process the

requests. The application is passed a number of arguments that determine which resources are to be

employed by it to process a request.

When discussing GPUs, we focus on NVidia products because they were available to us for

development, testing, and deployment. We chose the CUDA programming toolset because it appears to

provide better performance than other GPU programming toolsets [8]. We employed CUDA 5.0, the

latest version available at the time [14]. The paper’s descriptions and limitations may or may not apply

to other GPU products or programming languages.

The rest of the paper is organized as follows. In Section 2 we provide a brief introduction to the

peculiarities and differences between GPU and CPU computing. Section 3 describes the application we

targeted for acceleration. Sections 4 and 5 provide details on our efforts to make the application run

faster on CPUs and GPUs, respectively. In Section 6 we summarize the paper and provide a list of future

work.

2. CPU and GPU background

Methods of increasing software performance on a CPU include algorithmic optimizations, tuning the

code manually or automatically by the compiler to minimize wasted cycles, using vectorization to speed

up mathematical processing on each core, and using multiple cores to run portions of the code in

parallel. Parallelization has a big potential for performance improvement because the current focus of

CPU manufacturers is on increasing the number of cores instead of adding complexity and speed to each

core. Effective utilization of the available CPU cores depends to a large degree on the design of the

application. In a multi-threaded application each core can run different, independent sections of code.

The less synchronization and data exchange are needed among the threads, the better the resulting

speedup [2].

A newer approach to software performance is the use of GPGPUs. Here hundreds or thousands of

smaller and slower GPU cores are used to perform the same operation on different data. This is usually

called the Single Instruction, Multiple Data (SIMD) paradigm [4]. Since GPUs do not share memory with

the rest of the system, the challenge with GPGPU programming is minimizing the effects of data transfer

to and from the graphics card. Data copying overhead can potentially undo any gains from running a

particular code in parallel on a GPU.

Recent GPU cores are capable of running nearly any application. For example, Kepler cards from

NVidia [4] support recursion, removing some of the last remaining limits compared to CPUs. However,

running an application on a single GPU core will result in a slow execution due to the core’s limited

performance. On the other hand, GPUs have been successfully used to speed up mathematical

operations that process large amounts of data. For example, performing a pair-wise vector

multiplication or a dot product on large input arrays will potentially be sped up when using hundreds or

thousands of GPU cores, where each core performs a few simple operations, on a small range of the

data, at the same time. Using this massive parallelism to speed up the execution of specific portions of

the code is the key to obtaining good speed up with a GPU.

The system we used for tests reported in this paper had an Intel Xeon E5507 CPU with 4 cores (not

hyper-threaded), running at 2.27 GHz, and 8 GB of RAM. It could boot into 64-bit Windows 7 and Linux.

The GPU used was a NVIDIA GeForce GTX 550 Ti with 192 cores and 1GB of memory.

3. Rx Network’s software navigation solution

Figure 1 depicts the overall architecture of software GNSS receiver’s signal processing modules.

Depending on the current status of the receiver, either acquisition or tracking channels are active for a

satellite at an instance. Normally, acquisition channels are triggered first, producing the coarse signal

detection parameters, namely signal Doppler and code phase. These parameters are fine tuned at a

later stage with the help of tracking channels. There exists an acquisition and a tracking channel for each

satellite and they all are independent of each other, hence they are good candidates for parallelism.

Figure 1. Acquisition and tracking channels of software GNSS receiver.

Figure 2 shows the internal architecture of an individual acquisition channel. The greyed modules are

all candidates for parallelism internally to each acquisition module. Both carrier and code Numerically

Controlled Oscillators (NCOs) generate local replicas of carrier and code signals for a particular satellite.

