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Abstract. Commercial Web-based Personal-Health Record (PHR) systems can help patients to 

share their personal health records (PHRs) anytime from anywhere. PHRs are very sensitive 

data and an inappropriate disclosure may cause serious problems to an individual. Therefore 

commercial Web-based PHR systems have to ensure that the patient health data is secured 

using state-of-the-art mechanisms. In current commercial PHR systems, even though patients 

have the power to define the access control policy on who can access their data, patients have 

to trust entirely the access-control manager of the commercial PHR system to properly enforce 

these policies. Therefore patients hesitate to upload their health data to these systems as the 

data is processed unencrypted on untrusted platforms.   

Recent proposals on enforcing access control policies exploit the use of encryption techniques 

to enforce access control policies. In such systems, information is stored in an encrypted form 

by the third party and there is no need for an access control manager. This implies that data 

remains confidential even if the database maintained by the third party is compromised. In this 

paper we propose a new encryption technique called a type-and-identity-based proxy re-

encryption scheme which is suitable to be used in the healthcare setting. The proposed scheme 

allows users (patients) to securely store their PHRs on commercial Web-based PHRs, and 

securely share their PHRs with other users (doctors).  

 

Keywords: Proxy Re-encryption, Identity-Based Encryption, Personal Health Records, Access 

Control Policy, Privacy 

Introduction 

 

Recently, healthcare providers have started to use electronic health record systems which have 

significant benefits such as reducing healthcare costs, increasing the patient safety, improving 

the quality of care and empowering patients to more actively manage their health. There are a 

number of initiatives for adoption of electronic health records (EHRs) from different 

governments around the world, such as the directive on privacy and electronic communications 



in the U.S. known as the Health Insurance Portability and Accountability Act (HIPAA) [1], which 

specify rules and standards to achieve security and privacy of health data. While EHR systems 

capture health data entered by health care professionals and access to health data is tightly 

controlled by existing legislations, personal health record (PHR) systems capture health data 

entered by individuals and stay outside the scope of this legislation. Before going into details on 

how to address the confidentiality issues, let us introduce the definition of PHR system [4]: 

 

 "An electronic application through which individuals can access, manage and share their 

health information, and that of others for whom they are authorized, in a private, secure, and 

confidential environment." 

 

PHR systems are unique in their design since they try to solve the problem that comes from 

scattering of medical information among many healthcare providers which leads to 

unnecessary paper work and medical mistakes [4]. The PHR contains all kinds of health-related 

information about an individual (say, Alice) [5]. Firstly, the PHR may contain medical data that 

Alice has from various medical service providers, for example about surgery, illness, family 

history, vaccinations, laboratory test results, allergies, drug reactions, etc. Secondly, the PHR 

may also contain information collected by Alice herself, for example weight change, food 

statistics, and any other information connected with her health. Controlling access to PHRs is 

one of the central themes in deploying a secure PHR system. Inappropriate disclosure of the 

PHRs may cause an individual serious problems. For example, if Alice has some disease and a 

prospective employer obtains this, then she might be discriminated in finding a job.  

Commercial efforts to build Web-based PHR systems, such as Microsoft HealthVault [2] and 

Google Health [3], allow patients to store and share their PHRs with different healthcare 

providers. In these systems the patient has full control over her PHRs and plays the role of the 

security administrator - a patient decides who has the right to access which data. However, the 

access control model of these applications does not give a patient the flexibility to specify a 

fine-grained access-control policy. For example, today's Google Health access control is all-or-

nothing - so if a patient authorizes her doctor to see only one PHR, the doctor will be able to 

see all other PHRs. Another problem is that the data has to be stored on a central server locked 

by the access control mechanism provided by Microsoft HealthVault or Google Health, and the 

patient loses control once the data is sent to the server. PHRs may contain sensitive 

information such as details of a patients disease, drug usage, sexual preferences, therefore, 

many patients are worried whether their PHRs will be treated as confidential by companies 

running data centers. Inappropriate disclosure of a PHR can change patients life, and there may 

be no way to repair such harm financially or technically. Therefore, it is crucial to protect  PHRs 

when they are uploaded and stored in commercial Web-based systems. 

 

 

 

 

 

 



 

Figure  1: Proxy Re-Encryption 

Problem Statement 

 

The problem addressed in this paper is the confidentiality of patient PHRs stored in commercial 

Web-based PHR systems. A solution to the problem is a system which would have the following 

security requirements:   

• Protect patient PHRs from third parties (from the commercial Web-based PHR systems). 

• Provide end-to-end security.  

• Allow only authorized users to have access to the patient PHRs.  

• Allow the patient to change the access policy dynamically.  

 

Contributions 

 

To solve the identified problem we propose a new public key encryption scheme called type-

and-identity-based proxy re-encryption which helps patients to store their PHRs on commercial 

Web-based PHR systems, and to share their PHRs securely with doctors, family and friends. In 

public key encryption, each user has a key pair (private/public key) and everyone can encrypt a 

message using a public key, also referred to as the encryption key,  but only users who have the 

associated private key, also referred to as the decryption key, can decrypt the encrypted 

message. Proxy re-encryption is a cryptographic method developed to delegate the decryption 

right from one party, the delegator, to another, the delegatee. In a proxy re-encryption scheme, 

the delegator assigns a key to a proxy to re-encrypt all messages encrypted with the public key 

of the delegator such that the re-encrypted ciphertexts can be decrypted with the private key 

of the delegatee. The Proxy is a semi-trusted entity i.e. it is trusted to perform only the 

ciphertext re-encryption, without knowing the private keys of the delegator and the delegatee, 

and without having access to the plain text. In the context of public key encryption, proxy re-

encryption is used to forward encrypted messages without revealing the plaintext. For example, 

in Figure 1, Alice (delegator) is president of a company who wants to allow her secretary, Bob 

(delegatee), to read encrypted emails from Charlie when Alice is on vacation (Alice cannot give 

to Bob her private key). Using proxy re-encryption Alice can compute a re-encryption key which 

would allow the Proxy to transform a ciphertext for Alice generated by Charlie into a ciphertext 

for Bob, thus, Bob can decrypt the re-encrypted data using his private key. In practice the role 

of the Proxy can be played by a commercial enterprise which has enough computation power 



to perform re-encryption services for a large number of users. Our proposed scheme is suitable 

for the healthcare setting and has the following benefits:   

• Allow the patient to store her PHRs in a protected form on semitrusted commercial 

Web-based PHR system. The commercial Web-based PHR system cannot access the data 

since the data is stored in an encrypted form. 

