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Abstract
In neuroscience, collaboration and data sharing are undermined by concerns over the management
of protected health information (PHI) and personal identifying information (PII) in neuroimage
datasets. The HIPAA Privacy Rule mandates measures for the preservation of subject privacy in
neuroimaging studies. Unfortunately for the researcher, the management of information privacy is
a burdensome task. Wide scale data sharing of neuroimages is challenging for three primary
reasons: (i) A dearth of tools to systematically expunge PHI/PII from neuroimage data sets, (ii) a
facility for tracking patient identities in redacted datasets has not been produced, and (iii) a
sanitization workflow remains conspicuously absent. This article describes the XNAT Redaction
Toolkit—an integrated redaction workflow which extends a popular neuroimage data management
toolkit to remove PHI/PII from neuroimages. Quickshear defacing is also presented as a
complementary technique for deidentifying the image data itself. Together, these tools improve
subject privacy through systematic removal of PII/PHI.
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INTRODUCTION
The digitization of medical records has transformed healthcare in both clinical and research
settings. Research organizations have the potential for global, simultaneous and instant
access to subject data along with the tools needed to perform analysis on a large scale.
Nowhere is this potential more evident than in the field of neuroscience. Inter-organizational
data sharing encourages collaboration, reduces the upfront costs of neuroimage data
acquisition efforts, and fulfills requirements for data sharing established by funding
institutions and journals.
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Even so, special concerns over subject privacy have a chilling effect on the sharing of
neuroimage data sets. Neuroimage data formats contain meta data that can reveal subject
identity. The image data itself can be used to reconstruct a photorealistic rendering of a
subject’s face. Thus, neuroimage data sharing in an evolving regulatory environment
presents new questions and obstacles that neuroscientists are ill-prepared to address.

In response, we describe the XNAT Redaction Toolkit -- an integrated redaction workflow
extending a popular neuroimage data management toolkit to remove PHI/PII from
neuroimages. Quickshear defacing is also presented as a complementary technique for
deidentifying the image data itself. Together, these tools improve subject privacy through
systematic removal of PII/PHI.

BACKGROUND
Data sharing facilitates collaboration and enables reproducibility, peer review, and meta-
analysis studies. This is especially significant in neuroimaging studies, where subject
enrollment tends to be low (Costafreda, 2009; Van Horn et al., 2009). Collaboration allows
institutions to pool data to increase the number of scans and diversity of subjects, improving
statistical power and reliability.

The notable success of the Alzheimer’s Disease Neuroimaging Initiative (ADNI), a multisite
neuroimaging project, demonstrates the potential for global inter-organizational
collaboration (Mueller et al., 2005; Kolata, 2010; Toga et al., 2010). Data has been collected
from 57 sites and images distributed to more than 1,300 investigators to date (Weiner et al.,
2012). ADNI data has led to over 250 publications, and the effort has inspired similar data
sharing initiatives for other conditions.

Collaborative efforts of this scale, however, introduce new challenges. Technical solutions
to data storage, transmission, management, and dissemination problems continue to evolve
through the development of medical imaging data management tools like the eXtensible
Neuroimage Archiving Toolkit (XNAT), enabling a certain ease of data access (Marcus et
al., 2007). However, none of these sharing solutions offer adequate and systematic tools for
the preservation of subject privacy. Within these systems, subjects and their associated data
must be managed by deidentifying the records before being added to the storage solution.
While automated tools have been developed to remove metadata, none accomplish this
deidentification on a systematic, study-wide (or institution-wide) basis (Neuroinformatics
Research Group, 2010; MathWorks, 2012).

Any systematic tool for deidentification must be adaptable to the needs of the organization
and research studies that it serves. Depending on situational research requirements, different
aggregations of PHI/PII in publicly available datasets must be explicitly disallowed. The
need for investigators to carefully consider the impact of their data is essential. Once a
policy is decided upon, its implementation should involve minimal effort and integrate with
ease into the data management workflow. In terms of its accessibility, popularity and open
nature, XNAT presents itself as a viable platform for the integration of comprehensive
privacy preservation processes for medical images.

