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ABSTRACT
The rapid increase of data volumes makes sampling a crucial component of modern data management sys-
tems. Although there is a large body of work on database sampling, the problem of automatically determine 
the optimal sample for a given query remained (almost) unaddressed. To tackle this problem the authors 
propose a sample advisor based on a novel cost model. Primarily designed for advising samples of a few 
queries specified by an expert, the authors additionally propose two extensions of the sample advisor. The first 
extension enhances the applicability by utilizing recorded workload information and taking memory bounds 
into account. The second extension increases the effectiveness by merging samples in case of overlapping 
pieces of sample advice. For both extensions, the authors present exact and heuristic solutions. Within their 
evaluation, the authors analyze the properties of the cost model and demonstrate the effectiveness and the 
efficiency of the heuristic solutions with a variety of experiments.
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INTRODUCTION

Recent studies revealed a rapid multidimen-
sional growth in current data warehouse 
databases: The size of the data triples every 
two years and the number of queries doubles 
each year. Additionally, the complexity of the 
queries increases —a lot of queries are complex 
aggregation queries with joins. These queries 
are of explorative nature, that is, users browse 
through the data and search for interesting 
regions. (Winter, 2008)

In order to make the data exploration rea-
sonably applicable, short response times are 
essential. However, the rapid growth of data 
warehouse systems conflicts with the need for 
short response times. A common solution for 
this problem is the use of synopses. Synopses 
are concise representations that reflect the 
characteristics of the underlying data, and they 
allow for approximate query processing with 
significantly shorter response times. In the 
database literature, several kinds of synopses 
have been proposed like histograms (Ioannidis 
& Poosala, 1999; Poosala, Ioannidis, Haas, & 
Shekita, 1996), wavelets (Chakrabarti, Garo-DOI: 10.4018/ijkbo.2013100101
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falakis, Rastogi, & Shim, 2000; Matias, Vitter, 
& Wang, 1998) or random samples (Vitter, 
1985). From these synopses, random samples 
have proven to be a good choice: They provide 
probabilistic error bounds and they can easily 
be integrated into database systems. Initially, 
samples were mostly used for query optimiza-
tion. In the last 10 years, however, the focus of 
database sampling has shifted more and more 
towards approximate query processing. Here, 
several techniques for online sampling have 
been proposed (Hellerstein, Haas, & Wang, 
1997; Haas & Hellerstein, 1999; Jermaine, Do-
bra, Arumugam, Joshi, & Pol, 2005; Jermaine, 
Arumugam, Pol, & Dobra, 2007). However, the 
major part of research focuses on precomputed 
and materialized —that is, offline— sampling 
since online sampling has high overhead when 
drawing a sample and is only applicable for a 
small subset of queries.

In the field of offline sampling, a multi-
tude of different sampling schemes have been 
proposed that are optimized for different query 
types, like aggregation (Chaudhuri, Das, Datar, 
Motwaniand, & Narasayya, 2001; Rösch, Ge-
mulla, & Lehner, 2008), group-by (Acharya, 
Gibbons, & Poosala, 2000; Babcock, Chaud-
huri, & Das, 2003; Rösch & Lehner, 2009) or 
foreign-key joins (Acharya, Gibbons, Poosala, 
& Ramaswamy, 1999; Gemulla, Rösch, & 
Lehner, 2008). While those sampling schemes 
provide great solutions for single (groups of) 
queries, the more general problem of automatic 
sample selection for an entire workload of a 
database remains almost unaddressed.

In this article, we address the problem of 
finding a set of samples that is to be materialized. 
We focus on simple random samples as those 
samples are easy to use and easy to maintain. 
Simple random samples are very general and 
can be used for a broad range of queries. Our 
solution is a sample advisor that suggests a 
set of samples for a set of queries specified 
by an expert. The sample advisor is based on 
a novel cost model to evaluate a sample for a 
given query. This cost model allows us to give 
advice on a sample for an individual query. To 
ease the usage of the sample advisor, we further 

propose an extension to utilize recorded work-
load information. In this scenario, the sample 
advisor selects from all the pieces of sample 
advices those that minimize the runtime of the 
workload and fit into a given memory bound. 
With a second extension, we are targeting the 
effectiveness of the sample advisor. Here, we 
consider the merge of samples in case of over-
lapping pieces of sample advice. As a result, 
more of the advised samples fit into the memory 
bound—the available memory is used more 
effectively—and thus, more queries can be 
answered very fast based on samples.

This article is an extended version of a 
previously published conference paper (Rösch 
& Lehner, 2010); we make the following (partly 
new) contributions:

• We analyze the database operations in the 
context of sample-based query processing.

• We propose a cost model for the evaluation 
of a sample for a given query. With this 
cost model, we can give a piece of sample 
advice for an individual query.

• Based on the cost model, we present our 
sample advisor in the setting of representa-
tive input queries specified by an expert.

• We propose two extensions for the sample 
advisor to ease the usage and to increase 
the effectiveness. For both extensions, we 
present an exact and a heuristic solution.

• With a variety of experiments, we analyze 
the properties of the cost model and com-
pare the proposed algorithms. We further 
demonstrate the effectiveness and the ef-
ficiency of the heuristic solutions.

At the end of this article, we discuss 
related work and summarize the article in the 
conclusion. There, we also provide an outlook 
on future work.