• Allow the patient to define a fine-grained access control policy. The patient only has to 

compute the re-encryption key and forward it the Proxy which will re-encrypt the data 

without decrypting them such that the intended user (e.g.,doctor) can decrypt the re-

encrypted data using his private key. In addition to that, the scheme allows the patient 

to change dynamically the access policy without necessarily decrypting the data.  

• Allows the patient to categorize her messages into different types, and delegate the 

decryption right of each type to the doctor through a Proxy. Data categorization is 

needed since different data may have different levels of privacy requirements.  

 

Web-based PHRs 
 

In this section we discuss current Web-based PHRs systems such as Microsoft HealthVault and 

Google Health and their access control mechanisms. Moreover, we discuss existing techniques 

to enforce access policies using cryptography and discuss their limitations.  

In Microsoft HealthVault each patient has an account and an identifier. Each account has a 

special role called a custodian who has the right to view and modify all records, and grant or 

revoke access to users (e.g.,doctors) and applications. Both users and applications have to be 

registered with HealthVault in order to access other accounts. An application is a third party 

service which can read data stored in HealthVault records, store new data, or transfer data 

from one account to another account. An application can access patient accounts in two ways: 

a) online access - access the account when the patient is logged on to her account, and b) 

offline access – access the account at any time. If the patient uses an application for the first 

time, and the application requires access to a health record, the application sends an access 

request to the patient. After the patient approves the request, the application can access the 

health information. HealthVault uses discretionary access control (DAC) [6] where access to a 

patient PHR is based on user identity (e.g. email). For example, if the patient wants to allow the 

doctor to see her record, the patient has to send a sharing invitation to the doctors’ email and 

within 3 days the doctor has to accept or reject the invitation. The doctor may have one of the 

following permissions: a) view patient information, b) view and modify patient information or, 

c) act as a custodian. Microsoft HealthVault defines 74 types of information and allows granular 

access control for non-custodians. For example, the patient can allow the doctor to have access 

only to records of type Allergy, and block access to records of type Family History. However, the 

patient does not have the flexibility to grant access to the doctor to an individual record. When 

the patient grants access to the doctor to her health information, the patient can also specify 

an expiration date. After the expiration date, the doctor would not be able to access the patient 

information. However, the patient has the option to remove sharing access at any time (even 

before the expiration date). 

Similar to Microsoft HealthVault, Google Health allows a patient to import her PHRs, add test 



results and add information about allergies, among others. In Google Health each patient has 

an account and an identifier and a user (e.g.,doctor) has to be registered to Google Health to 

access others health information. If the patient wants to allow the doctor to see her PHRs, the 

patient has to send an invitation to doctors’ email, and within 30 days the doctor has to accept 

or reject the invitation. A patient can share her PHRs with other users or Google partners 

including Walgreens, CVS Long Drugs pharmacies, Cleveland Clinic and etc. However, data 

sharing in Google Health is all-or-nothing. The patients does not have the flexibility to chose a 

fine-grained access policy to share her data. For example, once the patient allows the doctor to 

see her blood result test, the doctor can access all health information of the patient. 

In the access-control mechanisms of Microsoft HealthVault and Google Health the receiving 

end of the information must provide a set of credentials  to the access control manager (ACM) 

who is responsible for enforcing the access control policies. The ACM checks whether user 

credentials satisfy the access control policy. If so, the user can read the resource, otherwise not. 

However, the main limitation of this is that the patient still needs to trust the Microsoft 

HealthVault and Google Health to enforce access control policies when disclosing data, and 

specially the access control decisions and privacy enforcement has to be enforced when the 

data is moving from one enterprise to another. Another limitation is that the information is 

stored in clear by the enterprise, and despite the privacy policy the leakage of confidential 

information can happen due to compromise of the database maintained by the enterprise. 

Therefore, to solve the aforementioned problem, recent proposals on enforcing access control 

policies exploit the use of encryption techniques. In such systems, information is stored in an 

encrypted form by an enterprise and there is no need for an access control manager to check 

user credentials. Thus, each user can get the encrypted data, but only users who have the right 

credentials (the right key) can decrypt the encrypted data. This implies that data confidentiality 

is preserved even if the database maintained by the enterprise is compromised.   

 

 

Current Solutions (and their Drawbacks) which Enforce Access Control Policies 

using Encryption 

 

To prevent commercial Web-based PHR systems to access the content of patients PHRs, the 

patient can encrypt her data using traditional public key encryption algorithms and store the 

encrypted data (ciphertext) in a database, and then decrypt the ciphertext on demand. In this 

case, the patient only needs to assume that Microsoft HealthVault and Google Health will 

properly store her encrypted data, and even if Microsoft HealthVault and Google Health get 

corrupted, patients PHR will not be disclosed since the data is stored in an encrypted form. The 

problem with this solution is that the patient needs to be involved in every request (e.g., from 

her doctor, hospital) and perform the decryption. This is because only the patient knows the 

decryption key. 

