

Dieses Dokument ist eine Zweitveröffentlichung (Verlagsversion) /

This is a self-archiving document (published version):

Diese Version ist verfügbar / This version is available on:

https://nbn-resolving.org/urn:nbn:de:bsz:14-qucosa2-729302

Philipp Rösch, Wolfgang Lehner

Optimizing Sample Design for Approximate Query Processing

Erstveröffentlichung in / First published in:

International Journal of Knowledge-Based Organizations. 2013, 3 (4), S. 1 – 21 [Zugriff am:
05.11.2020]. IGI Global. ISSN 2155-6407

DOI: https://doi.org/10.4018/ijkbo.2013100101

https://nbn-resolving.org/urn:nbn:de:bsz:14-qucosa2-729302
https://doi.org/10.4018/ijkbo.2013100101

International Journal of Knowledge-Based Organizations, 3(4), 1-21, October-December 2013 1

Copyright © 2013, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

ABSTRACT
The rapid increase of data volumes makes sampling a crucial component of modern data management sys-
tems. Although there is a large body of work on database sampling, the problem of automatically determine
the optimal sample for a given query remained (almost) unaddressed. To tackle this problem the authors
propose a sample advisor based on a novel cost model. Primarily designed for advising samples of a few
queries specified by an expert, the authors additionally propose two extensions of the sample advisor. The first
extension enhances the applicability by utilizing recorded workload information and taking memory bounds
into account. The second extension increases the effectiveness by merging samples in case of overlapping
pieces of sample advice. For both extensions, the authors present exact and heuristic solutions. Within their
evaluation, the authors analyze the properties of the cost model and demonstrate the effectiveness and the
efficiency of the heuristic solutions with a variety of experiments.

Optimizing Sample Design for
Approximate Query Processing

Philipp Rösch, Business Intelligence Practice, SAP Research, Dresden, Germany

Wolfgang Lehner, Database Technology Research Group, Dresden University of Technology,
Dresden, Germany

Keywords: Advisor Tools, Approximate Query Processing, Computer Science, Information Systems,
Random Sampling, Sampling Error Types

INTRODUCTION

Recent studies revealed a rapid multidimen-
sional growth in current data warehouse
databases: The size of the data triples every
two years and the number of queries doubles
each year. Additionally, the complexity of the
queries increases —a lot of queries are complex
aggregation queries with joins. These queries
are of explorative nature, that is, users browse
through the data and search for interesting
regions. (Winter, 2008)

In order to make the data exploration rea-
sonably applicable, short response times are
essential. However, the rapid growth of data
warehouse systems conflicts with the need for
short response times. A common solution for
this problem is the use of synopses. Synopses
are concise representations that reflect the
characteristics of the underlying data, and they
allow for approximate query processing with
significantly shorter response times. In the
database literature, several kinds of synopses
have been proposed like histograms (Ioannidis
& Poosala, 1999; Poosala, Ioannidis, Haas, &
Shekita, 1996), wavelets (Chakrabarti, Garo-DOI: 10.4018/ijkbo.2013100101

Copyright © 2013, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

2 International Journal of Knowledge-Based Organizations, 3(4), 1-21, October-December 2013

falakis, Rastogi, & Shim, 2000; Matias, Vitter,
& Wang, 1998) or random samples (Vitter,
1985). From these synopses, random samples
have proven to be a good choice: They provide
probabilistic error bounds and they can easily
be integrated into database systems. Initially,
samples were mostly used for query optimiza-
tion. In the last 10 years, however, the focus of
database sampling has shifted more and more
towards approximate query processing. Here,
several techniques for online sampling have
been proposed (Hellerstein, Haas, & Wang,
1997; Haas & Hellerstein, 1999; Jermaine, Do-
bra, Arumugam, Joshi, & Pol, 2005; Jermaine,
Arumugam, Pol, & Dobra, 2007). However, the
major part of research focuses on precomputed
and materialized —that is, offline— sampling
since online sampling has high overhead when
drawing a sample and is only applicable for a
small subset of queries.

In the field of offline sampling, a multi-
tude of different sampling schemes have been
proposed that are optimized for different query
types, like aggregation (Chaudhuri, Das, Datar,
Motwaniand, & Narasayya, 2001; Rösch, Ge-
mulla, & Lehner, 2008), group-by (Acharya,
Gibbons, & Poosala, 2000; Babcock, Chaud-
huri, & Das, 2003; Rösch & Lehner, 2009) or
foreign-key joins (Acharya, Gibbons, Poosala,
& Ramaswamy, 1999; Gemulla, Rösch, &
Lehner, 2008). While those sampling schemes
provide great solutions for single (groups of)
queries, the more general problem of automatic
sample selection for an entire workload of a
database remains almost unaddressed.

In this article, we address the problem of
finding a set of samples that is to be materialized.
We focus on simple random samples as those
samples are easy to use and easy to maintain.
Simple random samples are very general and
can be used for a broad range of queries. Our
solution is a sample advisor that suggests a
set of samples for a set of queries specified
by an expert. The sample advisor is based on
a novel cost model to evaluate a sample for a
given query. This cost model allows us to give
advice on a sample for an individual query. To
ease the usage of the sample advisor, we further

propose an extension to utilize recorded work-
load information. In this scenario, the sample
advisor selects from all the pieces of sample
advices those that minimize the runtime of the
workload and fit into a given memory bound.
With a second extension, we are targeting the
effectiveness of the sample advisor. Here, we
consider the merge of samples in case of over-
lapping pieces of sample advice. As a result,
more of the advised samples fit into the memory
bound—the available memory is used more
effectively—and thus, more queries can be
answered very fast based on samples.

This article is an extended version of a
previously published conference paper (Rösch
& Lehner, 2010); we make the following (partly
new) contributions:

• We analyze the database operations in the
context of sample-based query processing.

• We propose a cost model for the evaluation
of a sample for a given query. With this
cost model, we can give a piece of sample
advice for an individual query.

• Based on the cost model, we present our
sample advisor in the setting of representa-
tive input queries specified by an expert.

• We propose two extensions for the sample
advisor to ease the usage and to increase
the effectiveness. For both extensions, we
present an exact and a heuristic solution.

• With a variety of experiments, we analyze
the properties of the cost model and com-
pare the proposed algorithms. We further
demonstrate the effectiveness and the ef-
ficiency of the heuristic solutions.

At the end of this article, we discuss
related work and summarize the article in the
conclusion. There, we also provide an outlook
on future work.