The eXtensible Neuroimage Archive Toolkit (XNAT)
XNAT consists of web and desktop tools for quality control, organization and storage of
imaging data. It provides workflows to interface scanning hardware with a storage backend
(Marcus et al., 2007). XNAT quarantines data sets until they have been verified by a user.
This process simplifies the administrative burden associated with data sharing, but it does
not provide automated redaction protocols for privacy protection in shared data.
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XNAT stores data in a resource hierarchy, with a project as the root type. Subjects in an
imaging study are added to projects and possess one or more experiment resources. Scan
sessions are created in the corresponding experiment resource, which is linked to the subject.

Currently, investigators must send anonymized images to XNAT and track subjects
manually. In addition to DICOM images, XNAT stores subject demographic data, including
elements of PHI/PII. This additional storage layer complicates redaction. Investigators must
either track subjects in XNAT via their actual PII (making the data useful only within the
organization) or use unique identifiers for their subjects tracked through some external
resource.

XNAT provides basic support for sanitizing patient data. The DicomBrowser tool allows
users to view or edit DICOM metadata both manually and with batch processing
(Neuroinformatics Research Group, 2010). It is offered in both a graphical and command-
line interface. The flexibility of XNAT allows researchers to upload data in multiple formats
with varying study parameters. However, this presents a challenge when standardizing a
sanitization process; it requires the end user to tailor the anonymization process to a
particular study or session through scripts based on the DICOM tag key-value pairs.
Moreover, the current version does not include a tool for defacing.

Medical Image Privacy
Medical images introduce new privacy challenges in addition to those of traditional
electronic health records (Kuehler et al., 2011). Textual PHI/PII can be redacted by simply
removing or replacing the offending field, but medical images, which can constitute self-
identifying data, are not so easily sanitized, and removing this data may destroy useful
information. In particular, high resolution structural neuroimages may contain detailed facial
features equivalent to a full face image, and thus it is necessary to sanitize both metadata and
the neuroimage itself.

There are four categories of primary threats to subject privacy introduced by medical
images: (i) direct, (ii) re-linkage, (iii), existential inference, and (iv) inherent identification.
The direct threat occurs when the image reveals a condition or diagnosis. This can be
mitigated with metadata removal to obscure the subject’s identity. A more common scenario
is re-linkage, where the image contains enough metadata to identify the subject. Existential
inference exposes a subject by simply suggesting the existence of an image. For example,
participation in a study can imply that the subject is part of the case group. Finally, the
medical image itself can be inherently identifying by unique features found therein. High
resolution structural neuroimages in particular can contain detailed facial features that can
be used to reidentify the subject. To mitigate these threats, neuroimages must be deidentified
at both the metadata and image level.

Metadata—Many medical data formats (both imaging data and other forms) store
embedded information in headers and contain a wealth of PHI/PII. The Digital Imaging and
Communications in Medicine (DICOM) standard for medical images is a very rich and
robust data format. DICOM implements fields for all relevant medical data associated with a
subject, even allowing for complete medical history synopsis (DICOM, 2011). While this
information can be helpful in organizing data for a study, much of it must be removed before
the data can be safely released to collaborators. Utilities exist to remove data from individual
files, but there is a lack of tools to systematically expunge metadata from large studies in
order to make data sets immediately sharable. Furthermore, once metadata is expunged, the
task of tracking the correspondences between redacted images and data and their original
sources is left entirely up to the originating researcher.
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Inherent Identifiability—Structural neuroimages can contain facial features that are
easily and accurately reconstructed through volume rendering. Several packages for
analyzing and viewing neuroimage data provide built-in volume rendering capability. The
neuroimage-based likeness can be exploited to identify the subject, and metadata can be
used to guide reidentification, filtering the potential subjects using non-PHI fields.

The current limitations of existing automated facial recognition make it tempting to dismiss
the feasibility of reidentification based on flawed assumptions: (1) facial recognition will
never improve, and (2) only correct identifications are potentially problematic. The latter
argument fails to consider the damage caused by an incorrect identification. While a correct
identification may reveal sensitive information, challenging a false identity may compel an
individual to reveal their records. However, while the challenges of automated facial
recognition are not easily confronted, nor are they impossible to solve. Concerns about the
feasibility of volume rendering and facial recognition applied to neuroimages are largely the
same as the issues with photograph-based recognition. The language of the HIPAA Privacy
Rule defines images comparable to photographs as PHI. Therefore, if neuroimage-based
recognition can perform with similar accuracy to photographs, such images must be
protected as full face images by HIPAA-bound entities.