One possible solution is to use more advanced public key encryption schemes such as 

Ciphertext-Policy Attribute-Based Encryption (CP-ABE) scheme [11-13]. The CP-ABE scheme is a 

type of attribute-based encryption scheme in which the data owner encrypts the data 

according to an access control policy τ  defined over a set of attributes, and where the receiving 

end can decrypt the encrypted data only if his private key associated with a set of attributes 



satisfies the access control policy τ . For example, suppose Alice encrypts her data according to 

an access policy τ =(
1

a  AND 
2

a ) OR 
3

a . Bob can decrypt the encrypted data only if his private key 

is associated with a set of attributes that satisfy the access policy. To satisfy the access control 

policy τ , Bob must have a private key associated with at least one from the following attribute 

sets: (
1

a , 
2

a ), (
3

a ) or (
1

a , 
2

a , 
3

a ). In CP-ABE the mapping user-attribute is many-to-many, which 

means that one user may possess many attributes and one attribute may be possessed by many 

users. The main drawbacks of using CP-ABE to securely manage PHRs are: a) the patient has to 

know the list of users associated with an attribute, and b) an attribute is possesed by many 

users.  Therefore, using CP-ABE, the patient cannot encrypt a PHR such that only one healthcare 

provider, with whom the patient has contract, can access it at a time. This is because one 

attribute can be possesed by many healthcare providers. This is one of the main reasons why 

both Microsoft HealthVault and Google Health use DAC where access to patients records is 

based on doctors identity, instead of using Attribute-Based Access Control (ABAC) where access 

to patients records is based on doctors attributes.  

Another solution is to use existing proxy re-encryption schemes [16-20], in which the patient  

assigns a re-encryption key to the Proxy which  re-encrypts the encrypted PHR under patients’ 

public key into encrypted PHR under doctors’ public key. However this approach has the 

following drawbacks:   

• The Proxy is able to re-encrypt all ciphertexts of the patient such that the doctor can 

decrypt all ciphertexts using his private key. Thus, the patient does not have the 

flexibility to define fine-grained access control.  

• If the Proxy and the delegatee get corrupted, then all PHRs may be disclosed to an 

illegitimate entity based on the fact that the re-encryption key can re-encrypt all 

ciphertexts.  

 

The Concept of Type-and-Identity-Based Proxy Re-encryption  
   

In order to solve the aforementioned problems a new encryption scheme which would 

cryptographically enforce access policies is needed. We propose a type-and-identity-based 

proxy re-encryption scheme which consists of six algorithms : Setup , Extract , Encrypt , Pextract , 

Preenc  and Decrypt .  

The basic building block of the type-and-identity-based proxy re-encryption scheme is the  

 



 

Figure 2: Identity-Based Encryption 

 

Identity-Based Encryption (IBE) scheme (Figure 2). The concept of IBE was proposed by Shamir 

[10] in 1984, however IBE has become practical only after Boneh and Franklin [11] propose the 

first IBE scheme based on bilinear pairings on elliptic curve (In appendix A we review in more 

detail the concept of bilinear pairing ).  The IBE scheme consist of four algorithms: Setup , Extract , 

Encrypt  and Decrypt .  Unlike a traditional public key encryption scheme, an IBE does not require a 

digital certificate to certify the encryption key (public key) because the public key of any user 

can be an arbitrary string such as an email address, IP address, etc. Key escrow is an inherent 

property in IBE systems, i.e., the trusted authority (TA), also referred to as Key Generation 

Center (KGC), can generate each users' private key, because the TA owns the master key mk  

used to generate users' private keys. IBE is a very suitable technique to be used in healthcare to 

exchange emails more securely. For example, in Figure 2, when Alice (the patient) wants to 

send an encrypted email to Bob (the doctor), Alice can encrypt an email using the encryption 

key derived from the doctors identity and send the email via an insecure channel. The doctor 

can authenticate himself to the TA to get the decryption key (private key). After the private key 

is generated the doctor can decrypt the encrypted email. Unlike in traditional public-key 

encryption schemes where the private key and the public key has to be created simultaneously, 

in IBE the private key can be generated long time after the corresponding public key is 

generated.  

 

A type-and-identity-based proxy re-encryption scheme extends the IBE scheme by adding the 

Proxy entity to the existing two entities: the TA and users. Another type of extension has been 

made to the number of algorithms. In addition to the four algorithms of IBE scheme, the type- 

and-identity-based proxy re-encryption scheme uses Pextract  algorithm to generate a re-

encryption key, and Preenc  algorithm to re-encrypt the ciphertext. These algorithms are needed 

to enable the patient (delegator)  to specify a fine-grained access control policy for her PHRs.  



 

Figure  3: A Type-and-Identity-Based Proxy Re-Encryption 
 

In the type-and-identity-based proxy re-encryption scheme (Figure 3), Alice (delegator) using 

one key-pair can categorize messages (data) into different types and delegate the decryption 

right of each type to Bob (delegatee) through a Proxy. Grouping the data into different 

categories is needed since different PHRs may have different levels of privacy requirements. For 

example, Alice may not be seriously concerned about disclosing her food statistics to other 

persons, but she might wish to keep her illness history as a top secret and only disclose it to the 

appropriate person. In addition to categorizing her PHRs according to the sensitivity level, Alice 

may categorize her PHRs according to the type of information or according to the device which 

generated the PHR. There are a number of measurement devices in the market which can be 

used by the patient and can be connected via home hubs to remote back-end servers. Such 

examples are disease management services (such as Philips Motiva and PTS) or emergency 

response services (Philips Lifeline) in which the healthcare provider can remotely access the 

measurement data and help the patients. As illustrated in Figure 3, Alice uses only one public 

key to encryp all messages,  and delegates her decryption right (computes a re-encryption key) 

only for one type (type 1), and Bob can use his private key to access only messages which 

belong to type 1. If the Proxy and Bob get corrupted, then only health records belonging to type 

1 may be disclosed to an illegitimate entity, while the other types of information remains 

secure.  A full construction of the type-and-identity based re-encryption scheme is given in 

Appendix B.  

The six algorithms are defined as follows:   

• :)(Setup k  run by the TA, the algorithm takes as input a security parameter k  and outputs 



the master public key pk  and the master private key mk . pk  is used in the encryption 

phase by each user, and mk  is used by the TA to generate users private keys. 

• :),(Extract idmk  run by the TA when a user request a private key. The algorithm takes as 

input the master key mk  and an user identity id , the algorithm outputs the user private 

key 
id

sk .  

