Resour ce provisioning for e-Science
environments

Andrea Bosin
Dipartimento di Fisica, Universita degli Studi da@liari, Italy
Istituto Nazionale di Fisica Nucleare (INFN), Sewadi Cagliari, Italy

Pre-print submitted to International Journal ofdzand High Performance Computing (IGI Global)

ABSTRACT

Recent works have proposed a number of modelsautsl tio address the growing needs and
expectations in the field of e-Science. At the same, the availability and models of use of
networked computing resources needed by e-Scieneerapidly changing and see the
coexistence of many disparate paradigms: high perémce computing, grid and recently cloud,
which brings very promising expectations due tdhitgh flexibility. In this paper we suggest a
model to promote the convergence and the integradiodifferent computing paradigms and
infrastructures for the dynamic on-demand provigignof the resources needed by e-Science
environments, leveraging the Service-Oriented Aectiire model. In addition, its design aims
at endorsing a flexible, modular, workflow-basedlatmrative environment for e-Science. A
working implementation used to validate the proposgproach is described together with some
performance tests.

Keywords: e-Science; resource provisioning; Service OrieAtathitectures; Workflows; BPEL;
Web Services; HPC; Grid; Cloud.

INTRODUCTION

Recent works (Akram, 2006; Deelman, 2009; EImra01,0; McPhillips, 2009) have proposed a
number of models and tools to address the groweefs and expectations in the field of e-
Science. In particular, Akram (2006) and Bosin (8lhave shown the advantages and the
feasibility, but also the problems, of modeling @efce environments and infrastructures
according to the Service-Oriented Architecture ($3@Ad its enabling technologies such as Web
Services (WS). Among the main advantages of sughoaph we find: interoperability, open
standards, modularity, dynamic publish-find-bindd grogrammatic access.

At the same time, the availability and models oé ws networked computing resources
needed by e-Science are rapidly changing and seeottxistence of many disparate paradigms,
featuring their own characteristics, advantages lamiations. Among the main paradigms we
find High Performance (HPC), Grid and Cloud Compgtiln all cases, the objective is to best
provide hardware and software resources to uselicappns with the help of schedulers,
reservation systems, control interfaces, authemitamechanisms and so on. A detailed
comparison of the characteristics of HPC, grid alwlid paradigms is presented by Mateescu
(2011), which observes that none of these paradigiige ultimate solution, and a convergence
of HPC, grid and cloud resources should be pursBedh a convergence must take into account

a number of differences between both resourcepandsioning systems, which can be intrinsic
but may also depend on the different user requinésne

* hardware capabilities,

* network connectivity,

» oOperating systems,

* middleware,

» software and libraries,

» application programming interface (API),

» authentication models, and

* usage models.

It is important to underline that such differen@¥e essential in allowing the execution of
applications with very different requirements, evi@hey may constitute an obstacle in the quest
for the perfect computing paradigm. According ta experience, an important point in the
usability of computing infrastructures availableet¢cience is then to guarantee user access to
the widest spectrum of resources in a technologpstir way.

In this paper we suggest a model to promote theergence and the integration of different
computing paradigms and infrastructures for the adyic on-demand provisioning of the
resources needed by e-Science environments, lengrige SOA model. At the same time, the
design aims at endorsing a flexible, modular, wlokkfbased collaborative environment for e-
Science. The latter sees the integration and operation of a number of software components,
such as:

» workflows, to define and coordinate complex sci@napplication or experiments;

» service interfaces, to expose the business logsciehtific applications; and

* components, to implement business rules and perboisiness tasks related to a specific

scientific domain.

At the implementation level, the choice of SOA ke enabling technology for a common
integration and inter-operation framework soundgiséc due to

» availability of SOA standards for workflow systems;

» availability of web service libraries to build nepplications and to wrap existing ones;

» existence of SOA standards covering areas likealatass, security, reliability, etc.; and

» access to a number of computing infrastructures ¢gid) is, at least partially, SOA-

aware.

Our model is not meant to replace existing HPGd gnd cloud paradigms, rather it is an
attempt aimed at complementing, integrating anddimg on them by playing the role of a
dynamic resource aggregator exposing a technolgggstic abstraction layer.

Our proposal borrows many SOA concepts and staadeoth the business domain, including
the adoption of the Business Process Execution wage (BPEL) for workflow design and
execution. A motivation of our approach is almostient: the SOA paradigm, and in particular
web services and BPEL, are based on widely accegt@adards and supported by many
software tools, both open source and commerciahdidition, an important feature of BPEL,
essential in highly dynamic environments, is thpatality of setting at run-time the network
endpoint of the services to be invoked. This all®PEL to work with services which may be
brought into existence even after the workflow ktmted (e.g. by the workflow itself) and
disposed before the workflow has ended (e.g. alggithe workflow). However, SOA and WS
do not preclude the use of other technologies ants:t the point is not whether they can be

adopted by e-Science environments, but if this bandone in such a way to allow the
convergence and integration of a potentially enarsnamumber of distributed resources,
belonging to different organizations.