An iterative loop is utilized for generating these replicas and the numbe

GNSS signal sampling frequency as well as the duration of data utilized for the acquisition operation. For

example, if the sampling frequency is 8.184 MHz and 10 ms worth of data is utilized for acquisition, both

carrier and code replica loops need to be 81840 iterations long. The mixing stage right after carrier NCO

is mathematically a point by point multiplication. Considering the aforementioned example, a total of

81840 independent multiplications need to be performed at th

parallelism. There exist two Fast Fourier Transform (FFT) operations, one after the mixing stage and the

other after code replica generation. FFT operation

developers. After FFT operations, another mixing stage is encountered which is similar to the first stage

and a good candidate for parallelism. Both FFT operations and the mixing stage constitute the frequency

domain correlation operation utilized by the acquisitio

results for signal detection, an Inverse FFT (IFFT) operation is required to represent the results in time

domain. Similar to FFT, IFFT also presents some opportunities for parallelism.

Acquisition and tracking channels of software GNSS receiver.

Figure 2 shows the internal architecture of an individual acquisition channel. The greyed modules are

internally to each acquisition module. Both carrier and code Numerically

Controlled Oscillators (NCOs) generate local replicas of carrier and code signals for a particular satellite.

An iterative loop is utilized for generating these replicas and the number of iterations depends on raw

GNSS signal sampling frequency as well as the duration of data utilized for the acquisition operation. For

example, if the sampling frequency is 8.184 MHz and 10 ms worth of data is utilized for acquisition, both

code replica loops need to be 81840 iterations long. The mixing stage right after carrier NCO

is mathematically a point by point multiplication. Considering the aforementioned example, a total of

81840 independent multiplications need to be performed at this stage, making it an ideal candidate for

parallelism. There exist two Fast Fourier Transform (FFT) operations, one after the mixing stage and the

other after code replica generation. FFT operations has some parallelism which can be leveraged by

s. After FFT operations, another mixing stage is encountered which is similar to the first stage

and a good candidate for parallelism. Both FFT operations and the mixing stage constitute the frequency

domain correlation operation utilized by the acquisition channels. In order to utilize the correlation

results for signal detection, an Inverse FFT (IFFT) operation is required to represent the results in time

domain. Similar to FFT, IFFT also presents some opportunities for parallelism.

Figure 2. Anatomy of acquisition channel.

Acquisition and tracking channels of software GNSS receiver.

Figure 2 shows the internal architecture of an individual acquisition channel. The greyed modules are

internally to each acquisition module. Both carrier and code Numerically

Controlled Oscillators (NCOs) generate local replicas of carrier and code signals for a particular satellite.

r of iterations depends on raw

GNSS signal sampling frequency as well as the duration of data utilized for the acquisition operation. For

example, if the sampling frequency is 8.184 MHz and 10 ms worth of data is utilized for acquisition, both

code replica loops need to be 81840 iterations long. The mixing stage right after carrier NCO

is mathematically a point by point multiplication. Considering the aforementioned example, a total of

making it an ideal candidate for

parallelism. There exist two Fast Fourier Transform (FFT) operations, one after the mixing stage and the

has some parallelism which can be leveraged by

s. After FFT operations, another mixing stage is encountered which is similar to the first stage

and a good candidate for parallelism. Both FFT operations and the mixing stage constitute the frequency

n channels. In order to utilize the correlation

results for signal detection, an Inverse FFT (IFFT) operation is required to represent the results in time

Figure 3 shows the detailed architecture of

receiver. There are some commonalities among acquisition and tracking modules in the early stages of

signal processing. These include carrier and code NCOs as well as the first mixing stage. All of these

modules are good candidates for parallelism as is explained earlier. Th

not allow for the use of frequency domain correlation operation and is therefore computationally more

expensive than acquisition. The mixing stage of time domain correlation is the main culprit for this

computational burden. Considering the same example of 81840 samples per tracking operation, one

to perform 81840 point by point multiplications and 81840 sample shift operations 81840 times over. So

for one tracking loop iteration, a total of 6.7x10

making the tracking channel an ideal candidate for parallelism.

For various reasons it was important

This requirement had an important effect on our desig

our choices, especially with GPUs.

