
Evolution of Security Engineering Artifacts:
A State of the Art Survey

Michael Felderer, University of Innsbruck, Austria
Basel Katt, University of Innsbruck, Austria

 Philipp Kalb, University of Innsbruck, Austria
Jan Jürjens, Technical University of Dortmund, Germany
Martín Ochoa, Technical University of Munich, Germany

Federica Paci, University of Trento, Italy
Le Minh Sang Tran, University of Trento, Italy

Thein Than Tun, The Open University, UK
Koen Yskout, iMinds-DistriNet, KU Leuven, Belgium

Riccardo Scandariato, iMinds-DistriNet, KU Leuven, Belgium
Frank Piessens, iMinds-DistriNet, KU Leuven, Belgium

Dries Vanoverberghe, iMinds-DistriNet, KU Leuven, Belgium
Elizabeta Fourneret, University of Luxembourg, Luxembourg

Matthias Gander, University of Innsbruck, Austria
Bjørnar Solhaug, SINTEF ICT, Norway

Ruth Breu, University of Innsbruck, Austria

Abstract: Security is an important quality aspect of modern open software systems. However, it
is challenging to keep such systems secure because of evolution. Security evolution can only be
managed adequately if it is considered for all artifacts throughout the software development
lifecycle. This article provides state of the art on the evolution of security engineering artifacts.
The article covers the state of the art on evolution of security requirements, security
architectures, secure code, security tests, security models, and security risks as well as security
monitoring. For each of these artifacts we give an overview of evolution and security aspects and
discuss the state of the art on its security evolution in detail. Based on this comprehensive survey,
we summarize key issues and discuss directions of future research.

Keywords: Software Evolution, Change Management, Security Evolution, Security Change
Management, Security Engineering Artifacts, Secure Software Development Lifecycle, State of
the Art Survey

Introduction

Due to ever changing surroundings, new
business needs, new regulations and new
technologies, a software system must evolve,
or it becomes progressively less satisfactory
(Lehman, 1980, 1998). On the one hand, the
continuous system evolution makes it
especially challenging to keep software

systems permanently secure as changes,
either in the system itself or in its
environment, may cause new threats and
vulnerabilities. On the other hand, security
artifacts themselves like security
requirements, security architectures, and
secure code or security tests have to be
continuously adapted in long-running
software systems. Because modern open and

dynamically-changing software systems like
service-oriented architectures or cloud
deployments determine business process
implementations and deal with critical data,
managing the evolution of their security
artifacts in all phases of the software
development lifecycle (SDLC) is of high
importance.

The main phases of the SDLC are
analysis, design, implementation, testing, as
well as deployment and operation (Braude &
Bernstein, 2011). In each phase, specific
artifacts are created or adapted, i.e.,
requirements in the analysis phase, the
architecture in the design phase, source code
in the implementation phase, tests in the
testing phase, as well as the running system
in the deployment and operation phase. All
these artifacts are subject to changes which
is one of the main difficulties of software
evolution (Mens & Demeyer, 2008) with
high impact on security engineering.

Security engineering focuses on security
aspects in the software development
lifecycle. Security aims at protecting
information and systems from unauthorized
access, use, disclosure, disruption,
modification, perusal, inspection, recording
or destruction. The main objective of
security is to guarantee confidentiality,
integrity and availability of information and
systems. To be most effective, security must
be integrated into the software development
lifecycle from the very beginning (Kissel et
al., 2008).

Risk management in general is the
process allowing organizations to identify
what assets need to be protected, what

threats prevail and with what probability and
severity losses could occur. As such it is an
indispensable activity in security
engineering to identifying and to manage
threats and vulnerabilities to information as
well as systems.

Model engineering involves the
systematic use of models as essential
artifacts throughout the software
development process (Schmidt, 2006). It has
recently been applied in security engineering
to provide security models for all phases of
the software development lifecycle to
manage the evolution of security engineering
artifacts.

Figure 1 gives an overview of the security
engineering activities and the assigned
artifacts in the secure software development
lifecycle. In each iteration, the activities
analysis, design, implementation,
development as well as deployment are
performed consecutively. Additionally, risk
management and model engineering
accompany these activities. As the system
and its environment evolve, all these
activities are executed iteratively which is
represented by the surrounding border. Each
phase handles specific artifacts, i.e.,
requirements, architecture, code, tests,
running system, models and risks.

Each of these artifacts corresponds to
sections in this article with respect to its
security-specific evolution aspects.
Managing the evolution of security
engineering artifacts is an important task that
needs specific approaches to continuously
guarantee security.

Analysis

Requirements

Design

Architecture

Implementation

Code

Testing

Tests

Deployment and Operation

Runtime Monitoring

Model Engineering

Models

Risk Management

Risks

Figure 1. Security Engineering Activities, Security Artifacts and Section Overview

This article reviews the state of the art of
evolution management of security
engineering artifacts and draws conclusions
for future research. Section Security Model
Evolution discusses security model
evolution, and Section Security
Requirements Evolution covers evolution of
security requirements. Section Security
Architecture Evolution discusses security
architecture evolution, while Section Secure
Code Evolution analyzes evolution of secure
code. Then, Section Security Test Evolution
discusses evolution aspects of testing.
Section Security Monitoring Evolution
explains methods to control security
monitoring of a running system. Section
Security Risks shows approaches for security

risk evolution. Finally, we summarize the
state of the art and sketch future directions
of research. Each section follows a similar
structure. After a short introduction to key
aspects of the respective artifact, we discuss
its security engineering and evolution.
Finally, we combine these two aspects and
discuss the state of the art of its security
evolution in detail. Each section was written
by proven experts in the respective area the
article has therefore overall 16 authors who
compiled the literature for the particular
artifacts based on their in-depth knowledge
and experience. This state of the art survey
on evolution of security engineering artifacts
is partially based on a previous state of the
art survey (Felderer, Kalb, et al., 2011).

Security Model Evolution

Modern software and security engineering,
uses models to define software systems and
their components on a high level of
abstraction. The de-facto industrial standard
for modeling both structural and behavioral
aspects of IT systems is the Unified
Modeling Language (UML). In this section,
we therefore focus on UML models. As
modern IT systems are under continuous
change, also the models change and evolve
over time. As an implication of using models
for security aspects, evolution has to be
considered also for security concepts and
methodologies. In the context of security
there are at least two different dimensions of
model evolution, i.e., target and granularity
of evolution.

The first dimension, i.e., target of
evolution, can be classified into two
categories, i.e., security properties and
artifact evolution. On the one hand, the
security properties linked to an artifact can
change, which cannot be avoided for life-
long systems. This can have multiple reasons
such as changes in the business security
objectives and standards or the identification
of new threats. One the other hand, the
opposite may happen as well, if an artifact
changes while its security properties remain
untouched. In the context of this survey, we
will consider evolution as changes made to
an artifact.

The second dimension, i.e., granularity of
evolution, has two categories as well, i.e.,
fine-grained evolution and coarse-grained.
Fine grained evolution is used to cope up
with changes in systems (for example, new
or extended functionality). Several general-
purpose evolution specification or model
transformation approaches exist, for
instance, (Heckel, 1998; Andries et al.,
1999). Jürjens et al. (2011) discuss the use of
stereotypes for annotating several future
change possibilities in UML. The changes
can be coordinated by constraints in first

order logic. France & Bieman (2001) discuss
a multi-view approach supporting cyclic
evolution of object-oriented UML models.
Breu et al. (2010) show how state machines
are defined that control the lifecycle of
specific model elements where changes to
the state of a model element may propagate
further stage changes on other model
elements with the purpose of coordinating
the tasks of various stakeholders in the
maintenance process of complex models.

Coarse-grained evolution is a similar
context with a different level of abstraction
which deals with evolving architectures.
Garlan et al. (Garlan, Barnes, Schmerl, &
Celiku, 2009a) discuss different evolution
styles for high-level architectural views of
the system. It also discusses the possibility
of having more than one evolution path and
describes tool support for choosing the
“correct” paths with respect to properties
described in temporal logic.

In the course of this section we will
continue by analyzing the current state of the
art of security engineering using UML
models in context of the previously defined
security notions. This is followed by modern
approaches to include model evolution in
security considerations.

Security Engineering with UML

Models can be very useful to improve the
quality of systems at early development
stages. In particular, security issues
associated with design can be spotted
already in models. There exist several lines
of research towards using UML for security
systems development discussed in the
following paragraphs.

UMLsec. UMLsec (Jürjens, 2005) is a
comprehensive approach covering the
aforementioned core of UML diagrams with
respect to different security properties.
UMLsec is a light-weight extension of UML
using stereotypes, tags, and constraints, to

specify typical security requirements such as
secrecy, integrity, or authenticity, and
attacker models. Together with a formal
semantics for a core of UML, it is possible
to reason about Dolev-Yao secrecy in
protocols specified using sequence diagrams
or information flow in state charts. It
therefore falls in almost all categories of our
classification, availability being the less
studied aspect in the context of UMLsec.

Access Control. Most of the work on
security and UML focuses on access control
mechanisms. SecureUML (Basin, Doser, &
Lodderstedt, 2003; Basin, Doser, &
Lodderstedt, 2006) shows how UML can be
used to specify access control in an
application and how one can then generate
access control mechanisms from the
specifications. The approach is based on
role-based access control and gives
additional support for specifying
authorization constraints. Hawkins and
Fernandez (1997) extend use cases and
interaction diagrams to support distributed
system architecture requirements. Brose et
al. (2002) demonstrate how to deal with
access control policies in UML. The
specification of access control policies is
integrated into UML. A graph-based formal
semantics for the UML access control
specification permits one to reason about the
coherence of the access control
specification.

Georg et al. (Georg, France, & Ray,
2002) demonstrate how to use UML for
aspect-oriented development of security-
critical systems. Design-level aspects are
used to encapsulate security concerns that
can be woven into the models. In Georg et
al. (2003), authentication mechanism models
are considered in an abstract aspect model
and more detailed models are created from
these. The models can be composed with
primary decomposition models, allowing
system architects to analyze different
mechanisms to realize a particular concern,

such as authentication.
Ray et al. (2003) propose to use aspect-

oriented modeling for addressing access
control concerns. Functionality that
addresses a pervasive access control concern
is defined in an aspect. The remaining
functionality is specified in a so-called
primary model. Composing access control
aspects with a primary model then gives a
system model that addresses access control
concerns. Kim et al. (2004) use a variant of
UML to model Role Based Access Control
and Mandatory Access Control to compose
access control policy frameworks.

Alghathbar and Wijesekera (2003)
suggest a method for specifying access
control policies with UML use cases and
propose a methodology to resolve some
issues of consistency and completeness of
access control specifications.

Information Flow control. Heldal and
Hultin (2003) provide support for the use of
UML with secrecy annotations so that the
code produced from the UML models can be
validated by the Java information flow
language-based checker. Ochoa et al. (2012)
present an approximation to non-interference
on UMLsec state charts. Ruhroth and Jürjens
(2012) present a modular security analysis
for supporting evolution using UMLsec is
done based on possibilistic information flow
properties as defined by Mantel (Mantel,
2002).

Availability. Availability is among the less
studied aspects of security in the context of
UML. Leangsuksun et al (2003) present an
UML profile for general reliability that
given specifications of failure rate and repair
rates for components constructs a statistical
model to calculate the system’s reliability.
Similarly Bernardi et al. (2007) describe an
UML profile for dependability and analysis
for real-time system. Trujillo et al. (2009)
propose a UML 2.0 profile to define security
requirements for Data Warehouses. Salehi et

al. (2010) discuss an UML-based domain
specific language that allows specifying
system configurations for an availability
framework.

Authenticity and Secrecy against man-in-
the-middle attackers. Apart from UMLsec,
where the analysis of security protocols
modelled with sequence diagrams plays an
important role, Moebius et al. (2009) study
an model-driven development approach for
smart-cards that also focuses on man-in-the-
middle attackers on the Dolev-Yao symbolic
model.

Other aspects. Houmb and Hansen (2003)
present SecurityAssessmentUML, a UML
profile for security assessments, as well as a
security assessment process with its
associated documentation framework. The
main objective is to support documentation
of output based on risk identification and
analysis in a security assessment. Blobel
(2002) uses UML for modeling security-
critical systems in the health sector.

Security Evolution and UML Models

Changes in models might have a tremendous
impact on security because newly introduced
functionality might inadvertently conflict
with security requirements of the system. On
the other hand, changes on security policies
might render formerly secure systems
insecure. However, to the best of our
knowledge little research has been done on
the impact of evolution on the security of
UML models. In general, there are at least
two change dimensions that are interesting
in this context: the evolution of the security
properties for a fixed model and, vice-versa,
the evolution of models for fixed security
properties. On the other hand, there are at
least two interesting notions of evolution in
models: incremental changes on models (for
example adding, removing or substituting
classes and attributes in class diagrams or

transitions in state charts) and coarse grained
changes (addition, deletion and substitution
of components).

Evolution of access control policies. Role-
based Access Control is one of the most
studied security mechanisms in the context
of UML. Montrieux et al. (2011) review the
state of the art of the evolution of RBAC
policies which are specified on the basis of
UML models, and discusses some open
challenges. On the one hand, it would be
desirable that when incremental changes are
made to the specification, an efficient re-
verification of consistency takes place (as
opposed to a trivial re-checking of the
complete model). On the other hand,
merging (composing) two specifications is
challenging because potential discrepancies
could have a security impact (for example
when a role with the same name exists in
both specifications). Goncalves and
Poniszewska-Maranda (2008) discuss the
evolution of role-based access control
policies and propose an algorithm to detect
potential inconsistencies when new
components are added to the system. Koch
et al. (2001) present algorithms for coping
with the transformation and integration of
Labeled Based Access Control (LBAC) and
Discretionary Access Control (DAC)
policies specified using graphs. Although
this formalism is close to UML, to the best
of our knowledge these results have not been
used or extended for UML access control
specifications nor for the more popular
RBAC policies.

Fine-grained evolution of security
properties. For models annotated with the
UMLsec profile, there exists work on
studying the impact of model change for
fixed security properties. The UMLseCh
(Jürjens et al., 2011) approach discusses
sufficient conditions for the preservation of
the consistency of selected UMLsec security
requirements when models are incrementally
transformed and presents a general strategy

for proving soundness of those conditions
using inductive reasoning. The approach is
illustrated with the secure dependencies
stereotype of UMLsec that requires
consistency of security annotations on
communicating classes. The efficiency of
the approach is quantified empirically by
comparing the running time of the proposed
methodology against complete re-
verification. This approach is fine-grained
and focuses on confidentiality and integrity
requirements for further analysis in the
context of man-in-the-middle or/and non-
interference.

Coarse-grained evolution of security
properties. Ochoa et al. (2012) discuss a
sound decision procedure for the
compositionality of Dolev-Yao secrecy in
UMLsec diagrams. Here the behavior is
specified using sequence diagrams. Ochoa et
al. (2012) also present a compositionality
theorem for Non-interference on UMLsec
state charts that is valid for a particular
notion of composition (that does not allow
callbacks). Ruhroth and Jürjens (2012)
present a modular security analysis for
supporting evolution using UMLsec is done
based on possibilistic information flow
properties as defined by Mantel (2002).

Security Requirements Evolution

The need of considering security in the early
stages of the software development lifecycle
is well recognized. A major role in
addressing this need is played by Security
Requirement Engineering (SRE) which
comprises processes, techniques and tools to
elicit, model and analyze security
requirements. A challenging aspect in the
security requirement engineering realm is
evolution. Evolution is the phenomenon
where changes are introduced in a
requirement model or specification to
respond to changes in stakeholders’ needs, in

the environment where a system operates, or
because new regulations and standards are
introduced.

Much of the existing research has been on
requirements evolution and analysis of
security requirements. As such, we organize
this section accordingly. In the next section,
we first give a brief overview of the security
requirements engineering methods existing
in literature. Then, we discuss the
approaches related to requirements evolution
in Section Requirements Evolution. We
conclude by presenting the works specific to
security requirements evolution management
in Section Security Requirements Evolution.

Security Requirements

Several requirements engineering
approaches have been proposed and they
have been surveyed in (Nhlabatsi, Nuseibeh,
& Yu, 2009). We categorize them in goal-
oriented, problem-based and risk-based
security requirements methods. In addition,
also classical modeling techniques like UML
(see Section Security Model Evolution) can
be applied.

Goal-Oriented SRE Methods. Among goal-
oriented approaches, van Lamsweerde
extends KAOS by introducing the notions of
obstacle (Van Lamsweerde & Letier, 2000)
and anti-goal (van Lamsweerde, 2004) to
analyze the security concerns of a system.

Liu et al. (2003) propose an extension of
the i* framework to identify attackers, and
analyze vulnerabilities through actors
dependency links. In this framework, all
actors are considered as potential attackers,
and therefore their capabilities are analyzed
and possible damages caused by actors are
assessed. Li et al. (Li, Liu, & Bryant, 2010)
propose a formal framework to support the
attacker analysis. Similarly, Elahi et al.
(2009) propose extensions to i* to model and
analyze the vulnerabilities affecting system
requirements. Massacci et al. (2010) design
SI*, a modeling framework extending the i*

framework, which aims at modeling and
analyzing organizational settings and their
security and dependability requirements.
Similarly, Mouratidis et al. (2003) extend
the Tropos methodology to include security
related concepts.

Problem-based SRE Methods. Jackson
(2001) has introduced the notion of Problem
Frames as a way to describe the structure of
recurring software problems. Extending this
framework, there are lines of research that
examine the security issues at requirements
level. Abuse Frames (Lin, Nuseibeh, Ince, &
Jackson, 2004) describe patterns of software
problems viewed from an attacker’s
perspective. It describes the attacker’s
requirement, together with the software and
the context in which the software might be
attacked. A central idea in the Problem
Frames approach is the notion of adequacy
argument. This is an argument showing, that
the specification, together with the
descriptions of the domain properties,
satisfies the requirement. Haley et al. (2008)
extend and apply the notion of arguments to
security requirements. Extending the work
of Haley et al. (2008), Franqueira et al.
(2011) suggest that, when it is prohibitive to
draw on expert knowledge about security
risks, some of the arguments can be based on
security catalogues that are publicly
available.

Risk-Based SRE Methods. Mead et al.
(2005) propose SQUARE, a Security
Quality Requirements Engineering
(SQUARE) Methodology which considers
security in the early phases of the software
development lifecycle. The SQUARE
process consists of nine steps. First, the
requirements engineering team and project
stakeholders agree on technical definitions
that serve as a baseline for all future
communication. Next, business and security
goals are outlined. Third, artifacts and
documentation are created. A risk
assessment is conducted to determine the

likelihood and impact of possible threats to
the system. Then, the requirements
engineering team selects a method for
eliciting an initial set of security
requirements, which are then categorized
and prioritized. Finally, an inspection stage
is included to ensure the consistency and
accuracy of the security requirements that
have been generated. A similar process to
elicit security requirements has been
proposed by Mellado et al. (2008). The
authors introduce the Security Requirements
Engineering Process (SREP), which is an
asset-based and risk-driven security
requirements engineering method.

Requirements Evolution

Recent works on requirements evolution aim
at understanding the nature of the problem
and to model it, or focus on methods and
tools to assess and manage the impact of
change.

As a way to understand how requirements
evolve, research in the PROTEUS project
(Project PROTEUS, 1996) classifies
requirements into stable and changing, and
further refines changing requirements into
five types, which are related to the
development environment, stakeholder,
development processes, requirement
understanding and requirement relation. In
addition, the project proposes a formal
representation for requirements evolution
that is based on goal-structure framework.
Later, Lam and Loomes (1998) present the
EVE framework which supports a meta-
model for requirements evolution. Other
notable approaches include (Brier,
Rapanotti, & Hall, 2006; Felici, 2004; Stark,
Oman, Skillicorn, & Ameele, 1999). Brier et
al. (2006) propose a problem frames based
approach to help in the analysis of changes
which impact an organization, in the
identification and codification of recurrent
change scenarios, and in the application of
codified wisdom to new change problems.
Felici et al. (2004) empirically investigate

the requirements evolution problem by
conducting two case studies on avionics
systems and smart cards. Stark et al. (Stark
et al., 1999) study how change occurs in the
software system and attempt to produce a
prediction model of changes.

