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Abstract

Current software systems and the environments such systems are meant for require a
precise characterization of the available resources and provisions to constantly re-optimize
in the face of endogenous and exogenous changes and failures. This paper claims that it is
simply not possible today to conceive software design without explicitly addressing
adaptability and dependability. As an example we remark how mobile computing technolo-
gies call for effective software engineering techniques to design, develop and maintain services that
are prepared to continue the distribution of a fixed, agreed-upon quality of service despite of the
changes in the location of the client software, performance failures, and the characteristics of the
environment. We conclude that novel paradigms are required for software engineering so as to pro-
vide effective system structures for adaptive-and-dependable services while keeping the design com-
plexity under control. In this paper we discuss this problem and propose one such structure, also
briefly surveying the major milestones in the state of the art in this domain.
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INTRODUCTION

Aim of this paper is providing a personal vision on some key prerequisites for cur-
rent software design, namely dependability and adaptability, and introducing some ideas
we are currently developing at the University of Antwerp and the Institute for Broadband
Technology. The key message we want to convey is that, today, conceiving software de-
sign without the adaptability concern is simply not possible anymore, as this course of
action would not match the systems and environments our software is meant for.

The Computer Era may well be thought of as a series of “revolutions”: The 19th-
century concept of computer was that of a mechanical engine, initially intended to com-
pute, quickly and reliably, tables of polynomials. That which now sounds like a trivial
achievement, in times past was but a dream whose fulfillment had puzzled mankind nearly since
the beginning of its history. This achievement was to be reached only in 1855 through the design of
Babbage and the craft of the Scheutzes. And this marked indeed an actual revolution, that of me-
chanical computing', which may be well summarized by Babbage’s famous quote “7 wish calcula-
tions had been executed by steam’: For the first time in human history, a tool to perform calcula-
tions more quickly and reliably than a human being had been realized.

The 20th Century witnessed a variety of those revolutions, soon to provide a new meaning to
the word “‘computer”’. One such revolution was brought about by the advent of vacuum tubes, in the
Forties. The supercomputer of those times was the ENIAC, with a weight of about 30 tons and an
avail-ability quite disappointing when considered out of the historical context the ENIAC had made
its appearance in. Clearly there was room for improvements and several further “revolutions” were
to be expected’.

Further revolutions sprang from new concepts, now concisely summarized by terms such as
“compiler”, “virtual machine”, “object orientation” or “service orientation”. Each of these concepts
brought about a sheer revolution, for it modified the meaning and the use we made of computers there-
after.

Each of these revolutionary steps marks a fundamental leap in the history of computing and of
the influence of computers in human society. Each step allowed new services to be conceived while,
in turn, these services called for additional requirements and adjustments of our “view” to the con-
cept of “computing.”

As a consequence of this, each of those steps also marks the need for new models, both for the
computer and for its system software.

We are currently in the middle of another important step in this progression of revolutions,
namely the one marked by the spread of personal computing facilities that allow their services mov-
ing with us and our goods: It is the so-called “wireless revolution”. In this paper we investigate on
some of the key requirements for software components meant for wireless or other dynamically chang-
ing environments, and describe the main ideas of a prototypic system that we are currently designing as a
tool to support the development and execution of mobile services.

The structure of this paper is as follows: In the second section we introduce our target problem.
Adaptive systems are discussed in the third section. The fundamental services to be provided by any
architecture for adaptability are conjectured in the fourth section. Two examples are given in the fol-
lowing one. A concise survey on adaptability is given in the sixth section, followed by our conclu-
sions in the last section.



SERVICES AND PROGRAMS

In the following we consider a service as a set of manifestations of external events that, if compli-
ant to what agreed upon in a formal specification, can be considered by a watcher as being “correct”.
Moreover we refer to a program as a physical entity, stored as voltage values in a set of memory
cells, which is supposed to drive the production of a service. Goal of software engineering is being able
to set up of a robust homomorphism between a service’s high-level specification and a low-level com-
puter design (the program).

