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ABSTRACT 
 

We propose a Web-Mashup Application Service Framework for Multivariate Time Series 

Analytics (MTSA) that supports the services of model definitions, querying, parameter learning, 

model evaluations, data monitoring, decision recommendations, and web portals. This 

framework maintains the advantage of combining the strengths of both the domain-knowledge-

based and the formal-learning-based approaches and is designed for a more general class of 

problems over multivariate time series. More specifically, we identify a general-hybrid-based 

model, MTSA – Parameter Estimation, to solve this class of problems in which the objective 

function is maximized or minimized from the optimal decision parameters regardless of 

particular time points. This model also allows domain experts to include multiple types of 

constraints, e.g., global constraints and monitoring constraints. We further extend the MTSA 

data model and query language to support this class of problems for the services of learning, 

monitoring, and recommendation. At the end, we conduct an experimental case study for a 

university campus microgrid as a practical example to demonstrate our proposed framework, 

models, and language. 
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INTRODUCTION 
 

Observing behaviors, trends, and patterns on multivariate time series (Bisgaard & Kulahci, 2011; 

Chatfield, 2001) has been broadly used in various application domains, such as financial 

markets, medical treatments, economic studies, and electric power management. Domain experts 

utilize multiple time series to detect events and make better decisions. For example, financial 

analysts predict different states of the stock market, e.g., bull or bear, more accurately based 

upon monitoring daily stock prices, weekly interest rates, and monthly price indices. Physicians 

monitor patients’ health conditions by measuring their diastolic and systolic blood pressures, as 

well as their electrocardiogram tracings over time. Sociologists uncover hidden social problems 

within a community more profoundly through studying a variety of economic, medical, and 

social indicators, e.g., annual birth rates, mortality rates, accident rates, and various crime rates. 

The goal of examining those characteristics over multivariate time series on events is to support 

decision makers, e.g., financial analysts, physicians, and sociologists, to better understand a 

problem in different perspectives within a particular domain and to offer better actionable 

recommendations.  

To support such an event-based decision-making and determination over multivariate time 

series, in this paper, we propose a Web-Mashup Application Service Framework for Multivariate 



Time Series Analytics (MTSA). This framework is an integrated tool to support the MTSA 

service development, including model definitions, querying, parameter learning, data monitoring, 

decision recommendations, and model evaluations. Domain experts could use the framework to 

develop and implement their web-based decision-making applications on the Internet. Using a 

Web Mashup function offered by the Web 2.0 technology (Vancea & Others, 2008; Gurram & 

Others, 2008; Murugesan, 2007;Bradley, 2008; Alonso & Others, 2004; Altinel & Others, 2007; 

Ennals & Others, 2007;Thor & Others, 2007) on our framework, domain experts could collect 

and unify global information and data from different channels and media, such as web sites, data 

sources, organizational information, etc., to generate a concentric view of collected time series 

data from which the learning service determines optimal decision parameters. Using optimal 

decision parameters, domain experts can employ the monitoring service to detect events and the 

recommendation service to suggest actions. 

Presently, there are two key approaches that domain users utilize to identify and detect 

interesting events over multivariate time series. These approaches are domain-knowledge-based 

and formal-learning-based. The former approach completely relies on domain experts’ 

knowledge. Based on their knowledge and experience, domain experts determine monitoring 

conditions that detect events of interest and trigger an appropriate action. More specifically, 

domain experts, e.g., financial analysts, have identified several deterministic time series, such as 

the S&P 500 percentage decline (SPD) and the Consumer Confidence Index drop (CCD), from 

which they develop parametric monitoring templates, e.g., SPD < -20%, CCD < -30 (Stack, 

2009), etc., according to their expertise. Once the incoming time series, i.e., SPD and CCD, 

satisfy the given templates at a particular time point, the financial analysts decide that the bear 

market bottom is coming, which is the best buy opportunity to purchase the stock to earn the 

maximal earning.   

Consider another real-world case study of the timely event detection of certain conditions in 

the electric power microgrid at George Mason University (GMU), where its energy planners 

would like to regularly detect when the electric power demand (electricPowerDemand) exceeds 

the pre-determined peak demand bound (peakDemandBound). The reason is that the occurrence 

of this event leads to a significant portion of the GMU electric bill based upon its contractual 

terms even though the event, electricPowerDemand > peakDemandBound, occurs only within a 

short period of time, e.g., one minute. Thus such an identification and detection can aid in the 

task of decision-making and the determination of action plans. To make better decisions and 

determinations, the energy planners have identified a set of time series that can be used to detect 

the event and perform an action, e.g., to execute the electric load shedding to shut down some 

electric account units on the GMU campus according to a prioritization scheme from the energy 

manager. The multiple time series include the input electric power demand per hourly time 

interval, the given peak demand bound per monthly pay period, etc. If these time series satisfy a 

pre-defined, parameterized condition, e.g., electricPowerDemand > peakDemandBound, where 

the given peakDemandBound is 17200 kWh for all the hourly time intervals within the same 

monthly pay period, e.g., July, 2012, it signals the energy planners to execute the electric load 

shedding in the microgrid on the campus. Often these parameters, e.g., the predetermined peak 

demand bound, may reflect some realities since they are set by domain experts, e.g., the energy 

planners, based on their past experiences, observations, intuitions, and domain knowledge. 

However, these given thresholds, e.g., the peak demand bound, are not always accurate. In 

addition, the parameters are static, but the problem that we deal with is often dynamic in nature, 

so the parameters definitely are not the optimal values for achieving the monitoring purpose at 



different periods of time, e.g., hourly, daily, monthly, quarterly, and yearly, to minimize the 

electricity expenses of the bill. Thus this domain-knowledge-based approach lacks a formal 

mathematical foundation that dynamically learns optimal decision parameters to determine an 

event.  

The latter approach utilizes a formal learning methodology, such as a non-linear logistic 

regression model (Bierens, 2008; Cook & Others, 2000; Dougherty, 2007; Hansen, 2010; Heij & 

Others, 2004). This regression model is used to predict the occurrence of an event (0 or 1), e.g., 

when to shed load or unshed load, by learning parametric coefficients of the logistic distribution 

function of explanatory variables, i.e., the electric power demand and the peak demand bound. 