We started with the aim of increasing the performance of t

high throughput on cloud servers

already been designed with CPU multi

were used to run different section

Intel Integrated Performance Primitive (

CPU vectorization [13]. There has been an effort to support GPUs to perform part of the computations

under certain conditions, including

The CPU threads mimic the parallelism existing in a hardware receiver.

can process input data independently of each other, and this idea closely matches the softwar

Our GPU implementation, however, differs from this idea because we cannot run the whole code on a

number of GPU cores. Instead, w

Each CPU thread can run certain computationally d

Figure 3 shows the detailed architecture of+ the tracking loops utilized for this software GNSS

some commonalities among acquisition and tracking modules in the early stages of

signal processing. These include carrier and code NCOs as well as the first mixing stage. All of these

modules are good candidates for parallelism as is explained earlier. The nature of tracking loops does

not allow for the use of frequency domain correlation operation and is therefore computationally more

expensive than acquisition. The mixing stage of time domain correlation is the main culprit for this

Considering the same example of 81840 samples per tracking operation, one

to perform 81840 point by point multiplications and 81840 sample shift operations 81840 times over. So

for one tracking loop iteration, a total of 6.7x10
9

independent multiplication operations are needed,

making the tracking channel an ideal candidate for parallelism.

Figure 3. Anatomy of tracking channel.

t was important for us to keep the architecture of the code as intact as p

This requirement had an important effect on our design and implementation decisions, usually limiting

our choices, especially with GPUs.

We started with the aim of increasing the performance of the target application

hput on cloud servers when running multiple instances of this application

already been designed with CPU multi-threading in mind. Native Windows and Linux (pThread)

to run different sections of the code in parallel. Fast Fourier Transform (

Performance Primitive (IPP) [12] libraries were utilised to perform FFT operations using

There has been an effort to support GPUs to perform part of the computations

in conditions, including the presence of strong signals [9].

The CPU threads mimic the parallelism existing in a hardware receiver. Different hardware channels

input data independently of each other, and this idea closely matches the softwar

however, differs from this idea because we cannot run the whole code on a

Instead, we use a GPU to perform certain mathematical operations in parallel.

Each CPU thread can run certain computationally demanding operations on a GPU instead of a CPU.

the tracking loops utilized for this software GNSS

some commonalities among acquisition and tracking modules in the early stages of

signal processing. These include carrier and code NCOs as well as the first mixing stage. All of these

e nature of tracking loops does

not allow for the use of frequency domain correlation operation and is therefore computationally more

expensive than acquisition. The mixing stage of time domain correlation is the main culprit for this

Considering the same example of 81840 samples per tracking operation, one has

to perform 81840 point by point multiplications and 81840 sample shift operations 81840 times over. So

tion operations are needed,

for us to keep the architecture of the code as intact as possible.

n and implementation decisions, usually limiting

he target application, and then ensured

application. The software had

threading in mind. Native Windows and Linux (pThread) threads

Fourier Transform (FFT) functions from

to perform FFT operations using

There has been an effort to support GPUs to perform part of the computations

fferent hardware channels

input data independently of each other, and this idea closely matches the software design.

however, differs from this idea because we cannot run the whole code on a

mathematical operations in parallel.

emanding operations on a GPU instead of a CPU.

Doing so utilizes a GPU’s parallelism, and at the same time reduces the load on the CPU. Because we did

not want to change the application’s architecture, GPU code basically mimics IPP code used on the CPU.

4. CPU Performance

Our efforts were focused on better utilization of CPU cores, as well as transparent support of GPUs, if

available. Algorithmic changes such as block processing resulted in considerable decrease in running

time. Beyond that, we replaced most of the loops (iterative schemes) in the code with equivalent IPP

functions to benefit from the CPU’s vectorization abilities. We noticed that with a small number of

iterations, calling an IPP function may take longer than the original loop, so we have a minimum number

of iterations, below which normal loops are used, and above which IPP functions are called.

In addition to the native threads already implemented in the code, we added threading mechanisms

using OpenMP [2], which has more overhead than native threads, but results in much simpler code. The

application uses either native threads or OpenMP threads.