More formally, we say that for some functions f'and g,

Service = f (program), program = g (specification),
Service = g - f(specification).

Building robust versions of f and g is commonly a very difficult job.
‘We now concentrate on the range of g (the software set) and for any two systems a and b, if
a relies on b to provide its service, we say

a—b.

We call this relation as the “dependence” between two systems. Clearly it is true that e.g. Ser-
vice — program, program — CPU, and CPU — memory. Figure 1 provides a possible expansion
of the dependence relation. The leaves of such trees provide a designer’s view of the
“atomic threats” he or she aims to tolerate.

As evident from that picture, dependences call for dependability — a fundamental property to
achieve dependable services, which has been defined by Laprie as “the trustworthiness of a computer
system such that rveliance can justifiably be placed on the service it delivers” (Laprie, 1985). A
dependable service is then one that persists even when, for instance, its corresponding
program experiences faults—to some agreed upon extent. From the above definitions we
propose to consider F-dependable services (resp. F-dependable programs, systems, etc.)
as those that persist despite the occurrence of faults as described in F, F being a set
called the fault model.
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Figure 1: One possible expansion of the dependence relation.

What is F exactly? It is a set of events whose occurrence we consider as possible
and likely to hinder the quality of the service distribution. An important property of F is
that it is a model of an environment E where the service (or better, its corresponding pro-
gram) is operating. Clearly an F-dependable service may tolerate faults in E "and may
not those in E’’ : an airborne service may well experience different events than, e.g., one
meant to operate in a primary substation (Unipede, 1995).

Obviously the choice of F is an important aspect to successfully achieving service
dependability. Imagine for instance what may happen if our fault model F matches the
wrong environment, or if the target environment changes its characteristics (e.g. a rising
of temperature due to a firing). But the key point we remark herein is—what if the ser-
vice moves? In all these cases, lacking provisions to compensate for the changes in the
environment and in the corresponding fault model, a failure may occur, i.e., an interrup-
tion of the service may take place. We summarize the above reasoning with the famous
quote by James Horning:

“What is the most often overlooked risk in sofiware engineering?
That the environment will do something
the designer never anticipated” (Horning, 1988).

In other words, if in the early days of modern computing it was — to some extent — acceptable to
have lengthy service disruptions due to the occasional faults, being the main task of computers basi-
cally that of a fast solver of numerical problems, the criticality associated with many tasks nowadays



appointed to computers demands high values for properties such as availability and data integrity.

At the same time and for similar reasons nowadays provisions are required to compensate for
the changes occurring “around” a service, i.e., in all the components that the service is dependent
on. We call this property adaptability.

ADAPTIVE SYSTEMS

As a consequence of the more complex and dynamic environments our software systems are
meant for today, as it is the case e.g. for mobile computing, a system’s environment has become a vari-
able, which translates in a strong need for adaptability. In what follows we provide our personal
vision to adaptive services and the current state in our quest for an effective solution to this
problem.

Ideally, we would require our services to be structured as “X-dependable services”, where X =
AE) can change dynamically when e.g., the service is moved to another environment or the envi-
ronment mutates. X should be indeed considered as an X{(?), that is, a system evolving over time: A
dynamic system. We consider also as an important prerequisite for an effective crafting of those ser-
vices that the expression of adaptability and dependability concerns should not increase complexity
“too much,” so as to avoid possible “bottlenecks of system development” (Lyu, 1998). In other
words, whatever solution we may come up with, it must keep complexity bounded and under
control.

Our proposal is then to consider an adaptive system as a triple

AP = (FFT.E),

where F expresses the functional concerns (the service), FT is some fault tolerance provision to
withstand the faults in a fault model Fgr and E is a set of environments (to be described later
on).

Let us suppose that program (F, FT) distributes a certain Fgr-dependable service and that a family of
fault tolerance strategies, (FT(k)) ;o be available for some set of indices K. Furthermore, let us
assume that program (F, FT(;)) distributes a Fgrj-dependable service, je K.