More specifically, this non-linear logistic regression model focuses on modeling the data 

relationship between explanatory variables and response variables. The truth is that not all the 

response variables are numeric and continuous. In many real-world cases, the responses may 

only take one of two possible answers, e.g., shed load or unshed load, buy or sell stocks, success 

or failure, etc. Each outcome of the responses is assigned to a value 1 if the probability of the 

event happening is above 0.5 and 0 otherwise. To learn the parametric coefficients of the logistic 

distribution function of explanatory variables to determine the outcome of the binary responses, 

we can apply the nonlinear logistic regression model and the Maximum Likelihood Estimation 

(MLE) (Myung, 2003) over historical and projected data. However, the main challenge of using 

formal learning approaches is that they do not always produce satisfactory results, as they do not 

consider incorporating domain knowledge, including monitoring constraints, e.g., 

electricPowerDemand > peakDemandBound , and global constraints, e.g., utility contractual 

terms, into their formal learning aproaches. Lacking domain experts’ knowledge on parameter 

learning will result in an inaccurate decision-making. For instance, the energy planners might 

execute the electric load shedding at an improper moment of time, particularly during the 

business office hours between 9:00 a.m. and 6:00 p.m. from Monday to Friday.  

Some existing mathematical models, e.g., the Durland and McCurdy duration-dependent 

Markov-switching (DDMS) models, such as DDMS-ARCH and DDMS-DD (Maheu and 

McCurdy, 2000), do integrate domain knowledge, e.g., duration dependence, into their 

forecasting criteria. Both models, DDMS-ARCH and DDMS-DD, are extended from the 

Markov-switching model (Bickel, et al., 1998) that is incorporated with duration dependence to 

affect a transition probability that is parameterized using the logistic distribution function. The 

transition probability is the probability of being in a particular state at a specific point in time. 

The value and the trend of this probability over time demonstrates the current state of an event. 

However, all of these models only consider a single element, i.e., duration, to integrate into the 

model to determine a state of an event. This approach is not flexible and complete as there are 

many other external, unknown factors that may affect the state of an event in the currenct 

environment. In addition, those models also involve parameters that need to be learnt by formal 

mathematical computations. Without wide-ranging domain experts’ knoweledge, those formal 

learning methods become computationally intensive and time consuming. The whole model 

building is an iterative and interactive process, including model formulation, parameter 

estimation, and model evaluation. Despite enormous improvements in computer software in 

recent years, fitting such nonlinear quantitative decision model (Evans, 2010) is not a trival task, 

especially if the parameter learning process involves multiple explanatory variables, i.e., high 

dimensionality. Moreover, working with high-dimensional data creates difficult challenges, a 

phenomenon known as the “curse of dimensionality” (Bellman, 1957 and 1961). Specifically, the 

amount of observations required in order to obtain good estimates increases exponentially with 



the increase of dimensionality. In addition, many learning algorithms do not scale well on high 

dimensional data due to the high computational cost. The parameter computations by formal-

learning-based approaches, e.g., logistic regression model, are complicated and costly, and they 

lack the consideration of integrating various experts’ domain knowledge into the learning 

process – a step that could potentially reduce the dimensionality. Clearly, both approaches, 

domain-knowledge-based and formal-learning-based, do not take advantage of each other to 

learn optimal decision parameters, which are then used to monitor the events and to take 

appropriate actions. 

To mitigate the shortcomings of the existing approaches, we have proposed a mathematical 

hybrid-based model, Expert Query Parametric Estimation (EQPE), and an SQL-based language 

(Ngan, Brodsky & Lin, 2010), which combine the strengths of both domain-knowledge-based 

and formal-learning-based approaches. More specifically, we take a monitoring template of 

conditions in a specific form, that is, conjunctions of inequality constraints, identified by domain 

experts. This template consists of inequalities of values in time sequences and then is 

parameterized. The goal is to find parameters that maximize or minimize an objective function in 

which the function is depended on optimal time points of a time utility function from which the 

parameters are learned. Because of these characteristics, however, the EQPE model is only able 

to solve a specific class of problems that (1) their decision parameters of an objective function 

are learned from optimal time points of a time utility function, (2) the monitoring template has to 

be in the considered form, i.e., conjunctions of inequality constraints, only, and (3) the 

constraints being used are solely for monitoring purposes. 

To address the above weaknesses, the proposed web-mashup application service framework 

for MTSA also maintains the advantage of combining the strengths of both the domain-

knowledge-based and the formal-learning-based approaches, but it is designed for a more general 

class of problems over multivariate time series. This service framework supports quick 

implementations of services towards decision recommendations on events. More specifically, the 

MTSA Model Definition Service takes multiple templates of conditions, for example, the 

monitoring template to determine the occurrence of an event identified by domain experts, the 

general template for a contractual term of an electric bill required by power companies, etc. Such 

templates consist of inequalities of values in time sequences, and then the Learning Service 

“parameterizes” it, e.g., electricPowerDemand > peakDemandBound. The goal of the learning 

service is to learn parameters that optimize the objective function, e.g., minimizing the cost of 

the GMU electric bill. The Monitoring and Recommendation Service continuously monitors the 

data streams that satisfy the parameterized conditions of the monitoring template, in which the 

parameters have been instantiated by the learning service.  

To support such services for a general class of problems, we further extend the proposed 

relational database model and SQL with high-level MTSA constructs. This further extension can 

support parameter learning, data monitoring, and decision recommendation over multivariate 

time series for this class of problems. To this end, we identify a general-hybrid-based model, 

Multivariate Time Series Analytics – Parameter Estimation (MTSA-PE). This model is a 

combination of both domain-knowledge-based and formal-learning-based approaches with 

possibly incorporating any global constraints, e.g., the contractual terms of the GMU electric bill, 

which are applied to an entire problem, and monitoring constraints, e.g., electricPowerDemand 

> peakDemandBound, which are used to detect the occurrence of an event. Both types of 

inequality constraints, global and monitoring, are allowed in any possible combinations and 

forms. Using the MTSA-PE model, domain experts can learn decision parameters that satisfy all 



the given constraints and that optimize the objective function, which is independent of a 

particular time point.  

To demonstrate our MTSA-PE model, we conduct an experimental case study on the Fairfax 

campus microgrid at GMU. We utilize the MTSA-PE model to illustrate the GMU problem and 

the further extended MTSA-query constructs to express the model. After the MTSA-query 

constructs are initiated to learn the optimal peak demand bound over historical and projected 

electric power demands, the occurrence of the event can be monitored and determined through 

the parametric monitoring constraints, e.g., electricPowerDemand > peakDemandBound. Once 

the event is detected, the electric load shedding can be executed. 

The rest of the paper is organized as follows: using the GMU Fairfax campus microgrid as an 

example, we describe its electric bill problem in the second section. In the third section, we 

provide an overview on the web-mashup application service framework for multivariate time 

series analytics and describe its supports of quick service implementations towards 

recommendations on events over multivariate time series. In the fourth section, we use the GMU 

electric bill as an example to describe the further extended MTSA data model and query 

language that is used for the MTSA service implementations of the general class of problems. 