• :),,(Encrypt
id

pktm  run by the encryptor, the algorithm takes as input a message to be 

encrypted m , a type t , and an the public key 
id

pk  associated with the identity id , and 

outputs the ciphertext c . 

• ),,,(Pextract
iidji sktidid  run by the delegator, this algorithm takes the delegator's identifier 

i
id , the delegatee's identifier jid , the type t , and the delegator's private key 

iidsk  as 

input and outputs the re-encryption key 
j

id
i

idrk → .  

• ),(Preenc
j

id
i

idi rkc →  run by the Proxy, this algorithm, takes as input the ciphertext 
i

c  and 

the re-encryption key
jidiidrk → , and outputs a new ciphertext jc  

• ),(Decrypt
jidj skc  run by the decryptor, the algorithm takes as input the ciphertext jc  and 

the private key 
jidsk , and output a message m .  

A formal security model and a formal security proof is given in appendix B.1. and B.2. 

 

Applying the Scheme in Practice 
 

Figure 4 illustrates a general architecture of a PHR system that uses our type-and-identity-

based proxy re-encryption scheme. The architecture consists of Trusted Authorities (TAs), a 

patient, an application hosting device, a Web PHR, a Proxy and a doctor. The TAs are used to 

generate key pairs for the patient, respectively the doctor. We assume that the  patient and the 

doctor are from different security domains. The application hosting device can be implemented 

on a home PC of the data source (a patient) or as a trusted service. Its role is to encrypt PHRs 

and forward them to the Web PHR. The Web PHR stores encrypted PHRs, and Proxy is used to 

re-encrypt encrypted data and forward them to the doctor. There are five basic processes in 

the management of PHRs:      

• Setup: In this phase, TAs run the Setup  and Extract  algorithm and distribute the public 

parameters needed to run the algorithms of the type-and-identity-based proxy re-

encryption scheme, and distributes the private keys, which are needed to decrypt 

encrypted messages, to the patient and doctor (1). We assume that there is a secure 

channel between the TA and the user, respectively the doctor. Note that the doctor can 

get his key pair during the decryption phase, while the Proxy can perform re-encryption 

of encrypted data under doctors public key, even if the doctor does not have a private 

key. This is possible since the doctors public key can be computed by everyone who 

knows doctors' identity. The TA does not have to be online as long as each user gets 

his/her key pair. 

• Data creation: The patient uses a number of healthcare devices and creates 

measurement data and forwards them to the application hosting device (2). In addition  



 

 

Figure  4: Secure Management of PHR 

 

to that, the patient can forward to the application hosting device all kinds of information 

that the patient has from various medical service providers. 

• Data protection: The patient categorizes her PHR according to her privacy concerns. For 

instance, she can set her illness history as type 
1
t , her food statistics as type 

2
t , and the 

necessary PHR data in case of emergency as type 
3

t . Then the patient generates the 

encryption key (public key) derived from her identity (identity can be any type of public 

string) and run the Encrypt  algorithm using the generated public key. After the 

encryption is performed, the patients uploads the encrypted data to Web PHR (3). As in 

the previous step, all this (data categorization, data encryption and data uploading) can 

be done by a hosting device on behalf of the patient.  

• Data Sharing (allow the doctor to see patient data): In this phase, the patient runs the 

Pextract  algorithm and generates the re-encryption key which will be used by the Proxy 

to re-encrypt encrypted  data under patients public key to encrypted data under doctors 

public key, such that the doctor can decrypt the encrypted data using his private key. 

The generated key is forwarded to the Proxy (4). As in the above steps, all this can be 

done by a hosting device on behalf of the patient who specifies the access control 

policy.  

• Data consumption (doctors’ request-response): When a doctor wants to use patient 

data, he contacts the Web PHR and specifies the ciphertext that he wants to decrypt (5). 

We assume that each ciphertext is associated with appropriate metadata - descriptive 

information about the patient. The encrypted data is forwarded to the Proxy (6). The 

Proxy checks if the doctor is allowed to see patient data (checks if it has a re-encryption 

key 
DoctorPatient

rk
→

), and, if so, the Proxy runs the Preenc  algorithm to re-encrypt the 



encrypted data. The re-encrypted data is sent to the doctor (7). After receiving the re-

encrypted data the doctor runs the Decrypt  algorithm using his private key.  

 

Trust Assumptions 
 

User trust is very important aspect when deploying a Web-based PHR system. In practice, users 

have greater trust on systems where they can control access to their information, and lower 

trust on systems where they have to trust someone else to control access to their information 

(e.g., the user has to trust the access control manager of the Web PHR). Therefore in this paper 

we provide a solution which compared to existing solutions reduces the trust that patients need 

to have on commercial Web-based PHR systems. As mentioned above, in our proposal the role 

of the Web PHR is twofold: a) to provide storage for PHRs, and b) to maintain the Proxy. Next to 

that, the patient  has to put the following trust on Web PHR:   

• The Web-based PHR system is trusted to store PHRs in publicly accessible storage only in 

an encrypted form, therefore the patient does not have to trust the Web-based PHR 

system to provide data confidentiality service. The data confidentiality service is 

provided by the patient at the moment when the data is encrypted. Encryption prevents 

sniffing software to access the data when the data travels from the user to the storage, 

and the storage cannot decrypt the data without having the private key.  

• The Proxy is trusted to maintain a list of re-encryption keys, and to enforce the access 

policy by properly re-encrypting the encrypted data when the identity of the doctor 

(requester) is part of the re-encryption key. Note that, the list of re-encryption keys 

should be secret (if the list of re-encryption keys is public then the patient cannot 

prevent an authorized doctor to see her data after the access decision is made) , 

therefore the patient has to trust the Proxy to store all re-encryption keys securely. The 

difference between our approach and the access control mechanisms in existing Web 

PHR is that in our approach the Proxy who plays the role of the ACM cannot access the 

content of PHRs, therefore, the patient does not have to fully trust the Proxy, while in 

existing commercial Web-based PHR systems the patient has to fully trust the ACM 

because the ACM can access the content of PHRs. 