Then we can translate the problem of crafting an adaptive system into that of designing an
architecture that senses the environment and, each time the environment changes, it changes pro-
gram (F, FT(j)) into a program (F, FT(k)). If the resulting Fyr-dependable service matches the
new environmental condition, and this is true for a set of environments E, then we have realized an
adaptable service.

In the following section we briefly sketch the main components of an architecture for adapt-
able services.



Scenario Reactive
Change detectors i, ‘ Pt
Monitaring starts
Change detection
Change B
publication e —

Scenario change?
YES: push s.code
NO : push NULL

Scenario # NLILL?\\\\
code = s.code

Run (code)

Figure 2: A possible sequence of actions to realize change detection and chaﬂge reaction.

COMPONENTS OF AN ARCHITECTURE FOR ADAPTABILITY

Our conjecture is that any effective architecture for adaptable applications should be structured
on top of two basic services, namely change detection and change reaction. Our approach is summa-
rized in Figure 2. We assume to have detection components, ranging from simple sensors providing
raw data like temperature or heartbeats rate to scenario detectors able to correlate raw data and provide
higher level, more structured information about the state of the subjects or properties being monitored.
As soon as a relevant change is detected, we publish the event in a reflective shared space and check
whether the change brings in a new scenario (e.g,, a patient has fallen and is in need). The next phase is
executing the actions attached to the detected scenario: this is done in our prototypic architecture by
the Reactive component, a virtual machine interpreting a programming language called Ariel (De
Florio, 2000).

In practice, we envision the availability of a middleware component to update dynamically
the (FT(k)) \0cx programs (we call them “recovery codes™), aided in this by a set of “change de-
tectors” monitoring e.g., available energy, network load, local or overall CPU usage, or failures.
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Figure 3: Main architectural components of a system to support adaptive services based on
Ariel (De Florio & Blondia, 2005).

A prototype of a compliant architecture has been described in (De Florio & Blondia, 2005).
Figure 3 provides the key components of that architecture: in that picture, BB is a middleware,
called “backbone”. Another approach, situated in the application-layer, reflects the environmental
changes into the memory cells associated to so called “reflective variables” and achieves reactivity
by assigning so called “refractive variables” (De Florio& Blondia, 2008a).

In the following we propose two examples to clarify how our vision of adaptive systems may
provide a solution to seemingly contradicting quality of service requirements.

TWO EXAMPLES OF ADAPTIVE SERVICES

Adaptive Voting Sensors

Systems such as Body Area Networks (BANs) of wireless sensors are becoming more and
more important for many reasons ranging from healthcare effectiveness to social security costs. In
such systems patients are constantly monitored by mobile units that continuously transfer and
publish the value of a set of vital parameters between a patient’s location and the clinic or the doctor
in charge (Ross, 2004). As remarked in (De Florio & Blondia, 2005), a true effective service like
this is based on the contemporary fulfillment of two seemingly contradicting requirements:

R1: (Hard) guarantees are required so that, whenever the patient is in need, the system is to trigger a
system alarm (e.g., dispatching medical care to the patient).

R2: (Soft) guarantees are required, such that no false alarm is triggered when the patient is not in real
need—the latter to reduce the service costs.

Clearly R1 triggers the system alarm whenever any one of the sensors alerts or disconnects



while R2 does so only when the condition is confirmed by the occurrence of several sensor alerts.
As explained in (De Florio & Blondia, 2005), a possible solution may be trading off between R1
and R2 through m-out-of-n majority voting, and triggering the system alarm after . out of the n
sensor alerts. Whatever the choice of m, this approach is too inflexible, because the choice of m is fixed
ahead of the run-time. An alternative solution would be to set up a series of strategies, (FT(k))0x,
each of which may consider a different environment (for instance “heartbeat = 70, temperature =
38°C, arterial pressure = 120”") and compute an m(k)-out-of-n majority voting. The consequence of
this strategy would be that we would decompose the space of events into a set of blocks with known
characteristics (we call them “scenarios” in the cited paper) and provide the best strategy matching
each of these blocks, basically decomposing an unstable environment like our sensor networks into a
set of quasi-stable environments.