In order to hide OpenMP’s extra overhead, parallel loops must be as long-running as possible. If this

is not the case, then using OpenMP to parallelize small loops may actually result in a slow-down. The

main processing loops of the application looked as in Listing 1 below. In a first attempt, OpenMP threads

were used to parallelize the execution of the two for-loops. We noticed a significantly slower execution

for OpenMP compared to native threads because the threads were being started and stopped between

the for-loops.

 bool doneProcessing = false;

 while(!doneProcessing)

 {

 doneProcessing = true;
 #pragma omp parallel for num_threads((numThreads)

 for(int i = 0; i < numTasks; i++)

 task1[i]->Execute();

 // next loop must execute after the first one

 #pragma omp parallel for num_threads((numThreads)

 for(int i = 0; i < numTasks; i++) {

 task2[i]->Execute();

 if(ProcessingComplete(i))

 doneProcessing = false;

 }
 }

Listing 1. Original code to parallelize the main computing loops of the application using OpenMP

To avoid thread management overheads we kept the threads running outside of the for-loops, and

used barriers to make sure the for-loops were executed sequentially. This had a positive impact on code

performance. Another modification with high impact was using dynamic scheduling for the OpenMP

threads, which allows each thread to be assigned loop iterations as they become available. With the

default static scheduling, some threads may run out of work while others are busy with processing loop

iterations. We also noticed that assigning high priority to threads reduces the running time because it

reduces the number of context switches. Listing 2 below shows the resulting code.

volatile bool doneProcessing = false;

#pragma omp parallel num_threads((numThreads)

{

 setThreadPriority(HIGH_PRIORITY);

 while(!doneProcessing)

 {

 #pragma omp barrier

 doneProcessing = true;

 #pragma omp for schedule(dynamic)

 for(int i = 0; i < numTasks; i++)
 task1[i]->Execute();

 #pragma omp barrier

 // next loop must execute after the first one

 #pragma omp for schedule(dynamic)

 for(int i = 0; i < numTasks; i++)

 task2[i]->execut();

 if(ProcessingComplete(i))

 doneProcessing = false;

 }

 #pragma omp barrier

 }

}

Listing 2. Improved OpenMP parallelization.

The un-optimized code would create as many threads as channels, so there was a one to one

relationship between them. We added the ability to limit the number of CPU threads running at the

same time. This was done in consideration for the requirement of having high throughput on the server.

Running an application on N cores which are not fully utilized and/or in a sustained manner may allow

the execution to finish sooner than when running on M < N cores with better utilization. However, we

may achieve better throughput when using less cores, because we can run multiple instances of the

application at the same time. The result is that multiple instances of the aplication use the CPU fully. Of

course each instance will run slower than if it was running on all cores, but throughput will increase.

As a baseline, we ran the original and optimized versions of the application with different number of

threads using native and OpenMP threads. The running times, in seconds, appear in Figure 4. Numbers

represent the average of 10 runs. We include tests with 12 threads because the particular input file we

processed had 12 channels.

Figure 4. Windows running times, in seconds, with different number of cores

0

50

100

150

200

250

Original code

Optimized/Nativ

e threads

Optimized/Open

MP

The above Figure shows that, as expected, performance with low number of threads is similar

between the two threading mechanisms. For our application, native threads result in better

performance than OpenMP as the number of threads increases. This is due to the extra thread

management overhead of OpenMP. In our tests we noticed that when running a single instance with 12

threads, using native threads would result in a CPU utilization that varied between 75% and 90%. With

OpenMP, CPU utilization was sustained very close to 100%. This indicates that OpenMP threads are

more resource consuming, and explains the performance degradation when many of them are running

at the same time.

As mentioned before, in the production environment multiple instances of the application will be run

simultaneously. We define the effective running time be the total running time of N instances of the

application, divided by N, and use it to determine a configuration with the best throughput when

running multiple instances of the application at the same time.

