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Abstract

In this paper, a round-table group optimization (RTGO) algorithm is presented. RTGO is a
simple metaheuristic framework using the insights of research on group creativity. In a cooperative
group, the agents work in iterative sessions to search innovative ideas in a common problem land-
scape. Each agent has one base idea stored in its individual memory, and one social idea fed by
a round-table group support mechanism in each session. The idea combination and improvement
processes are respectively realized by using a recombination search (XS) strategy and a local search
(LS) strategy, to build on the base and social ideas. RTGO is then implemented for solving two
difficult sequencing problems, i.e., the flowshop scheduling problem and the quadratic assignment
problem. The domain-specific LS strategies are adopted from existing algorithms, whereas a general
XS class, called socially biased combination (SBX), is realized in a modular form. The performance
of RTGO is then evaluated on commonly-used benchmark datasets. Good performance on different
problems can be achieved by RTGO using appropriate SBX operators. Furthermore, RTGO is able
to outperform some existing methods, including methods using the same LS strategies.

Keywords: Meta-heuristic frameworks, Group creativity, Sequencing problems, Global
optimization, Recombination search, Idea combination process, Social-biased learning

1. Introduction

Group creativity techniques, e.g., brainstorming [39], have been widely studied in social science
[34, 40]. A cooperative human group contains multiple individuals who have some interactions on
ideas of each others [40], and the group tries to find innovative solutions (or high-quality ideas)
for a specific task by generating new (especially innovative) ideas spontaneously contributed by its
members in iterative idea-generating sessions.

Group creativity has been studied in both group and individual levels. At the group level,
a support mechanism is used to assist individuals by providing useful external stimulus in their
idea-generation process. The essential function of these mechanisms is to serve as group memory
[4, 53] for the diffusion of innovative patterns [47] as well as providing diverse ideas [40], based
on a developing repository of nonprivate knowledge shared by members. For individuals, group
memory might be heterogeneously shaped in network structures [25, 51].

For each individual, the ideation process involves idea selection [41, 46] and idea generation
[21, 36, 40], based on its individual memory [15, 35]. A pre-selection mechanism [41] might be used
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to pick out relevant ideas from both the individual and group memory. Then an idea-generation
mechanism is used to build new idea(s) on selected ideas. Afterward, a post-selection mechanism
[46] is applied to update the individual memory. Each individual also holds a sharing mechanism
to contribute nonprivate knowledge [24] for the group.

The idea-generation process is a critical part of the creative process. Since the research of
Osborn [39], combine-and-improve ideas has been a general brainstorming rule to form a single
better idea by building on existing ideas. The total process of building on existing ideas might be
divided into two parts, the idea combination process [21, 66] and the idea improvement process,
roughly corresponding to the divergent and convergent processes, where the former is of paramount
importance although the latter is also nontrivial [8].

Human problem solving can be seen as searching in a structural space of states (ideas) [35].
Thus, there is a natural similarity between creative idea-generating tasks and hard optimization
problems [25], both of them require efficiently achieving high-quality solutions.

Many optimization problems can be formulated as sequencing (or permutation) problems [22,
54]. All sequencing problems with n nodes share the same problem space, in which each potential
solution (or state) ~x is a permutation {x1, . . . , xn} of the integer values from 1 through n, only
their objective functions f(~x) possess different structural properties.

In this paper, we consider two typical sequencing problem examples, i.e., the quadratic assign-
ment problem (QAP) [5, 57] and the flowshop scheduling problem (FSP) [3, 45, 59], among some
other examples [63]. Both QAP and FSP are NP -hard in the strong sense. FSP is a well-known
problem in intelligent manufacturing systems. QAP arises in many practical applications, e.g., de-
sign of grey patterns and website structure improvement [52]. QAP also serves as a generalization
of some other important optimization problems [27].

Exact algorithms, e.g., branch-and-bound [6], can only be tractable for solving small-scale
instances, whereas fast constructive heuristics [31, 44] often obtain results that are far away from
optimal. Thus, low-level search components, especially local search (LS) and recombination search
(XS), as well as upper-level meta-heuristic frameworks, have been integrated together for finding
near optimal solutions within practical computational costs.

Each LS strategy improves an incumbent solution by intensively moves based on some neigh-
borhood search operations [14], e.g., 2-opt. A LS strategy is defined as stable if it only allows
non-worse moves. Any stable LS, such as hill-climbing and the fast LS [14], cannot escape from
the local minimum it first encounters. Some advanced LS strategies, such as simulated annealing
[33], tabu search [37, 58], iterated local search [50, 55], etc., incorporate some unstable moves so
as to explore in a rugged problem landscape.

Each XS strategy generates a new solution by preserving positive clues in two parent solutions,
which has an implicit advantage of adaptive leaping by utilizing the difference between two parents
[27]. Typical examples of XS operators for sequencing problems include order crossovers [30,
54], LCS crossover [18], similar block crossovers [49], partially mapped crossovers [54], distance
preserving crossover [27], and path crossovers [2], etc.

Meta-heuristic frameworks, which use LS and XS strategies as their search components, have
been applied for solving sequencing problems. Typical examples include ant colony optimization
[14, 20, 26, 42], genetic algorithms and memetic algorithms [18, 27, 30, 45, 49, 64], particle swarm
optimization [11, 60], and some other systems [62], etc.

In this paper, a round-table group optimizer (RTGO) is proposed for solving sequencing prob-
lems. We use the insights of previous research on group creativity to provide a theoretical context.
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RTGO is an extremely simple form of a cooperative group, in which each individual is an idea-
generating agent. The agents work in iterative sessions to search innovative ideas in a common
problem landscape. All agents are all intrinsically motivated to generate new ideas, and thus any
negative group effects [40] are precluded.

The group support mechanism is a simple round-table mechanism. In each session, the agents
are randomly (re-)allocated around a round table, where each agent only accesses one social idea
(in the group memory) from the adjacent neighbor. This simple mechanism captures a limited
sense on communicative and cognitive interference [40].

Each agent possesses only one base idea in its individual memory, and holds a XS strategy and
a LS strategy respectively for the idea combination and improvement processes. The pre-selection
mechanism only returns the base and social ideas for supporting socially biased learning [13, 38, 62].
The XS strategy then generates an intermediate idea modified from the basic idea by combining
stimulation cues in the social idea. Afterward, the LS strategy locally refines the intermediate one
into a polished new idea. The post-selection mechanism then stores the new idea if it is not worse
than the old base idea in its individual memory. For each agent, its individual memory always
stores the best-so-far idea during its own search.