Inconsistencies Checking. Zowghi and
Offen (1997) work at meta-level logic to
capture intuitive aspects of managing
changes to requirement models. Their
approach is based on theory construction,
which commences with the development of
a requirements model seen as a theory of
some non-monotonic logic. Requirements
evolution then involves the mapping of one
such theory to another. Exploiting the
deductive power of the theory of belief,
revision and non-monotonic reasoning, the
authors develop a formal description of this
mapping, as well as the requirements
engineering process. Russo et al. (1999)
propose an analysis and revision approach to
restructure requirements to detect
inconsistency and manage changes. The
main idea is to allow evolutionary changes
to occur first and then, in the next step,
verify their impact on requirement
satisfaction. Based on the same idea, d’Avila
Garcez et al. (2003) target the preservation
of goals and requirements during evolution.
They propose an analysis which checks if a
specification satisfies a given requirement. If
it does not, diagnosis information is
generated to guide the modification of
specification in order to satisfy the
requirement. Similar to d’Avila Garcez et
al., Ghose’s framework (Ghose, 1999)
proposes an approach for handling
inconsistencies due to the introduction of
new requirements. The approach is based on
formal default reasoning and belief revision,
and it is tool supported (Ghose, 2000).
Another work related to inconsistencies
handling, is the one by Fabbrinni et al.
(2007). They deal with controlling
consistency requirements evolution
expressed in natural language based on

formal concept analysis.

Change Impact Analysis. Other approaches
focus on analyzing the impact of
requirements evolution. Chechik et al.
(2009) propose a model-based approach to
propagate changes between requirements
and design models that utilize the
relationship between the models to
automatically propagate changes. Hassine et
al. (2005) present an approach to change
impact analysis that applies both slicing and
dependency analysis at the Use Case Map
specification level to identify the potential
impact of requirement changes on the
overall system. Lin et al. (2009) propose
capturing requirement changes as a series of
atomic changes in specifications and using
algorithms to relate changes in requirements
to corresponding changes in specifications.
Label propagation has been used in goal-
oriented requirements engineering to handle
change (Giorgini, Massacci, & Zannone,
2005).

Evolution Management. In addition to the
approaches mentioned before, there exists a
number of approaches aiming to identify
optimal design solutions to support
requirements evolution (Bryl, Giorgini, &
Mylopoulos, 2009; Heaven & Letier, 2011;
Souza, Lapouchnian, & Mylopoulos, 2011;
Tran & Massacci, 2011; Ernst, Borgida, &
Jureta, 2011; Letier & van Lamsweerde,
2004). These approaches address
requirements evolution using adaptation or
mutation mechanisms. The adaptation
mechanism refers to the case that system
changes its behavior at runtime in order to
continue to meet its requirements in
response to feedback. The success (or
failure) of a behavior depends on control
variables and indicators. The former
determine respective resource allocation for
fulfilling requirements and the latter measure
the quality of satisfaction or performance.
As result, it raises a problem, namely
Control Variables and Indicators (CV&I),

that consists of finding a design solution that
is good enough with respect to one or
multiple indicators. Studies in this realm
include (Bryl et al., 2009; Heaven & Letier,
2011; Souza et al., 2011). Bryl et al. (2009)
propose an approach that generates and
evaluates multiple requirement models that
can meet the stakeholders’ desire to find a
right trade-off between the technical and
social dimensions. Letier et al. (2004)
develop the quantitative goal model that
extends the KAOS (van Lamsweerde, 2009)
framework by annotating goals with
quantitative attributes. On this basis, the
same authors (Heaven & Letier, 2011)
developed techniques that automate the
evaluation of requirements satisfaction of
different alternative system designs in
quantitative goal models. In another work,
Souza et al. (2011) propose a systematic
system identification method for adaptive
software system. In this approach, the
dynamic behavior of the system is governed
by a set of (in)equations, called qualitative
differential constraints.

The mutation mechanism is the case that
the system changes in response to changes to
its requirements. At runtime, the
requirements of a system might change and
some old requirements are obsolete.
Mutation thus comprises two classes of
requirements changes: known unknown and
unknown. The known unknown class
includes changes that are anticipated (the
known), but it is not sure whether these
changes will actually happen (the unknown).
Tran and Massacci (Tran & Massacci, 2011)
proposed an approach to handle known
unknown changes. The approach captures
requirements evolution in terms of evolution
rules, including controllable evolution rule
and observable evolution rule. The approach
also supports a reasoning to measure the
level of usefulness of different design
solutions based on two metrics, i.e.,
MaxBelief and ResidualRisk. MaxBelief
measures the maximum evolution
probability that a solution is still useful after

evolution occurs. ResidualRisk is the
probability that a solution becomes useless
after evolution. Ernst et al. (2011) instead
propose an approach to handle unknown
changes, that are unanticipated changes and,
thus, they cannot be modeled. They present
algorithms to find new solutions that use as
much as possible of the old solution (i.e.,
maximize familiarity), and minimize the
number of tasks that need to be implemented
(i.e., minimize effort).

Security Requirements Evolution

The issue of maintaining security while
introducing changes to a requirements model
or specification has not been extensively
studied. The only work we are aware of that
investigates this problem, is Bergmann et al.
(2011), which presents the SecureChange
Methodology for Evolutionary Requirements
(SeCMER), a model driven engineering
methodology to represent, analyze and
detect security issues that arise because of
requirements’ evolution. The core features
of the methodology are:
• a conceptual model for evolving

security requirements (Massacci,
Mylopoulos, Paci, Tun, & Yu, 2011),

• a pattern-based analysis to automatically
detect changes in a requirement model
that lead to a violation of security
principles, e.g., least privilege and need
to know, and

• argumentation-based analysis to assess
the impact of changes to security.

The conceptual model allows explicitly
linking security knowledge such as assets
and threats to stakeholders’ security goals.
The pattern-based analysis for automatic
security requirements change detection is
built upon EMFIncQuery (Bergmann,
Ujhelyi, Rath, & Varro, 2011) which is a
framework with a language for defining
declarative local and global queries over
Eclipse Modeling Framework (EMF)
models, and a runtime engine for executing

the queries efficiently. The analysis is based
on the specification of a security property as
a pattern in the EMF-IncQuery language
where the pattern defines a set of constraints
on requirements model elements. If as a
consequence of the introduction of a
change(s) in the requirement model the
pattern disappears, EMF-IncQuery engine
notes the violation of the security property
represented by the pattern and suggests
corrective actions to solve the security issue.
Argumentation analysis complements the
automatic pattern-based analysis in that it
checks whether there are new security
properties to be added or to be removed (∆
Security Properties) as a result of changes in
the requirement model. The execution of the
steps of the methodology is tool-supported
(Bergmann et al., 2011).

Security Architecture Evolution

Software architecture is critical to secure and
evolve a system, because it inhibits or
enables the system’s quality attributes
(including modifiability and security) and
makes it easier to reason about and manage
change (Bass, Clements, & Kazman, 2003).
Architectural decisions are crucial for the
security of the system, as security flaws at
the architectural level are hard or even
impossible to fix afterwards without
changing the architecture, which can be a
very costly operation. Despite the
importance of understanding the impact of
evolution on security at the architectural
level, however, it appears that research in
this area is scarce.

The architecture of a system should
attempt to ensure the security of that system
when it is first deployed. As it will then
evolve together with the system, it should be
constructed with future evolution paths in
mind. Hence, to guarantee the security of the
system over time, the architecture of the
system should allow future security-related

modifications to be performed with a low
impact. For example, it may be necessary to
upgrade the used security mechanisms, such
as cryptographic protocols, or to install a
secure link between two different parts of
the system.

Software Architecture

Various definitions of software architecture
have been proposed by different authors
(Rozanski & Woods, 2005; Taylor,
Medividovic, & Dashofy, 2010). Software
Architecture can be defiend as a collection
of elements (processing, data or connecting
elements), their relationships, and some
degree of rationale (Rozanski & Woods,
2005; Taylor, Medividovic, & Dashofy,
2010).

There are many different ways to
interpret an element, which can be captured
in the notion of an architectural style.
Rozanski and Woods (2005) state the
following: “An architectural style expresses
a fundamental structural organization
schema for software systems. It provides a
set of predefined element types, specifies
their responsibilities, and includes rules and
guidelines for organizing the relationships
between them”. A style thus defines the
vocabulary and rules that can be used to
define an architecture conforming to that
style. A somewhat different definition of
software architecture is given by Klusener et
al. (2005): “The software architecture of
deployed software is determined by those
aspects that are the hardest to change”. The
attribute driven design (ADD) process (Bass
et al. 2003) reflects this as well. It is based
on the premise that the main drivers for an
architecture are the system’s quality
attributes (non-functional requirements),
including modifiability and security. It
prescribes to develop the system based on
these quality attributes, such that that the
most important qualities of the system are
certainly fulfilled. Of course, this also
implies that the decisions regarding these

qualities are the hardest to change
afterwards, and appropriate care must be
taken to include them right from the
beginning.

Security and Software Architecture

Books on software architecture generally
include some general advice related to
security. For example, Rozanski and Woods
(2005) define a security perspective, which
presents security-oriented architectural
concerns, activities, tactics, problems and
pitfalls, and checklists. Taylor et al. (2010)
discuss secure design principles, access
control and trust management. Bass et al.
(2003) provide general security tactics that
can be used. The tactics are categorized as
tactics for resisting attacks, detecting attacks,
or recovering from an attack. When going
beyond the general advice, security at the
architectural level can be looked at from
different viewpoints. From a constructive
viewpoint, the question that has to be
answered is how to create an architecture
that has certain security qualities. Work in
this area is mainly concerned with
techniques, processes and guidelines to setup
a secure software architecture. On the other
hand, from the modeling viewpoint, security
aspects of an architecture have to be
expressed and documented, so that they can
be stored and communicated. Finally, from
the analysis viewpoint, it can be investigated
what security analyses can be performed
based on some architectural model. Note that
these viewpoints are not strictly separated;
for instance, analysis techniques will often
depend on specific model types, and models
are usually constructed with the help of
constructive guidance. The following
paragraphs provide some references to work
in each of these three areas.

Constructive viewpoint. We believe that the
most important aspect in the constructive
viewpoint is the transition from the security
requirements to the architectural design.

Security requirements can be captured in a
variety of ways, as demonstrated in Section
Security Requirements Evolution. An
example approach to connect these two
artifacts is given by Mouratidis and Jürjens
(2010), who describe how to integrate
Secure Tropos (one of the goal-oriented
security requirements engineering
methodologies) with UMLSec (see Section
Security Engineering with UML), in order to
assist software engineers with deriving a
secure design from security requirements.

Often, security patterns (Yoshioka,
Washizaki, & Maruyama, 2008; Hafiz,
Adamczyk, & Johnson, 2007) are advocated
as a means to construct secure software.
Such patterns capture recurrent solutions for
specific problems, such that they can easily
be reused by others. They can be structured
and categorized to assist the architect in
picking a suitable pattern (Hafiz et al., 2007;
Yskout, Scandariato, & Joosen, 2012b). For
instance, in the NFR framework, patterns are
used to create secure designs (Weiss, 2007).
Van Lamsweerde (2003) also proposes a
pattern-based refinement approach for
creating architectures from KAOS
requirements models, including examples for
security as a non-functional goal. More
recently, another approach using patterns
was proposed by Alebrahim et al. (2011).
This approach starts from Problem Frames
models, and also takes non-functional
requirements (in particular, security and
performance) into account. Nhlabatsi et al.
(2010) have reviewed and compared
multiple approaches for bringing
architectural security patterns closer to the
requirements engineering space, to reduce
the gap between these two areas.

Besides patterns, security design
principles are also commonly used as
guidance for creating secure software.
Taylor et al. (2010) highlight some
principles that are particularly well-suited
for architectural design, for example the
principle of least privilege, complete
mediation or defense in depth.

Modeling viewpoint. Despite the importance
of architecture for security, little work exists
that specifically aims at modeling security at
the architectural level. Some existing
architectural description languages (ADLs)
have been extended to support security. For
instance, Secure xADL (Ren & Taylor,
2005) enriches the xADL language with
concepts for access control. Security-specific
extensions to Data Flow Diagrams (DFDs)
have also been proposed (Abi-Antoun,
Wang, & Torr, 2007). UML, when
considered as an ADL, may also be used or
extended to represent security properties.
We refer to Section Security Engineering
with UML for a discussion of the usage of
UML for security.

Security analysis viewpoint. Besides
providing security-specific notations,
UMLsec can also be used to perform a
formal analysis on the design. The STRIDE
(Hernan, Lambert, Ostwald, & Shostack,
2006) risk analysis method is performed
using an architectural description (i.e., a data
flow diagram) as input. Measuring the
security of a design can be done using
security metrics. For instance, an attack
surface metric (Manadhata & Wing, 2011)
can be used to estimate the security of a
design, and subsequently improve it.
Additionally, adherence to security
principles can be analyzed at the
architectural level. For example, analysis
techniques exist to detect violations of the
least privilege principle (Scandariato,
Buyens, & Joosen, 2010). For more
background on analysis techniques, we refer
to the survey by Dai and Cooper (2007).

Software Architecture Evolution

Evolution of a system’s architecture
originates from a change in the requirements
of the system, or a change in the
assumptions and constraints regarding the

systems environment. Therefore, as before,
it is important to relate evolution at the
requirements level to architectural evolution.
Also, the impact of a change at the
architectural level must be assessed. Of
course, changes to the architecture of a
system are not isolated and need to be
propagated further to other development
artifacts (Mens, Magee, & Rumpe, 2010).

A systematic literature review of software
architecture evolution has been performed
by Breivold et al. (2012), to which we refer
for a comprehensive overview of this
research area. In this section, rather than
aiming at completeness, we give some
illustrative and additional references
concerning evolution at the architectural
level from the constructive, modeling and
analysis viewpoint, in an attempt to provide
an indication of this topic’s extent.

Constructive viewpoint. As before, the reuse
of known solutions (for example, in the form
of patterns, tactics, or guidelines) is a
popular technique used by software
architects to achieve a modifiable system,
i.e., a system in which the impact of possible
changes is reduced. For example, Bass,
Clements and Kazman (2003) provide a set
of modifiability tactics. These tactics are
divided in three groups: The first set of
tactics aims to localize modifications, for
instance by maintaining semantic coherence
or anticipating expected changes. The
second set prevents ripple effects, for
instance by hiding information
(encapsulation), maintaining existing
interfaces, or adding intermediaries. The
third set contains tactics to defer binding
time, for example by making use of
configuration files or polymorphism. By
applying these tactics at the right places in
the architecture, the architect creates a
system that can be modified with low
architectural impact.

To ease the transition from requirements
to architecture, Côté et al. (2007) describe an
informal approach based on problem frames,

a requirements engineering methodology.
Architectural patterns are assumed to be
associated to corresponding problem frames
via traceability links. In light of evolution,
new sub-frames may emerge in the
specification and the architect can extend the
design by incorporating additional
architectural patterns, whose selection is
facilitated by the traceability links.

Change patterns (Yskout, Scandariato, &
Joosen, 2012a) precisely capture a generic
change at the requirements level and
associate this change with a set of
architectural solutions. A solution provides a
generic template, which needs to be
instantiated in the architecture, and a
transformation based on this template that
evolves the architecture in accordance with
the change at the requirements level. These
patterns thus assist the architect in both
preparing and executing change. They can
also be used to propagate changes from the
security requirements, via the software
architecture, to the running system through
runtime reconfiguration (Yskout, Ben David,
Scandariato, & Baudry, 2012).

Ahmad et al. (2012) propose a technique
for analyzing the history of changes in
service based software architectures. The
changes are captured in the form of patterns,
which are also called change patterns. These
patterns can then be queried and reused
when change scenarios are executed.

To guide the gradual transition from one
architecture to another, Garlan et al. (Garlan,
Barnes, Schmerl, & Celiku, 2009b) propose
the concept of ‘evolution styles’. An
evolution style is a pattern that can be used
by the architect to plan incremental
evolution paths (orthogonal to the evolution
of functional requirements) from an initial
architecture to some target architecture. For
example, the evolution style that is used to
illustrate the approach describes the
transition from an ad hoc, peer-to-peer
architecture to a hub-and-spoke architecture.
The style characterizes the intermediate
versions of the architecture and a set of

operations to assist the architect with
evolving from one version to another while
making trade-offs. Furthermore, properties
and constraints can be added to the path of
evolution, in order to perform analyzes,
trade-offs or correctness checks.

Modeling viewpoint. The use of graph
transformations has been proposed to model
architectural evolution. For example,
Tamzalit and Mens (2010) describe how
they can be used to describe architectural
restructuring. In particular, the approach is
tailored for defining generic restructurings
that introduce an architectural style. The
approach starts from defining an
Architectural Description Language (ADL)
as a type graph, coupled with a set of
invariants (constraints). A concrete
architectural description is then a graph that
conforms to the ADL’s type graph.
Similarly, architectural styles are modeled as
type graphs that extend the type graph of the
ADL. A set of graph transformation rules
formalizes the process of transforming an
architecture to a new one that conforms to a
certain architectural style, for example a
client-server style. This process (i.e., a
sequence of rules) is called an evolution
pattern. Through Critical Pair Analysis
(CPA), conflicts and dependencies between
the individual rules can be detected
automatically.

Barais (2008) studies the support of
existing approaches to evolving software
architecture based on the separation of
concerns principle. It is argued that
traditional ADLs do not sufficiently support
separation of concerns, for instance for
crosscutting concerns such as security. As an
alternative, the TranSAT framework is
presented, which considers architectural
evolution from an aspect-oriented angle. In
this framework, evolution is achieved by
weaving a new concern (the ‘architectural
aspect’) into an existing architecture (the
‘base plan’). The architectural aspect
consists of three parts, specified using the

TranSAT transformation language: (1) a
plan, which captures the structure and
behavior that needs to be injected; (2) a join
point mask, which defines the necessary
preconditions on the base plan before the
plan can be injected; and (3) a set of
transformation rules, which specify how the
plan needs to be injected. Analysis is
supported by static and dynamic checks that
can be performed to ensure that the injection
results in a valid software architecture.

To support architectural practice,
Razavian and Lago (2012) define a
viewpoint specifically for representing and
reasoning about architectural change. The
viewpoint is based on the mental model that
the researchers have identified by observing
how architects deal with change in a case
study. Briefly, architects appear to focus on
one source of change at a time, find the
elements that are influenced by that source,
and then perform the actual change. The
proposed viewpoint can be used to model the
necessary traceability paths that support this
manner of working.

A similar approach is proposed by Szlenk
et al. (2012), who present a model and
graphical notation for modeling architectural
decisions (MAD) that can be used to deal
with change at the architectural level.
Architectural decisions are modeled using a
graph, where an edge denotes a ‘leads to’-
relationship from one decision to another
one. Using this model, changing an earlier
decision (due to a changed requirement, for
instance) identifies which other decisions
may need to be re-examined, and which can
be left as is. McVeigh (2009) formally
defines a component based architectural
description language (Backbone) that
supports extensibility, together with a
runtime environment and a modeling tool
(Evolve). In the Backbone ADL, changes are
not made by directly modifying the structure
of the system, but rather by explicitly
specifying the differences. Backbone is built
on three concepts to achieve extensibility,
namely resemblance (defining a new

component as a set of deltas from an existing
one), replacement (globally replacing one
component with another), and strata
(modules which can group definitions and
declare dependencies).

Analysis viewpoint. An important set of
techniques for software architecture analysis
related to evolution are directed towards
conducting a modifiability analysis. Such an
analysis attempts to assess the impact of a
certain evolution scenario on the system’s
architecture. It has various applications, for
example reducing future maintenance effort,
comparing multiple alternatives to determine
which one will be cheaper in the long term,
or performing risk assessments.

Bengtsson et al. (2004) present the
architecture-level modifiability analysis
(ALMA) process. The method can be used
to perform a modifiability analysis of a
software architecture with respect to changes
in the environment, changes in the
requirements and changes in the functional
specification The process consists of five
steps, namely (1) setting the goal of the
analysis; (2) describing the software
architecture; (3) elicit change scenarios and
classify and select them (using a top-down
approach, starting from a classification, or a
bottom-up approach, starting from change
scenarios); (4) evaluate the effect of the
change scenarios; and (5) interpret the
results. It has been applied to three case
studies, each demonstrating another analysis
goal, namely the predicton of maintenance
effort, the assessment of risks due to
inflexibility, or the comparison of
architectural alternatives.

Breivold et al. (2012) proposes another
process, AREA, which includes both a
qualitative and quantitative method for
assessing the evolvability of a software
architecture. Furthermore, they define a
software evolvability model, which
identifies important sub-characteristics of
software evolution such as changeability,
extensibility and portability that should be

taken into account by practitioners. Their
techniques have also been evaluated using
two industrial case studies.

On a more fundamental level, Williams
and Carver (2010) define the Software
Architecture Change Characterization
Scheme (SACCS). This scheme is based on
an extensive literature review and aims at
providing insight into the architectural
change process. The impact of a change is
assessed using different criteria, such as the
motivation, importance, or granularity of the
change. In the future, this framework may
result in the creation of a change decision
support system that can be used by architects
to predict the difficulty of a change.