To provide a baseline for measuring performance improvements, Figure 5 shows the effective

running times when multiple invocations of the original application are running at the same time.

Because of memory constraints, we could not run more than 8 CPU instances of the application at the

same time.

Figure 5. Windows effective running times for the original version.

Figure 6 shows effective running times when different numbers of instances, with varying number of

threads, are executed. Native threads were used for these tests because under Windows OpenMP did

not provide a clear performance advantage. In our tests, the running times of the concurrent instances

were very close, so multiplying the number of instances by the effective running time provides an

approximate value for the running time of each instance.

122

124

126

128

130

132

134

136

2

instances

4

instances

8

instances

12 threads each

12 threads each

Figure 6. Windows effective running times with native threads.

There is a clear trend in the effective running times. When underutilizing the hardware, effective

running times are long because few simultaneous instances are being processed. As the number of

simultaneous instances increases, effective running time decreases until it reaches a plateau, which

indicates the computer’s resource saturation. In this mode, effective running times are close, but it

should be noted that with more instances, individual instances take longer to run.

From Figure 6, the optimum configuration seems to be running 4 instances with one thread each,

because it provides a low effective running time, and each instance is finished sooner than when more

instances are run simultaneously. This observation is easy to justify. On an N core CPU, running N

instances in a single thread lessens competition for resources among the threads.

We tried the application with OpenMP threads too, with the results appearing in Figure 7. As can be

seen, using many OpenMP threads simultaneously results in a degradation of performance. This is

another symptom of OpenMP threads’ bigger overhead. Our tests would consistently fail when running

8 instances with 12 threads each because of a lack of resources on the test machine.

Figure 7. Windows effective running times with OpenMP threads.

0

20

40

60

80

100

120

2 instances

4 instances

8 instances

0

50

100

150

200

250

1

thread

each

2

threads

each

4

threads

each

8

threads

each

12

threads

each

2 instances

4 instances

8 instances

Under Windows, OpenMP’s performance generally degrades as the number of threads in each

instance increases, while the running times with native threads remain relatively stable after a

saturation of computing resources.

In a production environment, different instances may be of different importance levels. For example,

high priority customers’ instances may get priority over others. Figure 7 indicates that if we want some

jobs to take shorter to run, we should run fewer simultaneous instances, but with more threads each. In

this case system resources will be underutilized.

4.1 Windows vs. Linux

Determining the effects of the operating system and compiler on the application’s performance is

also of interest. Different operating systems’ schedulers, memory allocation policies, and I/O driver

performance can affect the running times.

The same PC used for the Windows tests was booted into Linux, and we performed the same tests.

Figure 8 compares the running times of the original version of the application, hard-coded to run with 12

threads, and the optimized version using pthreads and OpenMP.

Figure 8. Linux running times of the application with different number of cores

The application performs better under Linux than Windows. Also, OpenMP’s performance scales

better under Linux.

As a baseline, Figure 9 shows the effective running times when multiple invocations of the original

application are running simultaneously under Linux.

0

20

40

60

80

100

120

Original code

Optimized/Native

threads

Optimized/Open

MP

Figure 9. Linux effective running times for the original version.

Because of memory constraints, running more than 6 instances of the original application was not

possible under Linux. As can be seen, running multiple instances of the original application reduces the

running time, but performance is still less than that of the optimized versions.

Figures 10 and 11 shows the running times for multiple simultaneous invocations of the optimized

application, when using native and OpenMP threads respectively.

Figure 10. Linux effective running times for the optimized version with native threads.

Figure 11. Linux effective running times for the optimized version with OpenMP threads.