Adaptively Redundant Data Structures

Another important requirement of computing services is that of enhancing data integrity: Pro-
tecting data against transient and permanent memory faults. The current practice for data integrity
provisions (Taylor, Morgan, and Black, 1980) is to take the fault model as a static choice, which
means that our data integrity provisions (DIP) will have a fixed range of admissible events to
address and tolerate. This translates into two risks:

1. overshooting, i.e., over-dimensioning the DIP with respect to the actual threat being ex-
perienced, and

2. undershooting, namely underestimating the threat in view of an economy of re-
sources.

Adaptively-redundant data structures constitute an effective strategy to avoid these two risks. In
such system the amount of replicas of our data structures changes dynamically with respect to the
observed disturbances. We assume that a monitoring tool is available to assess the probability of
memory corruptions of the current environment (this corresponds to the change detection service de-
scribed in the previous section. Change reaction is in this case tuning the employed redundancy after the
observed disturbances. We have built a prototype for such a system, which is described in detail in
(De Florio& Blondia, 2008a). In turn, such prototype realizes change detection and change reac-
tion via a memory based metaphor that we call “reflective and refractive variables,” briefly described
in what follows.



/* File mp,c
* created/modified on Sat Sep 19 16:58:32 WEDT 2009
*/

#include "reflection,h”
#include “"rocode,h”
#include "rrvars_init,h"

int main {int arge, char *arge[1)
RE_YARS

FR_YAR_CPU
RR_YAR_MPLAYER

while (1) {
if {epu » 0) PrintCpull):

if ({mplayer==2)&&cpu>30))
LowerResolutiond

zleepil):
h

void PrintCpuluvoid) £
printf{"cpu == #dwn", cpul:

void LowerResolution{waid) £
printf{"decresze resolutionin"):

/* decreazes the resolution of the video
being displayed */
mplayer = -1t

Figure 4: A simple example of the use of RR vars.

Reflective-and-refractive variables

The idea behind reflective-and-refractive variables (RR vars) (De Florio & Blondia, 2007b) is
to use memory accesses as an abstraction to perform concealed tasks. RR vars are volatile variables
whose identifier links them to an external device, such as a sensor, or an RFID, or an actuator. In
reflective variables, memory cells get asynchronously updated by service threads that interface those
external devices. We use the well-known term “reflection” because those variables in a sense “reflect”
the values measured by those devices. In refractive variables, on the contrary, write accesses trigger a
request to update an external parameter, such as the data rate of the local TCP protocol entity or the
amount of redundancy to be used in transmissions. We use to say that write accesses “refract” (that is,
get redirected (Institute for Telecommunication Sciences, 2000) onto corresponding ex-
ternal devices.

The RR var model does not require any special language: Figure 4 is an example in the C lan-
guage. The portrayed program declares two variables: “cpu”, a reflective integer, which reports
the current level of usage of the local CPU as an integer number between 0 and 100, and
“mplayer”, a reflective and refractive integer, which reports and sets properties of a video player
(mplayer). The code transparently launches two threads that interface a CPU probe and a controller of
the video player. The code periodically queries and prints the CPU usage. Moreover, it checks that



CPU usage is larger than 90(%), and at the same time the mplayer reports internal state 2 (mplayer
experiences performance failures). When this happens, we assume that the video player is not able to
render the current video clip because of insufficient CPU, so we request to change the quality of the
clip. This is done simply by setting variable mplayer with a code representing that request: Being a
refractive variable, this implies that the request is handed transparently to the mplayer controller and,
from there, to the instrumented mplayer.