DATABASE OPERATIONS
AND SAMPLING

In this section, we discuss the interaction of
database operations and (offline) sampling.

Copyright © 2013, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

International Journal of Knowledge-Based Organizations, 3(4), 1-21, October-December 2013 3

We specify both the prerequisites for applying
the operation on a sample and the impact on
the query result.

Select

Selections define specific ranges of the data that
are used for further processing or returned to the
user. When applied to a sample, the input of the
selection is only a subset of the base data, and
thus, the result of this operation may be small
or even empty —especially for predicates with
high selectivity. Consequently, selections lead
to incomplete (intermediate) results.

Project

A projection as part of an approximate query
does not differ from a projection of an exact
query since it only reduces the number of at-
tributes of the result. Hence, as long as all the
required attributes are in the sample, the pro-
jection may be executed on the sample without
hesitation. There is no impact on the quality of
the approximate result.

Join

As for selections join operations select ranges
of the processed input data based on a predicate,
that is, the join condition. Unfortunately, the
problem of sampling and joins is more delicate
as in general a join of two samples does not
result in a sample of the join of the two base
tables (Chaudhuri, Motwani, & Narasayya,
1999). However, in the currently considered
data warehouse scenario, tables are joined along
predefined foreign-key relationships. Here, us-
ing samples of pre-computed joins or samples in
the style of Join Synopses (Acharya, Gibbons,
Poosala, & Ramaswamy, 1999) allow for valid
samples. Hence, we can use sampling and joins;
the join result on samples is incomplete.

Aggregation

Aggregations compute an aggregate from the
underlying data. For a sample, the aggregate is
computed on a subset of the data, and thus, the

result is an estimate of the exact value. That is,
the result comes with an estimation error and
hence, it is inexact.

Group-By

Group-By operations segment the data into
groups. In a sample, groups are represented
by a subset of their elements. However, some
groups—especially small ones—may be miss-
ing in the sample. Consequently, these groups
are missing in the result; the result is incomplete.

Order-By

With Order-By operations, the output order of
the result is specified. As for projections, there
is no impact on the quality of the approximate
result.

To summarize, we observe two kinds of
errors for queries on samples as the approximate
results are computed based on only a subset of
the data: Firstly, the tuples that are not included
in the sample are missing in the (intermediate)
result, like for selects or joins, or may even result
in completely missing groups; hence, the ap-
proximate result may be incomplete. Secondly,
for aggregations, values of tuples included in
the sample are extrapolated according to the
sampling fraction while values of missing tuples
do not contribute to the estimate; hence, the
approximate result may be inexact.

A COST MODEL FOR
SAMPLE EVALUATION

We now define what a sample for an individual
query should look like. Finding a good sample
is related to the physical design problem for
indexes or materialized views. However, in the
case of samples, we have to face up to a new di-
mension: As shown above, we additionally have
to take a certain error—namely incompleteness
and inexactness—into account. Aiming for a
cost model, with a sample we want to achieve
large decreases in the response times, and the
memory cost should be low. These two goals
ask for small sample sizes. At the same time, the

Copyright © 2013, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

4 International Journal of Knowledge-Based Organizations, 3(4), 1-21, October-December 2013

estimates should be close to the actual values,
and the results should be preferably complete.
Clearly, these goals ask for large sample sizes.
Hence, there is a conflict between the goals
which has to be reflected by the cost model.

As a basis, we take the cost model of the
DB2 Design Advisor (Zilio, et al., 2004) (bold
part) and extend it by the approximation-related
parts identified in this article (non-bold part).
The resulting cost model computes a weight
for a sample by:

weight

completeness

e

=
⋅

⋅
decrease in response time

memory cost sstimation error

As can be seen, we append completeness
(that we want to have) to the numerator and
estimation error (that we don’t like to have) to
the denominator. We now analyze the individual
properties in more detail. Let N be the cardinal-
ity of the base data R, with R ={t1, t2,…,t|R|}.
Further, let n be the cardinality of the sample S.
Now, the sampling fraction f can be expressed
as f=n/N. Moreover, let L denote the length of
a tuple in the base data, while l is the length of
a tuple in the sample.

Example 1: Consider the dataset shown
in Table 1. It consists of 10 orders placed by 3
different customers; for each order the prices

are given. For simplification, we say that the
length of each attribute is 1 for all our examples.
Hence, for the example dataset, we have N=10
and L=3. Now, we want to find the optimal
(simple random) sample for the following query:

SELECT customer, AVG(price)
FROM orders
GROUP BY customer

This query computes the average order
price of each customer.

Decrease in Response Time

For estimating the decrease in the response time,
we make the simplified assumption that both
the exact and the approximate query use table
scans. Indeed, this assumption often holds in
practice for the complex queries focused on in
this article. With this assumption the decrease in
the response time ∆t is proportional to N-n, and
the relative decrease ∆trel(n) can be expressed as:

∆t n
n

N
f

rel () = − = −1 1� .

A value of ∆trel(n)=0.9 indicates that the
response time can be reduced to 10% by using
the sample instead of processing this query

Table 1. Orders with customer and prices

ID CUSTOMER PRICE

1 Smith 50

2 Smith 75

3 Jones 20

4 Jones 25

5 Jones 15

6 Brown 25

7 Brown 40

8 Brown 30

9 Brown 20

10 Brown 50

Copyright © 2013, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

International Journal of Knowledge-Based Organizations, 3(4), 1-21, October-December 2013 5

exactly, that is, we have a runtime benefit of
90%. Note that this function is independent
from the dataset. It linearly decreases with
increasing sample size.

Completeness

Let G be the set of groups defined by the current
query. Then, gi∈G, i=1…|G|, denotes an indi-
vidual group and |gi| denotes its size. Now, the
probability p that at least one tuple of a group gi
is included into a sample of size n is given by:

p g n
N g

N g n

N n

Ni

i

i

,
!

!

!

!
.() =

−()
− −()

−()

Consequently, the expected number of
groups in the sample is:

G n p g n
sample

i

G

i() = ()
=
∑
1

, ,

and the completeness of an approximate group-
by query is computed by:

c n
G n

G

sample() =
()

.

The computation of the completeness for
predicates (selections and joins) is much easier.
Here, individual tuples are returned whose
inclusion into the sample only depends on f.
Hence, the completeness for predicates simply
evaluates to c(n) = n/N = f.