84

86

88

90

92

2 instances 4 instances 6 instances

12 threads each

12 threads

each

0

10

20

30

40

50

60

1

thread

2

threads

4

threads

8

threads

12

threads

2 instances

4 instances

8 instances

0

50

100

150

200

250

300

350

400

450

1

thread

2

threads

4

threads

8

threads

12

threads

2 instances

4 instances

8 instances

With OpenMP under Linux, there is a “resonance” effect happening when each application uses 4

threads. This effect was seen in all of our many trials. Since this effect was not seen under Windows, the

cause may be the operating system’s cache management and thread scheduling issues. It is interesting

to note that when running multiple instances at the same time, OpenMP has no advantage over native

threads. We observed that CPU utilization was generally higher when using OpenMP, implying more

overhead with OpenMP threads. This observation explains why having many OpenMP threads could

reduce performance.

4.2 Single precision computing

We performed a number of tests and determined that our application can utilize single precision

variables without loss of accuracy. The reason behind this is the limitation on sampling frequency in our

application. Due to the limited resolution of the samples coming from the front-end, the receiver is not

losing any information by performing signal processing operations in single precision. As a result we

decided to use single precision variables in both IPP and GPU computations.

With IPP, we noticed a marked performance improvement when switching from double precision to

single precision. This is against the popular belief that double and single precision performances are

comparable in modern CPUs, but there are a number of reasons for this improvement. Other than

smaller data sizes which fit better in L1 caches, IPP’s vectorized instructions can operate on four single

precision variables in parallel, vs. 2 double precision variables [15]. On a GPU, using single precision

variables allows faster data copying and cache utilization. Additionally, most current GPUs process single

precision variables faster than double precision variables.

5. Performance on GPUs

GPU programming currently needs considering certain limitations compared with CPU programming.

For example, there is usually less memory available on a GPU, and access to a GPU’s computing and

memory resources involves copying code to execute on the GPU (called a kernel) and data between the

CPU and GPU memory. Given our requirement for preserving the multi-threaded architecture of the

code, we could not follow the usual route in GPU software design, which is to transfer all data to the

GPU, process them using one or more kernel executions, and return the results to CPU-accessible

memory, all done within a single CPU thread. Instead, we mirrored the multi-threaded CPU code by

identifying the sections of code that were utilizing IPP to process data, and re-implementing the IPP

functions with equivalent GPU code.

The CPU code utilizes FFT for frequency domain calculations, and vector multiplications and dot

products for time domain computations. Such operations, especially when performed on large sets of

data, are good candidates for running on a GPU. We started our work by using libraries such as CUFFT,

NPP, CUBLAS [11], and Thrust [7] instead of writing our own custom GPU kernels. The main benefit of

doing so was a much shorter development time. With the exception of CUFFT, we noticed a number of

problems with these libraries. NPP and Thrust do not support a multi-threaded application in their

current versions, so different threads cannot issue GPU operations to be executed in parallel. They do

not support CUDA Streams which, as explained below, form the mechanism for identifying GPU code

that can be executed in parallel on a GPU. CUFFT does support streams, so we used it for frequency

domain computations. CUBLAS supports streams too, but we achieved better performance with our

custom kernels. These kernels support streams and perform pair-wise vector multiplication and dot-

product for time domain calculations.

Another problem we encountered with GPU computing is high latency in memory copy operations.

Our application needed to perform operations on a relatively small amount of data (1 millisecond, or

about 8000 single precision variables) at a time. Due to high latency, the time it takes to copy the data to

the GPU, and copy the results back, hinders gains from faster computation. We tried to counter this

effect by keeping intermediate results on the GPU as much as possible. We also tried to find algorithmic

ways of increasing the size of processed data (e.g. batch processing of signals for the entire coherent

integration time) to offset the performance losses due to latency [10, 13].

Ironically, the main obstacle to obtaining good speedup with a GPU was the same mechanism for

obtaining good speed up on a CPU: multi-threading. Multiple CPU threads active in the application

would issue FFT and vector operations independently of each other to the GPU. In a CPU environment

the operations can run in parallel in multiple cores, but pre-K20 GPUs have an inherent limitation on the

number of threads that can use them at the same time. With most GPUs this limit is one kernel and copy

operation at a time. As a result, the many threads of the application have to take turn to copy small

amounts of data and run their GPU code, so the GPU becomes a point of serialization. The stream

mechanism in a GPU is used to indicate potential parallelism on the GPU [5]. Different instructions

running in different streams can potentially run in parallel, but current GPUs ignore this hint from the

programmer because of their hardware cannot run multiple streams at the same time.