Our focus is then on examining the meta-heuristic framework, RTGO, with different idea com-
bination processes. Two stable LS strategies respectively for FSP [49, 50] and QAP [14] are chosen
from prior work. In the “big-valley” structure [27, 45] of sequencing problems, any stable LS strate-
gies can only find near local optimal solutions, thus the capability of efficiently escaping from local
minima can only be achieved by the idea combination process. In addition, it should be quite fair
to compare the overall performance of RTGO to that of some existing optimization frameworks
using commonly-used LS strategies.

The remainder of this paper is organized as follows. In Section 2, RTGO is presented. In
Section 3 , knowledge components for both sequencing problems are implemented into RTGO. In
Section 4, the characteristics of RTGO are investigated by performing computational experiments
on some benchmark datasets. This paper is concluded in Section 5.

2. Round-Table Group Optimizer (RTGO)

RTGO is a very simple meta-heuristic framework based on the insights of previous research on
group creativity. As shown in Figure 1, RTGO contains a small group of idea-generating agents
that their interactions are supported by using a round-table mechanism. Each specific task is
formulated into a problem landscape, where each state in the problem space is an idea. For the
agents, the goal is to obtain a high-quality idea with a near optimal objective value in the problem
space, through generating new ideas in iterative sessions. The actual algorithm performance will
demonstrate the effectiveness of group creativity.

At the group level, a simple round-table mechanism is considered to provides background
supports for the group memory among the agents, as shown in Figure 1(a). In each session, the
agents are randomly assigned to the seats around a round table, and each agent shares a nonprivate
idea in its individual memory as the only social idea for its clockwise neighbor. Afterward, agents
can spontaneously generate new ideas using the base and social ideas.

Each agent has a limited capability of generating innovative ideas based on available informa-
tion, including available ideas and problem domain knowledge. Figure 1(b) gives the details of an
agent, which possesses basic characteristics of an individual in an idea-generating group, although
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Figure 1: (a) A round table seated with N agents in a brainstorming group; and (b) the details of an agent.

it is realized in a rather simple form, which involves the individual memory as well as sharing, (pre-
and post-) idea selection, and idea generation mechanisms.

First, each agent possesses an individual memory that can only be modified by the agent itself.
For an agent, memory [15] is essential for supporting its individual learning capability in utilizing
its past experience. Here the memory contains only one base idea ~xA.

Second, each agent shares (parts of) its memory as nonprivate information [9], as a basic sharing
mechanism to affect the group [24]. Here the whole ~xA is contributed.

Third, each agent has the capability to utilize ideas that are contributed by others [40]. For real-
world animals, the social learning capability [13, 38] can enhance their adaptability in a changing
environment, which may lead to a cumulative evolution of ideas that are more novel and useful
than those contributed by individuals [21]. In each session, each agent only accepts one social idea,
called ~xS , from the group memory in its environment.

Finally, the ideation capability of each agent is accomplished by a socially-biased combine-and-
improve procedure, as shown in Figure 1(b). The pre-selection mechanism simply returns ~xA and
~xS. The idea combination process forms a new idea ~xC by combining ~xA and ~xS . Afterward, the
local improvement process is applied for further improving ~xC . The post-selection mechanism is
then used to update the individual memory using ~xC .

Algorithm 1 gives the working process of RTGO. Initially, each agent owns an idea that is
randomly generated in the problem space (Line 1). Then RTGO runs in iterative sessions. Lines
3-6 describe the simple round-table mechanism that provides ~xS for each agent. In Line 8, each
agent runs the combine-and-improve procedure, including the idea combination process and the
local improvement process, which are respectively realized using a XS strategy an a LS strategy, to
generate a promising idea ~xC . Under the RTGO framework, the combine-and-improve procedure
can be realized in the form of socially-biased learning [13] that using both the base and social ideas,
where the base idea serves as an incumbent solution, and the social idea provides stimulation clues
in different sessions. For each agent, ~xA is a steady-state idea over sessions since it is replaced by
~xC only if ~xC has a better quality. Finally, the best idea ~x∗ of all agents is the solution of group
brainstorming.

RTGO has two overall setting parameters, i.e., the number of agents N and the number of
sessions T , and XS and LS strategies are to be implemented for specific problems.

3. Implementation on Sequencing Problems

Sequencing problems have the same problem space. For a problem with n nodes, each state ~x
is an array containing a permutation {x1, . . . , xn} of the integer value from 1 through n. However,
different sequencing landscapes might differ in domain-specific structures.
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Algorithm 1 Round-table group optimizer (RTGO)

1: Initially, each agent owns an idea ~xA that is randomly generated in the problem space
2: for Session t = 1 to T do
3: The agents randomly take the seats (labelled from 1 to N) around a round table
4: for Agent h = 1 to N do
5: ~xS,((h+1)modN) = ~xA,h {Agent h shares its base idea to its clockwise neighbor}
6: end for
7: for Agent h = 1 to N do
8: ~xC,h = XS(~xA,h, ~xS,h); ~xC,h = LS(~xC,h) {socially-biased combine-and-improve}
9: if f(~xA,h) ≥ f(~xC,h) then ~xA,h = ~xC,h {steady-state memory}

10: end for
11: end for
12: return ~x∗ = (~xA,h with the minimum objective value for h ∈ [1, N ])

3.1. Problem Description

In this paper, we consider two important examples of sequencing problems, i.e., the flowshop
scheduling problem (FSP) and the quadratic assignment problem (QAP).

3.1.1. Flowshop Scheduling Problem (FSP)

The flowshop scheduling problem (FSP) consists in scheduling n independent jobs to be pro-
cessed on m independent machines in the same order. At any time, each job has one operation on
one machine and each machine can process only one job. There is an n ×m matrix of processing
times P=(pij), where each pij is the processing time of the operation of the ith job on the jth
machine. Each state ~x, i.e., a schedule, is a job processing permutation, where xi(i ∈ [1, n]) denotes
the processing order of the ith job on every machine.