DATABASE OPERATIONS 
AND SAMPLING

In this section, we discuss the interaction of 
database operations and (offline) sampling. 
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We specify both the prerequisites for applying 
the operation on a sample and the impact on 
the query result.

Select

Selections define specific ranges of the data that 
are used for further processing or returned to the 
user. When applied to a sample, the input of the 
selection is only a subset of the base data, and 
thus, the result of this operation may be small 
or even empty —especially for predicates with 
high selectivity. Consequently, selections lead 
to incomplete (intermediate) results.

Project

A projection as part of an approximate query 
does not differ from a projection of an exact 
query since it only reduces the number of at-
tributes of the result. Hence, as long as all the 
required attributes are in the sample, the pro-
jection may be executed on the sample without 
hesitation. There is no impact on the quality of 
the approximate result.

Join

As for selections join operations select ranges 
of the processed input data based on a predicate, 
that is, the join condition. Unfortunately, the 
problem of sampling and joins is more delicate 
as in general a join of two samples does not 
result in a sample of the join of the two base 
tables (Chaudhuri, Motwani, & Narasayya, 
1999). However, in the currently considered 
data warehouse scenario, tables are joined along 
predefined foreign-key relationships. Here, us-
ing samples of pre-computed joins or samples in 
the style of Join Synopses (Acharya, Gibbons, 
Poosala, & Ramaswamy, 1999) allow for valid 
samples. Hence, we can use sampling and joins; 
the join result on samples is incomplete.

Aggregation

Aggregations compute an aggregate from the 
underlying data. For a sample, the aggregate is 
computed on a subset of the data, and thus, the 

result is an estimate of the exact value. That is, 
the result comes with an estimation error and 
hence, it is inexact.

Group-By

Group-By operations segment the data into 
groups. In a sample, groups are represented 
by a subset of their elements. However, some 
groups—especially small ones—may be miss-
ing in the sample. Consequently, these groups 
are missing in the result; the result is incomplete.

Order-By

With Order-By operations, the output order of 
the result is specified. As for projections, there 
is no impact on the quality of the approximate 
result.

To summarize, we observe two kinds of 
errors for queries on samples as the approximate 
results are computed based on only a subset of 
the data: Firstly, the tuples that are not included 
in the sample are missing in the (intermediate) 
result, like for selects or joins, or may even result 
in completely missing groups; hence, the ap-
proximate result may be incomplete. Secondly, 
for aggregations, values of tuples included in 
the sample are extrapolated according to the 
sampling fraction while values of missing tuples 
do not contribute to the estimate; hence, the 
approximate result may be inexact.

A COST MODEL FOR 
SAMPLE EVALUATION

We now define what a sample for an individual 
query should look like. Finding a good sample 
is related to the physical design problem for 
indexes or materialized views. However, in the 
case of samples, we have to face up to a new di-
mension: As shown above, we additionally have 
to take a certain error—namely incompleteness 
and inexactness—into account. Aiming for a 
cost model, with a sample we want to achieve 
large decreases in the response times, and the 
memory cost should be low. These two goals 
ask for small sample sizes. At the same time, the 
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estimates should be close to the actual values, 
and the results should be preferably complete. 
Clearly, these goals ask for large sample sizes. 
Hence, there is a conflict between the goals 
which has to be reflected by the cost model.

As a basis, we take the cost model of the 
DB2 Design Advisor (Zilio, et al., 2004) (bold 
part) and extend it by the approximation-related 
parts identified in this article (non-bold part). 
The resulting cost model computes a weight 
for a sample by:

weight

completeness

e

=
⋅

⋅
decrease in response time

memory cost sstimation error 

As can be seen, we append completeness 
(that we want to have) to the numerator and 
estimation error (that we don’t like to have) to 
the denominator. We now analyze the individual 
properties in more detail. Let N be the cardinal-
ity of the base data R, with R ={t1, t2,…,t|R|}. 
Further, let n be the cardinality of the sample S. 
Now, the sampling fraction f can be expressed 
as f=n/N. Moreover, let L denote the length of 
a tuple in the base data, while l is the length of 
a tuple in the sample.

Example 1: Consider the dataset shown 
in Table 1. It consists of 10 orders placed by 3 
different customers; for each order the prices 

are given. For simplification, we say that the 
length of each attribute is 1 for all our examples. 
Hence, for the example dataset, we have N=10 
and L=3. Now, we want to find the optimal 
(simple random) sample for the following query:

SELECT customer, AVG(price) 
FROM orders
GROUP BY customer

This query computes the average order 
price of each customer. 

Decrease in Response Time

For estimating the decrease in the response time, 
we make the simplified assumption that both 
the exact and the approximate query use table 
scans. Indeed, this assumption often holds in 
practice for the complex queries focused on in 
this article. With this assumption the decrease in 
the response time ∆t is proportional to N-n, and 
the relative decrease ∆trel(n) can be expressed as:

∆t n
n

N
f

rel ( ) = − = −1 1� .  

A value of ∆trel(n)=0.9 indicates that the 
response time can be reduced to 10% by using 
the sample instead of processing this query 

Table 1. Orders with customer and prices 

ID CUSTOMER PRICE

1 Smith 50

2 Smith 75

3 Jones 20

4 Jones 25

5 Jones 15

6 Brown 25

7 Brown 40

8 Brown 30

9 Brown 20

10 Brown 50
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exactly, that is, we have a runtime benefit of 
90%. Note that this function is independent 
from the dataset. It linearly decreases with 
increasing sample size.