Example 2: For the example query, we
have 3 groups with |g1=2|, |g2=3|, and |g3=5|.
The completeness for different sample sizes is
given in Figure 1.

Memory Cost

The memory cost of a sample is made up of
the number and the length of the tuples in the
sample. As samples should be small, only re-
quired attributes are included into the sample.
Hence, the absolute memory cost is given by
mabs(n)=n∙l. As for the decrease in response
time, we can use the relative memory cost,
which is given by

m n
n l

N Lrel () =
⋅
⋅

� .

Figure 1. Completeness

Copyright © 2013, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

6 International Journal of Knowledge-Based Organizations, 3(4), 1-21, October-December 2013

A value of mrel(n)=0.1 indicates that the
sample requires only 10% of the size of the
base data.

Example 3: Figure 2 shows the memory
cost for the example query. Here, only 2 of the
3 attributes of the base data are included into
the sample.

Estimation Error

Let a1,…,al be the attributes that are aggregated
in the current query. We now show how the
estimation error for these aggregates can be
computed. We show this for the AVG aggregate;
the computation for the SUM aggregate is simi-
lar. For COUNT aggregates, the computation
has to be adapted accordingly.

Let i be the index for individual tuples of
R and j be the index for attributes of R. Then,
the quantity tij represents the value of attribute
aj of tuple ti. Now, the average value of the j-th
attribute is given by

µ
j

t R
ijN
t

i

=
∈
∑� ,
1

and the standard deviation can be expressed as

σ µ
j

t R
ij jN
t

i

= −()
∈
∑� .
1 2

Next, let

RSD
j

j

j

=
σ

µ

denote the relative standard deviation of attri-
bute aj. Note that the relative standard deviation
is not defined for μj=0 and may get very large
for μj≈0; thus, in our implementation, we set
RSDj=σj whenever µ

j
� � , −

1 1 . In contrast to

the standard deviation, the RSD is unitless and
can be compared across multiple attributes.

For a uniform sample of size n,

ˆ �µ
j

t S
ijn
t

i

=
∈
∑
1

is an unbiased estimate of μj(R). Moreover, the
standard error of this estimate is:

σ
σ

σµ̂ �.
j
n

n

n

N n N
j

j() = −

= −

2

1
1 1

Figure 2. Memory cost

Copyright © 2013, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

International Journal of Knowledge-Based Organizations, 3(4), 1-21, October-December 2013 7

As above, the relative standard error can
be used to compare estimation errors across
multiple attributes. Since µ̂

j
 is unbiased, we

can use μj instead:

RSE n
n

RSD
n Nj

j

j

jˆ

ˆ
�.µ

µσ

µ
() =

()
= −

1 1

Now, the overall estimation error over all
the aggregation attributes is given by

RSE n
l
RSE n

j

l

jˆ ˆ
�.µ µ() = ()

=
∑
1

1

For queries with Group-By operations, the
RSE is first computed for each group and then
averaged over all groups.

Example 4: Given our example query, we
get the following relative standard deviations:
20.0% for the first group, 20.4% for the second,
and 32.6% for the third one. The resulting rela-
tive standard error for different sample sizes is
shown in Figure 3.

Summing Up

We now put the pieces together. With the indi-
vidual equations given above, the weight w(n)
of a sample of size n is computed by:

w n
t n c n

m n RSD n
rel

rel

() = () ⋅ ()
() ⋅ ()

� �.
∆

Example 5: For the example query, Figure
4 shows the weight of the sample for different
sample sizes with a maximum for n=2. This
curve emphasizes that the sample size should
be chosen with care: Small samples have low
weights due to large estimation errors and many
missing tuples, while large samples suffer from
low runtime benefits and high memory costs. □

A deeper look at the weight computation
reveals two shortcomings: First, the estimation
error only influences the amplitude of the curve
but not its position and second, the maxima of
different samples differ both in amplitude and
position, which makes comparisons of weights
impractical. As a solution, we propose the fol-
lowing normalization:

w n
w a n

a
() =

⋅()

Figure 3. Relative standard error

Copyright © 2013, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

8 International Journal of Knowledge-Based Organizations, 3(4), 1-21, October-December 2013

with a=max(w(n)). This normalization is based
on the observation that high deviations of the
data —and thus, large estimation errors— result
in low weights. However, in order to provide
good estimates, we need large samples for data
with high deviations.

Example 6: Consider a dataset consisting
of N=100 tuples and 10 groups with 10 tuples
each. Figure 5 shows the sample weights for
varying relative standard deviations of the base
data without normalization. As can be seen,
this variation only influences the amplitude,
and larger RSDs result in lower weights. The

normalized weights are given in Figure 6. Here,
larger relative standard deviations result in larger
optimal sample sizes.

A SAMPLE ADVISOR
FOR APPROXIMATE
QUERY PROCESSING

Based on the proposed cost model, we next
introduce our sample advisor. The goal of this
advisor is to recommend samples for some
given queries. Those queries could either be
some carefully chosen queries representing

Figure 4. Weight for different sample sizes

Figure 5. Impact of the relative standard deviation

Copyright © 2013, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

International Journal of Knowledge-Based Organizations, 3(4), 1-21, October-December 2013 9

the expected workload or it could be recorded
workload information. We start with address-
ing the first case and show how to also support
the second case with our first extension of the
sample advisor.

As mentioned, we primarily are targeting
an expertise-based sample configuration. In
this setting, an expert identifies the (few) most
expensive analytical queries and provides them
to the sample advisor; clearly, the number of
queries depends on the memory that is avail-
able for the samples. Now, our sample advisor
computes for each of the given queries a piece
of sample advice. Such a piece of sample advice
SA comprises the base data R, the attributes A
to be included into the sample and the sample
size n, thus SA=(R,A,n). The first two values
can easily be derived from the query; the last
one is determined with the cost model given
above. Hence, in order to compute the piece
of sample advice for a given query q, we first
set R to the base data of q and A to the set of
attributes referenced by q. Then, we determine
the sample size with the following two steps:

1. Scan the base data of the query once and
compute for each group the relative stan-
dard deviation and the size.

2. Iterate over different sample sizes and
compute the weight. Remember the sample
size with the largest weight.

These two steps are repeated for all of the
given queries, and finally, the optimal expertise-
based sample configuration SCE, i.e., the result
of the sample advisor, consist of all the pieces of
sample advice SAi for the expert-given queries qi.