For each schedule ~x, the completion time c(~x, i, j) of the ith job on the jth machine is

c(~x, i, j) = max(c(~x, i− 1, j), c(~x, i, j − 1)) + pxij , (1)

where c(~x, i, 0) = 0 for ∀i ∈ [1, n] and c(~x, 0, j) = 0 for ∀j ∈ [1,m].
The objective function is the total completion time (or makespan) of each ~x, i.e.,

f(~x) = c(~x, n,m). (2)

3.1.2. Quadratic Assignment Problem (QAP)

The quadratic assignment problem (QAP) consists of assigning n facilities to n locations, one
facility at a location. There are two n×n matrices, i.e., the flow matrix W = (wij) and the distance
matrix D=(dij), in which wij is the flow between facilities i and j, and dij is the distance between
locations i and j. The objective function is

f(~x) =

n∑

i=1

n∑

j=1

dijwxixj
. (3)

In addition, an asymmetric instance is preprocessed into a symmetric one without changing the
resulting cost, if one of the two matrices D and W is symmetric [27].
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3.2. Local Improvement

For the local improvement process, two stable LS strategies are respectively used for the two
sequencing problems. Each local search strategy starts from an incumbent state ~x and then tries
to improve it by executing basic neighborhood moves in a systematic way.

For FSP, we consider an insertion-based local search operator [49, 50, 55], as shown in Algorithm
2. The basic operation BestInsert(~x, ki) returns the best permutation obtained by inserting a job
ki to any possible position of ~x. Although each objective function alone needs to be calculated in
the time complexity O(n ·m), the total (n− 1) positions can be checked in O(n ·m) as well, based
on the speed-up technique proposed by Taillard [57].

Algorithm 2 Iterative insertion-based local search for each incumbent state ~x of FSP

1: isImproved = true; fO = f(~x)
2: while isImproved do
3: isImproved = false; Generate a random sequence (k1, · · · , kn) for ki ∈ [1, n]
4: for i = 1 to n do
5: ~x = BestInsert(~x, ki)
6: if f(~x) < fO then
7: fO = f(~x); isImproved = true
8: end if
9: end for

10: end while

For QAP, we consider an exchange-based LS operator [14, 43], which runs twice of the complete
neighborhood search in Algorithm 3. It differs from fast-2-opt [27] only in that the latter one
iteratively runs Algorithm 3 until no improvement can be found.

Algorithm 3 Exchange-based neighborhood search for each incumbent state ~x of QAP

1: Generate two random sequences (r1, · · · , rn) and (s1, · · · , sn) for ri ∈ [1, n] and sj ∈ [1, n]
2: for i = 1 to n, j = 1 to n do
3: if ∆Exchange(~x, ri, sj) < 0 then Exchange ri and sj in ~x
4: end for

The delta quality of each exchange between locations i and j can be calculated as [58]:

∆Exchange(~x, i, j) = (dii − djj) · (wxjxj
− wxixi

) + (dij − dji) · (wxjxi
− wxixj

)
+

∑n
k=1,k 6=i,j((dki − dkj) · (wxkxj

− wxkxi
) + (dik − djk) · (wxjxk

− wxixk
))

(4)

If both matrices W and D are symmetric, and that all diagonal elements of either matrix are
zeros, the delta evaluation can be simplified as [58]:

∆Exchange(~x, i, j) = 2 ·
∑n

k=1,k 6=i,j(dik − djk)(wxjxk
−wxixk

) (5)

Both delta evaluation methods are computable in O(n), and the latter one is a bit faster than
the former one. In addition, an asymmetric instance can be converted into a symmetric one if one
of the two matrices is symmetric [27].

6



3.3. Idea Combination

The idea combination is realized by a XS strategy, which produces one output idea, i.e., ~xC ,
by using information from two input ideas, i.e., the base idea ~xA and the social idea ~xS .

We define a class of XS strategies, called socially biased combination (SBX), where ~xA and ~xS
are viewed as the incumbent idea and social guidance information, respectively.

SBX operators can be realized in basic or macro forms. Each basic SBX operator contains
three policies, i.e., a base policy, a social policy, and a repair policy. Initially, all positions in ~xC
are unoccupied. Then the three policies are sequentially executed to occupy positions in ~xC with
unused values, so that all positions are eventually occupied. Each macro SBX operator can be
realized by applying a macro policy on basic and macro SBX operators.

3.3.1. Base Policy

The base policy marks the nodes from certain positions of the base state ~xA, and then copies
the values at the marked nodes into the corresponding positions of ~xC .

There are three commonly-used modes. In the one-point mode (1P) [30], one cut-point is
randomly selected, and then the set of nodes on a randomly chosen side of the cut-point are
marked. In the two-point mode (2P) [30], a pair of cut-points is randomly selected, then the
nodes located on either inside or outside of the selected two cut-points are marked. In the uniform
mode (U) [56], each position is marked with the probability of 0.5. All these modes preserve
position-based information. The difference is in that 1P, 2P and U provide O(n), O(n2), and
O(2n) numbers of choices, respectively. Furthermore, the 1P mode preserves whereas the U mode
loses most precedence and adjacency information in the base idea.

Furthermore, a common-avoiding one-point mode (CA1P) is proposed. CA1P differs from 1P
only in that the common nodes from the left and right sides are not considered when randomly
selecting the cut-point. For example, for two states {2 6 1 3 4 9 5 8 7} and {2 6 1 4 8 5 3 9
7}, the first three nodes and the last one node are the common nodes at both sides, and thus the
cut-point is randomly chosen between the 4th location and the 7th location. CA1P ensures the
marked nodes do not contain fully common values.

3.3.2. Social Policy

The social policy fills some remaining unoccupied positions of ~xC by using unused nodes at
certain selected positions of the social state ~xS . In the position-based mode (P), the unused values
of the state ~xS are copied to corresponding positions of ~xC if such positions are unoccupied. Hence,
this mode preserves position and precedence information of the selected nodes of ~xS . In the order-
based mode (O), all unused nodes of ~xS are respectively copied to the unoccupied positions from
left to right. Hence, this mode preserves precedence information of the selected nodes of ~xS .
Furthermore, the order-based mode can always achieve a valid state, wheres the position-based
mode may leave some positions unoccupied.

3.3.3. Repair Policy

The repair policy turns ~xC into a valid state if there are any unoccupied positions. Here two
modes are realized. The random mode (R) fills each unoccupied position by a randomly selected
unused value. The partially mapped mode (PM), i.e., the final step in the partially mapped crossover
[54], uses the position-based mappings between the nodes of both parent states to fill remaining
positions for further preserving the order and position.
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3.3.4. Macro Policy

In this paper, we only considered a simple macro policy, called the parallel mode (MP), which
outputs the state with the best quality among the valid candidate states generated by totally NICG

independent trials of a component XS operator.
The parallel mode can be viewed as an inner portfolio of algorithms [16], since the component

XS operator can be seemed as a stochastic algorithm. An algorithm portfolio may avoid the heavy
tails of individual trials, thus the output state can be more promising.