Neuroimage Deidentification
The current approaches to deidentifying neuroimages are categorized as either ‘skull
stripping’ or ‘defacing.’ Defacing aims to remove only facial features and leaves behind
other nonbrain tissue, whereas skull stripping identifies and removes any extraneous non-
brain tissue, including identifiable facial features. Skull stripping is performed as part of a
typical neuroimage analysis workflow.

There are several widely used methods for skull stripping, many integrated with neuroimage
analysis software. Popular skull stripping tools have been compared and analyzed in detail
(Fennema-Notestine et al., 2006).

Because skull stripping is routinely performed, it is a commonly employed deidentification
technique. Skull stripping methods can depend highly on fine tuning of parameters, and this
may often result into loss of desirable brain tissue. The results may vary widely between
methods and the consequential disparities can impact further analysis. Skull stripping may
also favor a particular anatomical structure based on the specific study or region of interest.
The variation in methods and subjective evaluation can complicate meta-analysis, secondary
use, and collaboration by discarding potentially relevant voxels (volumetric pixels).

Unlike skull stripping, defacing preserves non-brain tissue. The MRI Defacer approach
removes only non-brain voxels that contain facial features based on a previously constructed
and manually labeled face atlas (Bischoff-Grethe et al., 2007). The result appears as though
the facial features were eroded, leaving the brain volume intact.

Defacing is an effective method for neuroimage deidentification, and it preserves more
potentially relevant brain voxels. As part of the existing analysis workflow, skull stripping is
an attractive deidentification approach, but defacing allows for more flexibility in future use.
However, MRI Defacer relies on a face atlas to identify features, and because of the
potential variation between data sets, a method that does not require prior knowledge may be
preferred.
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METHODS
Redaction in XNAT

In order to facilitate systematic deidentification, we have implemented an integrated
redaction workflow in XNAT. Risk assessment analysis has shown the XNAT platform to
be a viable vehicle for implementation of a redaction protocol and data security maintenance
(Schimke, 2009). Using the XNAT Redaction Toolkit, a researcher can check out a redacted
version of a dataset to any collaborator with confidence that it will comply with the HIPAA
Privacy Rule (HIPAA, 2006). Parallel versions of a project (one redacted, and one with the
original data) can be maintained automatically by the redaction tool during data collection.
The role of redaction in the XNAT data gathering and sharing process is shown in Figure 1.

Leveraging XNAT’s custom pipeline interface, we have inserted a new redaction workflow
into the standard set of XNAT tools. Investigators can invoke this workflow to checkout
neuroimage data sets to collaborators with accounts on an accessible XNAT instance. The
redaction tool downloads project resources, invokes sanitization routines for each supported
resource type, inserts tracking identifiers, and finally uploads this dataset to a new XNAT
project accessible by the collaborator. In addition, the redaction tool tracks the PHI and
image data which has been redacted, as well as the individuals to whom the data has been
released. This information is stored in the Privacy Database.

The architecture follows a three-tiered design pattern consisting of a Privacy Database
backend, a Java based application, and several customized XNAT pipelines that provide
user interfaces for configuring the redaction process. The Java redaction application is
implemented via a set of helper classes for REST queries for data transit, a set of routines
for identity tracking across XNAT projects, and an extensible XNATEntity class, which acts
as an interface to download, redact, and upload XNAT resources. The XNAT Redaction
pipeline leverages the dcm4che2 Java library to read and write from DICOM files (Warnock
et al., 2007). It is designed to run in an existing XNAT environment, requiring Java Runtime
Environment 1.6, and (optionally) a PHP-enabled Apache web server and HTTPS site.

Redaction Process—The redaction system in Figure 2 is designed around a previously
developed process to examine data at different abstraction layers of the file/media and create
a mapping of redacted content to original content (Hale, Manes, Watson, Barclay, & Greer,
2007). Our implementation handles XNAT resources by mimicking the hierarchical resource
structure of XNAT. Specifically, the redaction engine keeps an internal data-type for each
XNAT resource which must be handled in the redaction process. These internal classes map
the PHI/PII fields contained in the various XNAT resources (DICOM, XML) to internal
field identifiers. Subsequently, the application’s DICOM redaction and XNAT redaction
process elements extract the values of these fields and sanitize the original documents at the
bit level by writing zeros over the field contents. This ensures that there is no recoverable
private data hidden in the document.