Khan et al. (2008) explicitly acknowledge
the relationship of requirements to
architectural elements by means of
dependencies. In the context of evolution,
they first identify six relevant categories of
dependencies, i.e., (1) goal dependencies,
which relate the quality requirements to
architectural elements; (2) service
dependencies, which relate functional
requirements to operations at the
architectural level; (3) conditional
dependencies from requirements specifying
triggering events and conditions to the
architectural elements realizing them; (4)
temporal dependencies, relating
requirements on the time frame of events or
processes to their realization; (5) task
dependencies, connecting user input or
feedback to the architecture; and (6)
infrastructure dependencies, relating
requirements on resources, networks,
technical details etc. to the architecture.
Furthermore, they have assessed the impact
on the architecture of changes that belong to
these categories.

Secure Software Architecture Evolution

As mentioned at the start of this section,
little work exists in the intersection of the
secure software engineering and
architectural evolution areas. Therefore, this

area lends itself well to further research.
Section Security Evolution and UML Models
already provides an overview of security
evolution and UML models, which is
certainly relevant for the software
architecture domain as well. Furthermore, it
would be worthwhile to analyze concrete
security-related architectural changes, in
order to elicit patterns or best practices to
securely evolve a system. Hafiz and Johnson
(2008) provide a first contribution in this
respect, by describing the evolution of Mail
Transfer Agent architectures. These systems
were confronted with progressively more
demanding security requirements due to
their rising popularity. The authors show
how early architectural decisions impact the
security of the system over time and how
some architectural choices lead to a more
secure system than others. Additionally, it
would be valuable to investigate how
existing techniques for architectural
evolution support security. For example, the
change patterns approach mentioned before
(Yskout, Scandariato, & Joosen, 2012a) is
illustrated with a catalog of patterns for
changing trust assumptions forming an
important class of security-related changes.

Secure Code Evolution

Source code is the central artifact of any
software system. It also reflects many of the
properties of other artifacts. The architecture
of a software system is reflected in the
source code, and a well-designed
architecture will make it easy to evolve the
source code in specific directions. If security
goals have been elicited well during
requirements engineering, the source code is
more likely to implement appropriate
protection measures for all relevant assets.
And well-tested code is likely to have fewer
bugs and vulnerabilities than untested code.
Yet, the coding phase itself introduces its
own set of potential problems and pitfalls,

and in this section we focus on these purely
implementation-level aspects of security and
evolution.

Source Code

Source code is written in a programming
language and the choice of programming
language potentially has a significant impact
on the security and evolvability of code.

A first key property of the programming
language that affects security is safety. A
safe programming language ensures that
programs always have a well-defined
behavior, i.e., they leave no cases where
behavior of a program is undefined (Pierce,
2002). In contrast, unsafe languages such as
C or C++ may leave the behavior of
programs unspecified in some cases, and
assume that the programmer takes the
necessary measures to avoid such cases. Safe
languages are important for secure code
evolution since they guarantee the absence
of certain classes of security bugs (e.g.,
buffer overflows).

The most common ways to achieve safety
are through static typing or through dynamic
typing (Cardelli, 1997). Dynamically typed
languages such as JavaScript or Python
perform type checks during the execution of
the program and report an error when an
operation is executed on the wrong type.
Statically typed languages such as Java or
ML avoid as many runtime checks as
possible by using a static analysis during
compilation. At the expense of additional
type annotations, statically typed languages
guarantee that all referenced methods and
operations are defined for the given
argument types. Showing that the type
system indeed guarantees safety is done by
means of a type soundness proof (Pierce,
2002). Dynamically typed languages often
have rich reflective capacities that allow
adding new code or transforming existing
code at runtime. While this is beneficial for
runtime code evolution, it also allows
breaking the invariants of other modules

which is detrimental for secure code
evolution.

A second key property of a programming
language that affects secure evolution is its
support for modules and modularity.
Roughly speaking a module is a blob of code
that has an interface and an implementation
(Sullivan, Griswold, Cai, & Hallen, 2001).
Code is modular, if the correctness of a
module only depends on the interfaces of the
modules it depends on.

Modules can exist at widely varying
levels of granularity. In mainstream object-
oriented languages, it is common to
decompose a program into packages
consisting of classes, which again sprout
methods. Packages, classes and methods can
all be considered modules. Aspect-oriented
programming provides even more advanced
modularization mechanisms. Aspects
support the implementation of crosscutting
concerns in separate modules, which are
then weaved together with the base program.
This has an important positive impact on
evolvability and security (De Win, Joosen,
& Piessens, 2004).

Once the programming language is fixed,
there are still an infinite number of ways to
implement the same functionality, and some
of these implementations will be better
(from the point of view of security and/or
from the point of view of evolution) than
others. The most common approach to steer
programmers to “good” implementations is
the use of coding principles and guidelines
(M. Howard & Leblanc, 2001).

One of the important guidelines for the
design of software is the concept of
information hiding (Parnas, 1972), which
means that the internal implementation of a
module should be hidden to the clients of
that module. As a result, the implementation
of that module can evolve without requiring
changes to the clients. Furthermore, low
coupling and high cohesion (Stevens, Myers,
& Constantine, 1974) are two important
principles to evaluate the design of systems.
On the one hand, modules should have as

little dependencies on each other as possible.
On the other hand, the responsibilities of
each module should be logically coherent.

Secure Coding

Vulnerabilities that are introduced during the
implementation phase are essentially coding
bugs with security consequences
(exploitable coding bugs). Well-known
examples of such implementation-level
vulnerabilities include buffer overflows
(Erlingsson, Younan, & Piessens, 2010), and
command injection attacks such as SQL
injection (Halfond, Viegas, & Orso, 2006) or
cross-site scripting (XSS) (Johns, 2008).
Because a wide range of such bugs exists, a
significant amount of research has been
conducted regarding their classification.
Three important scopes that have been
studied intensively are:
1. Vulnerabilities in infrastructural

software such as operating systems, web
servers or application servers. If an
attacker can penetrate the runtime
infrastructure on which an application is
running, he can also easily penetrate the
application itself. Since vulnerabilities
in infrastructural software were the main
cause of security incidents in the
seventies, eighties and early nineties,
many of the early classifications and
taxonomies focused on operating system
vulnerabilities (Abbott et al., 1976). In
the early nineties, Landwehr et al.
(1994) published a catalog of 50 actual
flaws, and proposed a taxonomy for
them.

2. Vulnerabilities in security components.
If a security component is implemented
incorrectly, the protection it provides
can be bypassed by attackers. Well-
known papers analyzing vulnerabilities
in cryptographic components (both
primitives and protocols) are the papers
by Anderson (1993) or Ferguson and
Schneier (2003).

3. Vulnerabilities in applications. As the

importance of application-level
vulnerabilities increases, the systematic
study of these vulnerabilities has
attracted more attention. Both academia
(Wang & Wang, 2003), as well as
industry (MITRE, n.d.; The Open Web
Application Security Project, 2011)
have investigated suitable taxonomies
for application level security flaws.
While academic work is typically more
analytical, and looks for sound scientific
grounds for taxonomies, the work from
industry is more pragmatic, and its
primary aim is to come up with useful
taxonomies to help building and
comparing tools that scan for
vulnerabilities. Some classifications,
such as the OWASP Top 10, even have
as primary goal to raise awareness
among developers. The most systematic
approach appears to be CWE, the
Common Weaknesses Enumeration
(MITRE, n.d.), and a formal list of types
of software weaknesses. It is intended to
unify the jargon on vulnerabilities, and
to provide a way to measure
effectiveness of vulnerability scanning
tools.

Countermeasures against code-level
vulnerabilities can also take many forms.
They range from improvements in
programming language and type system
design, over static verification techniques,
coding guidelines or runtime monitoring of
the code.

As discussed above, safety is an
important security-related property of a
programming language. Dealing with the
security consequences of non-safety of
programming languages, and more
specifically dealing with the non-safety of C
and C++ is a very important research area in
itself, and good surveys of countermeasures
exist (Younan, Joosen, & Piessens, 2012).
Hence, we do not discuss these further in
this article.

Language-based security (F. Schneider,

Morrisett, & Harper, 2001) for safe
programming languages has become an
important area of research over the past
years. Broadly speaking, language-based
security uses tools and techniques from the
programming languages research community
to address security-related issues. Many
important results have been achieved.
Schneider, Morrisett, Hamlen and others (F.
Schneider et al., 2001; Hamlen, Morrisett, &
Schneider, 2006) have provided a broad and
widely accepted definition of security
policies for programs, and have investigated
what classes of policies can be enforced with
what kind of enforcement technologies.

For access control policies, the most
widely studied enforcement technology is
execution monitoring. Several projects, e.g.,
(Erlingsson & Schneider, 2000), have built
execution monitors that can enforce
configurable and expressive policies. More
powerful than execution monitoring are
approaches that can change the flow of
events generated by a program. Edit
automata (Ligatti, Bauer, & Walker, 2005)
enhance security automata with the ability to
replace, delete or insert program actions.
The Polymer system (Bauer, Ligatti, &
Walker, 2005) is a Java-based
implementation of edit automata.

Precise enforcement of certain security
policies (for instance, information flow
policies) is impossible using only execution
monitoring, as these policies describe
properties of sets of executions instead of
single executions. For such policies, static
verification is an important enforcement
technology. Static verification usually relies
on program annotations, for instance, typing
information, or specification annotations.
Checking of information flow policies
through static verification is a very rich and
active research field. A survey of results is
given by Myers and Sabelfeld (2003).

Very recently, more intricate dynamic
techniques such as secure multi-execution
(Devriese & Piessens, 2010) and faceted
evaluation (Austin & Flanagan, 2012) have

been developed that support the dynamic
enforcement of information flow policies,
albeit at a non-negligible performance cost
(De Groef, Devriese, Nikiforakis, &
Piessens, 2012).

An interesting line of research has shown
that certain classes of vulnerabilities can be
addressed by imposing a programming
model on developers. A programming model
can be thought of as a formally specified set
of coding guidelines that can be checked
statically or dynamically and that provides
specific formal security guarantees. Example
programming models deal with concurrency
related vulnerabilities (e.g., race conditions)
(Jacobs, Leino, Piessens, & Schulte, 2005),
with code access security related bugs
(Smans, Jacobs, & Piessens, 2006) and with
vulnerabilities related to forceful browsing
(Desmet, Piessens, Joosen, & Verbaeten,
2006). Pluggable type systems (Andreae,
Noble, Markstrum, & Millstein, 2006)
operate in a similar way.

On the more pragmatic side, a variety of
tools exists, that uses heuristics-based static
analysis to detect security vulnerabilities.
Well-known tools include FlawFinder
(Wheeler, n.d.), FindBugs (FindBugs, n.d.),
and so forth. They usually detect suspicious
syntactical patterns in the program being
analyzed. Some of these tools are user-
extensible: new rules to detect vulnerabilities
can be programmed into the tool.

Code Evolution

The key property to support evolution of
source code is modularity. Modularity
supports evolution in different ways. First,
since other modules depend only on the
interface of a given module,
implementation-details of that module can
be changed without impacting these other
modules. This supports local updating and
bug-fixing of code while making sure that
the impact of such a change remains
confined to a single module. Second, at a
more coarse-granular scale, the modular

construction of an application supports the
relatively flexible addition, removal,
modification or re-composition of modules
in the style of component-based
development (Szyperski, 1998).

Of course, an important concern is
whether modular reasoning about source
code properties is sound in general. How can
one be sure that the correctness of a
particular module indeed only depends on
the interfaces of other modules? If certain
correctness properties (including also
security properties) depend on
implementation details of other modules,
then a local change in one module can break
properties of another module. Modular
reasoning about imperative code turns out to
be challenging, as all modules have side-
effects to a single program heap.

An important breakthrough in the past
decade has been the development of
separation-logic (Reynolds, 2002) and other
related program logics (Kassios, 2006;
Smans, Jacobs, & Piessens, 2009) for
reasoning about imperative code. Several
mature tools exist (Jacobs, Smans, &
Piessens, 2010; Cohen et al., 2009) that can
verify correctness properties of non-trivial
code bases (Penninckx, Mühlberg, Smans,
Jacobs, & Piessens, 2012) in a modular way,
albeit at the cost of a substantial additional
effort from the developer. These program
logics force developers to make all
assumptions on which correctness properties
depend explicit in the form of program
annotations. If one of these assumptions is
violated during code evolution, this will be
detected by the verifier.

Another aspect of code evolution that is
of particular relevance to this survey article
is the research on advanced modularization
concepts that aim to support the modular
implementation of non-functional cross-
cutting concerns (since security is a prime
example of such a concern). The most
common umbrella term for such
modularization concepts is aspects, and
languages that support aspects are referred to

as aspect-oriented languages. There are
several mature research prototypes of such
general purpose aspect-oriented
programming languages, the most
prominent one being the AspectJ language
(Kiczales et al., 2001). On the more practical
side, mainstream component frameworks
such as Spring, JBoss and Microsoft .Net
provide general purpose aspect oriented
extensions.

Secure Code Evolution

Code evolution mainly interacts with
vulnerabilities in security components and
vulnerabilities in applications.
Vulnerabilities in security components can
often be attributed to the fact that security
functionality is extremely hard to
modularize: code dealing with access control
for instance, is typically spread throughout
the entire code base. As an example, in the
Sun JDK 1.3 implementation, a reference to
the SecurityManager is created at 126
different places in the code base, and calls to
the access decision function occur at 170
different places (Win, 2004). This
crosscutting nature of security concerns
makes implementing them error-prone, and
maintaining them very hard. It is exactly for
these kinds of vulnerabilities that aspect-
oriented techniques as discussed above can
provide solutions. By offering new
modularization constructs that are better at
modularizing crosscutting concerns such as
access control. Aspect-oriented
programming holds great promise for
reducing the number of vulnerabilities of
this type (De Win, Piessens, Joosen, &
Verhanneman, 2002). In particular, by
supporting modular implementations of
security functionality such as access control
or secure communication, these approaches
support a flexible evolution of that security
functionality. For example, it is possible to
implement the stack inspection mechanism
in Java using Inline Reference Monitors
(IRMs) (Erlingsson, 2004) while

maintaining competitive performance
(Erlingsson & Schneider, 2000). Such an
approach has the advantage that the security
policy can be modified without modifying
the existing JDK implementations.

To make sure that no vulnerabilities in the
application logic itself are introduced during
evolution, the reasoning about their absence
should be made modular. Two important
approaches succeed in modularizing the
analysis for security vulnerabilities: type
systems (Pierce, 2002) and modular full
functional verification (Jacobs et al., 2011).
An important idea underlying both these
approaches is the fact that the developer of
the code is supposed to provide additional
information (in the form of type annotations,
assertions, module contracts and so forth)
that explain why the code is secure. The type
checker or verifier then checks these
annotations. If this checking is modular,
only the parts of the code that are being
changed need to be rechecked.

For the typing-based approach, the first
security-specific type systems focused on
enforcing information flow properties
(Volpano, Irvine, & Smith, 1996), and the
development of such information flow
security type systems has seen a significant
amount of activity since then, leading up to
two fairly mature programming languages
that support them, FlowCaml (Pottier &
Simonet, 2003) and JFlow/JIF (Myers,
1999). But type systems have also been used
to guarantee other security properties such as
access control (Walker, 2000).

The verification-based approach to secure
code evolution builds on the general purpose
verification tools mentioned in Section
Secure Coding. Both information-flow style
security properties (Barthe, D’argenio, &
Rezk, 2011) as well as access control style
properties (Smans et al., 2006) can be casted
as assertions in a program logic. By
specifying such assertions, developers can
support the evolution of code with high
assurance that such evolution will not break
intended security properties of the code.

Security Test Evolution

Testing is the evaluation of software by
observing its execution. Model-based testing
(MBT) relies on models to generate tests, to
execute tests or to evaluate their results.
Model-based testing offers big potential for
automation and adaptation in the testing
process. It is therefore well-suited (1) for
testing dynamically evolving systems where
test suites have to be executed several times
which is not possible if the test execution is
not automated, (2) where tests have to be
modified which is much easier on the
abstract level of models than on the code
level, and (3) where tests even have to be
regenerated which is supported by the
automated derivation of test cases in many
model-based testing approaches. Regression
testing is a selective retesting to verify that
modifications have not caused unintended
effects and that the system under test still
complies with the specified requirements
(IEEE, 1990). Regression testing is essential
to verify evolving systems when they are
changed and also takes the test evolution
management into account. After an overview
of security testing, we then discuss
regression testing including test evolution
management in Section Regression Testing,
and finally consider their combination in
Section Security Test Evolution on security
testing and evolution management.

Security Testing

Security testing is software testing of
security requirements like confidentiality,
integrity, authentication, authorization,
availability, and non-repudiation. Security
testing can be divided into security
functional testing and security vulnerability
testing (Tian-yang, Yin-sheng, & You-yuan,
2010). Security functional testing ensures
whether security functions (positive security
requirements) are implemented correctly and
consistently with respect to security

requirements. Security vulnerability testing
addresses the identification and discovery of
yet unknown vulnerabilities (negative
security requirements) that are introduced by
security design flaws or software defects.
Security vulnerability testing lacks
approaches for systematic design, execution
and evaluation of tests and uses the
simulation of attacks like performed by
hackers which is called penetration testing.

Model-based testing techniques provide
additional support to lower the required level
of expertise needed for security testing
(Felderer, Agreiter, Zech, & Breu, 2011). By
using models, the level of abstraction is
raised which enables more people to design
tests, and the model can be employed to
automatically generate test cases.
Additionally, security models are often
created in conjunction with a risk analysis.
This risk information can, on the one hand,
be used for deriving test cases, and, on the
other hand, for prioritizing test execution.
Felderer et al. (2011) classify model-based
testing approaches along the two dimensions
risk integration and automated test
generation. Based on the different
perspectives used in securing a system,
Schieferdecker et al. (Schieferdecker,
Grossmann, & Schneider, 2012) distinguish
several types of input models for test
generation, i.e., (1) architectural and
functional models, (2) threat, fault and risk
models, and (3) weakness and vulnerability
models. A powerful test approach which is
especially useful for security testing is
mutation (Weiglhofer, Aichernig, &
Wotawa, 2009). Typically, mutation testing
is used to qualify test suites by running tests
against a mutation of the system under test.
The quality of the test suite is stated with
respect to the number of mutants being
detected by the test suite. For security
testing, models of the system under test are
mutated in a way that the mutants represent
known vulnerabilities (Schieferdecker et al.,
2012). These vulnerability models can then
be used for test generation by various MBT

approaches. The generated tests are used to
check whether the system under test is
vulnerable with respect to the vulnerabilities
in the model.

Regression Testing

Regression testing is considered very
expensive but an essential activity in the
software maintenance process. Hence,
evolving systems must be validated before
their redeployment on the market and this is
even more crucial for critical evolving
systems, on which safety and security
depends. Thus, the process of regression
testing takes into account testing the code
before delivery of the product. It aims to
ensure that changes at code level, which
correspond to changes at requirements level
described in the specification, do not impact
the non-modified code. It can be performed
on several testing levels, i.e., unit,
integration, and system level.

According to the accessibility of test
design artifacts, regression testing can be
code-based, also called white box regression
testing or model-based. Indeed, these two
types are considered as complementary and
both of them are effective in revealing
regression faults. Rothermel et al. (2001)
clarify the regression testing strategies and
separate them in the two categories retest-All
techniques and selective techniques. Retest-
All techniques require execution of the
entire test suite, provided from the previous
version, on the new system’s version.
Selective techniques require selection of a
subset of the test suite, which may reveal
errors in the new system, using different
approaches. Thus, selective regression
testing techniques can be classified into the
categories minimization, coverage-based,
safe as well as ad-hoc random. The goal of
minimization techniques is to choose the
minimal number of tests from the original
test suite, those crossing through the
modified instructions or affected by the
program modification. The goal of coverage-

based approaches is to take into account the
path and data dependence graph coverage by
tests. Safe techniques ensure that all tests
selected from the initial test suite may reveal
faults in the system. Most of the
minimization and flow-based techniques are
said not to be safe. Ad-hoc techniques
consider that all tests from the initial suite
may reveal faults and selects randomly a
certain number of tests. As mentioned
before, all these techniques are based either
on code, or on models. Latter have several
benefits. Model-based techniques (1) permit
the traceability between the specification and
the testing activity, (2) from scalability point
of view, these techniques easy the work with
very complex and industry scale systems,
and finally (3) they are independent from
programming languages.