Considering the effort of the sample advi-
sor, we see that the first step only depends on
the cardinality of the base data, and thus, its
effort is fixed. The effort of the second step,
however, depends on the number of regarded
sample sizes. Here, some considerations may
reduce the effort: First, the weight function
has a single maximum. This maximum can
efficiently be found by algorithms like hill
climbing or binary search. Second, we can
optionally define upper and lower bounds for
the sample sizes since, for example, samples
smaller than 0.1% are expected to provide very
imprecise results or samples larger than 10%
are considered as too expensive and the benefit
is low. In order to further reduce the effort of
the weight computation itself, we can use the
completeness for sampling with replacement
as an approximation (and lower bound) for the
completeness of sampling without replacement:

�c
G

g

ni

G
i

n

= − −

=
∑� �.

1
1 1

1

Figure 6. Impact of the relative standard deviation (normalized)

Copyright © 2013, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

10 International Journal of Knowledge-Based Organizations, 3(4), 1-21, October-December 2013

With �c , no expensive factorials are re-
quired. In this equation, the innermost part is
the probability of the event that with n draws
no tuple of group gi is chosen. Now, the comple-
mentary probabilities (at least one tuple of gi
is drawn) sum up to the expected number of
groups in the sample, and we get the complete-
ness be dividing the expected number of groups
in the sample by the number of groups in the
base data.

Extension I: Workload-based
Sample Configuration

Besides relying on an expert one common
approach is to utilize recorded workload in-
formation. Clearly, in such a case we cannot
materialize the samples for all the queries. We
thus propose the following extension of our
sample advisor. Note that this extension does not
result in an optimal solution but shows how the
approach proposed above can easily be adapted
to workload-based scenarios.

Let the workload W be a (multi-) set of
queries with W={q1,…,qk}. Before we compute
the workload-based sample configuration SCW,
we preprocess the workload by eliminating all
but aggregation queries so that the workload
only consists of queries relevant for approxi-
mate query processing. Further, the multiset of
queries is transformed to a set by replacing the
queries by (query, counter) pairs and merging
duplicate queries. During this merge, predicates
of the queries are ignored. The reason for this is
that samples should be very general; otherwise,
the samples would be similar to materialized
views and we would severely restrict their
applicability. After the merge, we get WAQP =
{(q1,c1),…,(ql,cl)}.

With a memory constraint M, we get the
following two steps:

1. Compute the optimal sample for each query
of WAQP. The result is a candidate set with
pieces of sample advice C = {SA1,…,SAk}.

2. Compute the optimal sample configuration
SCW of size M based on the candidate set
C from the first step.

Obviously, with the first step we utilize
our weight function and the computation of the
expertise-based sample configuration. For the
second step, we need a measure to compare
different configurations. As a desirable sample
configuration is characterized by a preferably
low overall runtime of the workload, we use
this overall runtime as our measure and try to
minimize it. As before, we assume table scans,
and since we are not interested in actual response
times, we simply use r=n∙l as the response time
for approximate queries and r=N∙L for all
queries with no sample in SCW as they have to
be answered with the base data. Now, the mea-
sure of a sample configuration is:

 SC r
q W

i

i AQP

() =
∈
∑� �.
�

The goal of the second step is to find the
sample configuration that fits into M and
minimizes . Obviously, the exact solution
is an instance of the knapsack problem, which
is known to be NP-hard.

Optimal Solution: To find the optimal
solution (based on C), we consider all subsets
C' of the candidate set C that fit into M and
compute . The final sample configuration is
the subset with the minimal measure .

Greedy Solution: The basic idea of the
greedy approach is to successively add the most
valuable candidates to the sample configuration
until the memory bound is hit. We first order
the candidate set C by the following score in
descending order:

score SA c
N L

n li i
i i

i i

() = ⋅
⋅

⋅
� �.

This score is composed of the query counter
to account for the frequency of the sample us-
age—the more often a sample is used the more
beneficial gets its materialization—and the
inverse of the relative memory cost. The second
part of the score makes samples with smaller
optimal sampling fractions to be considered

Copyright © 2013, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

International Journal of Knowledge-Based Organizations, 3(4), 1-21, October-December 2013 11

more valuable. This is motivated by the fact that
those samples have low storage requirements
and offer large response time benefits.

Next, we start with an empty sample
configuration SCW and successively add the
candidates to SCW in the given order until
the next candidate does not fit into M. At this
point, we allow to skip individual candidates
in order to add those that still fit into M even if
their score is lower. Once the memory bound
is hit or none of remaining candidate is small
enough to still fit into M we have our final
sample configuration SCW.

Example 7: Consider 2 relations R1 and R2
with N1=100 and N2=30 as well as L1=5 and
L2=3. With the candidates given in Table 2, let
C = Cordered ={SA1, SA2, SA3, SA4} be the (already
ordered) candidate set. This table also shows
the memory consumption—as defined by n∙l—
and the scores of the candidates given that ci=1
for all qi∈WAQP. Now, let M=40. We succes-
sively add the elements of C to the initially
empty sample configuration SCW. After having
added SA2, the memory consumption of SCW
adds up to 23. Now, SA3 does not fit into M
while SA4 does. Consequently, we skip SA3 and
add SA4. The final sample configuration is SCW
={SA1, SA2, SA4}. The measure of this
sample configuration is

 SC
W() = + + + =8 15 500 4 527.

Extension II: Merging Pieces
of Sample Advice

Besides the ‘simple’ selection of samples, we
propose a second extension that additionally
considers the possibility of merging multiple

pieces of sample advice. This idea is based on
the following observation: In typical OLAP
scenarios, many queries have the same base
data—especially if the predicates are disre-
garded—and the referenced attributes often
overlap. Hence, up to now there are samples
in SCW with the same base data and overlap-
ping attribute sets. In order to use the available
memory more effectively, we consider to merge
those samples. Then, the queries of both samples
can be answered by the single merged sample;
the redundancy in SCW decreases.

Prerequisites for merging two pieces of
sample advice SAi and SAj are the same base
data Ri=Rj as well as overlapping attributes,
i.e., A A

i j
∩ ≠ ∅ . The merged piece of sample

advice SAi+j =(Ri+j, Ai+j, ni+j) is computed by:

• Ri+j=Ri=Rj,
• A A A

i j i j+ = ∪ , and
• ni+j=max(ni,nj).

When merging two pieces of sample advice,
we take the maximum of the sample sizes for
the following two reasons: First, decreasing n
results in (considerably) higher errors (estimation
error and missing tuples) and second, increasing
n has less impact on w than decreasing it.