The PHI/PII data is checked against a database which maps the true identities of subjects
onto randomly generated unique identifiers. This is done within the Rule Engine, using the
Privacy Database as a storage backend. These identifiers are inserted into the original data
types to consistently track individuals in the redacted dataset. Additionally, a subset of PHI
may be reinserted into the dataset at the request of an investigator, assuming that the request
complies with the policy outlined in the organization’s policy expressed via the policy
language. Next, the organizational Privacy Policy is evaluated. The Privacy Database
projects a Collaborator Checkout History to assist with the policy validation process
executed by the Rule Engine. If the redacted data is approved, then the data is uploaded back
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to XNAT, and finally information about the redacted data and the execution of the pipeline
is stored as part of the Collaborator Checkout record in the Privacy Database.

The pipeline supports the redaction of DICOM datasets (with planned support for automated
Quickshear defacing of DICOM images), as well as sanitization of demographic information
stored in the XNAT project. Previous research has helped to narrow the scope of our initial
redaction efforts to DICOM support, due to its ubiquitous use in medical imaging (Barclay
et al., 2009, 2010; Schimke et al., 2010). To ensure support for future neuroimaging
resources within the same framework, the redaction pipeline is extensible via the addition of
classes mapping internal file format representations to those understood by the redaction
pipeline. The presence of any resource type is automatically detected and delegated to the
custom resource class by the redaction engine.

Rule Sets—The core of the redaction pipeline is its policy language, which is customizable
to enable compliance with any organization’s information privacy policy. The primary
function of a variable Privacy Policy rule system is to provide support for the release of PHI
necessary to a collaborator’s study and compliant with HIPAA requirements in the particular
instance under consideration. In many cases, for example, a data set that includes age but
removes all other PHI/PII fields would be useful in a study analysis, and not constitute a
breach of privacy.

Thus, our tool set allows the preservation of a limited subset of PHI data (subject to the
organization’s policy definitions) within the redacted data (for example: Patient Age).
Variables which may be useful to collaborators can be released, with the assurance that the
status of all released data is tracked and any potential future breaches of privacy can be
avoided with no additional administrative effort. This process is detailed in Figure 3.

Additional configuration files are implemented for DICOM definitions (mapping DICOM
fields to PHI/PII identifiers) and XNAT demographic definitions. Fields slated for redaction
can be customized and added to a configurable list using internally recognizable PHI/PII
identifiers.

Privacy Management—Retention of specific information from the original DICOM
image file may be desirable or necessary for export along with the redacted dataset. In this
case, user defined options can keep embedded subject data (such as age, weight) in the
resultant DICOM image dataset. In part, the policy language is implemented to prevent
breaches of privacy that may occur by allowing the redacted datasets with different retained
information to be released. Burdening the investigator with such responsibility has
previously led to significant breaches of information privacy (Sweeney, 2002; Ohm, 2009).

To ensure that redacted identities can be tracked automatically, the Redaction Pipeline stores
subject PII (names and birth dates) in a relational database. The database correlates this
information to a list of identities used to create redacted versions of scan and subject data.
Thus, identities can be tracked in both directions. Incoming data to be redacted can be
checked to see if the subject has been scanned before, possibly as part of another study. The
Redaction Pipeline automatically applies the privacy policy to these situations, and alerts the
investigator if a potential privacy violation is detected before data crosses organizational
boundaries.

Custom User Interfaces—The XNAT Redaction Pipeline supports execution and task
configuration from XNAT’s web interface, using XNAT’s Pipeline Engine to schedule
redaction, sanitization, and PHI checkout through simple user interfaces. The Redaction
Engine interface is composed of a Velocity screen template, an Apache Turbine screen class,
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and an Apache Turbine action class (all visible to the user), as well as an XML descriptor.
Most pipelines are capable of utilizing the default template, screen class, and action class
provided by XNAT without any trouble. The Redaction Pipeline, however, requires a higher
degree of integration with XNAT than is provided by these default files. For such scenarios,
XNAT supports custom-defined templates, screens, and actions.