Completeness

Let G be the set of groups defined by the current 
query. Then, gi∈G, i=1…|G|, denotes an indi-
vidual group and |gi| denotes its size. Now, the 
probability p that at least one tuple of a group gi 
is included into a sample of size n is given by:

p g n
N g

N g n

N n

Ni

i

i

,
!

!

!

!
.( ) =

−( )
− −( )

−( )
 

Consequently, the expected number of 
groups in the sample is:

G n p g n
sample

i

G

i( ) = ( )
=
∑
1

, ,  

and the completeness of an approximate group-
by query is computed by:

c n
G n

G

sample( ) =
( )

.  

The computation of the completeness for 
predicates (selections and joins) is much easier. 
Here, individual tuples are returned whose 
inclusion into the sample only depends on f. 
Hence, the completeness for predicates simply 
evaluates to c(n) = n/N = f.

Example 2: For the example query, we 
have 3 groups with |g1=2|, |g2=3|, and |g3=5|. 
The completeness for different sample sizes is 
given in Figure 1.

Memory Cost

The memory cost of a sample is made up of 
the number and the length of the tuples in the 
sample. As samples should be small, only re-
quired attributes are included into the sample. 
Hence, the absolute memory cost is given by 
mabs(n)=n∙l. As for the decrease in response 
time, we can use the relative memory cost, 
which is given by

m n
n l

N Lrel ( ) =
⋅
⋅

� .  

Figure 1. Completeness
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A value of mrel(n)=0.1 indicates that the 
sample requires only 10% of the size of the 
base data.

Example 3: Figure 2 shows the memory 
cost for the example query. Here, only 2 of the 
3 attributes of the base data are included into 
the sample. 

Estimation Error

Let a1,…,al be the attributes that are aggregated 
in the current query. We now show how the 
estimation error for these aggregates can be 
computed. We show this for the AVG aggregate; 
the computation for the SUM aggregate is simi-
lar. For COUNT aggregates, the computation 
has to be adapted accordingly.

Let i be the index for individual tuples of 
R and j be the index for attributes of R. Then, 
the quantity tij represents the value of attribute 
aj of tuple ti. Now, the average value of the j-th 
attribute is given by

µ
j

t R
ijN
t

i

=
∈
∑� ,
1  

and the standard deviation can be expressed as

σ µ
j

t R
ij jN
t

i

= −( )
∈
∑� .
1 2

 

Next, let

RSD
j

j

j

= 
σ

µ
 

denote the relative standard deviation of attri-
bute aj. Note that the relative standard deviation 
is not defined for μj=0 and may get very large 
for μj≈0; thus, in our implementation, we set 
RSDj=σj whenever µ

j
� � , −


1 1 . In contrast to 

the standard deviation, the RSD is unitless and 
can be compared across multiple attributes.

For a uniform sample of size n,

ˆ �µ
j

t S
ijn
t

i

=
∈
∑
1  

is an unbiased estimate of μj(R). Moreover, the 
standard error of this estimate is:

σ
σ

σµ̂ �.
j
n

n

n

N n N
j

j( ) = −









= −

2

1
1 1

Figure 2. Memory cost
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As above, the relative standard error can 
be used to compare estimation errors across 
multiple attributes. Since µ̂

j
 is unbiased, we 

can use μj instead:

RSE n
n

RSD
n Nj

j

j

jˆ

ˆ
�.µ

µσ

µ
( ) =

( )
= −

1 1  

Now, the overall estimation error over all 
the aggregation attributes is given by

RSE n
l
RSE n

j

l

jˆ ˆ
�.µ µ( ) = ( )

=
∑
1

1

 

For queries with Group-By operations, the 
RSE is first computed for each group and then 
averaged over all groups.

Example 4: Given our example query, we 
get the following relative standard deviations: 
20.0% for the first group, 20.4% for the second, 
and 32.6% for the third one. The resulting rela-
tive standard error for different sample sizes is 
shown in Figure 3.

Summing Up

We now put the pieces together. With the indi-
vidual equations given above, the weight w(n) 
of a sample of size n is computed by:

w n
t n c n

m n RSD n
rel

rel

( ) = ( ) ⋅ ( )
( ) ⋅ ( )

� �.
∆

 

Example 5: For the example query, Figure 
4 shows the weight of the sample for different 
sample sizes with a maximum for n=2. This 
curve emphasizes that the sample size should 
be chosen with care: Small samples have low 
weights due to large estimation errors and many 
missing tuples, while large samples suffer from 
low runtime benefits and high memory costs. □

A deeper look at the weight computation 
reveals two shortcomings: First, the estimation 
error only influences the amplitude of the curve 
but not its position and second, the maxima of 
different samples differ both in amplitude and 
position, which makes comparisons of weights 
impractical. As a solution, we propose the fol-
lowing normalization:

w n
w a n

a
( ) =

⋅( )
 

Figure 3. Relative standard error
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with a=max(w(n)). This normalization is based 
on the observation that high deviations of the 
data —and thus, large estimation errors— result 
in low weights. However, in order to provide 
good estimates, we need large samples for data 
with high deviations.