Figure 5 shows this simple code in action on our development platform—a Pentium-M laptop
running Windows XP and the Cygwin tools. The figure depicts portions from 3 xterm win-
dows as well as the window with the mplayer videoclip. To fully explain the figure we
have labeled portions of the portrayed windows as follows:

1.

2.
3.

®

The code from Figure 4 (“mp”) is run. In particular, the user side of the
mplayer controller is spawned and enters a waiting state on UDP port 1500.
The instrumented mplayer is launched.

The mplayer controller sends message “4” (“mplayer started”).

“mp” starts printing CPU usage, and while doing so it receives message “4”
from the mplayer. Variable “mplayer” is transparently set to 4.

On another window we initiate a CPU intensive service (encoding an
MPEG?2 stream into a high quality H.264 MPEG4 clip); this has the effect
of requesting to the full service of the CPU and brings CPU usage to about
100%.

The instrumented mplayer detects this change and reports “Your system is
too SLOW to play this!” Mplayer has no clue about the reason that pro-
duced this change, and prints out several hypotheses. At this point the video
is rendered very badly — many frames are lost, video output is delayed, and
audio/video synchronization is lost.

The mplayer controller sends message “2” (“mplayer slowed down’)

“mp” receives message “2”. Variable “mplayer” is transparently set to 2.

At this point conditions “mplayer==2" and “cpu>90” are both true and this
triggers a request to set variable “mplayer” to -1. In turn, this requests the
mplayer controller to adjust the resolution of the videoclip. An alternative
change reaction would be to keep the current resolution and to change the
frame dropping policy of the mplayer.



| xterm | X Ell xterm

libdvdread; Encruypted IWD support unawailable, Mplayer server: starting

bash-3.2% ./mplayer -really-quiet -vo gl —dvd-dewice VIDED_TS dwd://2 2 bash-3.2% mp
R
(GET,cpu), (PUSH,0), (> (rull}), 1

Llibdydread; Couldn't find device name,

Using S5E optimized IMDCT transform (GET.cpu), (PUSH,0}, (> (null}),
Using WY optimized resampler (G%;,mplager), (PUSH,2), {== (null)), (GET,cpu), CPUSH.90), (>, Crull}), (AND, (nu
1),
Envirorment variable RRWAR_CLIEMT undefined, setting to localhost.,, Mplayer server: waiting for data on port UDP 1500
wplayertiudpopent sending data to 'PCINFRS' (IP 1 127,0,0,1) cpu == 29
sending 4 cpu == 18
[suscaler B 0xa34400]SuScaler: using unscaled yuwd20p => rgh32 special converter Mplayer servery from 127,0,0,1:U0P1374 3 4
Hplayer server: mplayer started
cpu == 18
cp MPlayer - Media player- 1ol
#% Your system is too SLOW ko play thisl ##ee cp
CPu =
CPu =
Possible reasons, problems, workarounds: P
- Most common: brokensbuggy _audio_ driver Pl
- Try -ao0 sdl or uge the 055 emulation of ALSA. cpu == 100
- Experiment with different values for —autosunc, 30 is a good start, Mplaver server: from 127.0,0.1:U0P1374 ¢ 2
- Slow video output Mplaver server: mplaver slowsd doun
- Try & different —vo driver (-vo help for a list) or try —framedrop! cpu == 100
- Slow CPU decrese resolution
- Don't tru to play a big IVDADivK on & slow CPUI Try some of the lavdopts. cpu == 100
e.g. —wfm ffnpeg -lavdopts lowres=1:fastiskiploopfilter=all. decrese resolution

- Broken file
- Try variouz combinations of -nobps -ni —forceids -mc O,
- Slow media (NFS/SHE mounts. DVD, YCD etc)
= Try -cache 8192,
- Are you uzing -cache to play a non-interleaved AYI file?
- Try -nocache.,
Read DOCS/HTHLAen/video,html for tuning/speedup tips,
If rone of thiz helps you, read DOCS/HTHL/ensbugreports. html,

§ﬁanding 2 7

xterm

bash-3.2% mencoder —really-quiet -ovc x264 -x26dencopts bitrate=700:threads=autotsubg=Gipartitions=all:BxBdct ine=umh:franeref=
lﬂFr‘ames:d:h,pur‘amd:uelght,h —oac copy —o nul AYO9192009_182443.mpg

Figure 5: An excerpt from the execution of the code in Fig. 4.