The Redaction Pipeline supports automatic as well as manual initiation of redaction for any
new scan data uploaded. This is accomplished through a built-in feature which allows
pipelines to be launched automatically whenever new images are archived. The flag can be
set when a new pipeline is added to a project, or by editing a project’s existing pipelines. In
order to initiate redaction, an XNAT project owner or administrator must create a new
project to hold the redacted data. The administrator then points the redaction pipeline to the
new project. In the case of an existing project, the administrator can specify users to whom
the project data will be made available. Users can be specified at redaction time to allow the
privacy management system to resolve possible information privacy breeches according to
the organization’s privacy policy. Access to redacted projects can also be granted later (used
frequently in the case of automated redaction). Granting a user access to any redacted
project will automatically result in the notification of the privacy manager, which will then
ensure that the access granted complies with the privacy policy.

Quickshear Defacing
In order to expunge PHI/PII from neuroimages, the redaction process must also remove
identifiable facial features data from neuroimages (Schimke et al., 2011a, 2011b)
Quickshear defacing eliminates the need for manually labeled face atlases and offers
improved performance over other methods while integrating neatly into the neuroimage
analysis workflow. The Quickshear technique identifies a plane that divides the neuroimage
into two volumes, a face and a brain volume, as illustrated in Figure 4. The voxels of the
“face” side are sheared off, removing identifiable facial features and leaving the brain
volume intact.

The plane is identified using a binary brain mask to determine which voxels contain brain
tissue. The mask is created by skull stripping the original volume. While the shortcomings
of skull stripping as a deidentification technique have been discussed, it is ideal for creating
the binary brain mask. The primary concern with skull stripping is the preservation of brain
tissue, and this can be avoided by adding a buffer to the mask.

The goal of Quickshear is to prevent reidentification rather than remove all non-brain tissue,
and thus it collapses the original neuroimage and brain mask onto the sagittal plane (profile
view) to reduce complexity of identifying the shearing plane. The two-dimensional
representation is used to create an edge-of-brain mask and find the convex hull. The line
formed by the first point on the lower hull, which is nearest to the forehead, and the next
consecutive point is extended into three dimensions to form the shearing plane. By
definition of the convex hull, this line is an edge of the polygon, and all brain voxels are
contained on the line itself or on the interior of the polygon. All voxels that fall on the “face”
side of the plane are set to zero. The result is a defaced volume, as shown in Figure 5.

To verify that all brain voxels are intact, the resulting volume is compared to the binary
brain mask. Comparison to the original binary mask is a basic sanity check. As another level
of verification, a mask generated with an alternate skull stripping technique can be used to
check for discarded brain voxels. Facial feature removal can be manually validated by
viewing the defaced images directly or automated through face detection techniques such as
the OpenCV Face Detector implementation (OpenCV, http://opencv.willowgarage.com/
wiki/).
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RESULTS
XNAT Redaction Toolkit

The XNAT Redaction Toolkit is a practical tool that addresses a pressing need in the
medical imaging community. The integrated workflow provides a means to greatly simplify
organizational compliance with data privacy standards. HIPAA and other regulatory
measures can place a significant burden on researchers and administrators wishing to share
data. This toolkit encourages collaboration with the assurance of privacy policy compliance,
thus facilitating data sharing in the scientific community. The specification of flexible
privacy rules allows research organizations to implement current privacy policies and adapt
as national health privacy policies evolve.

Quickshear Defacing
Quickshear defacing was tested with the Multimodal Reproducibility Study data set from
Landman et al. using MPRAGE scans with a 1.0 × 1.0 × 1.2 mm3 resolution (Landman et
al., 2010). The data is available from NITRC (http://www.nitrc.org/projects/multimodal) and
consists of 42 distinct images. Three skull stripping implementations from popular
neuroimaging analysis tools were used to generate binary brain masks for defacing and
validation – the Hybrid Watershed Algorithm (HWA) in FreeSurfer (available from http://
surfer.nmr.mgh.harvard.edu/), the Brain Extraction Toolkit (BET) in FSL (available from
http://www.fmrib.ox.ac.uk/fsl/) and 3dSkullStrip in AFNI (available from http://
afni.nimh.nih.gov/afni). The images were also defaced using MRI Defacer, a neuroimage
deidentification tool described in Bischoff-Grethe et al. (2007) and available from NITRC
(http://www.nitrc.org/projects/mri_deface).