Example 6: Consider a dataset consisting 
of N=100 tuples and 10 groups with 10 tuples 
each. Figure 5 shows the sample weights for 
varying relative standard deviations of the base 
data without normalization. As can be seen, 
this variation only influences the amplitude, 
and larger RSDs result in lower weights. The 

normalized weights are given in Figure 6. Here, 
larger relative standard deviations result in larger 
optimal sample sizes. 

A SAMPLE ADVISOR 
FOR APPROXIMATE 
QUERY PROCESSING

Based on the proposed cost model, we next 
introduce our sample advisor. The goal of this 
advisor is to recommend samples for some 
given queries. Those queries could either be 
some carefully chosen queries representing 

Figure 4. Weight for different sample sizes

Figure 5. Impact of the relative standard deviation
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the expected workload or it could be recorded 
workload information. We start with address-
ing the first case and show how to also support 
the second case with our first extension of the 
sample advisor.

As mentioned, we primarily are targeting 
an expertise-based sample configuration. In 
this setting, an expert identifies the (few) most 
expensive analytical queries and provides them 
to the sample advisor; clearly, the number of 
queries depends on the memory that is avail-
able for the samples. Now, our sample advisor 
computes for each of the given queries a piece 
of sample advice. Such a piece of sample advice 
SA comprises the base data R, the attributes A 
to be included into the sample and the sample 
size n, thus SA=(R,A,n). The first two values 
can easily be derived from the query; the last 
one is determined with the cost model given 
above. Hence, in order to compute the piece 
of sample advice for a given query q, we first 
set R to the base data of q and A to the set of 
attributes referenced by q. Then, we determine 
the sample size with the following two steps:

1.  Scan the base data of the query once and 
compute for each group the relative stan-
dard deviation and the size.

2.  Iterate over different sample sizes and 
compute the weight. Remember the sample 
size with the largest weight.

These two steps are repeated for all of the 
given queries, and finally, the optimal expertise-
based sample configuration SCE, i.e., the result 
of the sample advisor, consist of all the pieces of 
sample advice SAi for the expert-given queries qi.

Considering the effort of the sample advi-
sor, we see that the first step only depends on 
the cardinality of the base data, and thus, its 
effort is fixed. The effort of the second step, 
however, depends on the number of regarded 
sample sizes. Here, some considerations may 
reduce the effort: First, the weight function 
has a single maximum. This maximum can 
efficiently be found by algorithms like hill 
climbing or binary search. Second, we can 
optionally define upper and lower bounds for 
the sample sizes since, for example, samples 
smaller than 0.1% are expected to provide very 
imprecise results or samples larger than 10% 
are considered as too expensive and the benefit 
is low. In order to further reduce the effort of 
the weight computation itself, we can use the 
completeness for sampling with replacement 
as an approximation (and lower bound) for the 
completeness of sampling without replacement:

�c
G

g

ni

G
i

n

= − −






















=
∑� �.

1
1 1

1

 

Figure 6. Impact of the relative standard deviation (normalized)
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With �c , no expensive factorials are re-
quired. In this equation, the innermost part is 
the probability of the event that with n draws 
no tuple of group gi is chosen. Now, the comple-
mentary probabilities (at least one tuple of gi 
is drawn) sum up to the expected number of 
groups in the sample, and we get the complete-
ness be dividing the expected number of groups 
in the sample by the number of groups in the 
base data.

Extension I: Workload-based 
Sample Configuration

Besides relying on an expert one common 
approach is to utilize recorded workload in-
formation. Clearly, in such a case we cannot 
materialize the samples for all the queries. We 
thus propose the following extension of our 
sample advisor. Note that this extension does not 
result in an optimal solution but shows how the 
approach proposed above can easily be adapted 
to workload-based scenarios.

Let the workload W be a (multi-) set of 
queries with W={q1,…,qk}. Before we compute 
the workload-based sample configuration SCW, 
we preprocess the workload by eliminating all 
but aggregation queries so that the workload 
only consists of queries relevant for approxi-
mate query processing. Further, the multiset of 
queries is transformed to a set by replacing the 
queries by (query, counter) pairs and merging 
duplicate queries. During this merge, predicates 
of the queries are ignored. The reason for this is 
that samples should be very general; otherwise, 
the samples would be similar to materialized 
views and we would severely restrict their 
applicability. After the merge, we get WAQP = 
{(q1,c1),…,(ql,cl)}.

With a memory constraint M, we get the 
following two steps:

1.  Compute the optimal sample for each query 
of WAQP. The result is a candidate set with 
pieces of sample advice C = {SA1,…,SAk}.

2.  Compute the optimal sample configuration 
SCW of size M based on the candidate set 
C from the first step.

Obviously, with the first step we utilize 
our weight function and the computation of the 
expertise-based sample configuration. For the 
second step, we need a measure to compare 
different configurations. As a desirable sample 
configuration is characterized by a preferably 
low overall runtime of the workload, we use 
this overall runtime as our measure and try to 
minimize it. As before, we assume table scans, 
and since we are not interested in actual response 
times, we simply use r=n∙l as the response time 
for approximate queries and r=N∙L for all 
queries with no sample in SCW as they have to 
be answered with the base data. Now, the mea-
sure   of a sample configuration is:

 SC r
q W

i

i AQP

( ) =
∈
∑� �.
�

 

The goal of the second step is to find the 
sample configuration that fits into M and 
minimizes  . Obviously, the exact solution 
is an instance of the knapsack problem, which 
is known to be NP-hard.