We observe that through the RR var model the design complexity is partitioned into two well de-
fined and separated components: The code to interface external probes and controller is specified in
a separate architectural component, while the functional code is produced in a familiar way, in
this case as a C code reading and writing integer variables.

The result is a structured model to express tasks such as cross-layered optimization, adaptive or
fault-tolerant computing in an elegant, non intrusive, and cost-effective way. Such model is char-
acterized by strong separation of design concerns, for the functional strategies are not to be specified
aside with the layer functions; only instrumentation is required, and this can be done once and for all.
This prevents spaghetti-like coding for both the functional and the non-functional aspects, and trans-
lates in enhanced maintainability and efficiency.

A special reflective variable is “int Redundance”. The device attached to Redundance is in this
case responsible for providing a trustworthy and timely estimation of the degree of redundancy match-
ing the current disturbances. This device should be in most cases mission-dependent—for instance,
for electrical substation automation systems, that could be a sensor able to assess the current electro-
magnetic interference. What we consider as a significant property of our approach is that such depend-
ence is not hidden, but isolated in a custom architectural component. In so doing, complexity is
partitioned but it is also explicitly available to the system designers for inspection and mainte-
nance. This can facilitate porting the service which, as we pointed out in (De Florio & Degon-
inck, 2002), is something different from porting the code of a service. Failing to do so can bring to
awful consequences, as can be seen in well-known accidents such as the failure of the Ariane 5 flight
501 or, even worse, in the failures of the Therac-25 linear accelerator [12].
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Figure 6: The x axis shows discrete time steps, while the y axis shows the amount of
redundancy employed by the system. In this part of the experiment redundancy drops
from 7 to 5 and then to 3.

In the case described in this section, the device connected to Redundance is just a task that re-
ceives the return values of the majority voting algorithm executed when reading a redundant variable.
Such return value is the maximum number of agreeing replicas in the current voting, which is
used to compute the risk of failure: the less the agreeing replicas, the closer we are to the
point of failure for the voting algorithm. Such “distance” is used to trigger the adaptation
of redundancy. More information about the logics behind this mechanism can be found in
(De Florio& Blondia, 2008b).

Performance Analysis

Our aim in what follows is to show how adaptively redundant data structures
(ARDS) are an example of X-dependable service, where X is not predefined and immu-
table, but rather it tracks effectively the environment it depends on.

Our experiment subjects a set of ARDS to disturbances whose effect is to zero the
contents of a series of memory cells. Memory cells are first written and then continu-
ously and sequentially read out in round-robin fashion. After some time ¢;, disturbances
corresponding to a certain environment E are injected; then at time #, disturbances pause;
and then at time #; they start again but following another rule corresponding to a second
environment E'. The latter corresponds to more severe disturbances (longer bursts affect-
ing larger series of cells). Figure 6 describes how the ARDS set reacts from the change at
t, by decreasing the amount of redundancy from 7 to 5 and then to its minimum (in our
system, this is 3). Figure 7 shows the behavior of the system after ¢; : more frequent and



sudden changes bring the system rapidly to redundancy 7 and then let it fluctuate be-
tween 5 and 3 until the next pause.

a
1.84e+86 1,685e+86 1.86e+86 1,87e+86 1,88e+86 1,89e+86 1.1e+8

Figure 7: In this part of the experiment redundancy rapidly reaches 7 as a reaction to severe distur-
bances and then fluctuates between 7 and 5. Then the experiment restarts
with a new pause and accordingly redundancy drops to 3.