• The user should trust the Proxy to securely delete  re-encryption keys when the user 

wants to prevent an authorized doctor to access users data further. For example, a 

patient might change her healthcare provider, and after some time she wants to 

prevent the doctor from an old healthcare provider to access her data.  

 

 

Policy Updating 
 

For patient to allow someone to access her data, the patient has to compute a new re-

encryption key. For example, if Alice wants to allow Bob and Charlie to see her PHRs belonging 

to category Alergyt , Alice has to create two re-encryption keys: BobAlicerk →  and CharlieAlicerk → . 

Transmission of the re-encryption keys to the Proxy should be secured using cryptographical 

protocols such as Transport Layer Security (TLS) which allows two entities to securely 



communicate over the internet.  

In practice the patient might want to update her access policy. Using our approach the patient 

might do this task without entirely decrypting the ciphertext. To update an access policy means 

to create new, or delete old, re-encryption keys. For example, Alice to update her access policy 

from CharlieORBob=τ  (this access policy implies that Bob and Charlie can access the data) to a 

different access policy DaveORBob=τ ′  (this access policy implies that Bob and Dave can access 

the data), has to follow the following two procedures:   

• Notify the Proxy to delete (revoke) the re-encryption key BobAlicerk → . This would prevent 

the Proxy to re-encrypt encrypted data under Alices public key to encrypted data under 

Bobs public key. 

• Create new re-encryption key CharlieAlicerk →  and send it to the Proxy. This would allow the 

Proxy to re-encrypt encrypted data under Alices public key to encrypted data under 

Daves public key.  

 

 

Related Work on Proxy Re-Encryption 
  

Since Mambo and Okamoto first proposed the concept [12], a number of proxy re-encryption 

schemes have been proposed [16-20]. Blaze et al. [17] introduce the concept of atomic Proxy 

cryptography which is the current concept of proxy re-encryption. In a proxy re-encryption 

scheme, the Proxy can transform ciphertexts encrypted with the delegator's public key into 

ciphertexts that can be decrypted with the delegatee's private key. Blaze et al. propose a proxy 

re-encryption scheme based on the ElGamal encryption scheme [18]. One property of this 

scheme is that, with the same re-encryption key, the Proxy can transform the ciphertexts not 

only form the delegator to the delegatee but also from the delegatee to the delegator. This is 

called the “bi-directional” property in the literature. Bi-directionality might be a problem in 

some applications, but it might also be a desirable property in some other applications. 

Jacobsson [14] addresses this “problem” using a quorum controlled asymmetric proxy re-

encryption where the Proxy is implemented with multiple servers and each of them performs 

partial re-encryption. 

Dodis and Ivan [13] propose a generic construction method for proxy re-encryption schemes 

and also provide a number of example schemes. Their constructions are based on the concept 

of secret splitting, which means that the delegator splits his private key into two parts and 

sends them to the Proxy and the delegatee separately. During the re-encryption process the 

Proxy performs partial decryption of the encrypted message using the first part of the 

delegator's private key, and the delegatee can recover the message by performing partial 

decryption using the second part of the delegator's private key. One disadvantage of this 

method is that it is not collusion-safe, i.e. the Proxy and the delegatee together can recover the 

delegator's private key. Another disadvantage of this scheme is that the delegatee's 

public/private key pair can only be used for dealing with the delegator's messages. If this key 

pair is used by the delegatee for other encryption services, then the delegator can always 

decrypt the ciphertexts. 

 Ateniese et al. [19] propose several proxy re-encryption schemes based on the ElGamal 



scheme. In their schemes, the delegator does not have to interact and share his private key 

with the delegatee. The delegator stores two private keys, a master private key and a “weak” 

private key. The ciphertext can be fully decrypted using either of the two distinct keys. Their 

scheme is collusion safe, since only the “weak” private key is exposed if the delegatee and the 

Proxy collude but the master key remains safe. The disadvantage of this scheme is that the 

delegator has to perform two levels of encryptions, the first level encryption encrypts messages 

that can be decrypted by the delegator, and the second level encryption encrypts messages 

that can be decrypted by the delegator and his delegatees. In addition, Ateniese et al. also 

discuss a number of properties for proxy re-encryption schemes in [19]. 

Recently, two IBE proxy re-encryption schemes were proposed by Matsuo [16] and Green and 

Atteniese [15], respectively. The Matsuo scheme assumes that the delegator and the delegatee 

belong to the same KGC and use the Boneh-Boyen encryption scheme [20]. The Green-

Atteniese scheme assumes that the delegator and the delegatee can belong to different KGCs 

but the delegatee possess the public parameter of the delegator's KGC. 

Sahai and Waters [21] introduce the concept of Attribute-Based Encryption (ABE) which is a 

generalized form of IBE. In ABE the ciphertext and user private keys are associated with a set of 

attributes. A user can decrypt the ciphertext if the user private key has the list of attributes 

specified in the ciphertext. In Ciphertext-Policy Attribute-Based Encryption (CP-ABE) [11-13] the 

user private key is associated with a set of attributes and a ciphertext is associated with an 

access control over some attribute. The decryptor can decrypt the ciphertext if the list of 

attributes associated with the private key satisfies the access policy. In Key-Policy Attribute-

Based Encryption (KP-ABE) [22] the idea is reversed and the private key is associated with an 

access control over some attributes and the ciphertext is associated with a list of attributes. The 

decryptor can decrypt the ciphertext if the list of attributes associated with the ciphertext 

satisfy the access policy associated with the private key. Lliang et al.[23] proposed an attribute-

based proxy re-encryption scheme. The scheme is based on the Cheung and Newport CP-ABE 

scheme [8] and inherits the same limitations that [8] has: it supports only access policies with 

AND  boolean operator, and the size of the ciphertext increases linearly with the number of 

attributes in the system. 

Proxy re-encryption has many promising applications including access control in file storage 

[19], email forwarding [24], and law enforcement [12]. With the increasing privacy concerns 

over personal data, proxy re-encryption, in particular IBE proxy re-encryption schemes (due to 

their benefits [11]), will find more and more applications. As we show in this paper, proxy re-

encryption is a powerful tool for patients to enforce their PHR disclosure policies. 