We also define the Multivariate Time Series Analytics - Parameter Estimation (MTSA-PE) 

model for the MTSA-query semantics and use the GMU electric bill problem to illustrate the 

learning, monitoring, and recommendation services on this model in the fifth section. In the sixth 

section, we present the architecture for the parameter learning process. In the seventh section, we 

conduct and describe the experimental case study on that GMU problem. In the eighth section, 

we conclude and briefly outline the future work. 

 

PROBLEM DESCRIPTION OF A REAL CASE STUDY 
 

Consider the real case study at George Mason University (GMU), where the electric power 

demand across the expanding Fairfax and other campuses is expected to increase. The increase in 

power consumption results in a higher electricity cost, which is composed of the two main 

components: (1) a total kilowatt-hour (kWh) charge, i.e., the charge for the total electricity 

consumption, and (2) an Electricity Supply (ES) service charge, i.e., the charge for the peak 

demand usage in any 30-minute interval over the past 12 months. The total kWh charge is priced 

particularly higher during the business office hours between 09:00 a.m. and 06:00 p.m. from 

Monday to Friday. This monthly ES service charge (monthlyEServiceCharge) is a proxy for the 

cost of capital investment for power generation capacity, since the power company, Virginia 

Electric and Power Company, needs to build generation, transmission, and distribution facilities 

that are capable of supporting the peak demand, even though the average power demand could be 

considerably lower. This ES service charge amounts to approximately 30% of the electric bill in 

each monthly pay period (payPeriod) and is determined based upon the electricity supply 

demand (payPeriodSupplyDemand). This electricity supply demand is decided on the highest of 

either (C1) or (C2): 

 

C1: The highest average kilowatt measured in any 30-minute interval of the current billing 

month during the on-peak hours of either: 

 Between 10 a.m. and 10 p.m. from Monday to Friday for the billing months of June 

through September or 

 Between 7 a.m. and 10 p.m. from Monday to Friday for all other billing months. 



C2: 90% of the highest kilowatt of demand at the same location as determined under (C1) 

above during the billing months of June through September of the preceding eleven billing 

months. 

 

Thus it is possible that a high peak demand usage just for one minute of electricity 

consumption over the past year would result in a very significant increase in the charge of the 

electric bill. Therefore, controlling the peak demand is crucial for controlling the electricity cost. 

However, an important question is how the commercial and industry customers, such as GMU, 

should respond to those contractual terms of the electric bill mentioned above.  

Our key idea is to learn an optimal peak demand bound over historical and projected electric 

power demands for each future pay period. This optimal bound is then used to monitor the 

prospective demand usage in any time interval of that future pay period. Once the demand usage 

exceeds the bound, some electric loads are shed to shut down some electric account units so that 

the ES service charge can be controlled. However, to determine an optimal peak demand bound 

is challenging, as if the bound is set too high, although power services are not interrupted, 

customers will be charged a significant electricity expense. If the bound is set too low, a low 

electricity charge is billed, but more power interruptions to customers occur. In order to make an 

optimal balance of this trade-off, we propose a web-mashup application service framework for 

multivariate time series analytics that are designed for domain experts to solve this dilemmatic 

situation.    

 

A WEB-MASHUP APPLICATION SERVICE FRAMEWORK FOR 

MULTIVARIATE TIME SERIES ANALYTICS 
 

Figure 1 shows a range of common web services which is desirable to be offered over the 

Internet to address the problems with the one that is described in the second section. The MTSA 

Model Definition Service allows domain experts to define different types of parametric model 

templates, which are identified by the experts and/or are required by the contracts. For example, 

in the GMU case study, the energy planners would like to detect when the electric power demand 

at an hourly time interval exceeds a predetermined peak demand bound. The designed model 

template consists of time series, including the electric power demand at an hourly time interval, 

the peak demand bound for each time interval at a monthly pay period, etc. Some of the time 

series, e.g., the electric power demand, are the input time series, and some of them, e.g., the peak 

demand bound, are the time series that are instantiated from the historical and projected electric 

power demands. These time series are associated with their respective inequality constraints, for 

example, electricPowerDemand > peakDemandBound.  

Given such a parametric model template in a given domain, the Monitoring and 

Recommendation Service continuously screens the incoming data stream for time series that 

satisfy all the given constraints. These constraints specify when the event of interest, e.g., 

electricPowerDemand > peakDemandBound, has occurred, and then the service recommends an 

action, e.g., to execute an electric load shedding to shut down some electric account units based 

upon the prioritization scheme from the energy manager to prevent the new incoming electric 

power demand from exceeding the peak demand bound. Note that in the traditional approach, the 

decision parameters, such as the peak demand bound, is specified by domain experts, for 

instance, the energy planners. However, using such a hard-set parameter cannot capture the 

dynamics of the rapidly changing electric power consumptions at different periods of time, e.g., 



hourly, daily, monthly, quarterly, and yearly.  

To address the above deficiency, the Parameter Learning Service parameterizes a given 

model template, e.g., electricPowerDemand > peakDemandBound, from domain experts, and 

supports learning of decision parameters over historical and projected time series. More 

specifically, decision parameters, e.g., peakDemandBound, on the template are instantiated from 

the input historical and projected time series, e.g., electricPowerDemand, such that the learned 

parameters not only satisfy the template but also optimize the objective function, for instance, 

minimizing the ES service charge in a monthly pay period. Then the accuracy of decision 

parameters can be ensured through the Model Accuracy and Quality Evaluation Service, which 

validates the prediction, e.g., electricPowerDemand > peakDemandBound, with the observed 

real data, and updates the model template if it is necessary.  

The Querying Service allows domain experts to express their complex information services 

over multivariate time series discussed above in a high-level abstraction. More precisely, using 

the Querying Service, domain experts can code the MTSA SQL-like language to develop and 

implement any MTSA services, for example, the MTSA-SQL constructs of parameter learning, 

data monitoring, and decision recommendation services.    

The Web Portal Service enables domain experts to develop a point-of-access service as a 

main entrance (1) to integrate all their implemented MTSA services together, (2) to provide a 

consistent style and format among all those services, and (3) to centralize users’ access control 

and procedures on those services. 