RELATED WORK

The embedding of adaptability and dependability aspects in software system has been discussed
by several authors — a thorough survey of this topic may be found for instance in (De Florio, 2009)
and (De Florio & Blondia, 2008b) — though in our opinion it is worth highlighting among them the
classical work of Kenneth Boulding on so-called General Systems Theory (Boulding, 1956) —a paper
whose genial ideas still apply today and reverberate in modern concepts such as adaptive, resilient,
and autonomic systems. In the cited paper a classification of systems" is proposed according to their
“openness” and to their ability to self-manage. It is interesting to realize how most current software
architectures still comply to Boulding’s categories of “Clockworks” (“simple dynamic system
with predetermined, necessary motions™) and “Thermostats” (“control mechanisms in
which the equilibrium position is not merely determined by the equations of the system,
but the system will move to the maintenance of any given equilibrium, within limits”).
The introduction of adaptability in software means being able to design and craft actual
open (software) systems with a self-maintaining structure (“Cells” and “Plants”, follow-



ing Boulding’s terminology), which paves the way to the design of truly autonomic sys-
tems (or “Animals,” i.e. systems characterized by “mobility, teleological behavior and
self-awareness”). In such systems, “behavior is response not to a specific stimulus but to
an "image" or knowledge structure or view of the environment as a whole.”

Other important milestones in this domain must necessarily include Norbert Wie-
ner’s classical work (Wiener, 1948) where the study of the structure and design of con-
trol systems — that is, cybernetics — is first introduced. The role of feedback loops and
concepts such as adaptation were systematically investigated for the first time in the cited
paper.

Throughout the following decades and the advent and evolution of software systems,
briefly recalled in the Introduction to this paper, solutions to embed adaptive concerns in
all layers of computer systems, and software systems in particular, have been sought. It
would make little sense to try and summarize each and every episode in this imposing
series of achievements, though a fundamental milestone of this “history” is with no
doubts the introduction of Autonomic Computing (Kephart and Chess, 2003), some of
the ideas of which can be found also in earlier works such as (De Florio, 2000). Self-
managing computing systems are nothing but adaptive systems constructed around an
architectural design pattern that makes it possible to realize Boulding’s just mentioned
higher level systems’. Service orientation and component orientation are two particularly
fitting infrastructures for realizing autonomic computing systems.

What the embedding of adaptability in the application layer is concerned, we remark
the role of Computational Reflection, defined in (Maes, 1987) as “the causal connection
between a system and a meta-level description representing structural and computational
aspects of that system”. Computational Reflection is available to the programmer in the
form of so-called Meta-object Protocols, which provide the programmer with a represen-
tation of a system as a set of objects representing and reflecting properties of “real” ob-
jects. Such “meta-objects” can for instance represent the structure of a class, or object
interaction, or the code of an operation. This mapping process is called reification. As
remarked e.g. in (De Florio, 2009), the causality relation of meta-object protocols could
also be extended so as to allow for a dynamical reorganization of the structure and the
operation of a software system to perform adaptation in the form of, e.g. reconfiguration
Or error recovery.

Composition Filters (Bergmans & Aksit, 2001) provide the programmer with input
and output filters, that is, components that intercept and manipulate message transmis-
sion and reception. An input filter set filters incoming messages and an output filter set
filters outgoing messages. Filters in a filter set orderly evaluate and possibly manipulate
the messages before passing them to the target object. This could be used to encode com-
plex feedback loops based on hierarchies of sensors and actuators.

Aspect Orientation (Kiczales & Mezini, 2005) systematically automatizes and sup-
ports the process of adapting an existing code so that it fulfils specific aspects. Aspect-
oriented programming may be defined as a software engineering methodology supporting
those adaptations in such a way as to guarantee that they do not destroy the original de-
sign and do not overly increase complexity. A particularly interesting of recent aspect



oriented architectures is so-called dynamic weaving, which allows the adaptation code to
vary dynamically over time, e.g., as a response to environmental changes. Aspect Orien-
tation has been used e.g. in (Sun et al., 2009) as a structure to express adaptability and
dependability in the software application layer.