 

Conclusion 
  

This paper presents a new approach for secure management of PHRs which are stored and 

shared from a semitrusted web server (the server is trusted to perform only the ciphertext re-

encryption, without having access to the plain text). We gave an overview of access control 

mechanisms employed in current commercial Web-based PHR systems and show that 

traditional access control mechanisms as well as traditional encryption techniques which 

enforce access control policies are not suitable to be used in scenarios where the data is 



outsourced to a third party data center. In this paper we propose a type-and-identity-based 

proxy re-encryption scheme which  allow patients to reduce the trust on commercial Web-base 

PHR systems and enable patients to provide different re-encryption capabilities to the Proxy 

while using the same key pair. This property is showed to be useful in our PHR disclosure 

system, where an individual can easily implement fine-grained access control policies to her 

PHRs.  
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Appendix 

  

A. Review of pairing 

 

We briefly review the basis of pairing and the related assumptions. More detailed information 

can be found in the seminal paper [11]. A pairing (or, bilinear map) satisfies the following 

properties: 

     1.  G  and 
1

G  are two multiplicative groups of prime order p ; 

    2.  g  is a generator of G ; 

    3.  1:ˆ GGG →×e  is an efficiently-computable bilinear map with the following properties: 

        - Bilinear: for all G∈vu,  and *
, pba Z∈ , we have abba vuevue ),(ˆ=),(ˆ . 

        - Non-degenerate: 1),(ˆ ≠gge .  

As defined in [11], G  is said to be a bilinear group if the group action in G  can be computed 

efficiently and if there exists a group 
1

G  and an efficiently-computable bilinear map ê  as 

defined above. 

The Bilinear Diffie-Hellman (BDH) problem in G  is as follows: given G∈cba gggg ,,,  as input, 

output 1),(ˆ G∈abc
gge . An algorithm A  has advantage ε  in solving BDH in G  if:  

 .]),(ˆ=),,,([Pr ε≥abccba ggeggggA  

 Similarly, we say that an algorithm A  has advantage ε  in solving the decision BDH problem in 

G  if:  

 .|0]=),,,,([Pr0]=),,,,([Pr| ε≥− Tggggggggg cbaabccba
AA  

Here the probability is over the random choice of *
,, pcba Z∈ , the random choice of 

1
G∈T , and the 

random bits of A  (the adversary is a nondeterministic algorithm). 

Definition 1. We say that the (decision) ),( εt -BDH assumption holds in G  if no t-time algorithm 

has advantage at least ε  in solving the (decision) BDH problem in G .  

 As in the general group, the Computational Diffie-Hellman (CDH) problem in G  is as 

follows: given G∈ba ggg ,,  as input, output G∈abg . An algorithm A  has advantage ε  in solving 

CDH in G  if:  

 .]=),,([Pr ε≥abba ggggA  

 

Definition 2. We say that the ),( εt -CDH assumption holds in G  if no t-time algorithm has 

advantage at least ε  in solving the CDH problem in G .  

Given a security parameter k , a problem (say, BDH) is believed to be intractable if any 

adversary has only negligible advantage in reasonable time. We usually define a scheme to be 

secure if any adversary has only a negligible advantage in the underlying security model. The 

time parameter is usually be ignored. 

Definition 3. The function RZ →:)(kP  is said to be negligible if, for every polynomial )(kf , there 

exists an integer fN  such that 
)(

1
)(

kf
kP ≤  for all fNk ≥ .  

 



B. Our Construction 

  

In this section we give the construction of the type-and-identity-based proxy re-encryption 

scheme. In our scheme, the delegator and the delegatee are allowed to be from different 

domains, which nonetheless share some public parameters. 

- Suppose that the delegator is registered at KGC1 in Boneh-Franklin IBE scheme 

)Decrypt,Encrypt,Extract,Setup(
1111

 and the delegatee is registered at KGC2 in Boneh-Franklin 

IBE scheme )Decrypt,Encrypt,Extract,Setup(
2222

   . The algorithms are defined as follows. 

• 
1

Setup  and 
1

Extract  are the same as in the Boneh-Franklin scheme, except that 
1

Setup  

outputs an additional hash function **

2 {0,1}:H pZ→ . The public parameter is 

),ˆ,H,H,,,,(= 12111 pkegpparams GG , and the master key is 
11

= αmk . 

• :),,(Encrypt
1

idtm  Given a message m , a type t , and an identifier id , the algorithm outputs 

the ciphertext ),,(=
321

cccc  where *

pRr Z∈ , 

 
.=,),(ˆ=,= 3

)||(2H

21 tcpkpkemcgc
tidskr

id

r ⋅⋅  

 

 

• :),(Decrypt
1 id

skc  Given a ciphertext ),,(=
321

cccc , the algorithm outputs the message  

)3||(2H

1

2

),(ˆ
=

cidsk

id cske

c
m  

 

Without loss of generality, suppose the delegator holds the identity 
i

id  and the corresponding 

private key 
iidsk . Apart from the delegator, another party cannot run the 

1
Encrypt  algorithm 

under the delegator's identity 
i

id  since he does not know 
iidsk . 

-Suppose that the delegatee (with identity jid ) possesses private key 
jidsk  registered at KGC

2
 in 

the Boneh-Franklin IBE scheme, where the public parameter is ),ˆ,H,,,,(= 2112 pkegpparams GG , the 

master key is 
22

= αmk , and 2
1 )(H=

α
jjid idsk . For the ease of comparison, we denote the IBE scheme 

as )Decrypt,Encrypt,Extract,Setup(
2222

 although these algorithms are identical to those described in 

Section B. 

 

- The delegation process 

  

If the delegator wants to delegate his decryption right for messages with type t  to the 

delegatee, the algorithms of the proxy re-encryption scheme are as follows. 