Security Test Evolution

During the last years research shows
increasing work in the domain of validation
and verification of security requirements, in
particular for critical systems. A great
attention is given to testing different variants
of positive and negative security
requirements like security properties, access
control policies or vulnerabilities (see
Section Security Testing). It has been
achieved to create stable and certified
critical systems and, in case of evolution and
introducing new requirements, the main goal
is to preserve these security requirements.
Practitioners are aware that the security
requirements must be preserved and verified
for the new and evolved system.

However, to the best of our knowledge,
very few research is done in the field of
regression testing for security requirements,
called security regression testing (SRT)
although studies on the system development
lifecycle (Mehta, 2007) underline the
importance of regression testing while
verifying the vulnerabilities of a system.
Authors in (Alnatheer, Gravell, & Argles,
2010; Kongsli, 2006), remind the need of

regression testing for security requirements
in agile development. Kongsli (2006)
suggests applying misuse stories, contrary to
use case stories, and considers them as
possibility to take into account requirements
link to security issues. Moreover, he
proposes to use tests dedicated to misuse
stories in order to ensure regression testing.

Furthermore, authors in (SecureChange,
2012) present a model-based regression
testing approach for system security. The
security requirements are captured through
schemas (or scenarios), written in the
Smartesting Schema Language, which are
further used to drive the test generation. The
evolving aspects of the systems are captured
by adapting the SeTGaM technique
(Fourneret, Bouquet, Dadeau & Debricon,
2011) to security requirements. They
manage the test's life cycle for the new
system version through finer grained status
and update. Further, their approach selects a
precise set of security requirements from the
new version not covered by current tests and
generates tests only for this set, thereby
avoiding the unnecessary full regeneration of
tests for the new version.

Felderer et al. (2011) consider model-
based security regression testing of service-
centric systems. They attach state machines
to all model elements of the requirements,
system, and test model to obtain consistent
and traceable evolution. Adding, modifying
or deleting model elements trigger change
events and fire transitions in the state
machines. Tests have an additional type
following the classification of Leung and
White (1989) which can be evolution, for
testing novelties of the system, regression,
for testing non-modified parts and ensuring
that evolution did not unintentionally take
place on other parts, stagnation, for ensuring
that evolution did actually take place and
changed the behavior of the system, and
obsolete, for tests which are not relevant any
more. Based on a test requirement expressed
as an OCL query and considering the actual
state of model elements as well as the type

of tests, a regression test suite is selected and
executed.

In addition, Hwang et al. (2012) suggest
three regression test selection techniques for
access control policies specified in XACML.
The techniques are based on: (1) mutation,
(2) coverage, and (3) recorded request
evaluation of access-control policies. Each
policy P is composed of rules ri. The first
technique, first makes a correlation between
rules and tests, then selects the rules ri from
P and creates mutants of the policy by
changing the rules decision, denoted M(ri).
This technique selects tests revealing
different behaviors of the policy when
executing tests on the program in interaction
with the policy P and its mutants M(ri). It is
very costly, since it executes tests 2 · n
times, where n is the number of rules in the
policy. The second technique monitors
which rules are evaluated for requests issued
from the execution of test case on the
program in interaction with the policy. Then
it establishes a correlation, as the previous
technique, between rules and tests. Finally,
the last technique records requests issued
from security checks, called Policy
Enforcement Points (PEPs) when executing
tests on the program. The tests which
encapsulate different decisions for the given
policy and the modified one are selected for
regression testing.
Hence, much research work is done in the
field of regression testing of functionalities
in a system, but Yoo and Harman (2010)
point out the need to continue the
investigation in regression testing non-
functional requirements like security.

Security Monitoring

In this section, we discuss a specific branch
of monitoring called security monitoring.
We do not discuss any particular flavor of
security monitoring in abundant detail, but
focus however on providing a coarse, yet

broad, discussion of ongoing research and
industrial efforts in various areas of security
monitoring.

Monitoring can be seen as the ongoing
process of evaluating artifacts, i.e.,
computers, processes, whole infrastructures
or even people based on certain criteria, e.g.,
specified through policies. Security
monitoring itself is more specific. On an
abstract level, its major goal is to detect
security violations during operation. Such
violations can be classified as technical, e.g.,
data leakage, or business violations, e.g.,
compliance violation of legal requirements
such as HIPAA (Health Insurance Portability
and Accountability Act). The tasks for
security monitoring can be further refined.
Attack detection, for instance, is used to
detect insider and/or outsider ongoing
attacks on a technical more abstract level.
The tools employed for this kind of
monitoring depend on the focus point. The
technical point of view is provided by
Intrusion Detection Systems (IDSs)
(Denning, 1987; Lunt, 1993) with insider
attack detection capabilities as proposed by
Schultz et al. (Schultz, 2002). Whereas, an
insider attack focused solely on business
activity, would be considered by monitoring
in the area of fraud detection. A substantial
survey of work on fraud detection is
provided by Phua et al. (2005).

The following description of a security
monitoring schematic is the standard
architecture for IDSs, yet it is general
enough to apply to any monitoring
architecture discussed here. The Common
Intrusion Detection Framework (CIDF)
managed by the Intrusion Detection Working
Group (IDWG) defined a common
architecture for IDS (Garcia-Teodoro, Diaz-
Verdejo, MaciaFernandez, & Vazquez,
2009) by using four functional components
which are as follows:
• E blocks, also called Event-boxes, are

basically configured sensors that
monitor given target systems.

• D blocks, also called Database-boxes,
store event data received by the E
blocks and allow further processing.

• A blocks, also called Analysis-boxes,
are components that allow further
analysis on data within D blocks.

• R blocks, also called Response-boxes,
allow reacting on alerts, e.g., stop
execution of a compromised system or
revoke access for a user.

Different locations (e.g., layers in the
ISO/OSI model) for event-boxes imply a
variety of different security monitoring
branches. E blocks may collect network
traffic, database activity, host activity, user
activity, or Web Service activity. Such a
general architecture allows, therefore, to
split IDS further into Host-based/Network-
based IDS ((H)NIDS). Other types include,
for instance, Web Services Monitoring if the
focus is on Web Services. If gathered data is
mainly business-oriented, such as credit card
transactions, trade activity, product sale
statistics, it is called Business Activity
Monitoring.

Altering A blocks, does not change the
branch of monitoring, but rather the
reasoning/evaluation technique that is used.
Standard A blocks usually consist of either
signatures, statistical, or machine learning
algorithms. Signatures are provided by
experts to perform a rule-based analysis of
an incident. In short, signatures are basically
a look-up table to discern if features,
extracted from event data in D blocks, are
malicious. Statistical algorithms usually
revolve around statistical outlier tests, i.e.,
testing deviations in given distributions via
the Grubbs test, or hypothesis tests to test if
samples correspond to certain distributions,
among others the χ2 or the Kolmogorow-
Smirnow test (Denning, 1987; Kruegel &
Vigna, 2003; Garcia-Teodoro et al., 2009;
Chandola, Banerjee, & Kumar, 2009).
Machine learning-based algorithms usually
orbit around, e.g., SVMs, Clustering,
Bayesian, or Markovian methods to classify

given data instances as attacks or anomalies
(Garcia-Teodoro et al., 2009; Chandola et
al., 2009; K. Leung & Leckie, 2005; Gu,
Perdisci, Zhang, & Lee, 2008).

The most common analysis types in
security monitoring are signature-based and
anomaly-based approaches. And among
those two, signature-based methods seem to
be used more often in the industry
(Sourcefire, n.d.; Alienvault, n.d.; Trend
Micro, n.d.). The main reason why
signature-based approaches are popular
among industrial areas are basically the ease
of deployment, the ease of adapting the
monitoring system to new threats (assuming
there are known and significant patterns), a
low number of false-positives, and
intelligible reports. On the other side,
algorithms for anomaly detection (either
statistical or machine learning-based) are,
due to their intricacy, generally hard to
maintain. They produce a high number of
false-positives if used incorrectly, and
conveying results over reports tends to be
hard. Yet, anomaly detection approaches
have shown their value in identifying
attacks, never identifiable with signature-
based methods, for instance, user
masquerading attacks (Schonlau et al.,
2001). The IDWG schematic above makes it
clear that by changing the focus of the E
boxes and the type of analysis of the A
boxes it is possible to build various variants
for security monitoring systems, including
hybrid ones. A signature-based IDS can, for
instance easily be combined with anomaly
detection elements (e.g., SNORT by using
the network anomaly plugin SPADE, or
applying HTTP traffic extraction to perform
a semantic anomaly-based intrusion
detection (EstévezTapiador, Garcıa-
Teodoro, & Dıaz-Verdejo, 2004)).

A specialized signature-based monitoring
technique is known as Complex Event
Processing (CEP) (Luckham, 2008). CEP
helps security experts to correlate the large
quantity of different events from various
sources. CEP itself is an umbrella term for

methods processing events, in real-time
through sensors, query languages, event
databases, and internal query
representations. In short, multiple minor
events are matched with queries in the
database and imply a complex, more severe
or meaningful, event.

Correlation

A huge problem for security operators are
the number of false-positives and
meaningless alerts from the network. The
reduction of false-positives and increase for
the confidence of alerts, led to correlation
and aggregation algorithms (Julisch, 2003;
Ning, Cui, & Reeves, 2002), the creation and
handling of attack models, i.e., attack graphs
(Phillips & Swiler, 1998; Noel & Jajodia,
2004), automated model creation tools (Ou,
Govindavajhala, & Appel, 2005), and even
model-based correlation (Roschke, Cheng,
& Meinel, 2011).

Julisch et al. (2003) leverage clustering to
perform aggregation of alerts via
generalization hierarchies, distance metrics,
and derived dendrograms and achieve a
massive reduction of alerts. In Ning et al.
(2002), attack scenarios are mined by
matching alert information, e.g., formal
prerequisites and consequences assigned to
them, and thus aggregating them. Attack
graphs were introduced by (Phillips &
Swiler, 1998) to provide a graph-based
vulnerability analysis to assess consequences
for assets and, hence, also to provide means
to assess their risk. In their paper they also
show that analyzing an attack graph can be
computationally hard (i.e., finding the
longest paths in such an attack graph is
NPcomplete). Noel and Jajodia (2004)
describe a system to manage network attack
graphs that renders large attack graphs
feasible for human interaction, for instance
by allowing to aggregate subsets of the
attack graph in a hierarchical manner.
Recently, attack graphs have also been used
for correlation purposes. In Roschke et al.

(2011), alerts are linked to nodes in the
attack tree. Then, a dependency relation is
forced upon the alerts to attain a dependency
graph. Finally, the aggregated alerts are
processed to identify the most suspicious
subsets of the set.

In the following sections, we discuss various
branches of security monitoring that
sometimes rely on signature-based
approaches (including CEP), statistical
modeling, and/or machine learning. It is
important to distinguish these different
classes of monitoring systems, because of
their different properties. These groups are
subsets of Business Activity Monitoring
(BAM), i.e., fraud closely tied to the
business layer, Web Services Monitoring
used to measure the execution of workflows,
and Security Infrastructure and Event
Management (SIEM) providing a holistic
aggregation of security information. Finally,
we discuss the importance of evolution in
the area of security monitoring.

Business Activity Monitoring

BAM is a variant of process mining
considering business relevant services and
providing a high-level view on workflows,
transactions, quality of service, but also
compliance to service-level-agreements.
Typically, BAM is not considered to be a
part of security monitoring, with the
exception if it is done with the purpose of
fraud detection, which goes hand in hand
with process mining (van Dongen, De
Medeiros, Verbeek, Weijters, & van der
Aalst, 2005). In contrast to IDS, the
emphasis is on detecting fraudulent behavior
that causes financial loss, for instance, due to
insiders. Examples include credit card fraud,
telecommunication fraud, or fraud in the
health-care system (Bolton & Hand, 2002).
Doctors, for instance, may prescribe more
expensive alternative drugs than cheaper
generic drugs. The usual procedure is to
monitor databases, traffic, and messages, to

either semantically analyze the content or
check for statistical obliquities.

Giblin et al. (2005) take regulations and
transform them via the use of specialized
temporal patterns to a timed propositional
temporal logic which describes a hand-
crafted domain specific model of the
regulation to monitor. Afterwards, by using
transformation rules, a monitoring
architecture is configured.

Mulo et al. (2009) propose monitoring
compliance of business processes in SOA
via CEP means. A service invocation is
regarded as an event and business process
activities as event-trails. These event trails
guide the creation of queries which a CEP
engine uses to identify and monitor business
activities. Since the business activities are
rendered identifiable it is possible to monitor
the flow of a business process at runtime,
hence, it is possible to detect anomalous
process executions. In BAM it is common to
summarize desired properties in key
performance indicators (KPI), e.g., the
average process duration.

Wetzstein et al. (2009) use that technique
to do performance monitoring for the
analysis of WS-BPEL processes, combining
process events and QoS measurements. They
propose a framework which uses machine
learning techniques to construct tree
structures (binary decision tree generation),
which represent the dependencies of a KPI
on process and QoS metrics. Analysts then
study these dependency trees to determine
the impact of lower-level process metrics
and QoS characteristics on the process KPIs.

To tackle regulatory compliance (for
example SOX) Holmes et al. (2010) propose
a model-aware repository and service
environment (MORSE). In a nutshell, it
allows the generation of services, business
process code and monitoring directives via
model-driven development (MDD)
techniques. A so created business process
has compliance models applied to it
denoting a certain regulation or
implementation details. Afterwards, this

annotated process is automatically applied
on a business process engine. During
workflow execution, the annotations will be
retrieved and evaluated by the monitoring
infrastructure to detect violations.
Traceability of generated events, code as
well as model artifacts is managed via
UUIDs which are attached to events and
artifacts. The business expert can then
improve the process via updating the model
in the repository.

Web Services Monitoring

Although Web Services may be used in
BAM or IDS, standalone security
monitoring solutions explicitly for service-
based systems relying on Web Services
technologies exist (Baresi, Guinea, &
Plebani, 2006a; Erradi, Maheshwari, &
Tosic, 2007). To our understanding the key
difference between BAM and the monitoring
of Web Services is that the latter mostly
focuses of events extracted from Web
Services concerning Web Services, e.g.,
monitoring of dynamic compositions of Web
Services for SLAs.

Baresi et al. (Baresi, Guinea, & Plebani,
2006b) and Erradi et al. (2007) focus on
monitoring the execution of centrally
orchestrated Web Services compositions
(specified in WS-BPEL) in order to detect,
correlate and react meaningfully to
incidents. Baresi et al. (Baresi et al., 2006b)
extends WS-Policy with a language for
constraints to monitor functional and non-
functional requirements (weaved with the
BPEL process at deployment-time). This
approach focuses on monitoring very low-
level security requirements such as signature
algorithms used.

Erradi et al. (2007) present a hybrid
approach for functional and QoS monitoring
combining synchronous and asynchronous
monitoring techniques. The authors extend
WS-Policy to WS-Policy4MASC, and
present a middleware to provide Web
Services compositions with policy-enabled

monitoring capabilities. In Leitner et al.
(2010) a framework called PREvent is
introduced (based upon event-based
monitoring of composed services) which
enables prediction of SLA violations using
machine learning, but also runtime
prevention of those violations via triggered
adaptation actions. The novelty of this idea
lies in the way the automated composition
adaptation is done. The framework does not
wait for violations to take place but rather
predicts future violation and guarantees
successful execution by preemptively
altering the services compositions.

Intrusion Detection

IDS differ from previous monitoring
technologies mostly by its technical layer
and its singular view on intrusions. Topics
applying to IDS are detecting incidents, such
as, malware propagating in the network,
infiltration of the network from outside, and
violation of security policies from internal
users. Already during the Internet’s infancy
work in IDS technology was made, which
led to an excellent summary of IDS
capabilities in (Denning, 1987) and a follow-
up taxonomy based on relevant IDS
solutions of the time (Axelsson, 2000). As
mentioned above, IDS come in various
shapes, e.g., host-based, network-based,
Garcia et al. (2009) even go so far as to coin
the term anomaly-based NIDS (A-IDS) to
denote specific NIDS that are tailored to
detect anomalies. Yet they all share the goal
to help a security expert to detect if an attack
or intrusion is taking (or took) place. In
recent years, A-IDS have seen some
progress and are included in more and more
enterprise-level commercial intrusion
detection systems, for a list consider
(Garcia-Teodoro et al., 2009).

Basic techniques in anomaly-detection
include statistical, information-theoretic and
machine learning-based approaches.
Statistical approaches use univariate and
multivariate modeling, e.g., for statistical

correlation analysis (Ye, Emran, Chen, &
Vilbert, 2002). Seminal work in information
theory and intrusion detection (Lee & Xiang,
2001) has shown that anomaly detection for
audit data (ranging from system calls to
network data) can benefit from information
theoretic measurements such as, e.g.,
entropy, conditional entropy, and
information gain. Entropy itself can be used
to detect aberrations of regularity in
sequences of records, conditional entropy
can be used to determine similarity of
datasets (Lee & Xiang, 2001), whereas
information gain is known to describe a
classifier’s ability to classify data.
Information gain is used explicitly in
decision tree learning algorithms like ID3
(Quinlan, 1986) and C4.5 (Quinlan, 1996).
Techniques for machine learning involve
both unsupervised, i.e., clustering and
supervised approaches. Clustering is a quite
versatile tool as several approaches
(Oldmeadow, Ravinutala, & Leckie, 2004;
K. Leung & Leckie, 2005; Gu et al., 2008)
show. Gu et al. (2008) use clustering for the
detection of botnets by a framework called
“Botminer”. Leung and Leckie (2005)
improve clustering for NIDS by using a
density-based clustering algorithm and a
grid-based metric and evaluate their efforts
on the KDD 1999 data set. Supervised
approaches involve, for instance, Support
Vector Machines (Mukkamala, Janoski, &
Sung, 2002), Neural Networks (Debar,
Becker, & Siboni, 1992), Bayesian
Networks (Kruegel, Mutz, Robertson, &
Valeur, 2003), and fuzzy data mining (Jin,
Sun, Chen, & Han, 2004).

Security Monitoring Evolution

In this section, we discuss trends and
developments of security monitoring in
research and industry. Security monitoring is
arguably a very mature field, so during the
last decade many problems have been
solved. For instance identifying potential
event sources and detection mechanisms

(Denning, 1987), various ways to perform
anomaly detection (Garcia-Teodoro et al.,
2009), scalable and distributed architectures
for monitoring (Balasubramaniyan, Garcia-
Fernandez, Isacoff, Spafford & Zamboni,
1998 Tierney et al., 2002) and formats to let
security monitoring systems communicate
with each other, i.e., the Intrusion Message
Exchange Format (ID -MEF) (Debar, Curry,
& Feinstein, 2007). The main methods of
detection based signatures or statistics
(including anomaly detection), defeat known
malware, if signatures and distributions are
known. But attackers, their attacks and the
patterns thereof evolve. Therefore security
monitoring systems have to evolve as well.
Advanced Persistent Threats (APTs) are an
example for this type of evolution. The
difference between normal attacks and APTs
is best explained by elaborating on the
keywords.

Advanced denotes a series of well-
coordinated attacks by an organization with
massive financial means and a high degree
of expertise. Culprits of such attacks are
therefore often criminal organizations or
governments. The tools in use are usually
tailored to the scenario.

Persistent denotes that attacks are usually
part of a larger process that involves
scouting, intrusion, impersonation, and
knowledge acquisition. Since the attack is
spread over a larger amount of time, e.g.,
months, suspicions are low.

Issues related to ongoing espionage,
destruction of industrial units, or new
generation tools (e.g., Stuxnet, Duqu,
Sykipot) have always been associated with
the term APT (Gao, Morris, Reaves, &
Richey, 2010; Bencsáth, Pék, Buttyán, &
Félegyházi, 2012; Sood & Enbody, 2013).
APTs are currently an open research
problem since they demand comprehensive
monitoring, correlation and context
information by threat intelligence, as well as
means to determine changes in behavior,
e.g., via anomaly detection (Binde, McRee,

& O’Connor, 2011). To address the problem
of APTs, industrial as well as scientific
security monitoring grow together to build
systems that incorporate current best
practices, such as signature-based
monitoring, rule-based correlation, as well as
other features, such as context information,
multi-layer anomaly detection, and
collaborative intrusion detection (CID). An
industry example of context information and
CID is provided by AlienVault’s Open
Threat Exchange (OTE). OTE allows users
of OSSIM (Alienvault, n.d.) to share threat
intelligence, e.g., bad IP address ranges.
Recently, CID is also employed in the area
of cloud security monitoring (Sood &
Enbody, 2013; Zargar, Takabi, & Joshi,
2011). Context information is often provided
by models, e.g., Gander et al. (2011) provide
a metamodel that allows modeling of an IT
landscape to link infrastructure artifacts,
such as workflows, executing services,
hosts, and users, to each other in order to
provide a better context for anomaly
detection and detect complex attack patterns.