As expected, Quickshear defacing did not discard any voxels when using the same mask as
the verification approach. When compared to other masks, on average, Quickshear defacing
discarded fewer brain voxels from fewer neuroimages than MRI Defacer. The overall
number of voxels discarded is a small percentage of the total brain voxels. An acceptable
threshold of discarded voxels should be determined on a situational basis, and flagged
volumes manually inspected. Table 1 presents the average number of brain voxels discarded
for each defacing mechanism tested.

Using the OpenCV face detector, faces were found in 38 of the 42 original, undefaced
images. The same detector identified faces in 10 Quickshear defaced images using an AFNI-
generated mask, 10 with a BET-generated mask, and 12 with HWA (Table 2). By
comparison, 9 were found in the images defaced with MRI Defacer. False positives are
potentially due to the presence of eye sockets and nasal cavities that resemble a face. The
detection process may benefit from introducing profile-view face detection and combining
the results with the frontal face detector. OpenCV provides a profile-view cascade, but it
was found unreliable for the test data and only detected faces in 5 of the 42 original images
(complete analysis appears in Schimke et al., 2011a). Overall, Quickshear offered
comparable defacing efficacy to MRI defacer, while preserving more brain voxels.

Table 3 presents the run time performance of the defacing techniques MRI Defacer and
Quickshear. For Quickshear defacing, skull stripping and masking times are also shown. The
running time is an average per image, over five runs.

Quickshear defacing for neuroimages is a practical and effective approach for eliminating
identifiable facial features from neuroimage data. By leveraging existing skull stripped
volumes, it integrates seamlessly into the existing analysis workflow to reduce the
administrative burden on the researcher while enhancing subject privacy.
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DISCUSSION
Privacy guidelines under HIPAA for the hospital impose extremely strict requirements on
controlling PHI/PII data availability. Access to personal information is restricted to
individuals who need it to treat the patient. The stipulations for research data allow greater
flexibility, but still encumber significant administrative burden. In particular, unless data can
be declared immune from reidentification attempts (by an expert biostatistican or a proven
deidentification process), it does not qualify for release to the broader research community.

To complicate matters, structural neuroimages can be classified as identifiable data, even
absent identifying metadata. Accordingly, practical and effective defacing methods like
Quickshear to strip recoverable identity information (full facial images) from a structural
image represent a vital component in a comprehensive medical image redaction strategy.

Moreover, internal review boards commonly require that researchers submit a plan to protect
identifiers from improper use or disclosure, and to destroy identifiers unless retention is
required by law. The XNAT Redaction Tool establishes a standardized and proven
workflow for the deidentification of PHI, greatly simplifying the planning process. Thus, in
no small measure it alleviates considerable administrative burden from the researcher.

Large scale neuroimage studies confront researchers with a number of challenges. Notably,
access to data sets is hindered by concerns over managing privacy issues. The XNAT
Redaction Tool described here offers an integrated strategy that transparently applies
deidentification solutions over metadata and structural data within the normal archival
workflow. This approach is key to fostering collaboration and data sharing among
researchers employing medical imaging in their studies.
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Figure 1. XNAT and the role of redaction
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Figure 2. XNAT redaction process
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Figure 3. Detailed view of the privacy and identity management process
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Figure 4. Quickshear defacing illustrated
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Figure 5. Volume rendering after Quickshear defacing is applied
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Table 1
Average voxels discarded in defacing (Number of images with voxels discarded)

Brain Mask

Defacing Method AFNI BET HWA

MRI Defacer 408.74 (12) 75271.93 (42) 422.0 (7)

Quickshear AFNI 0.0 (0) 5560.76 (13) 0.0 (0)

BET 0.21 (1) 0.0 (0) 1.0 (2)

HWA 0.0 (0) 7587.24 (12) 0.0 (0)
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Table 2
Number of faces detected under defacing techniques

Defacing Method Faces detected

MRI Defacer 9

Quickshear AFN1 10

BET 10

HWA 12
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Table 3
Runtime performance of defacing techniques

Defacing Method Skull Stripping Defacing

Running Time (s) Running Time (s)

MRI Defacer - 260.17

Quickshear AFNI 205.71 4.30

BET 13.72 4.33

HWA 29.29 4.27
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