However, aside from the prerequisites, one
has to verify whether or not a merge is benefi-
cial. Clearly, a query qi of SAi must read Ai+j\Ai
additional attributes and ni+j-ni additional tuples
when using the sample of SAi+j instead of the
sample of SAi. Having in mind, a merge is
only beneficial if the overall runtime of the
workload decreases, and thus, if the merge frees
enough memory to add an additional sample to
SCW.

Table 2. Sample advisor candidates

Piece of Sample Advice Base Data Attributes Sample Size Memory Score

SA1 R1 {A1, A2} 4 8 62.5

SA2 R1 {A3, A4, A5} 5 15 33.3

SA3 R1 {A2, A3, A4} 7 21 23.8

SA4 R2 {A1, A3} 2 4 22.5

Copyright © 2013, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

12 International Journal of Knowledge-Based Organizations, 3(4), 1-21, October-December 2013

Optimal Solution: For the optimal solu-
tion, we consider all possible merges. For each
considered merge, we replace the respective
pieces of sample advice by the merged piece
of sample advice and proceed as in the strategy
without merge. Obviously, this procedure is
very expensive.

Greedy Solution: With the greedy approach
for this extension, we initially proceed as in the
greedy approach without merging given above:
We order the candidate set C by the score
value and start by adding the pieces of sample
advice into an initially empty sample configu-
ration SCW. However, when reaching a candidate
that does not fit into the memory bound M, we
now try to greedily merge individual pieces of
sample advice. Clearly, the goal is to free enough
memory to add the current piece of sample
advice SAi to the sample configuration SCW.
Therefore, we consider all possible merges of
the sample advice currently in SC SA

W i
∪ .

From these merges, we choose the most ben-
eficial one, i.e., the merge that frees the most
memory. In the case of equal memory consump-
tions, we additionally consider the overall
runtime CS() and choose the one with the

minimal CS() . If the available memory is
still too low, we again look for the most ben-
eficial merge, but this time, we replace the two
pieces of sample advice chosen to merge with
the merged piece of sample advice. We repeat
this procedure until either enough memory is
freed or no more beneficial merges are possible.
In the former case, we perform the merges, in
the latter case, we skip the current candidate
and proceed with the next one until all candidates
are considered or the memory bound is hit.
Note, in the greedy merge process, the re-
peated procedure of finding the most beneficial
merge can be done very efficiently —all we
need are the sample sizes, the tuple lengths and
the overlapping attributes of the merge candi-
dates.

Example 8: Consider again the setting of
Example 7. We start by adding SA1 and SA2 to
the initially empty sample configuration SCW.
Next, SA3 is considered. SA3 does not fit into

M and thus, we try to find a merge. Since the
attribute sets of SA1 and SA2 are disjoint, there is
no overlap and we do not merge these pieces of
sample advice. SA3, however, meets the condi-
tion to be merged with either SA1 or SA2 and we
determine the more beneficial merge. For both
SA1+3 and SA2+3, we have mabs=28 and thus, we
also have to consider the overall runtime. With
SA1+3, the overall runtime of q1, q2, and q3 sums
up to r=28+15+28=71, while with SA2+3, the
overall runtime is only r=8+28+28=64. Thus,
we prefer SA2+3 and we have SCW ={SA1, SA2+3}
with a memory consumption of 36. In the next
step, we add SA4 to SCW, and our final sample
configuration is SCW ={SA1, SA2+3, SA4}. For
this sample configuration, we get

 SC() = + + + =8 28 28 4 68 ,

which is significantly lower —and thus, bet-
ter— than SC() = 527 of the greedy ap-
proach without merging pieces of sample advice.

EXPERIMENTS

We ran a variety of experiments in order to ana-
lyze the cost model and to compare the strategies
for the construction of workload-based sample
configurations. With the evaluation of the cost
model, we implicitly evaluate the properties
of the expertise-based sample advisor. For the
workload-based sample configurations, we
compared the strategy without merging samples
(NoMerge) with the strategy that considers the
merge of samples (Merge). We further evalu-
ated the effectiveness and the efficiency of the
heuristic algorithms, i.e., NoMergeGreedy and
MergeGreedy. We experimented with well-
defined synthetic datasets in order to discover
the impact of certain “data formations” like
the number of groups, the group sizes or the
variance of the data on the weight function and
the resulting sample configuration. Finally, we
ran experiments on a large real-world dataset
consisting of retail data to also show the practi-
cal applicability.

Copyright © 2013, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

International Journal of Knowledge-Based Organizations, 3(4), 1-21, October-December 2013 13

Note that the considered algorithms are
deterministic with respect to the resulting
sample configuration. Hence, our measure
for the comparison of the proposed algorithms
can be computed analytically.

A short summary of our results is as follows:

• The cost model reflects the characteristics
of the underlying data like the group sizes
and their distribution. Hence, we are able to
give an appropriate piece of sample advice
for a given query.

• The Merge strategy results in considerably
lower runtimes of the workload than the
NoMerge strategy and thus, considering
merges of samples is highly beneficial.

• The heuristic algorithms significantly
reduce the computation costs and provide
similar results like the exact algorithms.

Experimental Setup

We implemented the sample advisor on top
of DB2 using Java 1.6. The experiments were
conducted on an Athlon AMD XP 3000+ system
running Linux with 2GB of main memory.

Cost Model: For the evaluation of our cost
model, we generated a small synthetic dataset
R with N=1000 tuples and L=10 attributes. The
specific properties of this dataset are given in
Table 3. Unless stated otherwise, the param-
eters take the value given in the last column
(‘Default value’).

Sample Configuration: For the evaluation
of the sample configurations, we used two dif-
ferent datasets:

• A very small synthetic dataset with N=100
tuples and L=15 attributes. For this dataset,
we used a workload of 5 carefully chosen
queries.

• A large real-world dataset of retail data.
The fact table of this dataset consists of
13,223,779 tuples with L=15 attributes,
of which 5 attributes are used for grouping
and 8 attributes are used for aggregation.
Additionally, we chose 2 of the dimension
tables which also consist of a few aggrega-
tion attributes. The workload of this dataset
consists of 15 typical OLAP queries.

Analysis of the Cost Model

In the first part of our experiments, we analyzed
the proposed cost model. Therefore, we varied
several parameters of the base data and com-
puted the weight for samples of different sizes,
each with l=4 attributes. We varied the number
of groups, the skew of the group sizes, and the
relative standard deviation of the aggregation
values as shown in the next.