Anomaly detection itself undergoes
improvements. Horng et al. (2011) show,
that they were capable to improve the
detection performance of IDS on the KDD
dataset by combining SVMs and hierarchical
clustering in a single algorithm.

Preliminary work of Gander et al. (2012)
tries to combine CEP for workflow
monitoring and anomaly detection to create
profiles of database and network usage. By
linking profile information to service events
access control violations are detected.

Industrial detection systems, e.g., OSSIM
and Prelude, allow to aggregate information
from many sources, but are not explicitly
designed to handle the amount of data that
supports wider statistical analysis. Advances
in database research and log management,
especially in tool support, could make this
easier. Logstash and Graylog2, for instance,
are two open source log management
frameworks allowing efficient storage of
large amounts of data in a distributed

manner. They incorporate state of the art
large database querying support (e.g.,
leveraging ElasticSearch) and allow
traditional and non-traditional databases
(e.g., SQL, MongoDB).

To sum up, detection systems leveraging
agile, pluggable, frameworks may handle
large amounts of data much more easily and
perform anomaly detection in all kinds of
layers. For instance the application layer,
detecting application anomalies, service
invocation anomalies, or in the network
layer, detecting network anomalies (e.g.,
TCP, UDP). The achieved combination of
aforementioned best practices, such as rule-
based, or model-based, correlation of events
and statistical methods crunching through
large datasets will provide better detection
rates and reduce false-positives.

Security Risk Evolution

Risk management is defined as the
“coordinated activities to direct an
organization with regard to risk” (“ISO
31000 – Risk management – Principles and
guidelines”, 2009). A core part of these
activities is a regularly conducted risk
analysis to identify threats, vulnerabilities
and unwanted incidents with respect to
critical assets. The severity of the identified
risks must be estimated, and then evaluated
with respect to predefined criteria to
determine which risks need to be modified
by risk treatment.

Traditional approaches to risk analysis
typically focus on a particular configuration
of the target at a particular point in time, and
are valid under the assumptions made in the
analysis (Lund, Solhaug, & Stølen, 2010).
However, the target of analysis, its
environment and the assumptions we make
will change and evolve over time, during
software development, during deployment,
and at runtime. Such evolutions may render
previous risk analyzes invalid and require

the whole risk analysis to be conducted from
scratch. There is therefore a need for
methods and techniques to handle change
and evolution in a systematic way so as to
maintain the validity of risk analysis results
under change. This section gives an
overview of the state of the art in this
domain, focusing on security risk analysis in
the software development life cycle. In the
next sub-section we give an introduction to
risk analysis in general, give the most
important definitions and explain which
artifacts that are used and produced.
Subsequently we focus on security and
explain the most important aspects and
activities of security risk analysis. In the
remaining two subsections we give an
overview of the state of the art for managing
and analyzing evolving risks; first we
address evolving risks in general, and then
we address evolving security risks.

Risk Analysis

The ISO 31000 standard (“ISO 31000 – Risk
management – Principles and guidelines”,
2009) defines risk management as an
iterative process. The activities include the
specification of the target of analysis with its
focus and scope, the risk identification,
analysis and estimation, and finally the risk
treatment. While differing in methods and
techniques for risk assessment and risk
modeling, most of the established
approaches to risk analysis, such as
OCTAVE (Alberts & Dorofee, 2001),
CORAS (Lund, Solhaug, & Stølen, 2011a)
and CRAMM (Siemens, n.d.), follow the
ISO 31000 process. The same process is also
followed by several more security tailored
approaches, such as EBIOS (“EBIOS 2010 –
Expression of Needs and Identification of
Security Objectives”, 2010), the Microsoft
Security Risk Management Guide (“The
Security Risk Management Guide”, 2006)
and FRAAP (Peltier, 2010).

When conducting a risk analysis, there is
a need for techniques and means to reason

about various aspects of risks, and to
document the results, while following the
overall risk management process. Risk
modeling refers to techniques that are used
to aid the process of identifying and
estimating likelihood and consequence
values. A risk model is a structured way of
representing an event, its causes and
consequences using graphs, trees or block
diagrams (Robinson, 2007). Some well-
known risk modeling techniques are fault
tree analysis (FTA) (“IEC 61025 Fault Tree
Analysis (FTA)”, 1990), event tree analysis
(ETA) (“IEC 60300-9 Dependability
management Part 3: Application guide
Section 9: Risk analysis of technological
systems Event Tree Analysis (ETA)”, 1995),
attack trees (S. Schneider, 1999), cause-
consequence diagrams (Robinson, 2007;
Mannan, 2005) and Bayesian networks
(Ben-Gal, 2007).

An inherent challenge in most risk analyzes
is the modeling and assessment of
uncertainty, which is often due to lack of
knowledge or imprecise and insufficient
data. Many traditional risk models are based
on probability theory and classical set theory
where uncertainty is not easily represented.
For this reason various approaches based on
fuzzy logic, see, e.g., (Zadeh, 1965; Cox,
1994), have been proposed. Fuzzy logic
allows the uncertainty to be made explicit,
and comes with rules and operations for
reasoning about this uncertainty when
assessing the risks.

No matter which risk analysis method and
risk modeling technique has been chosen,
the objective is to build and maintain a risk
model that provides a valid documentation
of the risks, given the target description as
documented during the context
establishment. The target description should
include the assets and stakeholders of the
analysis, the focus and scope, the
assumptions we make, as well as the target
model. The target model is a specification of
the elements of the target of analysis,

including software and hardware
components, users and roles, information
and communication networks, business and
work processes, and so forth. The target
model is created using a suitable notation
such as activity diagrams, class diagrams,
data flow diagrams or business process
modeling. When using risk analysis to
support the software development life cycle,
such models can be received as input from,
for example, the software design and
architecture or from the requirements
engineering. Obviously, a change in any part
or aspect of the target description may have
impact on the risk picture, requiring an
updated analysis and risk model. After
introducing security to the setting of risk
management in the next sub-section, we
proceed by presenting existing approaches to
handle such change and evolution.

Security Risk Analysis

Security risk analysis can be understood as a
specialization of risk analysis, where the
focus is on preservation of security and the
protection of information assets. The
ISO/IEC 27005 (“ISO/IEC 27005 –
Information technology – Security
techniques – Information security risk
management”, 2011) standard on
information security risk management builds
on ISO 31000 and follows the same overall
process. The purpose is to provide guidelines
to support the requirements of an
information security management system
(ISMS) according to ISO/IEC 27001
(“ISO/IEC 27001 – Information technology
– Security techniques – Information security
management systems – Requirements”,
2005).

For risk management in general, assets
can be of any kind, for example revenue,
property, market share, personnel, life and
health, reputation, and so forth. Security risk
management, on the other hand, typically
concerns business processes and activities,
as well as information assets. It is moreover

concerned with the preservation of
confidentiality, integrity and availability of
information and services (“ISO/IEC 27001 –
Information technology – Security
techniques – Information security
management systems – Requirements”,
2005) by preventing information security
incidents. Other security properties that may
be taken into account are authentication,
non-repudiation and authorization (Hernan
et al., 2006).

In secure software engineering, security
risk analysis should be an integrated part of
the development lifecycle. For this purpose,
the models and specifications that are
developed during security requirements
engineering, secure software modeling,
security architecture and security test
modeling should provide input to the
security risk analysis process. In an iterative
engineering process, the security risk
analysis has then the potential to identify
possible security design flaws and provide
feedback to the security engineering
activities.

Risk Evolution

Evolution is unavoidable in most systems
and organizations, and while systems change
the associated risks change too. This is not
new, and as prescribed by ISO 31000, risk
management should detect “changes in the
external and internal context, including
changes to the risk criteria and the risk itself,
which can require revision of risk treatment
and priorities” (“ISO 31000 – Risk
management – Principles and guidelines”,
2009). However, as software and
information systems become more and more
heterogeneous, dynamic and interoperable,
evolution becomes a critical factor that
needs to be dealt with systematically. For the
management and analysis of evolving risks,
a main challenge is how to respond to
system and software changes, either during
development or at runtime. The objective is
to maintain the validity of the risk model and

the risk analysis results without conducting a
full risk analysis from scratch every time
(Lund et al., 2010; Lund, Solhaug, & Stølen,
2011b). Moreover, when risks are changing
and evolving they should be analyzed and
understood as such. In other words, the
management of evolving risks should be
supported by techniques for modeling,
assessing and reasoning about risk changes.
Such techniques will allow planning and
proactive decisions regarding desired or
possible software and system changes.

Traditional methods and techniques for
risk management, including the ISO 31000
standard, are not well equipped to address
evolution in a methodical and systematic
way. However, the increased awareness of
these challenges, both in industry and in the
research communities, has led to substantial
advances during the recent few years. In the
remainder of this section we give an
overview of some of these approaches,
focusing on security in software systems.

Security Risk Evolution

For software and systems that are rapidly
evolving, either during development or
operation, there is a need for strong
traceability between the target model and the
risk model. This can be done by building and
maintaining traceability links between the
model artifacts of the two domains and
propagate changes between them. Another
approach, which is more relevant at runtime
during operation, is security risk monitoring
by the monitoring of security indicators or
metrics in the target of analysis. Changes in
software or system attributes with relevance
for the security risk level can then be
monitored in order to continuously assess
risks and respond to unacceptable risks when
they arise. In the following we describe
existing approaches by considering in turn
methodological support, risk modeling
techniques, tool support and risk monitoring.

Methods to Analyze Evolving Risks. Lund et

al. (Lund et al., 2011b) address the problem
of insufficient methodological support for
handling change in traditional and standard
risk management frameworks. To mitigate
this they propose guidelines and techniques
for systematically tracing changes from the
target model to the risk model, and thereby
updating only the part of the risk picture that
is affected by the changes.

The contribution regarding methodology
is twofold. The first contribution is a
generalization of the ISO 31000 guidelines
to provide support for handling change in all
activities of the risk management process.
The guiding principle is that only the risks
that may be affected by changes in the target
should be analyzed anew. The second
contribution is the instantiation of the
generalized guidelines in CORAS (Lund et
al., 2011a). The ISO 31000 standard
provides guidelines on which activities to
conduct and what should be achieved in each
activity, but it comes with no techniques for
how to do this in practice. Such techniques,
including risk modeling techniques, are
typically offered by risk analysis
frameworks that instantiate the standard,
such as OCTAVE, CORAS and CRAMM.
The goal of generalizing the standard to
support change management is to offer the
necessary generic guidelines that can be
instantiated in any approach that is
compliant with the standard, as
demonstrated with CORAS by Lund et al.
(Lund et al., 2011b).

An important aspect of this generalized
approach is the support for explicitly
documenting risk changes. Hence, the
approach not only supports updating and
maintaining the validity of risk models under
change, but also the modeling and
assessment of how the risks evolve while the
target of analysis evolves. For this purpose,
the risk graph notation (Brændeland,
Refsdal, & Stølen, 2010) for formal risk
modeling and analysis is generalized to
capture change. The risk graph notation is
moreover extended with support for

modeling the traceability links to the target
model. Further details on this modeling
support are presented in the next subsection.

At the level of methodology, we are not
aware of any other methods or frameworks
that embed change and evolution
management as an explicit aspect of the
whole security risk management process.
The relevance and importance of change
management is of course widely recognized
as indicated, not only by ISO 31000, but also
established methods like OCTAVE (Alberts
& Dorofee, 2001). The recommendations
and guidelines are, however, usually limited
to the general monitoring and reviewing
activities.

Modeling Evolving Risks. While the state of
the art on evolution in risk management and
security risk assessment is limited at the
level of methodology, there has been more
progress at the level of risk modeling. These
are techniques that can be utilized by
analysts to handle change and evolution in a
systematic and efficient way, even when the
underlying methodology as such is more
traditional and conventional, for instance
those based on ISO 31000 or ISO/IEC
27005.

Some of the established techniques for
risk and threat modeling facilitate automatic
updating of the values that are annotated on
the diagrams; by changing input values to
capture changes in the target of analysis, the
derived output values can be generated.
These techniques include fault trees (“IEC
61025 Fault Tree Analysis (FTA)”, 1990),
Markov models (R. A. Howard, 1971; “IEC
61165 Application of Markov Techniques”,
1995) and Bayesian networks (BenGal,
2007). Influence diagrams (R. A. Howard &
Matheson, 2005) were originally a graphical
language designed to support decision
making by specifying the factors influencing
a decision. In (EEC, 2006), such diagrams
are connected to the leaf nodes of fault trees
supporting the propagation of influence to

the unwanted incidents specified at the root
of the tree. Similar, but simpler, are the risk
influence diagrams, detailed in (Aven, Sklet,
& Vinnem, 2006), where influencing factors
are connected to the nodes in event trees.
Several other notations have support for
associating elements of risk models to parts
of the target description, which may
facilitate the identification of possible risk
changes due0 to target changes. Approaches
based on the UML, such as misuse cases
(Sindre & Opdahl, 2000), may utilize built-
in mechanisms in the UML for relating
elements from different UML diagrams that
serve as the target model.

As mentioned above, Lund et al. (Lund et
al., 2011b) make use of risk graphs
(Brændeland et al., 2010) to provide
modeling support for their process and
guidelines for security risk management of
changing and evolving systems. An
advantage of risk graphs is that they can be
understood as a common abstraction of
several established risk modeling techniques,
such as fault trees, event trees, cause-
consequence diagrams, Bayesian networks
and CORAS threat diagrams. Lund et al.
extend the risk graph notation with support
for specifying risk elements that emerge
after change, risk elements that become
obsolete, and risk elements that are
modified. Semantics is provided for this
extension, and the risk graph calculus is
extended to provide support for the
reasoning about risk graphs with change.
The syntax is moreover extended with
support for relating risk graph elements to
elements of the target model. The
specification of these relations is referred to
as the trace model, as it facilitates the
systematic traceability of changes from the
target model to the risk model.

Thales Research & Technology has
developed their own industrial model-based
approach to risk assessment, supported by
the Rinforzando (Paul & Delande, 2011;
Bergomi, Paul, Solhaug, & Vignon-
Davillier, 2013) tool. The security risk

assessment and modeling can be performed
as standalone, but is also designed to serve
as an integrated part of their mainstream
system engineering workbench (Voirin,
2008). For this purpose, dynamic links can
be built and maintained between the risk
models and the system engineering models,
the latter specified using a service-oriented
architecture (SOA) modeling suit. When any
model changes are implemented during the
system development process, either on the
risk model or the system model, the changes
are immediately propagated via the links to
trigger updates and maintain the mutual
consistency between the modeling domains.

The problem of traceability between
model artifacts is well-addressed in the
model-driven engineering (MDE)
community, where a strong trend is to
develop a viewpoint (“ISO/IEC/IEEE 42010
– Systems and software engineering –
Architecture description”, 2011) for each
engineering concern. Each viewpoint should
come with its own modeling and analysis
techniques, but also with means for mapping
of its model artifacts to the related artifacts
of the other viewpoints. In the context of
safety critical systems, such traceability
between the system development process
and the risk assessment process is proposed
in (Katta & Stålhane, 2011).

Tool Support for Analyzing Evolving Risks.
A full risk analysis will typically result in a
large number of risk diagrams covering
different parts of the target model. Without
any automated tool support, the task of
tracing changes from the target model to the
risk model must be conducted manually and
can easily become infeasible.

The tool presented in (Seehusen &
Solhaug, 2012; Solhaug & Seehusen, 2013)
is developed to support the CORAS
instantiation of the method and language for
security risk assessment of evolving systems
proposed by Lund et al. (Lund et al., 2011b).
The main feature of the tool is the diagram
editor for creating all kinds of CORAS

diagrams to model and assess changing and
evolving risks. However, the tool also
supports the specification of the trace model,
i.e., the traceability links between elements
of the risk model and elements of the model
of the target of analysis. Using the trace
model the tool automatically flags all risk
diagrams and elements that may be affected
by changes in the target and therefore need
to be re-assessed. The tool also comes with
automated support for detecting and
resolving inconsistencies that may arise
during the process of updating the risk
models.

The Rinforzando (Paul & Delande, 2011)
tool mentioned above is similar in the sense
of using traceability links between the risk
model and the system model to maintain
validity and mutual consistency. The
integration with their system engineering
process is hard-coded and much tighter than
what is offered by CORAS. However, this is
at the cost of general applicability as
Rinforzando is tied to the Thales engineering
workbench, whereas CORAS allows any
notation to be used for target modeling. The
integration with the mainstream system
engineering using Rinforzando not only
allows establishing the traceability links and
maintaining online consistency between the
domains; it also allows the annotation of
design elements in the engineering
workbench when they are linked to risk
model elements, in order to support
engineers in detecting possible security
design flaws.

Model Versioning and Evolution (MoVE)
(Breu, Breu, & Löw, 2011) is an approach to
build an infrastructure to maintain the
validity, mutual consistency and
interdependencies between models as they
evolve over time within MDE. The approach
does not target security and risk in
particular, but rather builds a tool-supported
infrastructure for versioning of several
interdependent models, for example for
software architecture and design, business
processes, services, security and risk.

Similar to the aforementioned tools, the
underlying idea is to provide support for
tracing changes from one model to another
to ensure that they are globally up-to-date
and mutually consistent

Monitoring Evolving Risks. Risk
monitoring is a means to facilitate
continuous risk assessment by the
monitoring of relevant key indicators or
metrics. In order to enable security risk
monitoring there is a need not only to
identify the relevant indicators, but also to
understand how to relate the indicators to
potential security risks, and how to
aggregate the monitored values into risk
levels. The benefit of security risk
monitoring is, of course, that risk assessment
results can be automatically updated as they
evolve while the target of analysis evolves.

Refsdal and Stølen (2009) present a
model-based approach to make use of
measurable indicators in order to obtain a
risk picture that is continuously or
periodically updated. The approach comes
with a process of three steps. First, an initial
risk analysis is conducted to identify and
model possible threat scenarios and
unwanted incidents. Second, key indicators
are identified that may be relevant for
determining likelihoods and consequences
for the risk model. Third, functions are
defined for calculating likelihoods and
consequences based on the indicators. Using
this model-based approach, managers and
other stakeholders are provided a high-level
view of the current system security by
observing the updates of the risk models.

A similar approach is proposed by
Ligaarden et al. (Ligaarden, Refsdal, &
Stølen, 2012b). However, they focus on the
security of dynamic services in the more
complex setting of systems of systems. The
latter are collections of systems
interconnected through the exchange of
services. The authors propose a method to
support the capturing and the monitoring of
the impact of service dependencies on the

security of the provided services. The
method is divided into four main steps: (1)
documenting the system of systems and IT
service dependencies, (2) establishing the
impact of service dependencies on the
security risk of provided services, (3)
identifying measurable indicators for
dynamic monitoring, and (4) specifying the
indicator design and use. In a different
publication (Ligaarden, Refsdal, & Stølen,
2012a), the same authors address the related
problem of designing the indicators to be
monitored. For the security risk monitoring
to be correct, it is of course crucial that the
selected indicators provide a valid view of
the risk picture and the monitored risk level.

Adequate tool-support is obviously a
necessity for enabling security risk
monitoring and the continuous aggregation
of measured indicator values to generate the
updated risk levels. Ligaarden et al. (2011)
propose an architectural pattern for
enterprise level monitoring tools. Their idea
is that the pattern should serve as a generic
basis for building tools with features for
collecting low-level data from the ICT
infrastructure, aggregating the collected low-
level data, evaluating the aggregated data,
presenting the aggregated data and the
evaluation results to different stakeholders,
as well as features for doing the necessary
configurations.

Krautsevich et al. (2010) propose an
approach to make use of runtime attribute
monitoring to support risk-based
enforcement of usage control (UCON)
policies. The approach targets the dynamic
nature of UCON where authorization may
change over time. Because UCON decisions
are based on mutable attributes, the values of
which evolve, the reference monitor
continuously needs to re-evaluate the
enforcement decisions. Correctly registering
all attribute changes is challenging,
especially if the attribute provider and the
reference monitor reside in different security
domains; changes may be missed, delayed or
event corrupted. There is therefore a risk of

granting erroneous access and usage. To
mitigate this, the authors propose a set of
policy enforcement models with tolerance of
the inherent uncertainties of current attribute
values. In these models, the reference
monitor evaluates logical predicates over
attributes as usual, but additionally makes
estimates on how much the observed
attribute values differ from the actual values.
By considering the cost of erroneous
enforcement combined with its probability,
the associated risk is calculated. The risk
assessment then serves as a basis for
decision making. Although the main purpose
of these approaches is not security risk
analysis as such, but rather usage control,
they are still relevant in the setting of
runtime security assessment and risk
monitoring because of the use of runtime
risk analysis of evolving systems.