 

Figure 1. Web Services for Multivariate Time Series Analytics over the Internet 
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Due to the increasing demand of the MTSA services, we propose a web-mashup application 

service framework. The web-mashup application service framework is a development tool that 

provides a medium to domain experts and supports their quick implementations of the services, 

which are described above. This MTSA service framework is illustrated in Figure 2. It consists 

of five main components: Data Source Collector (DSC), Data Mashup Integrator (DMI), MTSA 

Data Model Definition and Query Language Interface (DMD-QLI), MTSA Compiler, and Web 

Application Designer (WAD).  

Integrated with the mashup technology of Web 2.0, the DSC allows domain experts to 

directly interact with external data services and collect multivariate time series data from 

heterogeneous sources, including web data, XML documents, enterprise databases, excel/CSV 

files, WSDL-based web services information, and RSS feeds, around the globe. After 

multivariate time series are collected by the DSC, domain experts can operate the DMI that is a 

data integration processing unit to provide a concentric view and maintain a consistency of the 

collected data, which are then archived in the local databases of multivariate time series.  

The DMD-QLI enables domain experts to use the further extended relational database 

models with the time series and events and SQL with the high-level MTSA constructs. These 

constructs include MTSA parametric model templates, querying, decision parameter learning, 

data monitoring and decision recommendations, as well as model evaluations. Using the DMD-

QLI, domain experts utilize the MTSA query language (1) to create the further extended 

relational database models for multivariate time series data, which are used in parametric model 

templates, (2) to create and initiate learning events, e.g., learning the peak demand bound, which 

are transformed into the IBM OPL constructs (Hentenryck, 1999; The IBM Corporation, 2012; 

ILOG S.A. & ILOG, Inc, 2007) by the MTSA compiler, which sends the constructs to the 

external optimization solver, i.e., the IBM ILOG CPLEX Optimizer, from which the optimal 

decision parameters on the parametric model templates are learned over historical and projected 

multivariate time series, (3) to develop and implement the data monitoring and decision 

recommendation services by the traditional SQLs with the “MONITOR” keyword and the 

learned decision parameters to monitor the events, and (4) to develop a MTSA construct to 

evaluate model accuracy and quality. Note that those extended relational database models, 

learned decision parameters, and parametric model templates all are stored in the local database 

repositories for the future use.  

The WAD provides a user-friendly designer that offers domain experts a Java IDE 

environment and a JSF/JSP work space in which they can develop and implement a web portal 

and its associated web pages, which directly interact with all the MTSA services developed from 

the DMD-QLI. Domain experts can also use the web portal to centralize, administrate, and 

access all the developed MTSA services.  

 

 

 

 

 

 

 

 

 

 



Figure 2. A Web-Mashup Application Service Framework for Multivariate Time Series Analytics 
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A TE tuple over a similar schema TEname(Tname:Ttype, Ename:Binary) is a mapping m: 

{Tname, Ename} → Dom(Ttype) x Dom(Binary), such that m(Tname) ∈ Dom(Ttype) and 

m(Ename) ∈ Dom(Binary). 

A DP tuple over a schema DParameter(Tname: Ttype, Pname: Ptype, Vname:Vtype) is a 

mapping m: {Tname, Pname, Vname} → Dom(Ttype) x Dom(Ptype) x Dom(Vtype), such that 

m(Tname) ∈ Dom(Ttype), m(Pname) ∈ Dom(Ptype), and m(Vname) ∈ Dom(Vtype). 

Let us consider our GMU example. Using the further extended MTSA data model, the energy 

planners can create the time-series tables as the inputs and stores them with the data in the 

database. For example,                                 (Box 1) is the input time-series 

table, and                                    (Box 2) is the parameter table. Both 

tables are created as follows. We will show the time-event views in the next sub-section. 

 

Box 1. 

 
CREATE TABLE ElectricPowerDemand ( 

 time HOURLY_INTERVAL,  

 value REAL); 

 

Box 2. 

 
CREATE TABLE PeakDemandBound ( 

 time HOURLY_INTERVAL,  

 period MONTHLY_INTERVAL,  

 value REAL, 

 UNIQUE_MAP(time, period)); 

 

HOURLY_INTERVAL, DAILY_INTERVAL, MONTHLY_INTERVAL, 

QUARTERLY_INTERVAL, and YEARLY_INTERVAL are the new integer-based data types 

to show the sequence of the data.  UNIQUE_MAP() is the new function that ensures each hourly 

interval is mapped to one monthly interval, for example. Note that we use the negative and zero 

integers, e.g., time ≤ 0, period ≤ 0, etc., indicate the historical time series, and the positive 

integers, e.g., time ≥ 1, period ≥ 1 denote the projected time series. 

 

Monitoring and Recommendation Service 

 

Using the monitoring and recommendation service, the energy planners can determine when they 

should execute the electric load shedding. In our GMU example, one of the input time series 

tables is                                 (Box 1), which is created above to store the 

new incoming electric power demand for monitoring. The monitoring and recommendation 

service can be expressed by a monitoring-event view and executed by the MONITOR command 

(Box 3 and Box 4). 

 

Box 3. 

 
CREATE VIEW ElectricLoadShedding AS ( 

 SELECT EPD.time, (CASE WHEN EPD.value > PDB.value  

   THEN ‘1’ ELSE ‘0’ END) AS Indicator 

 FROM ElectricPowerDemand EPD, PeakDemandBound PDB 



 WHERE EPD.time = PDB.time); 

  

Box 4. 
 

CREATE VIEW ELS_Monitoring_Recommendation AS ( 

 SELECT ELS.time, (CASE WHEN ELS.Indicator = ‘1’  

   THEN ‘The Electric Power Demand Greater Than The Peak  

   Demand Bound. The Electric Load Shedding Is    

  Recommended.’ END) AS Action 

 FROM ElectricLoadShedding ELS); 

 

MONITOR ELS_Monitoring_Recommendation; 

 

PeakDemandBound stores the given decision parameter, e.g., 17200 kWh for all the hourly 

time intervals within the same monthly pay period, e.g., July, 2012. If the monitoring constraint 

in the “CASE WHEN” clause of the ElectricLoadShedding view (Box 3) is satisfied at 

the current time interval time, the value of the attribute “Indicator” indicates “1”. The service 

then recommends the energy planners to execute the electric load shedding since the electric 

power demand is greater than the peak demand bound (Box 4). 

 

Parameter Learning Service 

 

As we discussed, domain experts’ suggested parameters are not accurate enough to monitor the 

dynamics of the rapidly changing electric power consumptions at different periods of time, e.g., 

hourly, daily, monthly, quarterly, and yearly; thus, the parameter learning service should be 

adopted to learn the optimal decision parameters, and this service can be expressed as follows: 

 
STEP 1: Store the input Time Series tables, e.g., ElectricPowerDemand, 

PayPeriod, WeekDay, Hour, Month, etc., in the database.  