Number of Groups: In the first experiment,
we varied the number of groups from 50 to 200
groups and computed the weight for different
sample sizes. As shown in Figure 7, the number
of groups influences the optimal sample size:
For 50 groups, the optimal sample size is 5
tuples, while for 200 groups the optimal sample
size is 38 tuples. The reason is that the more
groups we have the smaller they are. Smaller
groups, in turn, are more likely to be missing
in a sample and thus, the optimal sample size
increases with increasing number of groups.

Skew of Group Sizes: Next, we varied the
skew of the group sizes. We chose a Zipfian
distribution with z values ranging from z=0
(uniform) to z=1.4 (highly skewed). Here, the
value of z=0.86 results in a typical 90-10 distri-
bution. The result is shown in Figure 8. As can
be seen, larger skew results in larger optimal
sample sizes. Again, the reason is that smaller
groups are more likely to be missing: The more

Table 3. Parameters for the experiments

Parameter Range of Values Default Value

Number of groups
Skew of group sizes
Average RSD

50-200
0-1.4
5-50

100
0.86
15

Copyright © 2013, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

14 International Journal of Knowledge-Based Organizations, 3(4), 1-21, October-December 2013

skewed the group sizes the more small groups
are in the base data. Hence, the larger the skew
the larger the optimal sample size.

Relative Standard Deviation of Aggrega-
tion Values: Finally, we varied the relative
standard deviation of the base data. Inspired by
our real-world dataset, we chose values from
RSD=5 to RSD=50. As the RSD directly influ-
ences the estimation error (see the discussion
of the estimation error above), larger RSDs
result in larger estimation errors and thus, in
larger optimal sample sizes. This is also shown
in Figure 9.

Sample Configuration

In the second part of our experiments, we
compared the strategies and the algorithms for
the computation of the sample configuration.

Synthetic Dataset: As stated above, we first
evaluated our algorithms on a small dataset and
we carefully selected 5 queries. With our cost
model, we got the 5 pieces of sample advice
illustrated in Figure 10 with the scores.

Next, we computed the optimal sample
configuration with all four algorithms: No-
Merge , NoMergeGreedy , Merge , and

Figure 7. Number of groups

Figure 8. Skew of group sizes

Copyright © 2013, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

International Journal of Knowledge-Based Organizations, 3(4), 1-21, October-December 2013 15

MergeGreedy. We varied the memory bound
from M=0 to M=79 attributes (for M=79, all
samples fit into the memory bound) and com-
puted , i.e., the runtime of the 5 queries in
terms of number of attributes to read. As can
be seen in Figure 11, there are some memory
bounds where the merge of samples consider-
ably decreases , e.g., for M=53, the merge
decreases from 456,200 to 185,515 by a
factor of about 2.5. The impact of the strategy
and the greedy proceeding can be seen in the

close-up on for M=20 to M=45, see Figure
12: For M=25, Merge and MergeGreedy merge
the pieces of sample advice SA2 and SA3, while
the sample configurations of NoMerge and
NoMergeGreedy only consist of SA2. For M=28,
MergeGreedy selects SA1 and thus, even per-
forms worse than for M=27. This is a drawback
of the greedy proceeding. Furthermore, for
M=30 NoMerge selects SA2 and SA3 and thus,
results in a better sample configuration than
MergeGreedy that still selects SA1. These results

Figure 9. Relative standard deviation

Figure 10. Pieces of sample advice for the synthetic dataset

Copyright © 2013, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

16 International Journal of Knowledge-Based Organizations, 3(4), 1-21, October-December 2013

show that for our carefully chosen queries, the
effectiveness of MergeGreedy (temporarily)
may decrease for increasing memory bounds,
and that NoMerge may be more effective than
MergeGreedy. All in all, Merge always results
in the best configuration, while NoMergeGreedy
always results in the worst.

At this point, one might ask why not to
merge all pieces of sample advice and use the
resulting single sample for the approximate
query answering. The reason for considering
multiple samples for a single table is the high
overhead induced by the merge: The sample
size of the merged sample is the maximum

sample size of all pieces of advice, and it con-
tains all referenced attributes. This, in turn,
results in high minimal memory requirements.
For our synthetic dataset, the memory bound
M must be at least M=7∙13=91. In contrast,
with our approach all the samples can be ma-
terialized for M=79 without overhead even
without considering any merge of pieces of
sample advice. The large overhead of the single
sample also directly increases the response
times of all queries and thus, gets large.

Real-World Dataset: Our next experiments
were conducted on our large real-world data-
set. The effectiveness of the different algorithms

Figure 11. Performance (in terms of) of the sample configurations

Figure 12. Performance (in terms of F) of the sample configurations, detailed view

Copyright © 2013, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

International Journal of Knowledge-Based Organizations, 3(4), 1-21, October-December 2013 17

is given in Figure 13 and 14. Note that in order
to make the results easier to interpret, we used
relative memory bounds in the plots. Again, we
computed for different memory bounds.
The results depicted in Figure 13 show that it
is beneficial to merge pieces of sample advice.
Further, they clearly demonstrate the effective-
ness of the greedy algorithms. To make the
benefit of merging pieces of sample advice even
clearer, Figure 14 depicts the improvement
achieved by considering those merges. As can
be seen, the improvement quickly reaches 100%,
i.e., the number of attributes that have to be
read halves due to the merges. For specific
memory bounds, the improvement exceeds
300% for the optimal solutions and 500% for
the greedy solutions. All in all, for a broad range
of memory bounds it is very beneficial to con-
sider merges of pieces of sample advice.

Runtimes: In a final experiment, we com-
pared the efficiency of our algorithms. We
varied the number of candidates from |C|=1 to
|C|=15 and computed the sample configuration
with all of our algorithms. Figure 15 illustrates
the time to compute the sample configurations.
These values are averaged over 50 runs, and
we used a relative memory bound of 6%. The
plot clearly shows the benefit of the greedy
proceeding: While the effort of the optimal
solutions quickly gets high and exponentially

increases with the number of candidates, the
effort for the greedy solutions is significantly
lower. For NoMergeGreedy, the effort is loga-
rithmic due to the ordering of the candidates,
and for MergeGreedy, the effort is quadratic due
to the greedy merge. In an additional run, we
measured the times for the greedy algorithms
for |C|=75 candidates. Here, the computation
of the sample configuration still took less than
a millisecond for NoMergeGreedy and about
1.3 seconds for MergeGreedy.