Recovery Languages (De Florio, 2000) is a hybrid approach — it offers both a soft-
ware architecture and an application layer, both of which can be used to express adap-
tive-and-dependable software systems. Recovery Languages supports two application
layers, namely: (1) the classical functional application layer, devoted to the fulfillment of
the functional requirements, and (2) an ancillary application layer, specifically devoted to
error recovery, which gets activated when errors are detected in the system. This second
layer is supported by architectural components that implement a network of error detec-
tors. The error recovery application layer provides feedback loops through nested
guarded actions.

Finally, the programming language Oz (Van Roy & Haridi, 2004) provides at the
same time transparency of unnecessary aspects®, and translucency of events reflecting
relevant changes in the system and its environment. The occurrence of such events is
reflected in the language by means of so-called failure listeners: all Oz entities can pro-
duce streams of events that reflect the sequential occurrence of their notifications. Any
Oz task can become a failure listener, that is, it can hook to such streams and be informed
of all the faults experienced by any other tasks. In other words, fault detection is intrinsi-
cally managed by Oz. Error recovery can then be managed by guarded actions, as it is the
case for Recovery Languages. Oz has been used to express adaptive control loops (Van
Roy, 2006) for self-management.

CONCLUSIONS

We have introduced the problem of adaptability and dependability as key requirements for a sys-
tem where the environment and hence the fault model varies over time. A model focusing on the
anticipation of changes in the environment has been proposed. We have shown with two examples
the potential of adaptive services as means to achieve a dynamic trade-off between seemingly con-
tradicting requirements. Particular emphasis has been given to a prototypic system adopting the
principles introduced in this paper and realizing adaptively redundant data structures.
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ENDNOTES

"To fully appreciate the extent of this revolution, let us reprint here an excerpt from an article by Brisse (Baron de Brisse, 1875) celebrating
the 1855 Paris Universal Exhibition, where the Scheutzes” machine was shown to the public for the first time: “This machine solves equations
of 4th and even greater degree; operates in any numerical system [. . .] The scientists, boasting their computation capabilities as a miracle of
natural law, will be soon taken over by a simple machine that, under the nearly blind guidance of a common man and by means of cus-
tom movement, is going to dig the infinite outer space with a security and depth way greater than that of scientists. Any man capable to

formulate a problem and having at his disposal Mr. Scheutz’s machine will have no need for Archimedes, Newtons, or Laplaces |. . .] This
quasi-intelligent machine not only computes in a few seconds what normally would require hours; it also prints the obtained results, adding

the advantages of a neat calligraphy to those of computations with no chance for errors.” See also (De Florio, 2002) and (Anonymous,
1870).

2 This excerpt from a report on the ENIAC activity [17] gives an idea of how dependable computers were in 1947: “power line fluctuations
and power failures made continuous operation directly off transformer mains an impossibility [...] down times were long; error-free running
periods were short [...]”. After many considerable improvements, still “trouble-free operating time remained at about 100 hours a week
during the last 6 years of the ENIAC’s use”, i.e., an availability of about 60%!

? See for instance the following statement from Popular Mechanics, 1949: “In the fitture computers will weigh at most 1.5 tons™!

4 An “arrangement of theoretical systems and constructs in a hierarchy of complexity, roughly corresponding to the complexity of the "indi-
viduals" of the various empirical fields, [ ...] leading towards a "system of systems."

3 In (Kephart and Chess, 2003), the authors describe how in autonomic systems “New components integrate as effortlessly as a new cell
establishes itself in the human body” — the terms used by the authors is indeed the same as Boulding’s, “Cell.”

®In Oz, it is simply not possible to tell whether a method or an entity is local or distributed.