Optimal Solution: To find the optimal 
solution (based on C), we consider all subsets 
C'  of the candidate set C that fit into M and 
compute  . The final sample configuration is 
the subset with the minimal measure  .

Greedy Solution: The basic idea of the 
greedy approach is to successively add the most 
valuable candidates to the sample configuration 
until the memory bound is hit. We first order 
the candidate set C by the following score in 
descending order:

score SA c
N L

n li i
i i

i i

( ) = ⋅
⋅

⋅
� �.  

This score is composed of the query counter 
to account for the frequency of the sample us-
age—the more often a sample is used the more 
beneficial gets its materialization—and the 
inverse of the relative memory cost. The second 
part of the score makes samples with smaller 
optimal sampling fractions to be considered 
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more valuable. This is motivated by the fact that 
those samples have low storage requirements 
and offer large response time benefits.

Next, we start with an empty sample 
configuration SCW and successively add the 
candidates to SCW in the given order until 
the next candidate does not fit into M. At this 
point, we allow to skip individual candidates 
in order to add those that still fit into M even if 
their score is lower. Once the memory bound 
is hit or none of remaining candidate is small 
enough to still fit into M we have our final 
sample configuration SCW.

Example 7: Consider 2 relations R1 and R2 
with N1=100 and N2=30 as well as L1=5 and 
L2=3. With the candidates given in Table 2, let 
C = Cordered ={SA1, SA2, SA3, SA4} be the (already 
ordered) candidate set. This table also shows 
the memory consumption—as defined by n∙l—
and the scores of the candidates given that ci=1 
for all qi∈WAQP. Now, let M=40. We succes-
sively add the elements of C to the initially 
empty sample configuration SCW. After having 
added SA2, the memory consumption of SCW 
adds up to 23. Now, SA3 does not fit into M 
while SA4 does. Consequently, we skip SA3 and 
add SA4. The final sample configuration is SCW 
={SA1, SA2, SA4}. The measure   of this 
sample configuration is

 SC
W( ) = + + + =8 15 500 4 527.  

Extension II: Merging Pieces 
of Sample Advice

Besides the ‘simple’ selection of samples, we 
propose a second extension that additionally 
considers the possibility of merging multiple 

pieces of sample advice. This idea is based on 
the following observation: In typical OLAP 
scenarios, many queries have the same base 
data—especially if the predicates are disre-
garded—and the referenced attributes often 
overlap. Hence, up to now there are samples 
in SCW with the same base data and overlap-
ping attribute sets. In order to use the available 
memory more effectively, we consider to merge 
those samples. Then, the queries of both samples 
can be answered by the single merged sample; 
the redundancy in SCW decreases.

Prerequisites for merging two pieces of 
sample advice SAi and SAj are the same base 
data Ri=Rj as well as overlapping attributes, 
i.e., A A

i j
∩ ≠ ∅ . The merged piece of sample 

advice SAi+j =(Ri+j, Ai+j, ni+j) is computed by:

• Ri+j=Ri=Rj,
• A A A

i j i j+ = ∪ , and
• ni+j=max(ni,nj).

When merging two pieces of sample advice, 
we take the maximum of the sample sizes for 
the following two reasons: First, decreasing n 
results in (considerably) higher errors (estimation 
error and missing tuples) and second, increasing 
n has less impact on w  than decreasing it.

However, aside from the prerequisites, one 
has to verify whether or not a merge is benefi-
cial. Clearly, a query qi of SAi must read Ai+j\Ai 
additional attributes and ni+j-ni additional tuples 
when using the sample of SAi+j instead of the 
sample of SAi. Having   in mind, a merge is 
only beneficial if the overall runtime of the 
workload decreases, and thus, if the merge frees 
enough memory to add an additional sample to 
SCW.

Table 2. Sample advisor candidates 

Piece of Sample Advice Base Data Attributes Sample Size Memory Score

SA1 R1 {A1, A2} 4 8 62.5

SA2 R1 {A3, A4, A5} 5 15 33.3

SA3 R1 {A2, A3, A4} 7 21 23.8

SA4 R2 {A1, A3} 2 4 22.5
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Optimal Solution: For the optimal solu-
tion, we consider all possible merges. For each 
considered merge, we replace the respective 
pieces of sample advice by the merged piece 
of sample advice and proceed as in the strategy 
without merge. Obviously, this procedure is 
very expensive.

Greedy Solution: With the greedy approach 
for this extension, we initially proceed as in the 
greedy approach without merging given above: 
We order the candidate set C by the score 
value and start by adding the pieces of sample 
advice into an initially empty sample configu-
ration SCW. However, when reaching a candidate 
that does not fit into the memory bound M, we 
now try to greedily merge individual pieces of 
sample advice. Clearly, the goal is to free enough 
memory to add the current piece of sample 
advice SAi to the sample configuration SCW. 
Therefore, we consider all possible merges of 
the sample advice currently in SC SA

W i
∪ . 