3.3.5. Summary

Each SBX case can be formally described by specifying its components, so that it is easy to
know the subtle similarity and difference between various strategies.

A basic SBX case is denoted as a combination of three tags, i.e., A/B/C, where the tags A,
B, and C designates the modes of base, social, and repair policies, respectively. Moreover, a tag
is denoted as “-” if the corresponding policy is not required, or as “*” if the corresponding policy
has not been assigned. If the parallel macro policy is applied on a basic SBX case A/B/C, then
the macro SBX case is defined as MP(A/B/C).

Some existing XS operators can be approximately represented as SBX cases. One-point [30],
two-point, and uniform (or position-based crossover [54]) order crossovers, are respectively similar
to 1P/O/-, 2P/O/-, and U/O/-. LCS crossover [18] and similar block crossovers [49] differ from
these simple order crossovers only in that they used more delicate base policies. The partially
mapped crossover [54] and its uniform variant [7] are similar to 2P/P/PM and U/P/PM, respec-
tively. The uniform like crossover (ULX) [61] and its optimized variant [29] are similar to U/P/R
and MP(U/P/R), respectively.

4. Results and Discussion

All RTGO versions are coded in JAVA, and were run on a 1.4-GHz Opteron processor. By
default, the maximum numbers of cycles (T ) are fixed as 100 and 500 for FSP and QAP, respectively.
For the parallel macro mode, there is NICG = MAX(INT(0.05 · n), 1), in which INT returns the
closest integer value, MAX returns the larger value.

For FSP, experiments were performed on four benchmark datasets in OR-Library1 [3], namely,
Carlier’s, Heller’s , Reeves’s, and Taillard’s datasets. The Carlier’s dataset contains 8 instances
named Car1, Car2, through Car8. The Heller’s dataset only possesses 2 instances, i.e., Hel1 and
Hel2. The Reeves’s dataset has 21 instances called Rec01, Rec03, through Rec41. The Taillard’s
dataset contains 90 instances from Tai01 through Tai90.

Table 1 lists the best-known upper bounds (f *) of the Taillard’s dataset lasted updated on
13-APR-2005 (or called as UB05)2. Besides, some researchers used the upper bounds reported by
Taillard in 1993 (UB93) [59], or the upper bounds listed in 2004 (UB04) [49], etc. Basically, UB05
is much better than UB93, and slightly better than UB04.

For QAP, fifty commonly-used instances from QAPLIB [5] are used. The names and best-known
upper bounds of the instances will be listed in the tables in Section 4.2.2.

There are two significant indices for measuring the performance of an algorithm. The first is
the solution quality, which can be represented by relative percentage deviation (RPD) over the

1http://people.brunel.ac.uk/∼mastjjb/jeb/orlib/flowshopinfo.html
2http://mistic.heig-vd.ch/taillard/problemes.dir/ordonnancement.dir/flowshop.dir/best lb up.txt
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Table 1: The best-known upper bounds of the Taillard’s dataset on 13-APR-2005 (UB05).

No. 01∼10 11∼20 21∼30 31∼40 41∼50 51∼60 61∼70 71∼80 81∼90

1 1278 1582 2297 2724 2991 3847 5493 5770 6202

2 1359 1659 2099 2834 2867 3704 5268 5349 6183

3 1081 1496 2326 2621 2839 3640 5175 5676 6271

4 1293 1377 2223 2751 3063 3719 5014 5781 6269

5 1235 1419 2291 2863 2976 3610 5250 5467 6314

6 1195 1397 2226 2829 3006 3679 5135 5303 6364

7 1234 1484 2273 2725 3093 3704 5246 5595 6268

8 1206 1538 2200 2683 3037 3691 5094 5617 6401

9 1230 1593 2237 2552 2897 3741 5448 5871 6275

10 1108 1591 2178 2782 3065 3756 5322 5845 6434

best-known upper bound (f ∗). The second is running time (tr) in seconds, which is counted at
the cycle taken to reach the last improvement. Only tr might be influenced by different machine
configurations for running an algorithm. For the FSP and QAP instances, 10 and 50 independent
runs were executed to obtain the mean results, respectively.

4.1. Effects of Idea Combination

During the search process, the idea combination process plays a navigating role for exploring
the rugged permutation landscape by guiding the greedy local improvement process.

For comparison the differences between RTGO with different idea combination operators, RPD-
tr relations are used for examining the Pareto efficiency of both performance indices.

4.1.1. For FSP

For FSP, the effects of XS operators are evaluated on the Taillard’s dataset. Moreover, 1P/O/-,
i.e., the one-point order crossover [30], is considered as a standard XS operator for the comparisons.
For each case, RTGO with N=10, 20, 30, 40, and 50 were tested.

Three order-based operators (*/O/-), i.e., 1P/O/-, 2P/O/-, and U/O/-, have been frequently
studied, where the difference is that they using different base policies from the viewpoint of SBX.
Some researchers [30, 32] have claimed that 1P/O/- performs better than both 2P/O/- and U/O/-
, However, some other researchers have declared [18] that 1P/O/- is the best among the above
versions, and some advanced versions, such as the similar block order crossover (SBOX) [49], are
modified from 1P/O/-.

Figure 2 gives the results by the RTGO versions using 1P/O/-, 2P/O/-, and U/O/-, respectively.
If only RPD is concerned, contradicting conclusions may be achieved as for RTGO using different
N values, where 2P/O/- has a lower RPD value than 1P/O/- as N=10, but has higher RPD values
than 1P/O/- as N=20, 30, 40, and 50. However, it can be found that 1P/O/- has an overall better
RPD-tr performance than 2P/O/-. Moreover, U/O/- has the worst performance among all the
three SBX operators, which may due to that the uniform mode preserves much less precedence
information.

Figure 3 provides the results by the RTGO versions using 1P/O/-, 1P/P/O, and 1P/P/R,
respectively. Here 1P/O/- performs better than the other two operators. Compared with 1P/P/*,
1P/O/- preserves more precedence information. For the repair operation, using the order-based
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Figure 2: Results of the RTGO versions with SBX in different base policies.

Figure 3: Results of the RTGO versions with SBX in different social and repair policies.

Figure 4: Results of the RTGO versions with some improving heuristics.
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mode is slightly better than using the random node. Thus for FSP, precedence information may
be more significant than position information.