Our claim is not that SOA is the best or the ongywo contribute to the development of e-
Science collaborative environments, rather we wicslexplore and suggest a new direction,
moving from specialized systems towards open-staisdservice-oriented systems.

In addition we describe a working proof-of-conc@pplementation whose main objectives
are to:

» validate the effectiveness of the model;

e assess its limitations;

* gain a better understanding of practical detaits @oblems; and

* execute some simple performance measurements.

In the next section we review some related workntiprovide a simple classification of
resources, and present a summary of the existsayree provisioning systems, followed by the
description a dynamic on-demand model promotingctirerergence and the integration of such
systems. Then, we give a description of a workinglementation of the model, some details
about authentication and security, and discuss gmrfermance results, problems and possible
solutions. Finally, we draw some conclusions.

RELATED WORK

The approach presented in this work has been prslyigpursued by Bosin (2011a) and Bosin
(2011b), with particular emphasis on SOA and BPBegaacy for e-Science environments, and
less attention to the general problem of resouroegigioning.

Mateescu (2011) presents a hybrid computing modetiwis aimed at executing scientific
applications in such a way to satisfy the givennmrequirements. Applications are represented
by workflows, i.e. a set of jobs with precedencastmints. The basic building block is the
Elastic Cluster, characterized by (1) dynamic isiinacture management services; (2) cluster-
level services such as workload management; ané{@)igent modules that bridge the gap
between cluster-level services and dynamic infuattire management services. An
infrastructure for the management and executiowarkflows across multiple resources is then
built by using multiple Elastic Clusters coordirchtey a workflow management system.

Doérnemann (2009) explores on-demand provisioningclofid resources directly at the
workflow level, using BPEL as the workflow languag®’hen, during workflow enactment, a
service is invoked, the request is routed to tieice instance running on the best-matching host
(e.g. lowest load); if no best-matching host isilabée, a new VM is provisioned from a cloud to
run a new instance of the required service.

The idea of virtual clusters on a physical gricexplored by Murphy (2010), where Virtual
Organization Clusters provide customized, homogeseexecution environments on a per-
Virtual Organization basis. The author describeglastering overlay for individual grid
resources, which permits Virtual Organizations efldrated grid users to create custom
computational clouds with private scheduling argbtece control policies.

The feasibility of using one or more cloud proveldéor deploying a grid infrastructure or
parts of it has been studied by Vazquez (2011} sucapproach permits the elastic growth of
the given grid infrastructure in such a way tosfgtpeak demands or other requirements.

The lack of a standard architecture for resouro@ipioning is discussed in (Mietzner, 2008),
where the authors present a set of services foures procurement and BPEL-based workflows
that make use of these services.

McPhillips (2009) identifies desiderata for sciéintiworkflow systems - namely clarity,
predictability, reportability and reusability. Mareer, ease of composition and editing, the
ability to automatically log and record workflow aatments and the flexibility to incorporate
new tools are all important features (Fox, 2006)e Tinteroperability aspects of scientific
workflow systems are addressed by Elmroth (201@jichv investigates the differences in
execution environments for local workflows and #hasecuting on remote grid resources. A
complete overview of features and capabilities @érstific workflow systems is presented in
(Deelman, 2009).

Software applications have been built to addresdde spectrum of scientific workflows,
ranging from basic tools that are designed to reafiksktop” tasks such as simple data analysis
and visualization to complex workflow systems the¢ designed to run large-scale e-Science
applications on remote grid resources. These sgste@ad to support multiple concurrent users,
deal with security requirements, and run workflawat may require the use of a sophisticated
layer of services (Fox, 2006).

There is a number of widely recognized grid workflprojects like Triana (Taylor, 2005;
Churches, 2006), Kepler (Pennington, 2007), PegdBeelman, 2005), and ASKALON
(Fahringer, 2007). Many of these began their Iifethe “desktop” workflow space, and have
evolved over time to address the large-scale enBeiapplications. Specifically designed for the
life sciences, Taverna (Oinn 2004, 2007) was tts¢ $iystem to recognize the importance of data
provenance and semantic grid issues.

While developed for the business domain, technektike BPEL are recognized suitable to
address the requirements of e-Science applicatfkram, 2006), supporting the composition of
large computational and data analysis tasks that rxecute on supercomputing resources.
BPEL is recognized by Deelman (2009) as the deofataindard for web-service-based
workflows. An architecture for the dynamic schedglof workflow service calls is presented in
(Doérnemann, 2009), where control mechanisms of BRteLcombined with an adaptive runtime
environment that integrates dedicated resources a@mdlemand resources provided by
infrastructures like Amazon Elastic Compute Clowda (2008) presentghe design and
implementation of a workflow management system té@aseBPEL in a grid environment. Based
on BPEL, QoWL (Brandic, 2006) and GPEL (Slominsk07) are significant examples of
workflow systems designed for dynamic, adaptivgdascale e-Science applications.