 

STEP 2: Create the parameter tables, e.g., PeakDemandBound, 

PayPeriodSupplyDemand, etc., to store the optimal decision parameters. 

 

STEP 3: Create a Time Series view for the monthly ES service charge for 

each pay period (Box 5). We assume that the future pay periods are two years, 

i.e., 24 pay periods as there are 24 months. 

 

Box 5. 

 
CREATE VIEW MonthlyEServiceCharge AS ( 

 SELECT PPSD.time, PPSD.period, 8.124 * PPSD.value AS Charge 

 FROM PayPeriodSupplyDemand PPSD);  

 

$8.124 is the generation demand charge per kilowatt according to the 

contract of the GMU electric bill. 

 

STEP 4: Create the global constraints, e.g., the condition C1 of the 

contractual terms of the GMU electric bill (Box 6), which we described in the 

second section. 

 
 

 



Box 6. 

 
CREATE VIEW CurrentBillingMonth AS ( 

 SELECT PayPeriod.time, PayPeriod.period, 

  PayPeriodSupplyDemand.value AS payPeriodSupplyDemand, 

  KW.value AS kw, 

  (CASE WHEN (WeekDay.d >= 1 AND WeekDay.d <= 5)  

   AND ((Hour.h >= 10 AND Hour.h <= 22  

   AND Month.m >= 6 AND Month.m <= 9) 

   OR ((Hour.h >= 7 AND Hour.h <= 22) 

   AND (Month.m <= 5 OR Month.m >= 10))) 

   AND PayPeriod.time = WeekDay.time 

   AND WeekDay.time = Hour.time 

   AND Hour.time = Month.time 

   AND Month.time = PayPeriodSupplyDemand.time 

   AND PayPeriodSupplyDemand.time = KW.time 

  THEN ‘1’ ELSE ‘0’ END) AS Indicator 

 FROM PayPeriod, WeekDay, Hour, Month, PayPeriodSupplyDemand, KW); 

 

STEP 5: Create the monitoring constraints (Box 7), e.g., 

electricPowerDemand > peakDemandBound. 

 

Box 7. 

 
CREATE VIEW ElectricPowerPeakDemandBound AS ( 

 SELECT PayPeriod.time, PayPeriod.period,  

  PeakDemandBound.value AS peakDemandBound, KW.value AS kw, 

  (CASE WHEN ElectricPowerDemand.value > PeakDemandBound.value 

   AND PayPeriod.time >= 1 

   AND PayPeriod.time = ElectricPowerDemand.time 

   AND ElectricPowerDemand.time = PeakDemandBound.time 

   AND PeakDemandBound.time = KW.time 

  THEN ‘1’ ELSE ‘0’ END) AS Indicator 

 FROM PayPeriod, ElectricPowerDemand, PeakDemandBound, KW); 

 

STEP 6: Create the parameter learning event and then execute the event 

construct to learn the parameters (Box 8), which are stored in their tables 

respectively. 

 

Box 8. 

 
CREATE EVENT LearnPeakDemandBoundParameter ( 

 GC_LEARN PeakDemandBound, PayPeriodSupplyDemand, KW 

 FOR MINIMIZE SUM(MESC.Charge) AS TotalCharge 

 WITH CBM.Indicator = ‘1’ THEN 

  CBM.payPeriodSupplyDemand >= CBM.kw 

 AND PBM.Indicator = ‘1’ THEN  

  PBM.payPeriodSupplyDemand >= 0.9 * PBM.kw 

 AND PDB.value <= PPSD.value 

 AND PDB.value >= 0 

 AND EPGPDB.Indicator = ‘1’ THEN  

  EPGPDB.kw = EPGPDB.peakDemandBound 

 AND EPLEPDB.Indicator = ‘1’ THEN  

  EPLEPDB.kw = EPLEPDB.electricPowerDemand 

 FROM CurrentBillingMonth CBM, PrecedingBillingMonth PBM, 



 PeakDemandBound PDB, PayPeriodSupplyDemand PPSD, KW,    

 ElectricPowerGreaterPeakDemandBound EPGPDB, 

 ElectricPowerLessEqualPeakDemandBound EPLEPDB, 

 MonthlyEServiceCharge MESC 

 WHERE CBM.time = PBM.time 

 AND PBM.time = PDB.time 

 AND PDB.time = PPSD.time 

 AND PPSD.time = KW.time 

 AND KW.time = EPGPDB.time 

 AND EPGPDB.time = EPLEPDB.time 

 AND EPLEPDB.time = MESC.time); 

 

EXECUTE LearnPeakDemandBoundParameter; 

 

This learning query (Box 8) is to learn PeakDemandBound, 

PayPeriodSupplyDemand, and KW that minimize the TotalCharge of the 24 pay 

periods and satisfy all the six constraints in the WITH…THEN clause. For example, the first two 

constraints denote the C1 and C2 of the contractual terms of the GMU electric bill. The last two 

constraints express the monitoring templates. When the event 

LearnPeakDemandBoundParameter is executed, the command GC_LEARN sends the 

SQL-learning event to the MTSA compiler, where GC stands for “General Class”. The compiler 

transforms this event to the OPL construct, which is then sent to the IBM ILOG CPLEX 

Optimizer to learn the parameters, e.g., peakDemandBound. The learned parameters are stored in 

their corresponding tables, e.g., PeakDemandBound. Note that all the parameters are instantiated 

with the optimal values. 

 

MTSA QUERY SEMANTICS: PARAMETER ESTIMIATION MODEL 
 

In this section, we formalize the Multivariate Time Series Analytics - Parameter Estimation 

(MTSA-PE) problem and solution that we propose for the Parameter Learning Service. The goal 

of a MTSA-PE problem is to learn optimal decision parameters that maximize or minimize an 

objective function over historical and projected multivariate time series data.  

We assume that time is split into base time intervals of a fixed duration, e.g., hourly, for 

simplicity, and each time interval is indexed by an integer, and that we are also given a m-sets of 

decision parameters {  ,   , …,   }. The mathematical components of the MTSA-PE problem 

and solution and its formulations are shown as follows: 

 Time Horizon: A time horizon    is defined as        ∈       , where   is a set 

of integers,   is a time interval in   , and  ∈  .  

More specifically, we use negative or zero integers     represented for the past and 

positive integers     represented for the future time intervals. For example,     is the set of all 

integers that are greater than or equal to -5. It means that the time horizon starts from the past 

hourly time interval -5 to the future infinite time interval. 