Figure 4 shows the results by the RTGO versions using 1P/O/-, CA1P/O/-, MP(1P/O/-)
and MP(CA1P/O/-), respectively. Both CA1P/O/- and MP(1P/O/-) obtain better RPD-tr per-
formances than 1P/O/-. Specifically, CA1P/O/- achieves a much better RPD although it needs
a longer running time, since the common-avoiding mode maintains larger information diversity
among the agents, especially as N is smaller; while MP(1P/O/-) achieves a much shorter run-
ning time although it obtains a worse RPD, since the macro mode in the parallel mode leads to
more promising states for the LS operator. MP(CA1P/O/-), which integrates of both improving
strategies, produces better RPD-tr performance than all three others.

4.1.2. For QAP

For QAP, the effects of XS operators are evaluated on the 50 instances in QAPLIB. Moreover,
U/P/PM, i.e., the uniform partially mapped crossover [7], which is previously used for solving the
largest common subgraph problem, is used as a standard XS operator for the comparisons. For
each case, RTGO with N=10, 20, 30, 40, and 50 were tested.

Figure 5 gives the results by the RTGO versions respectively using U/P/PM, 1P/P/PM, and
2P/P/PM. As N is same, U/P/PM can achieve a lower RPD yet require a larger tr than both
1P/P/PM and 2P/P/PM, which may due to that the U mode provides more possible choices than
the 1P or 2P mode. Moreover, the base policy in 1P or 2P mode did not show an advantage in
terms of the RPD-tr relation.

Figure 6 shows the results by the RTGO versions using U/P/PM, U/O/-, and U/P/R, respec-
tively. Both UP/P/R and UP/P/PM perform better than U/O/-. Here U/P/R represents the
uniform like crossover (ULX) [61]. Compared with U/O/-, U/P/* preserves more position-based
information. For the repair operation, It showed that using the PM mode is better than using the
R mode, since the PM mode also preserves more position information. Thus for QAP, the position
information might be more significant.

Figure 7 shows the results by the RTGO versions respectively using UP/P/PM andMP(UP/P/PM).
Their performance are similar from the RPD-tr relation.

4.2. Comparisons with Existing Algorithms

RTGO is coded in JAVA and most algorithms are coded in C/C++. Since the performance
gap between JAVA and C++ is close, it only requires comparing the running times of different
algorithms on different hardware configurations.

For simplicity, we calculate rTR = (tr,A/tr,B) · (CRA/CRB), in which tr,A and tr,B are the
running times of the algorithms A and B, CRA and CRB are the clock rates of the processors for
running the algorithms A and B, respectively. Moreover, the ratio of CPU clock rates is eliminated
if no clock rate is provided for any of the algorithms. Here A and B are RTGO and the algorithm
to be compared, respectively. In addition, a threshold value rMAX is used for taking the factors of
other configurations into account. For rTR ≤ 1/rMAX, 1/rMAX < rTR < rMAX, and rTR ≥ rMAX,
RTGO are slower than, comparable to, and faster than the compared algorithm, respectively. In
this paper, rMAX=5 is used.

4.2.1. For FSP

In the following experiments, only the RTGO using MP(CA1P/O/-) is considered for comparing
with some existing algorithms on the FSP benchmark datasets.
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Figure 5: Results of the RTGO versions with SBX in different base policies.

Figure 6: Results of the RTGO versions with SBX in different social and repair policies.

Figure 7: Results of the RTGO versions with U/P/PM and MP(UP/P/PM).
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Tables 2 and 3 give the results by the RTGO with N=30, PSOMA [23], and HW-LS [17] on
the Carlier’s and Reeves’s datasets, respectively. PSOMA [23] is a particle swarm optimization
(PSO)-based memetic algorithm, which is coded in MATLAB 7.0, and was executed on a 2.2-GHz
Mobile Pentium IV processor. HW-LS [17] is a LS method combined with two escape-from-trap
procedures, which was run on a 500-MHz Pentium III processor.

Table 2 indicates that RTGO performed better than PSOMA for both RPD and running time
on the Carlier’s dataset. Both RTGO and HW-LS solved all instances in a 100% success rate, i.e.,
they are efficient in moving away from local minima.

From Table 3, it can be found that RTGO produced much better than both PSOMA and
HW-LS for both RPD and running time on the Reeves’s dataset. The rTR values of RTGO versus
PSOMA and HW-LS are 127.5 and 0.6 for the Carlier’s dataset, 23.0 and 50.0 for the Reeves’s
dataset, respectively. If considering the machine configurations, RTGO was not faster than HW-LS
on the Carlier’s dataset. However, RTGO was much faster than HW-LS on the Reeves’s dataset.
It may due to the Carlier’s instances are easier than the Reeves’s.

Table 4 compares the results by the RTGO with N=30, DPSO2 [11], and NEH-ALA [1] on
the Heller’s dataset. DPSO2 [11] is a discrete PSO hybridized with variable neighborhood search
(VNS), and was executed on a 2.4-GHz Pentium IV processor. NEH-ALA [1] is an adaptive-
learning approach in conjunction with the NEH heuristic [31], which is coded in Visual Basic 6.0
and was run on a 933-MHz processor. The rTR values of RTGO versus DPSO2 and NEH-ALA
are 387.8 and 1132.3, respectively. The results indicated that RTGO performs much better than
DPSO2 and NEH-ALA on Hel1 and Hel2.

Table 5 summarizes the results by five existing algorithms, i.e., HSA [33], PACO [42], ILS [48,
55], HGA RMA [49], and PSOV NS [60] on the Taillard’s dataset [59]. HSA is a population-based
hybrid simulated annealing (SA). PACO is a newly-developed ant-colony optimization (ACO). ILS
is an iterated local search [55], which is implemented by Ruiz and Maroto [48] in Delphi 6.0 and was
run on a 1.4-GHz Athlon XP processor. HGA RMA is a hybrid GA with the similar block order
crossover (SBOX), which is coded in Delphi 7.0 and was run on a 2.8-GHz Pentium IV processor.
For HGA RMA, the running time is defined by the expression n · (m/2) · 90. PSOV NS is coded in
C and was run on a 2.6-GHz Pentium IV processor. Moreover, with regard to the upper bounds
for calculating RPD values, HSA, PACO, and PSOV NS use UB93 [59], while ILS and HGA RMA
use UB04 [49]. Hence, all the five algorithms in Table 5 should have larger RPD values if they use

Table 2: Results by RTGO, PSOMA, and HW-LS on the Carlier’s dataset.