From these merges, we choose the most ben-
eficial one, i.e., the merge that frees the most 
memory. In the case of equal memory consump-
tions, we additionally consider the overall 
runtime  CS( )  and choose the one with the 

minimal  CS( ) . If the available memory is 
still too low, we again look for the most ben-
eficial merge, but this time, we replace the two 
pieces of sample advice chosen to merge with 
the merged piece of sample advice. We repeat 
this procedure until either enough memory is 
freed or no more beneficial merges are possible. 
In the former case, we perform the merges, in 
the latter case, we skip the current candidate 
and proceed with the next one until all candidates 
are considered or the memory bound is hit. 
Note, in the greedy merge process, the re-
peated procedure of finding the most beneficial 
merge can be done very efficiently —all we 
need are the sample sizes, the tuple lengths and 
the overlapping attributes of the merge candi-
dates.

Example 8: Consider again the setting of 
Example 7. We start by adding SA1 and SA2 to 
the initially empty sample configuration SCW. 
Next, SA3 is considered. SA3 does not fit into 

M and thus, we try to find a merge. Since the 
attribute sets of SA1 and SA2 are disjoint, there is 
no overlap and we do not merge these pieces of 
sample advice. SA3, however, meets the condi-
tion to be merged with either SA1 or SA2 and we 
determine the more beneficial merge. For both 
SA1+3 and SA2+3, we have mabs=28 and thus, we 
also have to consider the overall runtime. With 
SA1+3, the overall runtime of q1, q2, and q3 sums 
up to r=28+15+28=71, while with SA2+3, the 
overall runtime is only r=8+28+28=64. Thus, 
we prefer SA2+3 and we have SCW ={SA1, SA2+3} 
with a memory consumption of 36. In the next 
step, we add SA4 to SCW, and our final sample 
configuration is SCW ={SA1, SA2+3, SA4}. For 
this sample configuration, we get

 SC( ) = + + + =8 28 28 4 68 , 

which is significantly lower —and thus, bet-
ter— than  SC( ) = 527  of the greedy ap-
proach without merging pieces of sample advice.

EXPERIMENTS

We ran a variety of experiments in order to ana-
lyze the cost model and to compare the strategies 
for the construction of workload-based sample 
configurations. With the evaluation of the cost 
model, we implicitly evaluate the properties 
of the expertise-based sample advisor. For the 
workload-based sample configurations, we 
compared the strategy without merging samples 
(NoMerge) with the strategy that considers the 
merge of samples (Merge). We further evalu-
ated the effectiveness and the efficiency of the 
heuristic algorithms, i.e., NoMergeGreedy and 
MergeGreedy. We experimented with well-
defined synthetic datasets in order to discover 
the impact of certain “data formations” like 
the number of groups, the group sizes or the 
variance of the data on the weight function and 
the resulting sample configuration. Finally, we 
ran experiments on a large real-world dataset 
consisting of retail data to also show the practi-
cal applicability.
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Note that the considered algorithms are 
deterministic with respect to the resulting 
sample configuration. Hence, our measure   
for the comparison of the proposed algorithms 
can be computed analytically.

A short summary of our results is as follows:

• The cost model reflects the characteristics 
of the underlying data like the group sizes 
and their distribution. Hence, we are able to 
give an appropriate piece of sample advice 
for a given query.

• The Merge strategy results in considerably 
lower runtimes of the workload than the 
NoMerge strategy and thus, considering 
merges of samples is highly beneficial.

• The heuristic algorithms significantly 
reduce the computation costs and provide 
similar results like the exact algorithms.

Experimental Setup

We implemented the sample advisor on top 
of DB2 using Java 1.6. The experiments were 
conducted on an Athlon AMD XP 3000+ system 
running Linux with 2GB of main memory.

Cost Model: For the evaluation of our cost 
model, we generated a small synthetic dataset 
R with N=1000 tuples and L=10 attributes. The 
specific properties of this dataset are given in 
Table 3. Unless stated otherwise, the param-
eters take the value given in the last column 
(‘Default value’).

Sample Configuration: For the evaluation 
of the sample configurations, we used two dif-
ferent datasets:

• A very small synthetic dataset with N=100 
tuples and L=15 attributes. For this dataset, 
we used a workload of 5 carefully chosen 
queries.

• A large real-world dataset of retail data. 
The fact table of this dataset consists of 
13,223,779 tuples with L=15 attributes, 
of which 5 attributes are used for grouping 
and 8 attributes are used for aggregation. 
Additionally, we chose 2 of the dimension 
tables which also consist of a few aggrega-
tion attributes. The workload of this dataset 
consists of 15 typical OLAP queries.

Analysis of the Cost Model

In the first part of our experiments, we analyzed 
the proposed cost model. Therefore, we varied 
several parameters of the base data and com-
puted the weight for samples of different sizes, 
each with l=4 attributes. We varied the number 
of groups, the skew of the group sizes, and the 
relative standard deviation of the aggregation 
values as shown in the next.

Number of Groups: In the first experiment, 
we varied the number of groups from 50 to 200 
groups and computed the weight for different 
sample sizes. As shown in Figure 7, the number 
of groups influences the optimal sample size: 
For 50 groups, the optimal sample size is 5 
tuples, while for 200 groups the optimal sample 
size is 38 tuples. The reason is that the more 
groups we have the smaller they are. Smaller 
groups, in turn, are more likely to be missing 
in a sample and thus, the optimal sample size 
increases with increasing number of groups.