Conclusion

The increased usage of new service-based
computing paradigms, like service-oriented
architecture and cloud computing, results in
software systems that are distributed, open,
complex and dynamically changing. Security
is one of the main issues that must be tackled
in such environments. Especially, it is
challenging to face the changing and
evolutionary nature of such systems. In this
article we provided a comprehensive state of
the art survey regarding security evolution
from a software and security engineering
perspective. We considered the individual
phases of the security engineering lifecycle
and their associated artifacts separately.
These include modeling, analysis, design,
implementation, testing, deployment and
operation as well as risk management. The
associated artifacts are models,
requirements, architectures, code, tests,
runtime monitoring and risks, respectively.

In the following, we first summarize the
key issues for each artifact presented in the

article and then discuss resulting directions
of future work.

Summary

In this section, we summarize the key issues
for each artifact type presented in this

article, i.e., models, requirements,
architecture, code, tests, monitoring as well
as risks. First, we list the references to
security evolution publications for each
artifact in Table 1 to provide a
comprehensive overview, and then we
discuss each artifact type in detail.

Artifact References
Models (Koch et al., 2001), (Goncalves & Poniszewska-Maranda, 2008),

(Jürjens et al., 2011), (Montrieux et al., 2011), (Ochoa, Jürjens, &
Cuéllar, 2012), (Ochoa, Jürjens, & Warzecha, 2012), (Ruhroth &
Jürjens., 2012)

Requirements (Bergmann et al., 2011), (Massacci et al., 2011) Architecture
Architecture (Hafiz & Johnson, 2008), (Yskout, Scandariato, & Joosen, 2012a)
Code (De Win et al., 2002), (Pierce, 2002) , (Jacobs et al., 2011)
Tests (Kongsli, 2006), (Felderer, Agreiter, & Breu, 2011), (Hwang et al.,

2012), (SecureChange, 2012)
Monitoring (Gao et al., 2010), (Binde et al., 2011), (Zargar et al., 2011) ,

(Bencsáth et al., 2012), (Sood & Enbody, 2013)
Risks (EEC, 2006), (Krautsevich et al., 2010), (Refsdal & Stølen, 2009),

(Lund et al., 2011b), (Ligaarden et al., 2012b), (Ligaarden et al.,
2012a)

Table 1. References to Security Evolution Publications for each Artifact

Models. The main artifacts being used in
model-driven software and security
engineering methodologies are models. A
plethora of modeling languages has been
developed for specifying models for
different purposes. However, UML is
considered a de-facto industrial standard for
modeling and was the focus of this survey.
Using UML as a modeling language in the
security engineering process has been
considered in different lines of work, in
which security issues have been incorporated
in the design models at early stages of the
software development lifecycle. With regard
to change management, different approaches
have been proposed to consider evolution of
(UML) design models throughout all
development phases. However, the impact of
change on the security of UML models has
not been investigated in detail so far. An
example of a framework that considers
evolution aspects on security of UML
models is UMLSec. In this context, the
UMLSeCh approach has been developed to
tackle the consistency problems of selected

UML requirements when models evolve.
Other approaches consider evolution of
access control policies.

Requirements. A security requirements
engineering process consists of three phases:
(1) asset identification, (2) security goal
elicitation, and finally, (3) security
requirement specification. The main security
requirements engineering approaches that
can be identified are, goal-based, problem-
based, and risk-based security requirements
engineering approaches. Evolution in
security requirements engineering indicates
how new security needs can be
accommodated in the requirements models
and specifications. The recent work with
regard to requirements evolution can be
considered from different perspectives.
Some focus on modeling the evolution,
others considers the problems that arise from
evolution, like inconsistency, and finally,
other work considers the methods and tools
to assess and manage the impact of change.
While requirement evolution has been

extensively researched, tackling security
issue while introducing changes to the
requirement model has not been well
studied. The only available approach is a
model-driven methodology to represent,
analyze and detect security issues that are
because of requirements’ evolution.

Architecture. Software architecture can be
defined as a set of elements, their
relationships, and some degree of rationale.
Security at the architectural level may be
considered form different points of view:
constructive, modeling and analysis points
of views. The first perspective tackles the
problem of how architectures can be created
with certain security properties. The second
issue considers modeling security at the
architectural level. Finally, the analysis
viewpoint allows performing formal analysis
on the design of the architecture. With
regard to evolution, changes of the system
architecture originate form a change in the
requirements or the environment of the
system. These changes at the architectural
level should be propagated further to other
deployment artifacts.
Thus, the evolution of the software
architecture is tightly related with the
evolution of requirement, code, and
deployment configuration. Besides security
evolution of UML models which is certainly
relevant for the software architecture as well,
patterns to securely evolve a system and its
architecture are under investigation.

Code. Secure code is the central artifact in
the software engineering process, and it is
tightly associated with other artifacts, e.g.,
requirements, architecture, testing, and the
deployment. The properties of the
programming language, in which the secure
code is written, that affect security are safety
and modularity. Vulnerabilities or code bugs
with security consequences, that are
associated with coding, can be categorized
into vulnerabilities in the (1) infrastructural
software, (2) security components, and (3)

applications. Examples of countermeasure
techniques against such vulnerabilities are
static verification, code guidelines and
runtime monitoring. Code evolution
indicates the changes that must be done to
the software code after being deployed.
While modularity is an important property to
support evolution of secure code, security
functionality is often extremely hard to
modularize. This crosscutting nature of
security concerns makes their
implementation error-prone and hard to
maintain. For this reason, aspect-oriented
programming can identify itself as the best
solution, which is well studied in the
literature. Code evolution mainly interacts
with vulnerabilities in security components
and vulnerabilities in applications.
Vulnerabilities in security components are
mainly addressed by new modularization
concepts that are better at modularizing
crosscutting concerns such as access control.
To make sure that no vulnerabilities in the
application logic itself are introduced during
evolution, the reasoning about their absence
is made modular. Two important approaches
succeed in modularizing the analysis for
security vulnerabilities, i.e., type systems
and modular full functional verification.

Tests. Security testing is software testing of
security requirements like confidentiality,
integrity, authentication, authorization,
availability, and non-repudiation. Security
testing can be divided into security
functional testing (testing positive security
requirements) and security vulnerability
testing (testing negative security
requirements). An important type of
software testing in the context of (security)
evolution is regression testing, i.e., the
selective retesting after changes have been
made to the system under test (SUT). Its
goal is to ensure that (1) modifications have
not introduced new faults or caused
unintended effects and (2) the SUT still
compiles with the specified requirements.
Regression testing has been well studied for

classical functional requirements. A great
attention is given to testing different variants
of positive and negative security
requirements like security properties,
security functionality as well as
vulnerabilities. However, very little research
has been done in the field of regression
testing for security requirements. The few
available security regression testing
approaches focus on testing security
properties and security functionality like
access control policies.

Monitoring. Security monitoring is the
processing of evaluating software artifacts
during operation in order to detect security
violations. Violation detection can occur on
different levels of abstraction, e.g., technical
or business levels, and for different types,
e.g., security policy violation, data leakage
prevention, fraud detection, or workflow
compliance violation. The reasoning or
analysis component of a security monitoring
solution can be based either on signatures,
e.g., complex event processing, or statistical,
e.g., machine learning, algorithms. The first
performs rule-based analysis to detect
intrusions while the latter uses statistical
algorithms to detect anomalies. In order to
overcome and detect intrusions or
anomalies, either signatures or statistical
distributions of the attack must be known.
We interpreted “security monitoring
evolution” as the fact that when attacks
evolve and their patterns change into
unknown schemas, the security monitoring
solution has to evolve accordingly. Beside
machine learning based approaches, which
aim at measuring the change in the behavior,
artificial immune system based intrusion
detection system have been studied for this
purpose.

Risks. Risk management is a process that
involves coordinated activities to direct
organization decisions with regard to risks.
The key element in this process is a risk
analysis activity, whose goal is to identify

threats and vulnerabilities with respect to
critical assets. Security risk analysis focuses
on the preservation of security and the
protection of information assets. In the
context of the software development
lifecycle, the software artifacts under
development are the target of (security) risk
analysis. While traditional approaches of
risk analysis focus on a particular
configuration of the target at a specific point
of time, target evolution was not been
considered in these approaches. Methods to
analyze evolving risks propose guidelines
and techniques for systematically tracing
changes from the target model to the risk
mode, and thereby only updating the part of
the risk model affected by the changes.
Besides the research on methods that tackles
evolution in risk management, modeling and
monitoring evolving risk modeling. The idea
of modeling evolving risk is to associate
elements of risk models to parts of the target
model, which facilitates the identification of
possible risk changes when the target model
evolves. Monitoring evolving risks is based
on security risk monitoring and
automatically updates risk assessment results
while the target of analysis evolves.

Discussion and future work

This article reveals that evolution of artifacts
in the different phases of the software
development lifecycle is tightly coupled.
Evolution typically starts with changes of
requirements which are propagated further to
the design, architectural and implementation
artifacts. This in turn impacts testing,
deployment and risk management. Although
the artifacts are tightly coupled, actual work
on evolution of security artifacts mostly
discusses security evolution for a specific
artifact type in isolation. Modeling can be
seen as an overlapping aspect across all
phases to overcome this limitation. As
discussed in this state of the art survey,
models play an important role in (1) defining
security requirements, (2) designing

architectures, (3) automating security test
case generation, especially for regression
testing purposes, and (4) supporting the risk
management in the process of defining and
documenting risks. Thus, modeling is an
enabler to manage evolution of arbitrary
security artifacts in an integrated way for the
entire software development lifecycle. In
this article we focused on the graphical de-
facto standard modeling language UML and
provided a comprehensive review of change
and evolution aspects in this regard,
especially in the line of the UMLSec
approach. Modeling tools and techniques,
however, go beyond UML. For example,
domain specific languages recently gained
great attention in research and industry.
However, their potential for security
evolution has not been exploited.

This state of the art survey showed that
security evolution is an actual area of
research founded in software evolution and
security engineering which requires further
investigation. The security evolution
research for some artifacts of the software
development lifecycle is still rare and needs
further investigation. At the modeling level,
research on the impact of change to the
security of UML models is still at the
beginning. While requirements evolution has
been extensively researched, tackling
security issue while introducing changes to
the requirement model has not been well
studied so far. The same situation holds for
architectures and regression testing which
both have been studied extensively (H. P.
Breivold et al., 2012; Yoo&Harman, 2010).
But approaches to security evolution on the
architectural level as well as regression
testing approaches for specific security
properties are still rare. It would be valuable
to investigate how existing techniques for
architectural evolution support security. For
example, the use of graph transformations to
model security architecture evolution and
modifiability analysis technique to assess the
impact of a certain evolution scenario on the
security architecture could be of interest.

Evolution for the remaining security artifacts
of the software development lifecycle is
better studied as remarkable work has been
carried out in the areas of secure code
evolution, security monitoring, and risk
evolution. But for the security evolution of
all artifact types, empirical studies,
especially in an industrial context, are
missing so far.

Acknowledgements

This work is partially funded by the EternalS
Coordination Action (FP7-247758), the EU
projects NESSoS (FP7-256980) and
SecureChange (FP7-231101), the FFG
project “QE LaB Living Models for Open
Systems” (FFG 822740), the FWF project
MOBSTECO (FWF P 26194-N15), the DFG
project “SecVolution” which is part of DFG
Priority Program 1593 Design for Future, the
Interuniversity Attraction Poles Programme
Belgian State, Belgian Science Policy, the
Research Fund KU Leuven, as well as the
Fonds National de la Recherche
Luxembourg (FNR/P10/03).
Thein Tun is supported by NPRP grant 05-
079-1-018 from the Qatar National Research
Fund (a member of Qatar Foundation). The
statements made herein are solely the
responsibility of the authors.

References

Abbott, R., Chin, J., Donnelley, J., Konigsford,
W., Tokubo, S., & Webb, D. (1976). Security
analysis and enhancements of computer
operating systems (Tech. Rep.). DTIC
Document.

Abi-Antoun, M., Wang, D., & Torr, P. (2007).
Checking threat modeling data flow diagrams for
implementation conformance and security. In
22nd IEEE/ACM international conference on
automated software engineering (pp. 393–396).

Ahmad, A., Jamshidi, P., & Pahl, C. (2012).
Pattern-driven reuse in architecture-centric
evolution for service software. In 7th
international conference on software paradigm
trends ICSOFT’2012.

Alberts, C. J., & Dorofee, A. J. (2001). OCTAVE
Criteria (Tech. Rep. No. CMU/SEI-2001-TR-
016). CERT.

Alebrahim, A., Hatebur, D., & Heisel, M. (2011).
To-wards systematic integration of quality
requirements into software architecture. In I.
Crnkovic, V. Gruhn, & M. Book (Eds.), Software
architecture (p. 17-25). Springer.

Alghathbar, K., & Wijesekera, D. (2003).
Consistent and complete access control policies
in use cases. In P. Stevens, J. Whittle, & G.
Booch (Eds.), UML (pp. 373–387). Springer.

Alienvault. (n.d.). Ossim documentation.
http://www.alienvault.com/community.php?secti
on= Docs [accessed: January 15, 2013].

Alnatheer, A., Gravell, A. M., & Argles, D.
(2010). Agile security issues: an empirical study.
In Proceedings of the 2010 ACM-IEEE
international symposium on empirical software
engineering and measurement (pp. 58:1– 58:1).
New York, NY, USA: ACM.

Anderson, R. (1993). Why cryptosystems fail.
Proceedings of the ACM Conference in
Computer and Communications Security, 215–
227.

Andreae, C., Noble, J., Markstrum, S., &
Millstein, T. (2006). A framework for
implementing pluggable type systems. ACM
SIGPLAN Notices., 41(10), 57–74.

Andries, M., Engels, G., Habel, A., Hoffmann,
B., Kreowski, H.-J., Kuske, S., Taentzer, G.
(1999). Graph transformation for specification
and programming. Science of Computer
Programming, 34(1), 1 – 54.

Austin, T. H., & Flanagan, C. (2012). Multiple
Facets for Dynamic Information Flow. In
Proceedings of the ACM SIGPLAN-SIGACT
Symposium on Principles of Programming
Languages.

Aven, T., Sklet, S., & Vinnem, J. E. (2006).
Barrier and operational risk analysis of

hydrocarbon releases (BORA-Release). Part I.
Method description. J. Haz. Mat., A137, 681–
691.

Axelsson, S. (2000). Intrusion detection systems:
A survey and taxonomy (Tech. Rep.). Technical
report.

Balasubramaniyan, J., Garcia-Fernandez, J.,
Isacoff, D., Spafford, E., & Zamboni, D. (1998).
An architecture for intrusion detection using
autonomous agents. In Computer security
applications conference, 1998. Proceedings. 14th
annual (pp. 13–24).

Barais, O., Le Meur, A.-F., Duchien, L., &
Lawall, J. L. (2008). Software architecture
evolution. In Software evolution (p. 233-262).
Springer.

Baresi, L., Guinea, S., & Plebani, P. (2006a).
Ws-policy for service monitoring. In C. Bussler
& M.-C. Shan (Eds.), Technologies for e-services
(Vol. 3811, p. 72-83). Springer Berlin
Heidelberg.

Baresi, L., Guinea, S., & Plebani, P. (2006b).
WS-Policy for service monitoring. Technologies
for E-Services, 72–83.

Barthe, G., D’argenio, P. R., & Rezk, T. (2011).
Secure information flow by self-composition.
Mathematical. Structures in Comp. Sci., 21(6),
1207–1252.

Basin, D., Doser, J., & Lodderstedt, T. (2003).
Model driven security for process-oriented
systems. In Proceedings of the eighth ACM
symposium on access control models and
technologies (pp. 100–109). New York, NY,
USA: ACM.

Basin, D. A., Doser, J., & Lodderstedt, T. (2006).
Model driven security: From EDOC models to
access control infrastructures. ACM Trans.
Software. Engineering Methodology, 15(1), 39-
91.

Bass, L., Clements, P., & Kazman, R. (2003).
Software architecture in practice (Second ed.).
Addison-Wesley.

Bauer, L., Ligatti, J., & Walker, D. (2005).
Composing security policies with polymer. In
Pldi ’05: Proceedings of the 2005 ACM sigplan
conference on programming language design and

implementation (pp. 305–314). New York, NY,
USA: ACM Press.

Bencsáth, B., Pék, G., Buttyán, L., & Félegyházi,
M. (2012). Duqu: Analysis, detection, and
lessons learned. In ACM European workshop on
system security (EUROSEC) (Vol. 2012).

Ben-Gal, I.(2007). Bayesian networks. In F.
Ruggeri R. S. Kenett, & F. W. Faltin (Eds.),
Encyclopedia of statistics in quality and
reliability. John Wiley & Sons

Bengtsson, P., Lassing, N., Bosch, J., & van
Vliet, H. (2004). Architecture-level modifiability
analysis (ALMA). The Journal of Systems &
Software, 69(1-2), 129–147.

Bergmann, G., Massacci, F., Paci, F., Tun, T. T.,
Varró, D., & Yu, Y. (2011). A tool for managing
evolving security requirements. In Caise forum
(selected papers) (p. 110-125).

Bergomi, F., Paul, S., Solhaug, B., & Vignon-
Davillier, R. (2013). Beyond traceability:
Compared approaches to consistent security risk
assessments. In Proc. international workshop on
security in air traffic management and other
critical infrastructures (secatm’13). (To appear)

Bernardi, S., & Merseguer, J. (2007). A EDOC
profile for dependability analysis of real-time
embedded systems. In Proceedings of the 6th
international workshop on software and
performance (pp. 115–124).

Binde, B., McRee, R., & O’Connor, T. (2011).
Assessing outbound traffic to uncover advanced
persistent threat. SANS Institute. Whitepaper.

Blobel, B. (2002). Aspects of modeling using the
examples of Electronic Health Records (EHRs).
In Coras workshop. (Part of International
Conference on Telemedicine (ICT2002))

Bolton, R., & Hand, D. (2002). Statistical fraud
detection: A review. Statistical Science, 235–
249.

Brændeland, G., Refsdal, A., & Stølen, K.
(2010). Modular analysis and modelling of risk
scenarios with dependencies. Journal of Systems
and Software, 83(10), 1995–2013

Braude, E., & Bernstein, M. (2011). Software
engineering: Modern approaches. J. Wiley &
Sons.

Breivold, H., Crnkovic, I., & Larsson, M. (2012).
Software architecture evolution through
evolvability analysis. Journal of Systems and
Software, 85, 2574–2592.

Breivold, H. P., Crnkovic, I., & Larsson, M.
(2012). A systematic review of software
architecture evolution research. Information and
Software Technology, 54(1), 16 – 40.

Breu, M., Breu, R., & Löw, S. (2011). MoVEing
forward: Towards an architecture and processes
for a Living Models infrastructure. International
Journal on Advances in Life Sciences, 3(1-2),
12-22.

Brier, J., Rapanotti, L., & Hall, J. (2006).
Problem-based analysis of organisational change:
a real-world example. In Proc. of iwaapf ’06.
ACM.

Brose, G., Koch, M., & Löhr, K.-P. (2002).
Integrating access control design into the
software development process. In Integrated
design and process technology (IDPT).

Bryl, V., Giorgini, P., & Mylopoulos, J. (2009).
Designing socio-technical systems: from
stakeholder goals to social networks.
Requirement Engineering, 14(1), 47– 70.

Cardelli, L. (1997). Type systems. In The
computer science and engineering handbook (p.
2208-2236). CRC press.

Chandola, V., Banerjee, A., & Kumar, V. (2009).
Anomaly detection: A survey. ACM
Computing Surveys (CSUR), 41(3), 15.

Chechik, M., Lai, W., Nejati, S., Cabot, J.,
Diskin, Z., Easterbrook, S., Salay, R. (2009).
Relationship-based change propagation: A case
study. In Proceedings of the 2009 ICSE
workshop on modeling in software engineering
(pp. 7–12). Washington, DC, USA: IEEE
Computer Society.

Cohen, E., Dahlweid, M., Hillebrand, M.,
Leinenbach, D., Moskal, M., Santen, T., Tobies,
S. (2009). Vcc: A practical system for verifying
concurrent c. In Proceedings of the 22nd

international conference on theorem proving in
higher order logics (pp. 23–42). Springer.