• ),,,(Pextract
iidji sktidid : Run by the delegator, this algorithm outputs the re-encryption key 

jidiidrk → , where 
1

G
R

X ∈  and 

)).,(Encrypt),(H,(= 21

)||(2H

j

t
iidsk

iidjidiid idXXsktrk ⋅
−

→  

 

• ),(Preenc
jidiidi rkc → : Run by the Proxy, this algorithm, takes a ciphertext ),,(=

321 iiii
cccc  and the 

re-encryption key 
jidiidrk →  as input where 

3
=

i
ct , and outputs a new ciphertext 



),,(= 321 jjjj cccc , where 11 = ij cc  and 

                                                         ))(H,(ˆ= 1

)3||(2H

122 Xskcecc
ic

iidsk

iidiij ⋅⋅
−

 

                                                       ))(H,(ˆ),(ˆ= 1

)||(2H)||(2H
1 Xskgepkgem

t
iidsk

iid

rt
iidskr

iid ⋅⋅⋅
−α  

                                                             )),(H,(ˆ= 1 Xgem
r⋅  

and ),(Encrypt= 23 jj idXc . 

• ),(Decrypt
jidj skc .Given a re-encrypted ciphertext jc , the delegatee can obtain the plaintext 

m  by computing: 

 

                                                        
))),(Decrypt(H,(ˆ

=
3211

2

jidjj

j

skcce

c
m′  

                                                           
))(H,(ˆ

))(H,(ˆ
=

1

1

Xge

Xgem
r

r⋅
 

                                                           .= m  

 

B.1. Security Model  
  

We assume that the Proxy is semi-trusted in the following sense: it will honestly convert the 

delegator's ciphertexts using the re-encryption key; however, it might act actively to obtain 

some information about the plaintexts for the delegator and the delegatee. As mentioned in 

[25], the key escrow problem (TA owns a master key which can be used to decrypt each 

encrypted data) can be avoided by applying some standard techniques (such as secret sharing) 

to the underlying scheme, hence, we skip any further discussion in this paper. The delegatee 

may be curious in the sense that it may try to obtain some information about the plaintexts 

corresponding to the delegator's ciphertexts which have not been re-encrypted by the Proxy. 

As a standard practice, we describe an attack game for modeling the semantic security against 

an adaptive chosen plaintext attack for the delegator (IND-ID-DR-CPA security) for our scheme. 

The IND-ID-DR-CPA game is carried out between a challenger and an adversary, where the 

challenger simulates the protocol execution and answers the queries from the adversary. Note 

that the allowed queries for the adversary reflect the adversary's capability in practice. 

Specifically, the game is as follows: 

1.  Game setup: The challenger takes a security parameter k  as input, runs the 
1

Setup  algorithm 

to generate the public system parameter 
1

params  and the master key 
1

mk , and runs the 
2

Setup  

algorithm to generate the public system parameter 
2

params  and the master key 
2

mk . 

2.  Phase 1: The adversary takes 
1

params  and 
2

params  as input and is allowed to issue the 

following types of queries: 

a) 
1

Extract  query with any identifier id : The challenger returns the private key sk  

corresponding to id . 

b) 
2

Extract  query with any identifier di ′ : The challenger returns the private key ks ′  

corresponding to di ′ . 

c) Pextract  query with ),,( tdiid ′ : The challenger returns the re-encryption key 
diid

rk ′→  for the 

type t . 



d) †
Preenc  query with ),,,( diidtm ′ : The challenger first computes ),,(Encrypt=

1
idtmc  and then 

returns a new ciphertext c′  which is obtained by applying the delegation key 
diid

rk ′→  to c , 

where 
diid

rk ′→  is issued for type t .  

Once the adversary decides that Phase 1 is over, it outputs two equal length plaintexts 

10
,mm , a type *

t , and an identifier *
id . At the end of Phase 1, there are three constraints here: 

a) *
id  has not been the input to any 

1
Extract  query. 

b) For any di ′ , if ),,( ** tdiid ′  has been the input to a Pextract  query then di ′  has not been the 

input to any 
2

Extract  query. 

c) If there is a †
Preenc  query with ),,,( diidtm ′ , then ),,( tdiid ′  has not been queried to Pextract .  

3.  Challenge: The challenger picks a random bit {0,1}∈b  and returns ),,(Encrypt=
**

1

*
idtmc b  as the 

challenge to the adversary. 

4.  Phase 2: The adversary is allowed to continue issuing the same types of queries as in Phase 

1. At the end of Phase 2, there are the same constraints as at the end of Phase 1. 

5.  Guess (game ending): the adversary outputs a guess {0,1}∈′b . 

 At the end of the game, the adversary's advantage is defined to be |
2

1
]=[Pr| −′ bb . Compared 

with the CPA security formalizations in [19,20], in our case, we also take into account the 

categorization of messages for the delegator. The †
Preenc  query reflects the fact that a curious 

delegatee has access to the the delegator's plaintexts. 

 

B.2.  Security Proof 

  

Theorem 1. For the type-and-identity-based proxy re-encryption scheme described in Section B, 

any adversary's advantage is negligible.   

 

Proof sketch. We suppose that the total number of queries issued to 
1

H  and 
2

H  is bounded by 

integer 
1

q  and 
2

q , respectively. Suppose an adversary A  has the non-negligible advantage ε  in 

the IND-ID-DR-CPA game. The security proof is done through a sequence of games. 

0
Game : In this game, B  faithfully answers the oracle queries from A . Specifically, B  simulates 

the random oracle 
1

H  as follows: B  maintains a list of vectors, each of them containing a 

request message, an element of G  (the hash-code for this message), and an element of *

pZ . 

After receiving a request message, B  first checks its list to see whether the request message is 

already in the list. If the check succeeds, B  returns the stored element of G ; otherwise, B  

returns yg , where y  a randomly chosen element of *

pZ , and stores the new vector in the list. 'A  

simulates the random oracle 
2

H  as follows: B  maintains a list of vectors, each of them 

containing a request message and an element of *

pZ  (the hash-code for this message). After 

receiving a request message, B  first checks its list to see whether the request message is 

already in the list. If the check succeeds, B  returns the stored element of *

pZ ; otherwise, B  

returns u  which is a randomly chosen element of *

pZ , and stores the new vector in the list. 