Starting with Kepler K20 devices, it is possible to run multiple kernels and copy operations in parallel

on the GPU, provided they are issued to different streams. Kepler GPUs with Hyper-Q technology [4],

can perform up to 32 operations at the same time. This will potentially remedy the problem of the GPU

becoming a serialization bottleneck. Lower GPUs do not have this capability, but can still overlap

memory copying and kernel executions, so they support a limited form of parallelism, which we

exploited by staggering copy and compute operations from different streams in our code and increased

GPU performance. However, GPU performance was still not satisfactory. Figure 12 shows the results of

profiling a short run of the application. Different threads are performing short bursts of GPU work,

which cannot compensate for the overhead of data copy. The bulk of the computation is still done on

the CPU.

Figure 12. Results of profiling a short run of the application.

We ran the GPU version of the application and recorded the results.

Linux results. The limited amount of memory in our GPU card limited the number of concurrent

executions to two. In one series of runs, we used the GPU to pro

and time domain (custom GPU kernels) sections of the code. The results appear in

tried the application with the more

results appearing in Figure 14.

Figure 13. Linux effective running times

0

200

400

600

800

1000

1200

1400

. Results of profiling a short run of the application.

We ran the GPU version of the application and recorded the results. For brevity we only report the

The limited amount of memory in our GPU card limited the number of concurrent

executions to two. In one series of runs, we used the GPU to process both the frequency domain (cuFFT)

kernels) sections of the code. The results appear in

tried the application with the more-efficient frequency domain section being run on the GPU, with the

unning times with both Frequency and time domain calculations on GPU

1 instance

2 instances

. Results of profiling a short run of the application.

For brevity we only report the

The limited amount of memory in our GPU card limited the number of concurrent

cess both the frequency domain (cuFFT)

kernels) sections of the code. The results appear in Figure 13. We then

efficient frequency domain section being run on the GPU, with the

ith both Frequency and time domain calculations on GPU

1 instance

2 instances

Figure 14. Linux effective running times with Frequency domain calculations only on GPU

In both runs native CPU threads were used. Resulting running times indicate an advantage when

running multiple instances of the application on the GPU. GPU utilization values when running one and

two instances was close, implying that most of the speedup is due to reduction of the CPU portion of the

code’s running time, with the GPU still being the point of serialization.

Another observation is that performing time-domain operations on the GPU results in lower

performance. The reason is that the speedup of processing 1 ms worth of data on a GPU is not enough

to cover the overheads inherent in using a GPU. One solution for improving GPU performance, both for

time domain and frequency domain operations is to execute fewer, but bigger operations on the GPU.

For example, to perform a single FFT operation on 10 different sets of inputs one can use the pseudo

code in Listing 3 (a) or (b). In (a), copying data to and from the card, and performing an FFT operation

are done N times in independent threads. In (b), the input are coalesced and copied to the GPU once,

FFT is performed on all of them using the batch mode (supported by the CUFFT library), and the results

are brought back to CPU memory in one operation, thus reducing data transfer latency. The other

benefit of doing so is that there is a single invocation of FFT on the GPU, reducing function invocation

overhead.

Each of the N independent threads {

 Copy data to graphics card

 Perform FFT on GPU

 Copy the results back

}

One single thread {

 Place data for all N FFTs in contiguous memory

 Perform FFT in batch mode.

 Copy back all N FFTs results to CPU memory

}

Listing 3. (a) Many independent GPU operations. (b) Batch mode operation

The problem with the approach in Listing 3(b) is that implementing it would require a major change

in the architecture of the software. Given our requirements, doing so was not possible, so only the

algorithm in 3(a) was implemented.