 Past Time Horizon: A past time horizon is defined as            ∈        . 
 Future Time Horizon: A future time horizon is defined as              ∈      
  . 
 Period Horizon: A period horizon    is defined as        ∈       , where   is a 

set of integers,   is a period in   , and  ∈  . 

We also assume that a sequence of time intervals  s in    is grouped into periods, e.g., daily, 



weekly, or monthly periods. Each period   contains consecutive time intervals and is also 

indexed by an integer, where a positive integer     corresponds to the future period, and a 

negative or zero integer     corresponds to the past period. 

 Past Period Horizon: A past period horizon is defined as            ∈        . 
 Future Period Horizon: A future period horizon is defined as              ∈    

    . 
The mapping between a time interval in    and a period in    is a function:          

                    ∈                                  . Now suppose we have a 

sequence of time intervals in    and of their corresponding periods in    that are shown in 

Figure 3.  For instance, both the hourly time intervals, 2 and 3, are mapped to the same period, 

i.e.,           =           = 1, as 2 is less than 3 so that 2 and 3 are grouped into the same 

period 1.  Some other examples are           = 0,           = 3, and            = -2. 

 

Figure 3. Time Intervals in TH and Corresponding Periods in PH 

 

 
 

 Time Series: A time series S is a function S: TH → D, where D is a numerical domain, 

e.g., D = R or D = Z. 

 Parametric Estimation Constraint: A parametric estimation constraint C(S1(t), S2(t), …, 

Sk(t), p1, p2, …, pn) is a symbolic expression in terms of S1(t), S2(t), …, Sk(t), p1, p2, …, 

pn, where S1(t), S2(t), …, Sk(t) are the k input time series, and (p1, p2, …, pn) is a vector of 

n parameters that have been given by domain experts or are instantiated at a particular 

time interval over    or a period over   . 

We suppose that a parametric estimation constraint is written in a language that has the truth-

value interpretation I:       → {TRUE, FALSE}, i.e., I(C(S1(t), S2(t), …, Sk(t), p1, p2, …, pn)) 

= TRUE if and only if the constraint C is satisfied at t with the parameters (p1, p2, …, pn) ∈   . 

In this paper, we focus on any possible combinations of inequality constraints of the general 

form: (S1(t) eop p1) op (S2(t) eop p2) op … op (Sk(t) eop pn) op (p1 eop p2) op (p1 eop p3) op … op 

(pi eop pj), where eop ∈ {<, ≤, ==, ≥, >}, op ∈ { , ∨}, and i ≠ j. 

 Parametric Implication Constraint: A parametric implication constraint (C𝓁 → C𝒿) is a 

logical constraint, i.e., “C𝓁 implies C𝒿” or “if C𝓁 then C𝒿” is TRUE if both C𝓁 and C𝒿 are 

TRUE, where C𝓁 and C𝒿 are a parametric estimation constraint C. 

Some of the Cs and (C𝓁 → C𝒿)s are parametric global constraints CP that are the general 

constraints, e.g., the contractual terms of the GMU electric bill, such as C1, to be applied to an 

entire problem. Some of them are parametric monitoring constraints CM that are used to detect 

the occurrence of an event of a problem, e.g., electricPowerDemand > peakDemandBound. 

 Objective Function: An objective function O is a function O:                , 

1 2 3 4 5 6 7 8 9 10-9 -8 -7 -6 -5 -4 -3 -2 -1 0
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where   is the total number of sets of parameters,    is the total number of parameters in 

a set i, and   is the set of real numbers, for i = 1, 2, …, m. 

MTSA Parametric Estimation (MTSA-PE) Problem: A MTSA-PE problem is a tuple <S, P, 

CP, CM, O>, where S = {S1, S2, …, Sk} is a set of the k input time series, P = {  ,   , …,   } is 

a m-sets of parameters, CP is a set of parametric global constraints in S and P, CM is a set of 

parametric monitoring constraints in S and P, and O is an objective function. 

MTSA Parametric Estimation (MTSA-PE) Solution: A solution to the MTSA-PE problem <S, 

P, CP, CM, O> is argmin O(P), i.e., the optimal values of a m-sets of parameters that minimize O. 

Let us reconsider our GMU example as an explanation for the above mathematical 

formulations. First, Table 1 shows the input multivariate time series S, and the time interval   is 

an integer hourly time interval. All the input time series are stored in the tables that we discussed 

in the STEP 1 of the parameter learning service in the fourth section. 

Table 1. Multivariate Time Series Data S 

TIME SERIES S ABBREVIATION TABLE 

Electric Power Demand                         ElectricPowerDemand 

Monthly Pay Period               PayPeriod 

Annual Year          Year 

Month of a Year           Month 

Day of a Month         Day 

Day of a Week             WeekDay 

Hour of a Day          Hour 

 

The decision parameter sets P used in the case study are defined and explained in Table 2, 

and   is a monthly pay period. All the tables of the parameter sets are created in the STEP 2 of 

the parameter learning service in the fourth section. 

Table 2. Decision Parameter Sets 

PARAMETER SET USAGE INTREPRETATION TABLE 

                   is an 

array to store the peak demand 

bound for each monthly pay 

period. 

 Test if the 

                       
exceeds the 

                   when 

                    for 

  ∈    and  ∈   . 

 Test if the 

                       less 

than or equal to 

                   when 

                or     for 

  ∈    and  ∈   . 

PeakDemandBound 

      is an array to store the 

electric power demand for 

each hourly time interval. 

 Instantiate the values into   over 

the historical and projected 

electric power demand for 

KW 



  ∈     ∈   , i.e.,       
stores the electric power demand 

when the electric power demand is 

less than or equal to the peak 

demand bound, or       stores 

the peak demand bound when the 

electric power demand is greater 

than the peak demand bound. 

                         
is an array to store the 

electricity supply demand for 

each monthly pay period. 

 Instantiate the values into 

                      over 

   depended on which 

contractual condition C1 or C2 in 

the second section is satisfied such 

that                       

minimizes the objective function 

O for   ∈     ∈         . 

PayPeriodSupplyDemand 

 

CP and CM are illustrated as follows. Both types of the constraints are created in the STEP 4 

and STEP 5 of the parameter learning service in the fourth section. 

 

 Parametric global constraint CP 

C𝓁:                                                               = 

                                                          
                                 ∨                         
           ∨                 

 

C𝒿:                                   =                           
       

 

C1:    ∈     ∈            C𝓁 → C𝒿 denotes the contractual condition C1 in the second 

section. This condition C1 is also constructed by the CBM.Indicator = ‘1’ THEN 

CBM.payPeriodSupplyDemand >= CBM.kw that is evaluated by the parameter learning 

event, i.e., LearnPeakDemandBoundParameter, in the STEP 6. 