Instance n, m f ∗
RTGO(N=30) PSOMA HW-LS
RPD tr(s) RPD tr(s) RPD tr(s)

Car1 11,5 7038 0.000 0.008 0.000 0.68 0.00 0.010

Car2 13,4 7166 0.000 0.009 0.000 0.95 0.00 0.020

Car3 12,5 7312 0.000 0.015 0.000 1.06 0.00 0.020

Car4 14,4 8003 0.000 0.009 0.000 1.22 0.00 0.010

Car5 10,6 7720 0.000 0.011 0.018 0.70 0.00 0.020

Car6 8,9 8505 0.000 0.007 0.114 0.49 0.00 0.010

Car7 7,7 6590 0.000 0.006 0.000 0.30 0.00 0.010

Car8 8,8 8366 0.000 0.007 0.000 0.42 0.00 0.010

Average - - 0.000 0.009 0.017 0.73 0.00 0.014

13



Table 3: Results by RTGO, PSOMA, and HW-LS on the Reeves’s dataset.

Instance n, m f ∗
RTGO(N=30) PSOMA HW-LS
RPD tr(s) RPD tr(s) RPD tr(s)

Rec01 20,5 1247 0.096 0.040 0.144 2.60 0.02 5.57

Rec03 20,5 1109 0.000 0.048 0.189 2.50 0.00 2.57

Rec05 20,5 1242 0.242 0.016 0.249 2.39 0.24 10.4

Rec07 20,10 1566 0.000 0.104 0.986 2.81 0.00 1.86

Rec09 20,10 1537 0.000 0.093 0.621 4.23 0.00 2.64

Rec11 20,10 1431 0.000 0.065 0.129 3.79 0.00 0.77

Rec13 20,15 1930 0.109 0.191 0.893 4.64 0.09 46.4

Rec15 20,15 1950 0.021 0.274 0.628 5.23 0.44 35.3

Rec17 20,15 1902 0.037 0.225 1.330 4.67 0.11 24.2

Rec19 30,10 2093 0.287 0.545 1.313 10.49 0.63 82.8

Rec21 30,10 2017 1.120 0.435 1.596 8.41 1.41 74.2

Rec23 30,10 2011 0.373 0.586 1.310 9.36 0.54 81.0

Rec25 30,15 2513 0.294 0.765 2.085 12.64 1.11 127

Rec27 30,15 2373 0.324 0.794 1.605 12.15 0.94 137

Rec29 30,15 2287 0.249 0.815 1.888 11.31 0.80 141

Rec31 50,10 3045 0.263 2.005 2.254 37.15 1.91 292

Rec33 50,10 3114 0.167 0.979 0.645 36.07 0.47 228

Rec35 50,10 3277 0.000 0.182 0.000 29.92 0.00 6.40

Rec37 75,20 4951 0.913 14.095 3.547 170.2 4.19 1700

Rec39 75,20 5087 0.698 11.966 2.426 155.7 2.90 1680

Rec41 75,20 4960 1.183 12.859 3.684 164.3 3.93 1910

Average - - 0.304 2.242 1.311 32.88 0.94 313.8

UB05.
Table 6 gives the results by the RTGO with N=10, 30, and 50, respectively. The rTR values of

RTGO with N=10 versus ILS, and RTGO with N=30 versus HGA RMA and PSOV NS are 11.2,
15.7, and 50.8, respectively. RTGO with N=10 performed better than HAS and PACO on RPD,
and better than ILS on both RPD and running time. RTGO with N=30 produced better RPD
and running time than both HGA RMA and PSOV NS . In addition, RTGO with N=50 obtained
better RPD than RTGO with N=30, although the more agents is used, the more running time is
required.

Table 4: Results by RTGO, DPSO2, and NEH-ALA on the Heller’s dataset.

Instance n, m f ∗
RTGO(N=30) PSOMA HW-LS
RPD tr(s) RPD tr(s) RPD tr(s)

Hel1 100,10 514 0.156 1.412 1.15 287 3.55 94

Hel2 20,10 135 0.000 0.153 1.08 67 0.39 2565
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Table 5: Results by some existing algorithms on the Taillard’s dataset.

Instance
HSA PACO ILS HGA RMA PSOV NS

RPD RPD RPD tr(s) RPD tr(s) RPD tr(s)

Tai01∼10 0.14 0.704 0.24 4.01 0.04 4.50 0.03 13.5

Tai11∼20 0.18 0.843 0.77 4.09 0.02 9.00 0.02 26.3

Tai21∼30 0.14 0.720 0.85 4.63 0.05 18.00 0.05 69.3

Tai31∼40 0.06 0.090 0.12 6.38 0.00 11.25 0.00 2.8

Tai41∼50 0.33 0.746 2.01 9.94 0.72 22.50 0.57 79.8

Tai51∼60 1.78 1.855 3.29 11.82 0.99 45.00 1.36 168.1

Tai61∼70 0.17 0.072 0.11 15.31 0.01 22.50 0.00 52.6

Tai71∼80 0.33 0.404 0.66 18.79 0.16 45.00 0.18 211.0

Tai81∼90 2.11 0.985 3.17 24.04 1.30 90.00 1.45 310.8

Average 0.58 0.713 1.25 11.00 0.37 29.75 0.41 103.8

Table 6: Results by RTGO with N=10, 30 and 50 on the Taillard’s dataset.

Instance n, m
RTGO(N=10) RTGO(N=30) RTGO(N=50)
RPD tr(s) RPD tr(s) RPD tr(s)

Tai01∼10 20,5 0.174 0.025 0.093 0.055 0.041 0.083

Tai11∼20 20,10 0.285 0.088 0.102 0.243 0.033 0.291

Tai21∼30 20,20 0.192 0.140 0.062 0.328 0.052 0.467

Tai31∼40 50,5 0.118 0.068 0.041 0.175 0.029 0.276

Tai41∼50 50,10 0.894 0.616 0.582 2.340 0.540 3.804

Tai51∼60 50,20 1.296 1.702 0.903 6.435 0.747 11.29

Tai61∼70 100,5 0.067 0.218 0.021 0.483 0.020 0.713

Tai71∼80 100,10 0.466 0.995 0.285 3.597 0.197 7.087

Tai81∼90 100,20 1.614 4.974 1.197 20.48 1.010 42.29

Average - 0.567 0.981 0.365 3.793 0.297 7.367

4.2.2. For QAP

In the following experiments, only the RTGO using MP(U/P/MP) is considered for comparing
with some existing algorithms on the QAP benchmark datasets.