Skew of Group Sizes: Next, we varied the 
skew of the group sizes. We chose a Zipfian 
distribution with z values ranging from z=0 
(uniform) to z=1.4 (highly skewed). Here, the 
value of z=0.86 results in a typical 90-10 distri-
bution. The result is shown in Figure 8. As can 
be seen, larger skew results in larger optimal 
sample sizes. Again, the reason is that smaller 
groups are more likely to be missing: The more 

Table 3. Parameters for the experiments 

Parameter Range of Values Default Value

Number of groups 
Skew of group sizes 
Average RSD

50-200 
0-1.4 
5-50

100 
0.86 
15
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skewed the group sizes the more small groups 
are in the base data. Hence, the larger the skew 
the larger the optimal sample size.

Relative Standard Deviation of Aggrega-
tion Values: Finally, we varied the relative 
standard deviation of the base data. Inspired by 
our real-world dataset, we chose values from 
RSD=5 to RSD=50. As the RSD directly influ-
ences the estimation error (see the discussion 
of the estimation error above), larger RSDs 
result in larger estimation errors and thus, in 
larger optimal sample sizes. This is also shown 
in Figure 9.

Sample Configuration

In the second part of our experiments, we 
compared the strategies and the algorithms for 
the computation of the sample configuration.

Synthetic Dataset: As stated above, we first 
evaluated our algorithms on a small dataset and 
we carefully selected 5 queries. With our cost 
model, we got the 5 pieces of sample advice 
illustrated in Figure 10 with the scores.

Next, we computed the optimal sample 
configuration with all four algorithms: No-
Merge ,  NoMergeGreedy ,  Merge ,  and 

Figure 7. Number of groups

Figure 8. Skew of group sizes
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MergeGreedy. We varied the memory bound 
from M=0 to M=79 attributes (for M=79, all 
samples fit into the memory bound) and com-
puted  , i.e., the runtime of the 5 queries in 
terms of number of attributes to read. As can 
be seen in Figure 11, there are some memory 
bounds where the merge of samples consider-
ably decreases  , e.g., for M=53, the merge 
decreases   from 456,200 to 185,515 by a 
factor of about 2.5. The impact of the strategy 
and the greedy proceeding can be seen in the 

close-up on   for M=20 to M=45, see Figure 
12: For M=25, Merge and MergeGreedy merge 
the pieces of sample advice SA2 and SA3, while 
the sample configurations of NoMerge and 
NoMergeGreedy only consist of SA2. For M=28, 
MergeGreedy selects SA1 and thus, even per-
forms worse than for M=27. This is a drawback 
of the greedy proceeding. Furthermore, for 
M=30 NoMerge selects SA2 and SA3 and thus, 
results in a better sample configuration than 
MergeGreedy that still selects SA1. These results 

Figure 9. Relative standard deviation

Figure 10. Pieces of sample advice for the synthetic dataset
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show that for our carefully chosen queries, the 
effectiveness of MergeGreedy (temporarily) 
may decrease for increasing memory bounds, 
and that NoMerge may be more effective than 
MergeGreedy. All in all, Merge always results 
in the best configuration, while NoMergeGreedy 
always results in the worst.

At this point, one might ask why not to 
merge all pieces of sample advice and use the 
resulting single sample for the approximate 
query answering. The reason for considering 
multiple samples for a single table is the high 
overhead induced by the merge: The sample 
size of the merged sample is the maximum 

sample size of all pieces of advice, and it con-
tains all referenced attributes. This, in turn, 
results in high minimal memory requirements. 
For our synthetic dataset, the memory bound 
M must be at least M=7∙13=91. In contrast, 
with our approach all the samples can be ma-
terialized for M=79 without overhead even 
without considering any merge of pieces of 
sample advice. The large overhead of the single 
sample also directly increases the response 
times of all queries and thus,   gets large.

Real-World Dataset: Our next experiments 
were conducted on our large real-world data-
set. The effectiveness of the different algorithms 

Figure 11. Performance (in terms of  ) of the sample configurations

Figure 12. Performance (in terms of F) of the sample configurations, detailed view
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is given in Figure 13 and 14. Note that in order 
to make the results easier to interpret, we used 
relative memory bounds in the plots. Again, we 
computed   for different memory bounds. 
The results depicted in Figure 13 show that it 
is beneficial to merge pieces of sample advice. 
Further, they clearly demonstrate the effective-
ness of the greedy algorithms. To make the 
benefit of merging pieces of sample advice even 
clearer, Figure 14 depicts the improvement 
achieved by considering those merges. As can 
be seen, the improvement quickly reaches 100%, 
i.e., the number of attributes that have to be 
read halves due to the merges. For specific 
memory bounds, the improvement exceeds 
300% for the optimal solutions and 500% for 
the greedy solutions. All in all, for a broad range 
of memory bounds it is very beneficial to con-
sider merges of pieces of sample advice.