To summarize, our results on synthetic and
real-world datasets show that the merge of pieces
of sample advice is beneficial. It significantly
reduces the runtime of the given workload.
Additionally, the greedy algorithms are very
efficient and effective – they often result in the
same sample configurations as the exhaustive
approaches while requiring only a fraction of
the time to compute the configuration.

RELATED WORK

In this section, we review related work in the
field of automatic sample selection for the ap-
proximate answering of queries in databases.
This review reveals that the problem of find-
ing an optimal sample configuration is barely
studied. Some initial ideas in this field are

Figure 13. Performance (in terms of) of the sample configurations for the real-world data-
set

Copyright © 2013, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

18 International Journal of Knowledge-Based Organizations, 3(4), 1-21, October-December 2013

those of (Chaudhuri & Narasayya, 2001) and
(König & Weikum, 2002). For (Chaudhuri &
Narasayya, 2001) the strategy is to select from
all possible synopses those that influence the
query plan or the execution costs. However,
the problem of having a memory bound and
hence, the partition of the available space is
not regarded. On the other hand, the solution in
(König & Weikum, 2002) proposes a technique
for both the selection of synopses and for the
partitioning of the available memory. However,
all these considerations build on spline-based

synopses, so that the solutions cannot easily be
used for the selection of samples. Moreover,
the focus of both solutions is the selectivity
estimation where the approximation error bears
another meaning as it is not directly passed to
the user. To the best of our knowledge, there is
no solution for the determination of an optimal,
memory-bounded set of samples for a given
set of queries.

Besides the field of automatic sample se-
lection, the problem is related to the physical
design problem. Here, additional structures like

Figure 14. Performance improvement (in terms of) achieved by merging pieces of sample
advice

Figure 15. Runtimes of the algorithms (log scale)

Copyright © 2013, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

International Journal of Knowledge-Based Organizations, 3(4), 1-21, October-December 2013 19

indexes (Finkelstein, Schkolnick, & Tiberio,
1988; Chaudhuri & Narasayya, 1997) and
materialized views (Gupta & Mumick, 2005;
Zilio, et al., 2004) as well as the combination
of indexes and materialized views (Agrawal,
Chaudhuri, & Narasayya, 2000) are proposed.
Most of these solutions use a what-if interface
(Chaudhuri & Narasayya, 1998) and ask the
optimizer for the benefit. However, optimizer
calls are expensive and estimated costs may be
far off, especially when attributes have corre-
lated data distributions (Gebaly & Aboulnaga,
2008). Moreover, the extension of the what-if
interface in order to estimate both the cost and
the error introduced by approximate query pro-
cessing might be a complex task. The alternative
solution is to define an explicit cost model as
done by the approaches in (Gupta & Mumick,
2005), (Zilio, et al., 2004) or (Grund, et al.,
2010). Those cost models constitute a good
starting point; our weight function was inspired
by that of (Zilio, et al., 2004). The existing cost
models, however, cannot directly be used for
a sample advisor as they are not designed for
the context of approximate query processing,
e.g., they do not account for estimation errors
or incompleteness.

After this review of related work, we con-
clude the article with the following summary.

CONCLUSION

In this article, we proposed a sample advisor for
the approximate answering of analytical queries.
This sample advisor is based on a novel cost
model for the sample selection. We proposed a
weight function that enables us to give a piece of
sample advice for any individual query. Build-
ing on that, we have shown how to compute
an expertise-based sample configuration for
individually specified queries. Additionally, we
considered two extensions of the sample advi-
sor. In the first extension, the sample advisor
uses recorded workload information as input to
compute a —now memory-bounded— sample
configuration. Here, the sample advisor selects
from the available pieces of sample advice

those that minimize the runtime of the given
workload. The second extension provides a
more sophisticated solution by considering the
merge of pieces of sample advice, which may
significantly reduce the overall runtime of the
given workload. For both extensions, we pre-
sented and evaluated an exact and a heuristic
algorithm. Our experiments have shown that the
merge of samples is almost always beneficial
and provides large runtime savings for the given
workload. Furthermore, our greedy algorithms
significantly reduce the computation cost with
only low impact on the effectiveness.

Our next steps include the consideration of
more sophisticated sampling schemes. Those
sampling schemes may significantly reduce the
estimation error. However, computing—or at
least estimating—these estimation errors with-
out drawing the sample is often considerably
more complex than for simple random samples.
Moreover, the specialization of those sampling
schemes also makes the computation of the
sample configuration more complex. Here,
novel selection and merge strategies have to
be developed in that context.

The problem of the sample selection for
an incoming query has some similarities with
the first part of the sample configuration com-
putation. As this problem is also unresolved in
many systems, our results —especially the cost
model— may also be reused as a starting point
for novel solutions.

REFERENCES

Acharya, S., Gibbons, P. B., & Poosala, V. (2000).
Congressional Samples for Approximate Answer-
ing of Group-By Queries (pp. 487–498). ACM
SIGMOD Intl. Conf. on Management of Data.
doi:10.1145/342009.335450

Acharya, S., Gibbons, P. B., Poosala, V., & Ramas-
wamy, S. (1999). Join Synopses for Approximate
Query Answering (pp. 275–286). ACM SIGMOD
Intl. Conf. on Management of Data.

Agrawal, S., Chaudhuri, S., & Narasayya, V. R.
(2000). Automated Selection of Materialized Views
and Indexes in SQL Databases (pp. 496–505). Intl.
Conf. on Very Large Data Bases.

Copyright © 2013, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

20 International Journal of Knowledge-Based Organizations, 3(4), 1-21, October-December 2013

Babcock, B., Chaudhuri, S., & Das, G. (2003). Dy-
namic Sample Selection for Approximate Query Pro-
cessing (pp. 539–550). ACM SIGMOD Intl. Conf. on
Management of Data. doi:10.1145/872819.872822

Chakrabarti, K., Garofalakis, M. N., Rastogi, R., &
Shim, K. (2000). Approximate Query Processing
Using Wavelets (pp. 111–122). Intl. Conf. on Very
Large Data Bases.

Chaudhuri, S., Das, G., Datar, M., Motwaniand, R.,
& Narasayya, V. R. (2001). Overcoming Limitations
of Sampling for Aggregation Queries (pp. 534–544).
Intl. Conf. on Data Engineering. doi:10.1109/
ICDE.2001.914867

Chaudhuri, S., Motwani, R., & Narasayya, V. (1999).
On Random Sampling over Joins (pp. 263–274).
ACM SIGMOD Intl. Conf. on Management of Data.