 

C𝓁:                                                                  = 

                                                                
                                                 

 

C𝒿:                                       =                           
           

 

C2:    ∈     ∈            C𝓁 → C𝒿 represents the contractual condition C2, which is 

constructed by the PBM.Indicator = ‘1’ THEN PBM.payPeriodSupplyDemand 

>= 0.9 * PBM.kw, in the second section. 

 



C3:    ∈                                                         restricts 

the peak demand bound not greater than the electricity supply demand. This constraint is 

constructed by the PDB.value <= PPSD.value. 

 

C4: (  ∈         ): (                      ensures that the peak demand bound 

must be non-negative values. This constraint is constructed by the PDB.value >= 0. 

 

 Parametric Monitoring Constraint CM 

C𝓁:                                                                 = 

                                                                

 

C𝒿:                             = (                           

 

C5: (  ∈     ∈      C𝓁 → C  monitors whether the electric power demand exceeds the peak 

demand bound when the hourly time interval   is positive. If this monitoring constraint, C𝓁, is 

triggered, the peak demand bound is stored in the   . This monitoring constraint is constructed 

by the EPGPDB.Indicator = ‘1’ THEN EPGPDB.kw = 

EPGPDB.peakDemandBound that is evaluated by the parameter learning event, i.e., 

LearnPeakDemandBoundParameter, in the STEP 6 as well. 

 

C𝓁:                                                                 = 

                                                            ∨      ) 

 

C𝒿:                             = (                             ) 

 

C6: (  ∈     ∈      C𝓁 → C  monitors whether the electric power demand is less than or 

equal to the peak demand bound or the hourly time interval   is non-positive. If this monitoring 

constraint, C𝓁, is triggered, the electric power demand is stored in the   . This constraint is 

constructed by the EPLEPDB.Indicator = ‘1’ THEN EPLEPDB.kw = 

EPLEPDB.electricPowerDemand 

 

Regarding the objective function O, we assume that the GMU energy planners evaluate the 

total peak demand charge of the ES service for the projected 24 pay periods in the future two 

years, i.e., ∑                                   
   , where 

                               is the monthly ES service charge, which is created in 

the STEP 3 of the parameter learning service in the fourth section. This total peak demand 

charge is the objective function O, which is minimized by optimally determining the 

                         that satisfies all the given constraints, where $8.124 is the 

generation demand charge per kilowatt according to the contractual terms of the GMU electric 

bill, and       . 

Shown in Table 3, the MTSA-PE problem and solution of our example can be constructed by 

putting all the considered time series S, the parameter sets P, the constraints CP and CM, and the 

objective function O to the formulations of the MTSA-PE problem and solution. More 

specifically, a MTSA-PE problem and solution is: 

 



      
 

      

                        

This MTSA-PE problem and solution is constructed by the learning event 

LearnPeakDemandBoundParameter, which learns the parameter sets,                , 

                     , and   . 

Table 3. Formulation of the MTSA-PE Problem and Solution for the GMU Peak Electric power 

demand 

PROBLEM AND SOLUTION 

PROBLEM: 

<S, P, CP, CM, O> 

 

S = {                                                          ,  
 

where                                                           
                                                             
               

 

P = {                                          , 
 

where                                                             
                

 

CP = {C1, C2, C3, C4}, where  

 

C1 =    ∈     ∈                                           
                                                            ∨
                                   ∨                 
                                 , 

 

C2 =    ∈     ∈                                                
                                                             
                                                     , 

 

C3 =    ∈                                                        , 
 

C4 = (  ∈         ): (                      

 

CM = {C5, C6}, where 

 

C5 = (  ∈     ∈                                                  
                    → (                         )) 
 

C6 = (  ∈     ∈                                                     



             ∨      ) → (                             )), 

 

O = ∑                                   
    

 

SOLUTION:  
      

 
      

                         

 

This MTSA-PE problem is then expressed by the MTSA SQL according to the STEP 6 of the 

parameter learning service in the fourth section. Once this MTSA-SQL construct of this problem 

is initiated, the optimal values of the decision parameter sets   are determined by sending this 

MTSA-SQL construct to the MTSA compiler. This MTSA compiler transforms the MTSA-SQL 

construct to the OPL format that is then sent to the external optimization solver, i.e., IBM ILOG 

CPLEX Optimizer, to learn the parameter sets  . After the optimal decision parameters, e.g., 

                   of the monthly pay period 1, is learned from the optimizer, we can 

apply the parametric monitoring constraints, e.g., 

                                         , to the new incoming electricity 

consumption of the monthly pay period 1 from the GMU Fairfax campus and perform the event 

monitoring in an hourly basis, where        , for the entire monthly pay period 1. Once the 

monitoring constraints, e.g., C5, are triggered, the recommended action, e.g., the electric load 

shedding, is alerted to the service providers, that is, the GMU energy planners, to execute the 

electric load shedding to shut down some electric account units according to the prioritization 

scheme from the energy manager. 

 

IMPLEMENTATION OF A HIGH-LEVEL ARCHITECTURE FOR 

PARAMETER LEARNING PROCESS 
 

Figure 4 illustrates the parameter learning process for the optimal decision parameters. As this 

figure shows, domain experts use the parameter learning service to construct the query for the 

MTSA learning event, e.g., LearnPeakDemandBoundParameter. Once this learning event 

is initiated, the MTSA compiler calls the query translator to transform the learning event into the 

IBM OPL construct, which is shown in Figure 5 of the Appendix section. Note that this OPL 

construct is manually created as we are working on the compiler. This IBM OPL construct is 

then sent to the external optimization solver, i.e., the IBM ILOG CPLEX Optimizer, to learn 

optimal decision parameters, e.g.,                . These decision parameters are then 

processed by the output formatter associated with the query translator to return the answer back 

to the parameter learning service, which presents the results to the experts. 

 

 

 

 

 

 

 

 



Figure 4. Parameter Learning Architecture for Optimal Decision Parameters 

 

 
 

Figure 5 in the Appendix section shows the OPL model transformed from the MTSA-SQL 

construct. First, the value 24, i.e., the total 24 months from 2012 to 2013, is assigned to the 

variable nbPayPeriods in the line number 7. The value 0 is assigned to the variable annualBound, 

that is, the maximal annual power interruption allowed in the line number 8. From the line 

number 11 to 19, we declare a tuple of a power interval that has the attributes, including 

pInterval, payPeriod, year, month, day, hour, and weekDay. The line number 21 declares the 

PowerIntervals that include both the past and the future power intervals. The line number 22 

declares the electricPowerDemand[PowerIntervals] array. The line number 24, 25, and 26 

declares the parameter sets, including the peakDemandBound[PayPeriods], kW[PowerIntervals], 

and payPeriodSupplyDemand[PayPeriods]. The monthly ES service charge is declared on the 

line number 29, and the total peak demand charge, which is declared on the line number 30, is 

minimized on the line number 32. All the constraints, C1 – C6, are declared from the line 

number 35 to 54. 