Runtimes: In a final experiment, we com-
pared the efficiency of our algorithms. We 
varied the number of candidates from |C|=1 to 
|C|=15 and computed the sample configuration 
with all of our algorithms. Figure 15 illustrates 
the time to compute the sample configurations. 
These values are averaged over 50 runs, and 
we used a relative memory bound of 6%. The 
plot clearly shows the benefit of the greedy 
proceeding: While the effort of the optimal 
solutions quickly gets high and exponentially 

increases with the number of candidates, the 
effort for the greedy solutions is significantly 
lower. For NoMergeGreedy, the effort is loga-
rithmic due to the ordering of the candidates, 
and for MergeGreedy, the effort is quadratic due 
to the greedy merge. In an additional run, we 
measured the times for the greedy algorithms 
for |C|=75 candidates. Here, the computation 
of the sample configuration still took less than 
a millisecond for NoMergeGreedy and about 
1.3 seconds for MergeGreedy.

To summarize, our results on synthetic and 
real-world datasets show that the merge of pieces 
of sample advice is beneficial. It significantly 
reduces the runtime of the given workload. 
Additionally, the greedy algorithms are very 
efficient and effective – they often result in the 
same sample configurations as the exhaustive 
approaches while requiring only a fraction of 
the time to compute the configuration.

RELATED WORK

In this section, we review related work in the 
field of automatic sample selection for the ap-
proximate answering of queries in databases. 
This review reveals that the problem of find-
ing an optimal sample configuration is barely 
studied. Some initial ideas in this field are 

Figure 13. Performance (in terms of  ) of the sample configurations for the real-world data-
set
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those of (Chaudhuri & Narasayya, 2001) and 
(König & Weikum, 2002). For (Chaudhuri & 
Narasayya, 2001) the strategy is to select from 
all possible synopses those that influence the 
query plan or the execution costs. However, 
the problem of having a memory bound and 
hence, the partition of the available space is 
not regarded. On the other hand, the solution in 
(König & Weikum, 2002) proposes a technique 
for both the selection of synopses and for the 
partitioning of the available memory. However, 
all these considerations build on spline-based 

synopses, so that the solutions cannot easily be 
used for the selection of samples. Moreover, 
the focus of both solutions is the selectivity 
estimation where the approximation error bears 
another meaning as it is not directly passed to 
the user. To the best of our knowledge, there is 
no solution for the determination of an optimal, 
memory-bounded set of samples for a given 
set of queries.

Besides the field of automatic sample se-
lection, the problem is related to the physical 
design problem. Here, additional structures like 

Figure 14. Performance improvement (in terms of  ) achieved by merging pieces of sample 
advice

Figure 15. Runtimes of the algorithms (log scale)
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indexes (Finkelstein, Schkolnick, & Tiberio, 
1988; Chaudhuri & Narasayya, 1997) and 
materialized views (Gupta & Mumick, 2005; 
Zilio, et al., 2004) as well as the combination 
of indexes and materialized views (Agrawal, 
Chaudhuri, & Narasayya, 2000) are proposed. 
Most of these solutions use a what-if interface 
(Chaudhuri & Narasayya, 1998) and ask the 
optimizer for the benefit. However, optimizer 
calls are expensive and estimated costs may be 
far off, especially when attributes have corre-
lated data distributions (Gebaly & Aboulnaga, 
2008). Moreover, the extension of the what-if 
interface in order to estimate both the cost and 
the error introduced by approximate query pro-
cessing might be a complex task. The alternative 
solution is to define an explicit cost model as 
done by the approaches in (Gupta & Mumick, 
2005), (Zilio, et al., 2004) or (Grund, et al., 
2010). Those cost models constitute a good 
starting point; our weight function was inspired 
by that of (Zilio, et al., 2004). The existing cost 
models, however, cannot directly be used for 
a sample advisor as they are not designed for 
the context of approximate query processing, 
e.g., they do not account for estimation errors 
or incompleteness.

After this review of related work, we con-
clude the article with the following summary.

CONCLUSION

In this article, we proposed a sample advisor for 
the approximate answering of analytical queries. 
This sample advisor is based on a novel cost 
model for the sample selection. We proposed a 
weight function that enables us to give a piece of 
sample advice for any individual query. Build-
ing on that, we have shown how to compute 
an expertise-based sample configuration for 
individually specified queries. Additionally, we 
considered two extensions of the sample advi-
sor. In the first extension, the sample advisor 
uses recorded workload information as input to 
compute a —now memory-bounded— sample 
configuration. Here, the sample advisor selects 
from the available pieces of sample advice 

those that minimize the runtime of the given 
workload. The second extension provides a 
more sophisticated solution by considering the 
merge of pieces of sample advice, which may 
significantly reduce the overall runtime of the 
given workload. For both extensions, we pre-
sented and evaluated an exact and a heuristic 
algorithm. Our experiments have shown that the 
merge of samples is almost always beneficial 
and provides large runtime savings for the given 
workload. Furthermore, our greedy algorithms 
significantly reduce the computation cost with 
only low impact on the effectiveness.

Our next steps include the consideration of 
more sophisticated sampling schemes. Those 
sampling schemes may significantly reduce the 
estimation error. However, computing—or at 
least estimating—these estimation errors with-
out drawing the sample is often considerably 
more complex than for simple random samples. 
Moreover, the specialization of those sampling 
schemes also makes the computation of the 
sample configuration more complex. Here, 
novel selection and merge strategies have to 
be developed in that context.

The problem of the sample selection for 
an incoming query has some similarities with 
the first part of the sample configuration com-
putation. As this problem is also unresolved in 
many systems, our results —especially the cost 
model— may also be reused as a starting point 
for novel solutions.
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