Côté, I., Heisel, M., & Wentzlaff, I. (2007).
Pattern-based exploration of design alternatives
for the evolution of software architectures. Int. J.
Cooperative Inf. Syst., 16(3/4), 341-365.

Cox, E. (1994). The fuzzy systems handbook: A
practitioner’s guide to building, using, and
maintaining fuzzy systems. Academic Press
Professional.

Dai, L., & Cooper, K. (2007). A survey of
modelling and analysis approaches for
architecting secure software systems.
International Journal of Network Security, 5(2),
187–198.

d’Avila Garcez, A., Russo, A., Nuseibeh, B., &
Kramer, J. (2003). Combining adductive
reasoning and inductive learning to evolve
requirements specifications. In IEEE Proceedings
- software (Vol. 150(1), p. 25-38).

Debar, H., Becker, M., & Siboni, D. (1992). A
neural network component for an intrusion
detection system. In Research in security and
privacy, 1992. Proceedings. 1992 IEEE computer
society symposium on (pp. 240–250).

Debar, H., Curry, D., & Feinstein, B. (2007). The
intrusion detection message exchange format
(IDMEF).

De Groef, W., Devriese, D., Nikiforakis, N., &
Piessens, F. (2012). Flowfox: a web browser with
flexible and precise information flow control. In
Proceedings of the 19th ACM conference on
computer and communications security (ccs
2012). ACM.

Denning, D. (1987). An intrusion-detection
model. Software Engineering, IEEE Transactions
on (2), 222–232. Desmet, L., Piessens, F.,
Joosen, W., & Verbaeten, P. (2006).

Bridging the Gap between Web Application
Firewalls and Web Applications. In Proceedings
of the 2006 ACM workshop on formal methods
in security engineering (pp. 67–77).

Devriese, D., & Piessens, F. (2010).
Noninterference through Secure Multi-
Execution. In Proceedings of the IEEE

symposium on security and privacy (pp. 109–
124).

De Win, B., Joosen, W., & Piessens, F. (2004).
Developing secure applications through aspect-
oriented programming. Addison-Wesley.

De Win, B., Piessens, F., Joosen, W., &
Verhanneman, T. (2002). On the importance of
the separation-of-concerns principle in secure
software engineering. Workshop on the
Application of Engineering Principles to System
Security Design, 1–10.

Ebios 2010 – expression of needs and
identification of security objectives [Computer
software manual]. (2010). (In French)

EEC. (2006). Methodology report for the
2005/2012 integrated risk picture for Air Traffic
Management in Europe [Computer software
manual]. (EEC Technical/Scientific Report No.
2006-041)

Elahi, G., Yu, E., & Zannone, N. (2009). A
vulnerability-centric requirements engineering
framework: analyzing security attacks,
countermeasures, and requirements based on
vulnerabilities. Requirements Engineering, 15(1),
41–62.

Erlingsson, U (2004). The inlined reference
monitor approach to security policy enforcement
(Unpublished doctoral dissertation). Ithaca, NY,
USA. (AAI3114521)

Erlingsson, U., & Schneider, F. B. (2000). Irm
enforcement of java stack inspection. In In IEEE
symposium on security and privacy (pp. 246–
255).

Erlingsson, U., Younan, Y., & Piessens, F.
(2010). Low-level software security by example.
Springer.

Ernst, N. A., Borgida, A., & Jureta, I. (2011).
Finding incremental solutions for evolving
requirements. In Re (p. 15-24). IEEE.

Erradi, A., Maheshwari, P., & Tosic, V. (2007).
WS-Policy based monitoring of composite web
services.

Estévez-Tapiador, J., Garcıa-Teodoro, P., &
Dıaz-Verdejo, J. (2004). Measuring normality in

http traffic for anomaly-based intrusion
detection. Computer Networks, 45(2), 175–193.

Fabbrini, F., Fusani, M., Gnesi, S., & Lami, G.
(2007). Controlling requirements evolution: a
formal concept analysis-based approach. In
Proceedings of the international conference on
software engineering advances. Washington, DC,
USA: IEEE Computer Society.

Felderer, M., Agreiter, B., & Breu, R. (2011).
Evolution of security requirements tests for
service-centric systems. In Engineering secure
software and systems: Third international
symposium, ESSOS 2011 (pp. 181–194).
Springer.

Felderer, M., Agreiter, B., Zech, P., & Breu, R.
(2011). A classification for model-based security
testing. In The third international conference on
advances in system testing and validation
lifecycle (valid 2011) (pp. 109–114).

Felderer, M., Kalb, P., Agreiter, B., Breu, R.,
Buyens, K., Farwick, M., Yskout, K. (2011).
Survey on state of the art time awareness and
management (Tech. Rep.). Deliverable 1.2 of the
EternalS Coordination Action (FP7-247758).

Felici, M. (2004). Observational models of
requirements evolution (Unpublished doctoral
dissertation). University of Edinburgh.

Ferguson, N., & Schneier, B. (2003). A
cryptographic evaluation of IPSEC (Tech. Rep.).
Counterpane Internet Security, Inc. Retrieved
from http://www.schneier .com/paper-ipsec.html

FindBugs. (n.d.). Find Bugs in Java Programs.
(http://findbugs.sourceforge.net/ [accessed:
January 15, 2013])

Fourneret, E., Bouquet, F., Dadeau, F., &
Debricon, S. (2011). Selective test generation
method for evolving critical systems. In
Proceedings of the 2011 IEEE 4th international
conference on software testing, verification and
validation workshops (pp. 125–134).
Washington, DC, USA: IEEE Computer Society.

France, R. B., & Bieman, J. M. (2001). Multi-
view software evolution: A EDOC-based
framework for evolving object-oriented software.
In ICSM.

Franqueira, V. N. L., Tun, T. T., Yu, Y.,
Wieringa, R., & Nuseibeh, B. (2011). Risk and
argument: A risk-based argumentation method
for practical security. In Re 2011, 19th IEEE
international requirements engineering
conference (p. 239-248). IEEE.

Gabor Bergmann, Zoltan Ujhelyi, Istvan Rath, &
Daniel Varro. (2011). A graph query language
for EMF models. In 4th international conference
theory and practice of model transformations
(ICMT 2011) (p. 167-182). Springer.

Gander, M., Felderer, M., Katt, B., & Breu, R.
(2012). Monitoring anomalies in it-landscapes
using clustering techniques and complex event
processing. In Machine learning for system
construction (MLSC) 2011 (Vol. 336). Springer.

Gander, M., Katt, B., Felderer, M., & Breu, R.
(2011). Towards a model- and learning-based
framework for security anomaly detection. In
Formal methods for components and objects
(FMCO) 2011. Springer.

Gao, W., Morris, T., Reaves, B., & Richey, D.
(2010). On scada control system command and
response injection and intrusion detection. In
ECRIME researchers summit (ECRIME), 2010
(pp. 1–9).

Garcia-Teodoro, P., Diaz-Verdejo, J., Macia-
Fernandez, G., & Vazquez, E. (2009). Anomaly-
based network intrusion detection: Techniques,
systems and challenges. Computers & Security,
28(1-2), 18–28.

Garlan, D., Barnes, J., Schmerl, B., & Celiku, O.
(2009a). Evolution styles: Foundations and tool
support for software architecture evolution. In
WICSA/ECSA 2009 (p. 131 -140).

Garlan, D., Barnes, J. M., Schmerl, B. R., &
Celiku, O. (2009b). Evolution styles:
Foundations and tool support for software
architecture evolution. In Joint working
IEEE/IFIP conference on software architecture
and european conference on software
architecture (WICSA/ECSA 2009) (p. 131-140).
IEEE Computer Society.

Georg, G., France, R., & Ray, I. (2002). An
aspect-based approach to modeling security
concerns. In Critical systems development with
EDOC (CSDUML 2002) (pp. 107– 120).

Georg, G., France, R., & Ray, I. (2003). Creating
security mechanism aspect models from abstract
security aspect models. In Critical systems
development with UML (CSDUML 2003) (pp.
35–46).

Ghose, A. (1999). A formal basis for
consistency, evolution and rationale management
in requirements engineering. In Ictai (p. 77-84).

Ghose, A. (2000). Formal tools for managing
inconsistency and change in re. In IWSSD ’00.
Washington, DC, USA.

Giblin, C., Liu, A., Müller, S., Pfitzmann, B.,
Zhou, X., & Building, H. (2005). Regulations
expressed as logical models (REALM). In Legal
knowledge and information systems: Jurix 2005:
the eighteenth annual conference (p. 37).

Giorgini, P., Massacci, F., & Zannone, N. (2005).
Security and trust requirements engineering. ,
237-272.

Goncalves, G., & Poniszewska-Maranda, A.
(2008). Role engineering: From design to
evolution of security schemes. Journal of
Systems and Software, 81(8), 1306-1326.

Gu, G., Perdisci, R., Zhang, J., & Lee, W.
(2008). Botminer: clustering analysis of network
traffic for protocol-and structure-independent
botnet detection. In Proceedings of the 17th
conference on security symposium (pp. 139–
154).

Hafiz, M., Adamczyk, P., & Johnson, R. (2007).
Organizing security patterns. Software, IEEE,
24(4), 52–60.

Hafiz, M., & Johnson, R. (2008). Evolution of
the MTA architecture: The impact of security.
Software: Practice and Experience, 38(15),
1569–1599.

Haley, C. B., Laney, R. C., Moffett, J. D., &
Nuseibeh, B. (2008). Security requirements
engineering: A frame work for representation and
analysis. IEEE Trans. Software Eng., 34(1), 133-
153.

Halfond, W. G., Viegas, J., & Orso, A. (2006). A
Classification of SQL-Injection Attacks and
Countermeasures. In Proceedings of the IEEE
international symposium on secure software
engineering. Arlington, VA, USA.

Hamlen, K. W., Morrisett, G., & Schneider, F. B.
(2006). Computability classes for enforcement
mechanisms. ACM Trans. Program. Lang. Syst.,
28(1), 175–205. Hassine, J., Rilling, J., Hewitt,
J., & Dssouli, R. (2005). Change impact analysis
for requirement evolution using use case maps.
In IWPSE ’05.

Hawkins, J., & Fernandez, E. (1997). Extending
use cases and interaction diagrams to develop
distributed system architecture requirements
(Tech. Rep. No. TR-CSE-97-47). Department of
Computer Science & Engineering, Florida
Atlantic University.

Heaven, W., & Letier, E. (2011). Simulating and
optimising design decisions in quantitative goal
models. In Requirements engineering conference
(re), 2011 19th IEEE international (p. 79 -88).

Heckel, R. (1998). Compositional verification of
reactive systems specified by graph
transformation. In Proceedings of international
conference on fundamental approaches to
software engineering (FASE) (pp. 138– 153).
Springer.

Heldal, R., & Hultin, F. (2003). Bridging model-
based and language-based security. In E.
Snekkenes & D. Gollmann (Eds.), 8th european
symposium on research in computer security
(ESORICS 2003) (pp. 235–252). Springer.

Hernan, S., Lambert, S., Ostwald, T., &
Shostack, A. (2006). Threat modeling – uncover
security design flaws using the STRIDE
approach.

Holmes, T., Zdun, U., Daniel, F., & Dustdar, S.
(2010). Monitoring and Analyzing Service-Based
Internet Systems through a Model-Aware Service
Environment. In Advanced information systems
engineering (pp. 98– 112).

Horng, S., Su, M., Chen, Y., Kao, T., Chen, R.,
Lai, J., & Perkasa, C. (2011). A novel intrusion
detection system based on hierarchical clustering
and support vector machines. Expert systems
with Applications, 38(1), 306–313.

Houmb, S., & Hansen, K. (2003). Towards a
UML profile for model-based risk assessment of
security critical systems. In Critical systems
development with UML (CSDUML 2003) (pp.
95–104).

Howard, M., & Leblanc, D. (2001). Writing
secure code. Redmond, WA, USA: Microsoft
Press.

Howard, R. A. (1971). Dynamic probabilistic
systems, volume i: Markov models. John Wiley
& Sons.

Howard, R. A., & Matheson, J. E. (2005).
Influence diagrams. Decis Anal., 2(3), 127–143.

Hwang, J., Xie, T., El Kateb, D., Mouelhi, T., &
Le Traon, Y. (2012). Selection of regression
system tests for security policy evolution. In
Proceedings of the 27th IEEE/ACM international
conference on automated software engineering
(pp. 266–269).

IEC 60300-9 Dependability management - Part
3: Application guide - Section 9: Risk analysis of
technological systems - Event Tree Analysis
(ETA) [Computer software manual]. (1995).

IEC 61025 Fault Tree Analysis (FTA) [Computer
software manual]. (1990).

IEC 61165 application of Markov techniques
[Computer software manual]. (1995).

IEEE. (1990). Standard Glossary of Software
Engineering Terminology. Author.

ISO 31000 – risk management – Principles and
guidelines [Computer software manual]. (2009).

ISO/IEC 27001 – Information technology –
Security techniques – Information security
management systems – Requirements [Computer
software manual]. (2005).

ISO/IEC 27005 – Information technology –
Security techniques – Information security risk
management [Computer software manual].
(2011).

ISO/IEC/IEEE 42010 – systems and software
engineering – architecture description [Computer
software manual]. (2011).

Jackson, M. (2001). Problem frames: Analyzing
and structuring software development problems.
Addison Wesley.

Jacobs, B., Leino, K. R. M., Piessens, F., &
Schulte, W. (2005). Safe concurrency for
aggregate objects with invariants. In Proceedings
of the Third IEEE International Conference on

Software Engineering and Formal Methods (p.
137-146). IEEE Computer Society.

Jacobs, B., Smans, J., Philippaerts, P., Vogels, F.,
Penninckx, W., & Piessens, F. (2011). Verifast:
A powerful, sound, predictable, fast verifier for c
and java. NASA Formal Methods, 41–55.

Jacobs, B., Smans, J., & Piessens, F. (2010). A
quick tour of the verifast program verifier. In
Aplas (p. 304-311).

Jin, H., Sun, J., Chen, H., & Han, Z. (2004). A
fuzzy data mining based intrusion detection
model. In Distributed computing systems, 2004.
FTDFC 2004. Proceedings. 10th IEEE
international workshop on future trends of (pp.
191–197).

Johns, M. (2008). On JavaScript Malware and
related threats - Web page based attacks
revisited. Journal in Computer Virology, 4(3),
161-178.

Julisch, K. (2003). Clustering intrusion detection
alarms to support root cause analysis. ACM
Transactions on Information and System Security
(TISSEC), 6(4), 471. Jürjens, J. (2005). Secure
systems development with UML. Springer
Verlag.

Jürjens, J., Marchal, L., Ochoa, M., & Schmidt,
H. (2011). Incremental Security Verification for
Evolving UMLsec models. In Proceedings of the
7th European conference on modelling
foundations and applications (ECMFA) (p. 52-
68). Springer.

Kassios, I. T. (2006). Dynamic frames: Support
for framing, dependencies and sharing without
restrictions. In Fm (p. 268-283).

Katta, V., & Stålhane, T. (2011). A conceptual
model of traceability for safety systems. Poster
session at 2nd International Conference on
Complex Systems Design & Management
(CSD&M’11).

Khan, S., Greenwood, P., Garcia, A., & Rashid,
A. (2008). On the Impact of Evolving
Requirements-Architecture Dependencies: An
Exploratory Study. In advanced information
systems engineering: 20th international
conference, CAISE 2008 Montpellier, France,
June 18-20, 2008, Proceedings (p. 243).

Kiczales, G., Hilsdale, E., Hugunin, J., Kersten,
M., Palm, J., & Griswold, W. G. (2001). An
Overview of AspectJ. In J. L. Knudsen (Ed.),
15th European conference on object-oriented
programming (ecoop) (pp. 327–355). Springer-
Verlag.

Kim, D.-K., Ray, I., France, R., & Li, N. (2004).
Modeling role-based access control using
parameterized UML models. In M. Wermelinger
& T. Margaria (Eds.), Fundamental approaches
to software engineering (FASE 2000) (pp. 180–
193). Springer.

Kissel, R., Stine, K., Scholl, M., Rossman, H.,
Fahlsing, J., & Gulick, J. (2008). Security
considerations in the system development
lifecycle [Computer software manual]. (NIST
Special Publication 800-64 Revision 2)

Klusener, A. S., Lämmel, R., & Verhoef, C.
(2005). Architectural modifications to deployed
software. Science of Computer Programming,
54(2), 143–211.

Koch, M., Mancini, L. V., & Parisi-Presicce, F.
(2001). On the specification and evolution of
access control policies. In Proceedings of the
sixth ACM symposium on access control models
and technologies (pp. 121–130). New York, NY,
USA: ACM.

Kongsli, V. (2006). Towards agile security in
web applications. In Companion to the 21st
ACM sigplan symposium on object-oriented
programming systems, languages, and
applications (pp. 805–808). New York, NY,
USA: ACM.

Krautsevich, L., Lazouski, A., Martinelli, F., &
Yautsiukhin, A. (2010). Risk-aware usage
decision making in highly dynamic systems. In
Proceedings of the fifth international conference
on internet monitoring and protection (icimp’10).
IEEE Computer Society.

Krautsevich, L., Lazouski, A., Martinelli, F., &
Yautsiukhin, A. (2011). Cost-effective
enforcement of UCONApolicies. In Proceedings
of the 6th international conference on risks and
security of internet and systems (crisis’11) (pp.
1–8). IEEE Computer Press.

Kruegel, C., Mutz, D., Robertson, W., & Valeur,
F. (2003 Bayesian event classification for

intrusion detection. In Computer security
applications conference, 2003. Proceedings. 19th
annual (p. 14-23). Published by the IEEE
Computer Society

Kruegel, C., & Vigna, G. (2003). Anomaly
detection of web-based attacks. In Proceedings of
the 10th ACM conference on computer and
communications security (pp. 251–261).

Lam, W., & Loomes, M. (1998). Requirements
evolution in the midst of environmental change:
a managed approach. In CSMR ’98.

Landwehr, C., Bull, A., McDermott, J., & Choi,
W. (1994). A taxonomy of computer program
security flaws, with examples. ACM Computing
Surveys, 26(3), 211–255. Leangsuksun, C., Song,
H., & Shen, L. (2003). Reliability modeling
using UML. Software Engineering Research and
Practice, 2003, 259–262.

Lee, W., & Xiang, D. (2001). Information-
theoretic measures for anomaly detection. In
Security and privacy, 2001. S&P 2001.
Proceedings. 2001 IEEE symposium on (pp.
130–143).

Lehman, M. (1980). On understanding laws,
evolution, and conservation in the large-program
lifecycle. Journal of Systems and Software, 1,
213–221.

Lehman, M. (1998). Software’s future: Managing
evolution. IEEE Software, 15(1), 40–44.

Leitner, P., Michlmayr, A., Rosenberg, F., &
Dustdar, S. (2010). Monitoring, Prediction and
Prevention of SLA Violations in Composite
Services. In IEEE international conference on
web services (ICWS 2010) (pp. 369–376).

Letier, E., & van Lamsweerde, A. (2004).
Reasoning about partial goal satisfaction for
requirements and design engineering. In
Proceedings of the 12th ACM sigsoft twelfth
international symposium on foundations of
software engineering (pp. 53–62). New York,
NY, USA: ACM.

Leung, H., & White, L. (1989). Insights into
regression testing (software testing). In
Proceedings conference on software maintenance
1989 (pp. 60–69). IEEE Comput. Soc. Press.

Leung, K., & Leckie, C. (2005). Unsupervised
anomaly detection in network intrusion detection
using clusters. In Proceedings of the twenty-
eighth australasian conference on computer
science-volume 38 (pp. 333–342).

Li, T., Liu, L., & Bryant, B. R. (2010). Service
Security Analysis Based on i*: An Approach
from the Attacker Viewpoint. In Security, trust,
and privacy for software applications (STPSA
2010) (pp. 127–133). Seoul

Ligaarden, O. S., Lund, M. S., Refsdal, A.,
Seehusen, F., & Stølen, K. (2011). An
architectural pattern for enterprise level
monitoring tools. In Maintenance and evolution
of service-oriented and cloud-based systems
(mesoca’11) (pp. 1–10). IEEE Computer Society.

Ligaarden, O. S., Refsdal, A., & Stølen, K.
(2012a). Designing indicators to monitor the
fulfillment of business objectives with particular
focus on quality and ICT-supported monitoring
of indicators. International Journal On Advances
in Intelligent Systems, 5(1-2).

Ligaarden, O. S., Refsdal, A., & Stølen, K.
(2012b). It security governance innovations:
Theory and research. In (pp. 256–292). IGI
Global.