Chaudhuri, S., & Narasayya, V. R. (1997). An Effi-
cient Cost-Driven Index Selection Tool for Microsoft
SQL Server (pp. 146–155). Intl. Conf. on Very Large
Data Bases.

Chaudhuri, S., & Narasayya, V. R. (1998). AutoAd-
min “what-if” Index Analysis Utility (pp. 367–378).
ACM SIGMOD Intl. Conf. on Management of Data.

Chaudhuri, S., & Narasayya, V. R. (2001). Automat-
ing Statistics Management for Query Optimizers.
IEEE Transactions on Knowledge and Data Engi-
neering, 13(1), 7–20. doi:10.1109/69.908978

Finkelstein, S., Schkolnick, M., & Tiberio, P. (1988).
Physical Database Design for Relational Databases.
ACM Transactions on Database Systems, 13(1),
91–128. doi:10.1145/42201.42205

Gebaly, K. E., & Aboulnaga, A. (2008). Robustness in
Automatic Physical Database Design (pp. 145–156).
Intl. Conf. on Extending Database Technology.

Gemulla, R., Rösch, P., & Lehner, W. (2008). Linked
Bernoulli Synopses: Sampling Along Foreign-Keys
(pp. 6–23). Intl. Conf. on Statistical and Scientific
Database Management.

Grund, M., Krüger, J., Plattner, H., Zeier, A., Cudre-
Mauroux, P., & Madden, S. (2010). HYRISE - A
Main Memory Hybrid Storage Engine}. PVLDB,
4(2), 105–116.

Gupta, H., & Mumick, I. S. (2005). Selection of
Views to Materialize in a Data Warehouse. IEEE
Transactions on Knowledge and Data Engineering,
17(1), 24–43. doi:10.1109/TKDE.2005.16

Haas, P. J., & Hellerstein, J. M. (1999). Ripple Joins
for Online Aggregation (pp. 287–298). ACM SIG-
MOD Intl. Conf. on Management of Data.

Hellerstein, J. M., Haas, P. J., & Wang, H. J. (1997).
Online Aggregation (pp. 171–182). ACM SIGMOD
Intl. Conf. on Management of Data.

Ioannidis, Y. E., & Poosala, V. (1999). Histogram-
Based Approximation of Set-Valued Query-Answers
(pp. 174–185). Intl. Conf. on Very Large Data Bases.

Jermaine, C., Arumugam, S., Pol, A., & Dobra,
A. (2007). Scalable Approximate Query Process-
ing with the DBO Engine (pp. 725–736). ACM
SIGMOD Intl. Conf. on Management of Data.
doi:10.1145/1247480.1247560

Jermaine, C., Dobra, A., Arumugam, S., Joshi, S., &
Pol, A. (2005). A Disk-Based Join with Probabilistic
Guarantees (pp. 563–574). ACM SIGMOD Intl.
Conf. on Management of Data.

König, A. C., & Weikum, G. (2002). A Framework
for the Physical Design Problem for Data Synopses
(pp. 627–645). Intl. Conf. on Extending Database
Technology. doi:10.1007/3-540-45876-X_39

Matias, Y., Vitter, J. S., & Wang, M. (1998). Wavelet-
Based Histograms for Selectivity Estimation (pp.
448–459). ACM SIGMOD Intl. Conf. on Manage-
ment of Data.

Poosala, V., Ioannidis, Y. E., Haas, P. J., & Shekita,
E. J. (1996). Improved Histograms for Selectiv-
ity Estimation of Range Predicates (pp. 294–305).
ACM SIGMOD Intl. Conf. on Management of Data.
doi:10.1145/233269.233342

Rösch, P., Gemulla, R., & Lehner, W. (2008). De-
signing Random Sample Synopses with Outliers
(pp. 1400–1402). Intl. Conf. on Data Engineering.

Rösch, P., & Lehner, W. (2009). Sample Synopses
for Approximate Answering of Group-By Queries
(pp. 403–414). Intl. Conf. on Extending Database
Technology. doi:10.1145/1516360.1516408

Rösch, P., & Lehner, W. (2010). A Sample Advisor
for Approximate Query Processing. East European
Conf. on Advances in Databases and Information
Systems, (pp. 490-504).

Vitter, S. (1985). Random Sampling with a Reser-
voir. ACM Transactions on Mathematical Software,
37–57. doi:10.1145/3147.3165

Winter, R. (2008). Scaling the Data Warehouse.
Intelligent Enterprise.

Zilio, D. C., Zuzarte, C., Lohman, G. M., Pirahesh,
H., Gryz, J., Alton, E., & Valentin, G. (2004). Recom-
mending Materialized Views and Indexes with IBM
DB2 Design Advisor (pp. 180–188). Intl. Conf. on
Autonomic Computing.

Copyright © 2013, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

International Journal of Knowledge-Based Organizations, 3(4), 1-21, October-December 2013 21

Philipp Rösch is Senior Researcher in the Business Intelligence practice at SAP Research. He
joined SAP Research in 2009 after finishing his PhD at the Database Technology Research
Group of Professor Wolfgang Lehner at the Dresden University of Technology, Dresden. There,
his research focus was the approximate answering of queries based on random samples for the
analysis of large-scale datasets. Now, he is leading and contributing to different topics in the
field of hybrid-store databases as well as realtime and predictive analytics. Recently, also mobile
and extremely simplified user interaction got into his focus.

Wolfgang Lehner is Full Professor and head of the database research group at the Dresden
University of Technology, Dresden. He holds a diploma in Computer Science from University
Erlangen-Nuremberg. He earned his PhD in Computer Science and his habilitation also from
University of Erlangen-Nuremberg. He was visiting scientist at multiple renowned research
institutions like IBM Almaden, SAP Labs, Microsoft Research. He has published more than 150
papers and multiple text books. His current research interests comprise support for Realtime/
Righttime-Analytics in Data-Warehouse infrastructures, main-memory database technology for
analytical and transactional workloads, and support of advanced analytics (Mining, Forecast-
ing, etc.) in database systems.

	Dieses Dokument ist eine Zweitveröffentlichung (Verlagsversion) /
	This is a self-archiving document (published version):
	Philipp Rösch, Wolfgang Lehner
	Optimizing Sample Design for Approximate Query Processing