Different existing algorithms were applied on different instances. Thus the 50 QAPLIB instances
are divided into five small datasets, i.e., bur26*, esc*, lipa*, tai*b, and misc*.

Some existing algorithms, such as GRASP [26], CPTS [19], ANT [26], ANTSA [10], HAS [14],
IFLS [43], GACT [12], GA-1 [2], and GAHRR [28], have been applied on some QAPLIB instances.
Here GRASP and CPTS are local-based search methods; ANT, ANTST and HAS are ant-based
systems; IFLS, GACT , GA-1, and GAHRR are genetic algorithms. Both GRASP and ANT are
coded in Fortran 77 and were run on a 166-Mhz Pentium processor. CPTS, i.e., a cooperative
parallel tabu search algorithm, is written in C and was run on ten 1.3-GHz Itanium processors.
ANTSA, or called AntSimulated [10], which uses simulated annealing as its LS, is coded in C.
HAS is a hybrid ant colony system. IFLS is coded in JAVA, and was run on a 2.4GHz Athlon XP
processor. GACT is a hybrid GA with a concentric tabu search [12], which is coded in Fortran, and
was tested on a 600-MHz Pentium III processor. GA-1 is a greedy GA. GAHRR is a GA hybridized
with ruin and recreate procedure.
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Table 7: Results by RTGO with N=50 and five existing algorithms on the bur26* dataset.

Instance f* RTGO GRASP ANT HAS IFLS GA-1

bur26a 5426670 0.240 11.38 21.07 10 61.27 117.3

bur26b 3817852 0.313 59.45 35.03 17 60.27 112.7

bur26c 5426795 0.197 5.16 19.09 3.7 57.78 113.5

bur26d 3821225 0.285 15.12 19.4 7.9 61.27 106.7

bur26e 5386879 0.239 17.63 20.53 9.1 57.83 109.1

bur26f 3782044 0.151 5.05 11.23 3.4 59.19 102.2

bur26g 10117172 0.266 222.58 18.67 7.7 57.72 97.1

bur26h 7098658 0.152 37.58 5.67 4.1 57.47 101.9

Average - 0.230 46.74 18.84 7.86 59.1 107.56

Table 8: Results by RTGO with N=50 and four existing algorithms on the esc* dataset.

Instance f*
RTGO GRASP IFLS GACT GA-1

tr RPD tr tr tr RPD tr
esc32a 130 0.789 1.54 7.03 136.8 21.0 3.08 190.9

esc32b 168 0.094 0.00 2.80 110.4 18.0 0.00 200.1

esc32c 642 0.014 0.00 0.00 54.7 16.2 0.00 194.6

esc32d 200 0.031 0.00 1.92 74.3 16.8 0.00 176.3

esc32e 2 0.012 0.00 0.00 46.1 - 0.00 184.9

esc32f 2 0.012 0.00 0.00 44.5 - 0.00 184.4

esc32g 6 0.013 0.00 0.00 28.4 - 0.00 185.5

esc32h 438 0.047 0.00 3.41 85.8 17.4 0.00 174.5

esc64a 116 0.058 - - 1521.7 183.0 0.00 1315.4

For an algorithm, the RPD column is not listed if the algorithm can achieved 100% success
rate for all the tested instances. The calculation of an rTR value for two algorithms is applied only
on the instances tested by both the related algorithms.

Table 7 compares the results by RTGO withN=50, GRASP [26], ANT [26], HAS [14], IFLS [43],
and GA-1 [2] on the bur26* dataset. Only the running times are listed, since all these algorithms
achieved 100% success rate. The rTR values of RTGO versus the five algorithms are 24.1, 9.7, 34.2,
440.5, and 467.7, respectively.

Table 8 shows the results by RTGO with N=50, GRASP [26], IFLS [43], GACT [12], and GA-
1 [2] on the esc* dataset. Here RTGO, IFLS, and GACT obtained a 100% success rate, whereas
GRASP and GA-1 could not fully solve esc32a. The rTR values of RTGO versus the four algorithms
are 1.8, 3368.8, 113.0, and 2623.0, respectively. For rt, RTGO was comparable to GRASP, but
much faster than IFLS, GACT , and GA-l, on the esc* dataset.

Table 9 compares the results by the RTGO with N=50, ANT [26], IFLS [43], and GA-1 [2] on
the lipa* dataset. Here only RTGO obtained a 100% success rate. The rTR values of RTGO versus
the four algorithms are 14.1, 507.4, and 203.7, respectively.

Table 10 shows the results by RTGO with N=50, CPTS [19], ANTSA [10], HAS [14], and
GAHRR [28] on the tai*b dataset. Here RTGO, CPTS, and GAHRR obtained a 100% success
rate. The rTR values of RTGO versus the four algorithms are 1.9, 73.4, 62.0, and 7.4, respectively.
RTGO was comparable with CPTS, but much faster than ANTSA and HAS. Moreover, it should
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Table 9: Results by RTGO with N=50 and three existing algorithms on the lipa* dataset.

Instance f*
RTGO ANT IFLS GA-1

tr RPD tr RPD tr RPD tr
lipa20a 3683 0.055 0.00 107.32 0.00 16.11 0.00 37.4

lipa30a 13178 0.313 0.00 54.85 0.00 119.72 0.00 172.3

lipa40a 31538 3.053 1.02 281.00 0.00 489.91 0.00 510.9

lipa50a 62093 10.225 - - 1.02 1556.28 0.95 743.1

lipa20b 27076 0.027 0.00 0.00 0.00 16.78 0.00 37.2

lipa30b 151426 0.077 0.00 0.00 0.00 121.81 0.00 168.6

lipa40b 476581 0.203 0.00 0.00 0.00 485.98 0.00 513.2

lipa50b 1210244 0.469 - - 0.00 1461.81 0.00 754.7

Table 10: Results by RTGO with N=50 and four existing algorithms on the tai*b dataset.

Instance f*
RTGO CPTS ANTSA HAS GAHRR

tr tr RPD tr RPD tr tr
tai20b 122455319 0.058 0.1 0.0000 27 0.0905 27 3.1

tai25b 344355646 0.204 0.4 0.0000 50 0.0000 12 5.6

tai30b 637117113 0.778 1.2 0.0000 90 0.0000 25 9.7

tai35b 283315445 1.015 2.4 0.0376 147 0.0256 147 15

tai40b 637250948 1.614 4.5 0.4872 240 0.0000 51 27

tai50b 458821517 7.581 13.8 0.2475 480 0.1916 480 49

tai60b 608215054 14.492 30.4 0.2258 855 0.0483 855 82

be noticed that CPTS is a parallel algorithm with ten processors. Naturally, the performance of
RTGO can also be improved significantly by assigning agents to different processors due to the
inherent parallelism in a cooperative group.