Let ]=[Pr=
0

bb′δ , as we assumed at the beginning, εδ |=
2

1
|

0
− . 

1
Game : In this game, B  answers the oracle queries from A  as follows.   



• Game setup: B  faithfully simulates the setup phase. 

• Phase 1: B  randomly selects 1},{1,2,
1

+∈ qj L . If 1=
1

+qj , B  faithfully answers the oracle 

queries from A . If 
1

1 qj ≤≤ , we assume the j -th input to 
1

H  is di
~  and B  answers the 

oracle queries from A  as follows: Answer the queries to 
1

Extract , 
2

Extract , Pextract , and 
†

Preenc  faithfully, except that B  aborts as a failure when di
~  is the input to a 

1
Extract  

query. 

• Challenge: After receiving ),,,(
**

10 idtmm  from the adversary, if one of the following events 

occurs, B  aborts as a failure.   

        (a) *
id  has been issued to 

1
H  as the i -th query and ji ≠ , 

        (b) *
id  has not been issued to 

1
H  and 

1
1 qj ≤≤ .  

Note that, if the adversary does not abort then either 
1

1 qj ≤≤  and diid
~

=
*  is the input to j -th 

1
H  query or 1=

1
+qj  and *

id  has not been the input to any 
1

H  query. B  faithfully returns the 

challenge. 

• Phase 2: B  answers the oracle queries faithfully. 

• Guess (game ending): the adversary outputs a guess {0,1}∈′b . 

The probability that B  successfully ends is 
1

1

1 +q
, i.e. the probability that B  does not abort 

in its execution is 
1

1

1 +q
. Let ]=[Pr=

1
bb′δ  when B  successfully ends, in which case |=|

01
δδ . Let 

1
θ  

be the probability that B  successfully ends and bb =′ . We have 
1

=
1

1

1
+q

δ
θ . 

2
Game : In this game, B  simulates the protocol execution and answers the oracle queries from A  

in the following way.   

• Game setup: B  faithfully simulates the setup phase. Recall that 1
1 =

α
gpk . 

• Phase 1: B  randomly selects 1},{1,2,
1

+∈ qj L . If 1=
1

+qj , B  faithfully answers the oracle 

queries from A . If 
1

1 qj ≤≤ , B  answers j -th query to 
1

H  with βg  where *

pR Z∈β , and 

answers the oracle queries from A  as follows. Suppose the input of the j -th query to 

1
H  is di

~ . 

a) Answer 
1

Extract  and 
2

Extract  faithfully, except that B  aborts as a failure when di
~  is the 

input to a 
1

Extract  query. 

b) Pextract  query with ),,( tdiid ′ : If diid
~

= , B  returns the re-encryption key 
diid

rk ′→ , where  

)).,(Encrypt,,(=,,
21

diXgtrkXg
ditditdiidRditRdit

′∈∈ ′′′→′′ ::::
GG  

Otherwise, B  answers the query faithfully. If di ′  has been queried to 
2

Extract , when 
dit

X ′:
 

is queried to 
1

H  then B  returns 1−
′′ ⋅ ditdit hg

::
 where G

: Rdit
h ∈′ . 

c) †
Preenc  query with ),,,( diidtm ′ : If diid

~
= , B  returns  

)).,(Encrypt)),(H,(ˆ,(=,, 211

*
diXXgegcXr ditdit

rr

RditpR
′′∈∈ ′′′ :::

GZ  

Otherwise, B  answers the query faithfully. 

• Challenge: After receiving ),,,(
**

10 idtmm  from the adversary, if one of the following events 

occurs, B  aborts as a failure.   

        (a) *
id  has been issued to 

1
H  as the i -th query and ji ≠ , 

        (b) *
id  has not been issued to 

1
H  and 

1
1 qj ≤≤ .  



Note that, if the adversary does not abort then either 
1

1 qj ≤≤  and diid
~

=
*  is the input to j -th 

1
H  query or 1=

1
+qj  and *

id  has not been the input to any 
1

H  query. In the latter case, B  sets 
β

gid =)(H
*

1  where *

pR Z∈β , and returns ),,(=
*

3

*

2

*

1

*
cccc  as the challenge to the adversary, where:  

 .=,=,=,,{0,1},
**

3

*

2

*

11

*
tcTmcgcTrb b

r

RpRR ⋅∈∈∈ GZ  

• Phase 2: B  answers the oracle queries from A  as in Phase 1. 

• Guess (game ending): the adversary outputs a guess {0,1}∈′b . 

Let 
2

θ  be the probability that B  successfully ends and bb =′ . We have 
1)2(

1
=

1

2
+q

θ  since 
1

G
R

T ∈ . 

Let 
1

E  be the event that, for some di ′  and t , the adversary issues a 
2

H  query with the input 

tg ||1 βα ⋅  or 
dit

X ′:
 is issued to 

1
H  while di ′  has not been issued to 

2
Extract . Compared with 

1
Game , 

2
Game  differs when 

1
E  occurs. From the difference lemma [26], we have 

212
|| εδδ ≤−  which is 

negligible in the random oracle model based on the BDH assumption. Note that 

)Decrypt,Encrypt,Extract,Setup(
2222

 is one-way based on the BDH assumption and BDH implies CDH. 

From 
212

|| εθθ ≤−  and 
1)2(

1
=

1

2
+q

θ , we have 21

1

|
1)2(

1
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+q
. In addition, from εδ |=

2

1
|

0
− , 
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|| εδδ ≤−  

and 
1

=
1

1

1
+q

δ
θ , we have 2

1

1

1 11
ε

εε
+

+
≤

+ qq
. Because 

i
ε  2)(1 ≤≤ i  are negligible and ε  is assumed to be 

non-negligible, we get a contradiction. As a result, the proposed scheme is IND-ID-DR-CPA 

secure based on the CDH assumption in the random oracle model, given that 

)Decrypt,Encrypt,Extract,Setup(
2222

 is one-way.  

 