0

50

100

150

200

250

300

1 instance

2 instances

6. Summary and future work

In this project we used different optimization techniques to decrease software GNSS application’s

running time. Working within the constraints of this application, we achieved different degrees of

performance gains. Our results on the CPU showed a considerable speedup. We observed that

compared to OpenMP, native CPU threads generally provide better performance and a graceful

performance drop when compute resources are saturated. However they are harder to implement and

tune. Our GPU results beat that of the original code, but lag behind the optimized CPU version.

We ran the same performance tests as above in an Amazon cloud environment. The outcomes,

omitted to keep the paper of reasonable length, match what we report in this paper.

Going forward, we are interested in measuring the performance of new-generation GPUs with

multiple execution units. Our code is designed with streaming support, and theoretically should benefit

from such GPUs. It would also be interesting to see how effective alternative many-core solutions would

be for an application such as ours. One such alternative is Intel’s Xeon Phi. It contains many (e.g. 32)

conventional CPU cores, and thus provides a more familiar environment for high performance

computing. A potential problem with such CPU-based solutions comes from Amdahl’s law, which is the

observation that obtaining appreciable speedup as the number of cores increases is usually a challenge

[2], so the effectiveness of such solutions should be verified.

We are also interested in investigating other approaches to increasing GPU performance and

utilization by algorithmic improvements, including but not limited to performing low-level signal

processing tasks like Doppler removal on GPGPUs.

Acknowledgment

We are grateful to Tecterra Inc. for funding the project this research is based on as part of their Industry

Investment Program (IND).

References

[1] Bartunkova, I., Eissfeller, B., Massive Parallel Algorithms for Software GNSS Signal Simulation using

GPU, Institute of Navigation (ION) GNSS conference, 2012.

[2] Breshears, C., The Art of Concurrency: A Thread Monkey's Guide to Writing Parallel Applications,

O’Reilly, 2009.

[3] Charkhandeh, S., Petovello, M.G. , Watson, R., Lachapelle, G., Implementation and Testing of a Real-

Time Software-Based GPS Receiver for x86 Processors, Proceedings of ION NTM 2006 (Monterey, CA, Jan

18-20), 2006.

[4] Cook, S., CUDA Programming: A Developer's Guide to Parallel Computing With GPUs, Elsevier Inc,

2013.

[5] Farber, R., CUDA Application Design and Development, Elsevier Inc, 2011.

[6] Haak, U., Büsing, H.G., Hecker, P., Performance Analysis of GPU based GNSS Signal Processing,

Institute of Navigation (ION) GNSS conference, 2012.

[7] Hwu, W.W., GPU Computing Gems, Volume 2, Elsevier, 2012.

[8] Karimi, K., Dickson, N.G., Hamze, A., performance comparison of CUDA and OpenCL, The Computing

Research Repository (CoRR), arXiv:1005.2581, 2010.

[9] Knežević, A., O’Driscoll, C., Lachapelle, G., Co-Processor Aiding for Real-Time Software GNSS

Receivers, International Technical Meeting of the Institute of Navigation (ION), 2010.

[10] Petovello, M.G., O’Driscoll, C., Lachapelle, G., Borio, D., Murtaza, H., Architecture and Benefits of

an Advanced GNSS Software Receiver, Journal of Global Positioning Systems, Vol. 7, No. 2, 2008.

[11] Sanders, J., Kandrot, E., CUDA by Example: An Introduction to General-Purpose GPU Programming,

Addison-Wesley Professional, 2010.

[12] Taylor, S., Intel Integrated Performance Primitives: How to Optimize Software Applications Using

Intel IPP, Intel Press, 2004.

[13] Tsui, J.B., Fundamentals of Global Positioning System Receivers: A Software Approach, Wiley, 2004.

[14] CUDA Toolkit, https://developer.nvidia.com/cuda-toolkit, accessed August 2013.

[15] Signal Processing on Intel Architecture: Performance Analysis using Intel Performance Primitives,

http://www.intel.com/content/dam/doc/white-paper/signal-processing-on-intel-architecture.pdf,

accessed August 2013.