Ligatti, J., Bauer, L., & Walker, D. (2005). Edit
automata: Enforcement mechanisms for run-time
security policies. International Journal of
Information Security, 4(1–2), 2–16.

Lin, L., Nuseibeh, B., Ince, D., & Jackson, M.
(2004). Using abuse frames to bound the scope
of security problems. In 12th IEEE international
requirements engineering conference (re’04) (pp.
354–355). IEEE Computer Society.

Lin, L., Prowell, S. J., & Poore, J. H. (2009). The
impact of requirements changes on specifications
and state machines. SP&E, 39(6), 573–610.

Liu, L., Yu, E., & Mylopoulos, J. (2003).
Security and privacy requirements analysis
within a social setting. RE 2003, 3, 151–161.

Luckham, D. (2008). The power of events: an
introduction to complex event processing in
distributed enterprise systems. Rule
Representation, Interchange and Reasoning on
the Web, 3–3.

Lund, M. S., Solhaug, B., & Stølen, K. (2010).
Evolution in relation to risk and trust
management. Computer, 43(5), 49–55.

Lund, M. S., Solhaug, B., & Stølen, K. (2011a).
Model-driven risk analysis – the coras approach.
Springer.

Lund, M. S., Solhaug, B., & Stølen, K. (2011b).
Risk analysis of changing and evolving systems
using CORAS. In Foundations of security
analysis and design vi (fosad vi) (pp. 231–274).
Springer.

Lunt, T. (1993). A survey of intrusion detection
techniques. Computers & Security, 12(4), 405–
418.

Manadhata, P., & Wing, J. (2011). An attack
surface metric. Software Engineering, IEEE
Transactions on, 37(3), 371–386.

Mannan, S. (Ed.). (2005). Lees’ loss prevention
in the process industries. Hazard identification,
assessment and control. Volume 1 (3rd ed.).
Elsevier.

Mantel, H. (2002). On the composition of secure
systems. In IEEE symposium on security and
privacy (p. 88-101). IEEE.

Massacci, F., Mylopoulos, J., Paci, F., Tun, T. T.,
& Yu, Y. (2011). An extended ontology for
security requirements. In CAISE workshops (p.
622-636).

Massacci, F., Mylopoulos, J., & Zannone, N.
(2010). Security Requirements Engineering: The
SI * Modeling Language and the Secure Tropos
Methodology. In Z. Ras & L.-S. Tsay (Eds.),
Advances in intelligent information systems
(Vol. 265, pp. 147–174). Springer.

McVeigh, A. (2009). A rigorous, architectural
approach to extensible applications (Unpublished
doctoral dissertation). Imperial College London.

Mead, N. R., & Stehney, T. (2005). Security
quality requirements engineering (square)
methodology. SIGSOFT Software Engineering
Notes, 30(4), 1–7.

Mehta, D. M. (2007). Effective software security
management. OWASP. Retrieved from https://
www.owasp.org/images/2/28/Effective
_Software_Security_Management.pdf

Mellado, D., Fernández-Medina, E., & Piattini,
M. (2008). Towards security requirements
management for software product lines: A
security domain requirements engineering
process. Computer Standards & Interfaces, 30(6),
361-371.

Mens, T., & Demeyer, S. (2008). Software
evolution. Springer.

Mens, T., Magee, J., & Rumpe, B. (2010).
Evolving software architecture descriptions of
critical systems. Computer, 43(5), 42–48.
MITRE. (n.d.). CWE - Common Weakness
Enumeration. http://cwe.mitre.org/.

Moebius, N., Stenzel, K., Grandy, H., & Reif, W.
(2009). Securemdd: A model-driven
development method for secure smart card
applications. In Availability, reliability and
security, 2009. ARES’09. International
conference on (pp. 841–846).

Montrieux, L., Wermelinger, M., & Yu, Y.
(2011). Challenges in model-based evolution and
merging of access control policies. In
Proceedings of the 12th international workshop
on principles of software evolution and the 7th
annual ercim workshop on software evolution,
EVOL/IWPSE 2011, szeged, hungary (p. 116-
120).

Mouratidis, H., Giorgini, P., & Manson, G.
(2003). Integrating security and systems
engineering: Towards the modelling of secure
information systems. In Proc. of CAISE’2003 (p.
1031-1031). Springer.

Mouratidis, H., & Jurjens, J. (2010). From goal-
driven security requirements engineering to
secure design. International Journal of Intelligent
Systems, 25(8), 813– 840.

Mukkamala, S., Janoski, G., & Sung, A. (2002).
Intrusion detection using neural networks and
support vector machines. In Proceedings of the
2002 international joint conference on neural
networks (Vol. 2, pp. 1702-1707)

Mulo, E., Zdun, U., & Dustdar, S. (2009).
Monitoring web service event trails for business
compliance. In Service-oriented computing and
applications (SOCA), 2009 IEEE international
conference on (pp. 1–8).

Myers, A. C. (1999). Jflow: practical mostly-
static information flow control. In Proceedings of
the 26th ACM sigplan-sigact symposium on
principles of programming languages (pp. 228–
241). New York, NY, USA: ACM.

Nhlabatsi, A., Bandara, A., Shinpei, H., Jurjens,
J., Kaiya, H., Kubo, A,Yu, Y. (2010). Security
patterns: Comparing modeling approaches. In
Software engineering for secure systems:
Industrial and research perspectives (pp. 75–
111). IGI Global.

Nhlabatsi, A., Nuseibeh, B., & Yu, Y. (2009).
Security requirements engineering for evolving
software systems: A survey. Journal of Secure
Software Engineering, 1, 54-73.

Ning, P., Cui, Y., & Reeves, D. (2002).
Constructing attack scenarios through correlation
of intrusion alerts. In Proceedings of the 9th
ACM conference on computer and
communications security (pp. 245–254).

Noel, S., & Jajodia, S. (2004). Managing attack
graph complexity through visual hierarchical
aggregation. In Proceedings of the 2004 ACM
workshop on visualization and data mining for
computer security (pp. 109–118).

Ochoa, M., Jürjens, J., & Cuéllar, J. (2012). Non-
interference on UML Statecharts. In 50th
international conference on objects, models,
components, patterns (TOOLS Europe 2012).
Springer.

Ochoa, M., Jürjens, J., & Warzecha, D. (2012). A
sound decision procedure for the
compositionality of secrecy. In Proc. of the 4th
international symposium on engineering secure
software and systems, ESSOS 2012 (p. 97-105).
Springer.

Oldmeadow, J., Ravinutala, S., & Leckie, C.
(2004). Adaptive clustering for network intrusion
detection. Advances in Knowledge Discovery
and Data Mining, 255–259.

Ou, X., Govindavajhala, S., & Appel, A. (2005).
Mulval: A logic-based network security analyzer.
In 14th usenix security symposium (pp. 1–16).

Parnas, D. L. (1972). On the criteria to be used in
decomposing systems into modules.
Communication ACM, 15(12), 1053–1058.

Paul, S., & Delande, O. (2011). Integrability of
design modelling solution. SecureChange FP7
project deliverable D4.4b.

Peltier, T. R. (2010). Information security risk
analysis (3rd ed.). Auerbach Publications.

Penninckx, W., Mühlberg, J. T., Smans, J.,
Jacobs, B., & Piessens, F. (2012). Sound formal
verification of linux’s usb bp keyboard driver. In
Nasa formal methods (p. 210-215).

Phillips, C., & Swiler, L. (1998). A graph-based
system for network-vulnerability analysis. In
Proceedings of the 1998 workshop on new
security paradigms (pp. 71– 79).

Phua, C., Lee, V., Smith, K., & Gayler, R.
(2005). A Comprehensive Survey of Data
Mining-based Fraud Detection Research.
Artificial Intelligence Review, 1–14.

Pierce, B. C. (2002). Types and programming
languages. Cambridge, MA, USA: MIT Press.

Pottier, F., & Simonet, V. (2003). Information
flow inference for ml. ACM Trans. Program.
Lang. Syst., 25(1), 117– 158.

Project PROTEUS. (June 1996). Deliverable 1.3:
Meeting the challenge of changing requirements
(Tech. Rep.). Centre for Software Reliability,
University of Newcastle upon Tyne.

Quinlan, J. R. (1986). Induction of decision trees.
Machine learning, 1(1), 81–106.

Quinlan, J. R. (1996). Bagging, boosting, and c4.
5. In Aaai/iaai, vol. 1 (pp. 725–730).

Ray, I., France, R., Li, N., & Georg, G. (2003).
An aspect-based approach to modeling access
control concerns. Information & Software
Technology. (To be published)

Razavian, M., & Lago, P. (2012). A viewpoint
for dealing with change in migration to services.
In Joint conference on software architecture &
European conference on software architecture
(WICSA/ECSA).

Refsdal, A., & Stølen, K. (2009). Employing key
indicators to provide a dynamic risk picture with
a notion of confidence. In Trust management iii
(Vol. 300, p. 215-233). Springer.

Ren, J., & Taylor, R. (2005). A secure software
architecture description language. In Workshop
on software security assurance tools, techniques,
and metrics.

Reynolds, J. C. (2002). Separation logic: A logic
for shared mutable data structures. In
Proceedings of the 17th annual IEEE symposium
on logic in computer science (pp. 55–74).
Washington, DC, USA: IEEE Computer Society.

Robinson, R. M. (2007). Risk and reliability – an
introductory text (7th ed.). Risk and Reliability
Associates Pty Ltd.

Roschke, S., Cheng, F., & Meinel, C. (2011). A
new alert correlation algorithm based on attack
graph. Computational Intelligence in Security for
Information Systems, 58–67.

Rothermel, G., Harrold, M. J., Graves, T. L.,
Kim, J.-M., & Porter, A. (2001). An empirical
study of regression test selection techniques.
ACM Transactions on Software Engineering and
Methodology, 10, 184-208.

Rozanski, N., & Woods, E. (2005). Software
systems architecture: Working with stakeholders
using viewpoints and perspectives. Addison-
Wesley Professional.

Ruhroth, T., & Jürjens., J. (2012). Supporting
security assurance in the context of evolution:
Modular modeling and analysis with UMLSEC.
In 16th IEEE international symposium on high
assurance systems engineering (HASE 2012).
IEEE.

Russo, A., Nuseibeh, B., & Kramer, J. (1999).
Restructuring requirements specifications. In
IEEE Proceedings: Software (Vol. 146, pp. 44 –
53).

Sabelfeld, A., & Myers, A. C. (2003). Language-
based information-flow security. IEEE J.
Selected Areas in Communications, 21(1), 5–19.

Salehi, P., Hamoud-Lhadj, A., Colombo, P.,
Khendek, F., & Toeroe, M. (2010). A EDOC-
based domain specific modeling language for the
availability management framework. In
Proceedings of the 2010 IEEE 12th international
symposium on high-assurance systems
engineering (pp. 35–44). Washington, DC, USA:
IEEE Computer Society.

Scandariato, R., Buyens, K., & Joosen, W.
(2010). Automated detection of least privilege
violations in software architectures. Software
Architecture, 6285, 150–165.

Schieferdecker, I., Grossmann, J., & Schneider,
M. (2012). Model-based security testing. In
Proceedings 7th workshop on model-based
testing.

Schmidt, D. C. (2006). Model-Driven
Engineering. IEEE Computer, 39(2).

Schneider, F., Morrisett, G., & Harper, R. (2001).
A language-based approach to security.
Informatics – 10 Years Back. 10 Years Ahead,
2000, 86–101.

Schneider, S. (1999). Attack trees: Modeling
security threats. Dr. Dobb’s J., 24, 21–29.

Schonlau, M., DuMouchel, W., Ju, W., Karr, A.,
Theus, M. & Vardi, Y. (2001). Computer
intrusion: Detecting masquerades. Statistical
Science, 58–74.

Schultz, E. (2002). A framework for
understanding and predicting insider attacks.
Computers & Security, 21(6), 526–531.

SecureChange, W. P (2012). Deliverable 7.4:
Results of test campaign on case studies.
(SecureChange (EU ICT-FET-231101)
[accessed: January 15, 2013])

The security risk management guide [Computer
software manual]. (2006).

Seehusen, F., & Solhaug, B. (2012). Tool-
supported risk modeling and analysis of evolving
critical infrastructures. In Multidisciplinary
research and practice for information systems
(Vol. 7465, pp. 562–577). Springer.

Siemens. (n.d.). CRAMM – The total
information security toolkit.
http://www.cramm.com/ [accessed: January 15,
2013].

Sindre, G., & Opdahl, A. L. (2000). Eliciting
security requirements by misuse cases. In 37th
international conference on technology of object-
oriented languages and systems (tools pacific’00)
(pp. 120–131). IEEE Computer Society.

Smans, J., Jacobs, B., & Piessens, F. (2006).
Static verification of code access security policy
compliance of .NET applications. Journal of
Object Technology, 5(3).

Smans, J., Jacobs, B., & Piessens, F. (2009).
Implicit dynamic frames: Combining dynamic
frames and separation logic. In ECOOP (p. 148-
172).

Solhaug, B., & Seehusen, F. (2013). Model-
driven risk analysis of evolving critical
infrastructures. Journal of Ambient Intelligence
and Humanized Computing, 1-18.

Sood, A., & Enbody, R. (2013). Targeted
cyberattacks: A superset of advanced persistent
threats. IEEE Security and Privacy, 11(1), 54–61.
Sourcefire, I. (n.d.). Snort. (http://www.snort.org/
[accessed: January 15, 2013])

Souza, V. E. S., Lapouchnian, A., & Mylopoulos,
J. (2011). System identification for adaptive
software systems: a requirements engineering
perspective. In 30th International conference on
conceptual modeling (pp. 346–361). Springer.

Stark, G. E., Oman, P., Skillicorn, A., & Ameele,
A. (1999). An examination of the effects of
requirements changes on software maintenance
releases. Journal of Software Maintenance:
Research and Practice, 11(5), 293–309.

Stevens, W. P., Myers, G. J., & Constantine, L.
L. (1974). Structured design. IBM Systems
Journal, 13(2), 115-139.

Sullivan, K. J., Griswold, W. G., Cai, Y., &
Hallen, B. (2001). The structure and value of
modularity in software design. SIGSOFT Softw.
Eng. Notes, 26(5), 99–108.

Szlenk, M., Zalewski, A., & Kijas, S. (2012).
Modelling architectural decisions under changing
requirements. In Joint conference on software
architecture & european conference on software
architecture (WICAE/ECSA).

Szyperski, C. A. (1998). Component software -
beyond object-oriented programming. Addison-
Wesley-Longman.

Tamzalit, D., & Mens, T. (2010). Guiding
architectural re-structuring through architectural
styles. In R. Sterritt, B. Eames, & J. Sprinkle
(Eds.), International conference and workshops

on the engineering of computer-based systems
(ECBS 2010) (p. 69-78). IEEE Computer
Society.

Taylor, R. N., Medividovic, N., & Dashofy, E.
M. (2010). Software architecture foundations,
theory, and practice. Wiley.

The Open Web Application Security Project.
(2011). Owasp website. http://www.owasp.org.
[accessed, January 15, 2013]

Tian-yang, G., Yin-sheng, S., & You-yuan, F.
(2010). Research on software security testing.
World Academy of Science, Engineering and
Technology, 70.

Tierney, B., Aydt, R., Gunter, D., Smith, W.,
Swany, M., Taylor, V., & Wolski, R. (2002). A
grid monitoring architecture. In The global grid
forum gwd-gp-16-2.

Tran, L. M. S., & Massacci, F. (2011). Dealing
with known unknowns: towards a game-theoretic
foundation for software requirement evolution. In
Proceedings of the 23rd international conference
on advanced information systems engineering
(pp. 62–76). Springer.

Trend Micro, I. (n.d.). Ossec documentation.
(http://www.ossec.net/ [accessed: January 15,
2013])

Trojer, T., Breu, M., & Löw, S. (2010). Change-
driven model evolution for living models. In 3rd
workshop model-driven tool and process
integration (MDTPI), ECMFA 2010. Paris,
France.

Trujillo, J., Soler, E., Fernández-Medina, E., &
Piattini, M. (2009). A EDOC 2.0 profile to define
security requirements for data warehouses.
Computer Standards & Interfaces, 31(5), 969–
983.

van Lamsweerde, A., & Letier, E. (2000).
Handling obstacles in goal-oriented requirements
engineering. IEEE Transactions on Software
Engineering, 26(10), 978–1005.

van Dongen, B., De Medeiros, A., Verbeek, H.,
Weijters, A., & van der Aalst, W. (2005). The
prom framework: A new era in process mining
tool support. Applications and Theory of Petri
Nets 2005, 1105–1116.

van Lamsweerde, A. (2003). From system goals
to software architecture. In Formal methods for
software architectures (p. 25-43). Springer.

van Lamsweerde, A. (2004). Elaborating security
requirements by construction of intentional anti-
models. In Software engineering, 2004. ICSE
2004. Proceedings. 26th international conference
on (pp. 148–157).

van Lamsweerde, A. (2009). Requirements
Engineering: From System Goals to UML
Models to Software Specifications. John Wiley
& Sons.

Voirin, J.-L. (2008). Method & tools for
constrained system architecting. In 18th annual
international symposium of the international
council on systems engineering (incose’08) (pp.
775–789). Curran Associates, Inc.

Volpano, D., Irvine, C., & Smith, G. (1996). A
sound type system for secure flow analysis. J.
Computer. Security (2-3), 167–187.

Walker, D. (2000). A type system for expressive
security policies. In Proceedings of the 27th
ACM sigplan-sigact symposium on principles of
programming languages (pp. 254–267). New
York, NY, USA: ACM.

Wang, H., & Wang, C. (2003). Taxonomy of
security considerations and software quality.
Commun. ACM, 46(6), 75–78.

Weiglhofer, M., Aichernig, B., & Wotawa, F.
(2009). Fault-based conformance testing in
practice. International Journal of Software and
Informatics, 3(2-3), 375–411.

Weiss, M. (2007). Modeling security patterns
using NFR analysis. In H. Mouratidis & P.
Giorgini (Eds.), Integrating security and software
engineering: advances and future visions. IGI
Global.

Wetzstein, B., Leitner, P., Rosenberg, F.,
Brandic, I., Dustdar, S., & Leymann, F. (2009).
Monitoring and analyzing influential factors of
business process performance. In Enterprise
distributed object computing conference
(EDOC’09) (pp. 141–150).

Wheeler, D. A. (n.d.). The Flawfinder homepage.
http://www.dwheeler.com/flawfinder/ [accessed:
January 15, 2013]

Williams, B., & Carver, J. (2010). Characterizing
software architecture changes: A systematic
review. Information and Software Technology,
52(1), 31–51.

Win, B. D. (2004). Engineering application-level
security through aspect-oriented software
development (Unpublished doctoral dissertation).

Ye, N., Emran, S., Chen, Q., & Vilbert, S.
(2002). Multivariate statistical analysis of audit
trails for host-based intrusion detection. IEEE
Transactions on Computers, 51(7), 810–820.

Yoo, S., & Harman, M. (2010). Regression
testing minimisation, selection and prioritisation:
A survey. Software Testing, Verification, and
Reliability, 1(1), 121-141

Yoshioka, N., Washizaki, H., & Maruyama, K.
(2008). A survey on security patterns. Progress in
Informatics, 5(5), 35–47.

Younan, Y., Joosen, W., & Piessens, F. (2012).
Runtime countermeasures for code injection
attacks against C and C++ programs. ACM
Comput. Surv., 44(3), 17.

Yskout, K., Ben David, O.-N., Scandariato, R., &
Baudry, B. (2012). Requirements-driven runtime
reconfiguration for security. In A. Moschitti & R.
Scandariato (Eds.), Eternal systems (Vol. 255, p.
25-33). Springer.

Yskout, K., Scandariato, R., & Joosen, W.
(2012a). Change patterns. Software and Systems
Modeling, 1-24.

Yskout, K., Scandariato, R., & Joosen, W.
(2012b). Does organizing security patterns focus
architectural choices? In Software engineering
(ICSE), 2012 34th international conference on
(pp. 617–627).

Zadeh, L. A. (1965). Fuzzy sets. Information and
Control, 8(3), 338–353.

Zargar, S., Takabi, H., & Joshi, J. (2011).
Dcdidp: A distributed, collaborative, and data-
driven intrusion detection and prevention
framework for cloud computing environments. In
Collaborative computing: Networking,
applications and worksharing (collaboratecom),
2011 7th international conference on (pp. 332–
341).

Zowghi, D., & Offen, R. (1997). A logical
framework for modeling and reasoning about the
evolution of requirements. In 3rd IEEE
international symposium on requirements
engineering (pp. 247–257). IEEE.

View publication statsView publication stats