Table 11 gives the results by RTGO with N=100, ANT [26], IFLS [43], and GA-1 [2] on the
misc* dataset. The rTR values of RTGO versus the three algorithms are 8.7, 63.8, and 44.6,
respectively. Furthermore, RTGO achieved a 100% success rate for all 18 instances except for
rou20 and tho40. In terms of RPD, RTGO also performed much better.

4.3. Discussion

Due to its simplicity, RTGO might be interpreted straightforwardly from the viewpoint of an
agent. Over sessions, each agent can be seen as walking in the rugged problem landscape, and the
current location is its base idea (its best-so-far solution). Each stable LS strategy can reach to
a (near) local optimum but cannot escape from the current one, whereas the round-table group
support mechanism can only provides diverse social ideas. Thus only the XS strategy provides
the agent a capability of escaping from local minima. With an SBX operator, the base idea is
adaptively modified by the social and repair policies using the guidance clues in the social idea. In
contrast, iterated local search (ILS) [50, 55] can only use blind perturbations to have a randomized
walk in the space of local optima. RTGO might also benefit from the cooperative portfolio effect
[16] on the agents. Compared to genetic local search [64] and memetic algorithms (MA) [27], each
agent in RTGO has its private memory, which allow a natural way to perserve diverse ideas for
possible improvements.
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Table 11: Results by RTGO with N=100 and three existing algorithms on the misc* dataset.

Instance f*
RTGO ANT IFLS GA-1

RPD tr RPD tr RPD tr RPD tr
chr20a 2192 0.000 1.544 0.00 331.20 4.38 10.95 0.18 47.3

chr20c 14142 0.000 0.186 0.00 29.49 0.00 13.55 4.72 48.9

chr22a 6156 0.000 1.077 0.00 314.68 0.88 19.11 0.62 72.9

chr22b 6194 0.000 1.770 0.97 161.75 1.68 17.00 1.19 76.1

chr25a 3796 0.000 1.264 0.00 236.29 11.17 33.59 10.54 96.8

had20 6922 0.000 0.039 0.00 158.71 0.00 10.58 - -

kra30a 88900 0.000 0.807 0.00 199.06 1.34 105.55 1.34 150.7

kra30b 91420 0.000 1.731 0.00 140.02 0.13 101.83 0.18 165.3

mc33 339416 0.000 1.019 0.00 379.65 - - - -

nug20 2570 0.000 0.109 0.00 119.28 0.00 16.06 0.00 48.9

nug30 6124 0.000 1.610 0.00 180.75 2.12 116.66 0.07 177.1

rou20 725522 0.002 2.171 0.00 244.54 0.02 11.73 0.08 37.6

scr20 110030 0.000 0.190 0.00 46.09 0.00 12.69 0.03 39.8

sko42 15812 0.000 8.458 - - 0.30 613.92 0.23 503.1

ste36a 9526 0.000 7.249 0.76 295.23 0.00 204.36 1.47 354.8

ste36b 15852 0.000 1.319 0.25 212.81 3.43 222.45 - -

tho30 149936 0.000 1.400 0.00 287.50 0.29 118.94 0.31 197.8

tho40 240516 0.008 26.372 0.66 312.46 0.53 501.77 0.33 479.1

As shown in Section 4.1, good performance can be achieved by using appropriate SBX operators,
for different sequencing problems. The modular design of SBX might help us to roughly identify
some structure features of different problems. FSP and QAP respectively prefer more precedence
and position information. The common-avoiding style does help on the 1P base policy, and the
parallel macro policy has more usage on FSP that on QAP.

From the results shown in Section 4.2, RTGO can achieve better performance than many
existing methods, including some metaheuristic methods that using the same LS strategies, e.g.,
HGA RMA [49] and ILS [55] for FSP, and HAS [14] and IFLS [43] for QAP.

RTGO is a preliminary step in studying and utilizing the group creativity from the viewpoint
of a metaheuristic framework. We have shown that group creativity can emerge from a group of
agents with very limited memory and thinking capability. The research in this direction might
help for unravelling the real-world complexity, given that large-scale experiments in human groups
might be too expensive and might have too much uncertainty.

5. Conclusion

The round-table group optimizer (RTGO) is a very simple realization of a cooperative idea-
generating group. The group-level support is a round-table mechanism for providing one social
idea for each agent, and each agent only stores the best-so-far idea as the base idea in its individual
memory. Given the base and social ideas, the idea combination and local improvement processes
of each agent are respectively realized by using a XS strategy and a LS strategy, in the form of
socially biased learning. The agents are able to search in the problem landscape in parallel based
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on their individual memory, as well as utilize the stimulation from social ideas for achieving a
collective performance, over iterative sessions.

The implementation of RTGO was performed on two sequencing problems, i.e., FSP and QAP.
Two stable, domain-specific LS strategies were adopted from existing algorithms. Then a general
XS class, called socially biased combination (SBX), was realized in a modular form: A basic SBX
operator contains three policies, i.e., base, social and repair policies, and a macro SBX operator
can be realized by applying a macro policy on any SBX operator(s).

We then evaluated the performance of the RTGO metaheuristic framework on some commonly-
used FSP and QAP benchmark datasets. The effects of idea combination processes were evaluated
on different SBX realizations. RTGO outperformed many existing methods, including some meth-
ods that using the same LS strategies, in terms of the solution quality and the running time. The
results might also indicate that appropriate SBX operators have the capability of leaping adap-
tively in the problem landscape, while the diversity of promising ideas can be well-preserved by
the simple RTGO framework.

There are several aspects of the proposed method that warrant further study. One issue concerns
the development of more effective search strategies. For example, adaptive memory strategies [65]
rather than a stable LS strategy might be used to overcome local minima. The group metaphor is
very open for efficient computation using any sophisticated operators.

Moreover, RTGO variants might be designed for promoting group creativity. For example, each
agent might possess a pool of ideas in its memory [21], so that the agent has a strong individual
learning capability and can adaptively using the base and social ideas in different sessions. Each
agent might also hold multiple search strategies that can be automatic configured by a hands-off
learning procedure for handling complex problem domains.
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