 

EXPERIMENTAL CASE STUDY ON THE PEAK DEMAND BOUND 

 

Using the historical electric power consumption in the past years, e.g., 2011, the projected 

electricity demand over a future time horizon, e.g., 2012 and 2013, the maximal annual power 

interruption allowed, e.g., 0, and the parametric model templates, i.e., global and monitoring 

constraints, which are identified by the GMU energy planners and are required by the utility 

contracts that are supplied from the Model Definition Service, we input all of these data, 

constraints, and requirements to the Parameter Learning Service.  

Using the Parameter Learning Service, we formulate the MTSA query construct, i.e., the 

parameter learning event, which has been demonstrated in the fourth section. Based on the 

parameter learning event, we manually formulate the corresponding OPL construct, shown in the 

Appendix, and run the construct on the IBM ILOG CPLEX Optimization Studio to obtain the 

learned optimal peak demand bounds for all the future pay periods shown in Table 4. 

 

Parameter Learning 
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MTSA Data and Query 

Construct, i.e., Parameter 

Learning Event

Query Translator IBM OPL Construct

IBM ILOG CPLEX Optimizer

Optimal Decision Parameters, 

e.g., Peak Demand Bound
Output FormatterMTSA Query Answer

MTSA Complier

Users



Table 4. Learned Optimal Peak Demand Bounds 

 

PAY PERIOD PEAK DEMAND 

BOUND kW 

PAY PERIOD PEAK DEMAND 

BOUND kW 

January 2012 12189 January 2013 12953 

February 2012 12654 February 2013 13447 

March 2012 12268 March 2013 13037 

April 2012 15410 April 2013 16376 

May 2012 14729 May 2013 15653 

June 2012 14921 June 2013 15856 

July 2012 17211 July 2013 18291 

August 2012 14575 August 2013 15490 

September 2012 15998 September 2013 17001 

October 2012 15020 October 2013 15962 

November 2012 12856 November 2013 13662 

December 2012 12654 December 2013 13447 

 

The energy planners use the above optimal peak demand bounds to perform the optimal 

event monitoring over the actual incoming electricity demand in each monthly pay period 

through the Monitoring and Recommendation Service described in the fourth section.  

Using the results from the Monitoring and Recommendation Service, i.e., when to perform 

the load shedding, the actual QoS, i.e., the power interruption, the actual cost saving, i.e., the 

monthly electricity charge, and the corresponding optimal parameters and values as inputs, we 

evaluate the parametric model templates through the Model Accuracy and Quality Evaluation 

Service. Based upon the differences in terms of the load shedding, the QoS, and the electricity 

charge, this evaluation module generates a MTSA query construct to update the model templates 

accordingly. After that, the energy planners can use the updated templates with the input time 

series, QoS, and requirements to repeat the same process to learn a new set of optimal peak 

demand bounds for monitoring in the future pay period. 

 

CONCLUSION AND FUTURE WORK 
 

In this paper, we propose a Web-Mashup Application Service Framework for Multivariate Time 

Series Analytics (MTSA) that supports the services of model definitions, querying, parameter 

learning, model evaluations, data monitoring, decision recommendations, and web portals. This 

framework maintains the advantage of combining the strengths of both the domain-knowledge-

based and the formal-learning-based approaches and is designed for a more general class of 

problems over multivariate time series. More specifically, we identify a general-hybrid-based 

model, Multivariate Time Series Analytics – Parameter Estimation, to solve this class of 

problems in which the objective function is maximized or minimized from the optimal decision 

parameters regardless of particular time points. This model also allows domain experts to include 

multiple types of constraints, e.g., global constraints and monitoring constraints, as well. We 

further extend the MTSA data model and query language to support this class of problems for the 

services of learning, monitoring, and recommendation. At the end, we conduct an experimental 

case study on the Fairfax campus microgrid at George Mason University to demonstrate our 

proposed framework, models, and language.  



In addition to the contributions made by the research in this paper, there are still numerous 

interesting questions for further explorations. They include the issues regarding the multi-event 

MTSA-PE model, the effective algorithms for parameter learning on one- and multi-event 

MTSA-PE problems, the query language for parameter learning on multi-sequential events, and 

the development of the Model Accuracy and Quality Evaluation module. 

First, the MTSA-PE model is designed to solve a class of problems that involve a single 

event, e.g., the electric load shedding is executed when the electricity demand exceeds the 

optimal peak demand bound. However, there are many real-world cases that multiple related 

events occur in sequence. For instance, consider the above load-shedding example again, in 

which the energy planners would like to determine when the electric account units should be 

turned off and when those accounts should be turned on in order. Using the MTSA-PE model, 

the energy planners would not be able to properly decide on when to shed and unshed the load at 

the two interrelated events and then to gain the maximal cost savings and achieve the minimal 

power interruptions. To address the shortcomings of this issue, the future research will focus on 

developing a multi-event MTSA-PE model. This new model will maintain the advantages of the 

single-event MTSA-PE model and also support the parameter learning on multiple events in 

sequence. 

Second, the IBM ILOG CPLEX optimizer that we use to solve the class of MTSA-PE 

problems is the branch-and-bound-based algorithm, which the time complexity is exponential, 

i.e.,        if the problem is a single event, and          if the problem is a sequence of 

multiple events. Thus the future research will focus on developing a new algorithm that will be 

able to solve the class of single- and multi-event MTSA-PE problems at a lower computational 

cost. 

Third, the proposed MTSA query language is only able to formulate a single-event parameter 

learning on the MTSA-PE problems. The future research will be how to extend the proposed 

MTSA query language to support the formulation of the multi-event MTSA-PE problems. 

Finally, in order to improve the accuracy of the parametric model templates and the quality 

of the monitoring and recommendation service in the future, we will develop an evaluation 

model and algorithm to identify the performance gaps in terms of QoS, event utility, decision-

making actions, etc. We will also develop a MTSA query construct to update the model template 

based on those performance gaps. 
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APPENDIX 
 

Figure 5. The OPL Constructs for the MTSA-SQL Parameter Learning Service 

 

 

 
 

 

 