The use of BPEL for grid service orchestrationriggosed as foundation in (Leymann, 2006)
since it fulfils many requirements of the WSRF st@ml. The appropriateness of BPEL is also
examined and confirmed in (Chao, 2004; Dérnema®@,72 Emmerich, 2005). These works
mainly focus on scientific workflows and rely ontemding or adapting BPEL, thus creating
dialects.

RESOURCES

Personal resourcesuch as desktops or laptops, provide users Wwihraximum ease-of-use in
terms of flexibility and customization, often aktlkexpense of limiting the interoperability with
other resources. A personal resource usually isndie door for accessing the network, and it is
both the starting and end point for user interactioth e-Science environments (e.g. start an
experiment, monitor its execution, collect resultgjte reports).Specialized resourceare

“unique” nodes on the network where a very speaifiivity can take place (e.g. data acquisition
from an attached physical device), but sharing swegdources on the network may not be
straightforward, since in many cases they expos®ouAPIs.

High Performance Computing (HPC) resourcese tightly-coupled (e.g. by a high
performance communication device such as an Irdimdbswitch) sets of computing equipment
with (usually) a high degree of hardware and safwsomogeneity. HPC resources are in most
cases managed by legacy schedulers which repraéémissue for interoperability.

Grid resourcesare loosely-coupled sets of computing equipmeti isually) a local (e.g.
per site) high degree of hardware and software lggmeity. Physical separation is not an issue
and resources are managed through the abstracti®irtaal Organizations (VO) with the
possibility of federating many different VO as iroject Enabling Grids for E-sciencE (EGEE,
2010). The Open Grid Services Architecture (FosB&02), or OGSA, is a framework for
developing grid management services according & Sbkrvice-Oriented Architecture, thus
enabling ease of integration and interoperabiligtween sites, even if grids have limited
interoperability between different Grid softwaracks (Mateescu, 2011).

One level of abstraction highecloud resourcesare based on loosely-coupled sets of
computing equipment with no need or guarantee ohvirare and software homogeneity, and in
many cases distributed at different physical lageti In this paradigm, the physical machine
(PM) hardware and software is almost completelydérd and a virtual machine (VM)
abstraction is exposed to the user. Most cloud gemant systems are designed according to
SOA concepts and expose their functionality thro&gpAP-based or RESTful interfaces thus
improving ease of access, integration and inteadpkty. One interesting characteristic of
clouds is the ability to provide resources withtaer characteristics, i.e. specific software
libraries or configurations, dynamically, on-demamdl on a per-user basis (Vazquez, 2011).

Even if many computing paradigms show some kindSGfA-awareness, heterogeneous
resource provisioning still remains an open probleecause of the many integration issues
between paradigms. A brave user wishing to rurstiiduted application (eventually workflow-
based) using a mix of heterogeneously managed nessumay encounter a number of
interoperability issues due to differences in:

» usage model,

« life-cycle management,

« authentication,

« API,

« adopted standards (or no standard at all),

« services (e.g. storage),

« network segmentation or isolation between differespurces,

e monitoring, and

« workflow languages and engines.

A solution suitable to a wide community of usershing to exploit at best the resources they
have access to (e.g. those granted to them atargehis to design an abstraction layer between
applications and resources, in such a way thaturess can be requested, provisioned, used,
monitored, and disposed without worrying about timelerlying technological infrastructure.
Such an approach will be explored later, suggesimppssible way to manage resources from
multiple providers as a cohesive aggregate. Pramgdtie integration, cooperation and inter-
operation of heterogeneous resources has the agyaot allowing users to exploit the best of
each paradigm. To give some examples, grid infragires may offer:

» large sets of computing resources,

« resource scheduling/reservation,

« advanced storage services,

» specialized workflow systems,

« advanced monitoring services, and

« homogeneous operating system and software envimsme
while HPC infrastructures typically provide:

« high performance hardware enabling strongly-coupke@llelism, and

» resource scheduling/reservation,

« homogeneous hardware and software environments;
and cloud infrastructures present:

« extremely flexible/customizable operating system software environments,

« APl based on open standards (e.g. SOAP, REST),

« on-demand provisioning, and

« increasing number of resources offered by commigooiwviders.

The availability of cloud resources, capable otansiating standard or custom VM on a per-
user basis, gives a number of value-added enhamtgme

« allow the execution of platform-dependent applmasi which may be bound to specific

operating system flavors or libraries not generaltgilable;

« permit dynamic provisioning of different workflowmegines; and

« give the additional flexibility to run web servie@plications and enact workflows where

and when the user wishes (e.g. users may well edoidake advantage of pay-per-use
commercial providers such as Amazon or RackSpace).

In a scenario based on “smart” resource aggregatmm applications may enjoy many of the
above benefits; it is possible to imagine a disteld application orchestrated by a workflow
where (1) a VM on a cloud runs the workflow engif®), the bulk computation is performed in
parallel on a HPC infrastructure, (3) data postpssing is executed on a grid (or cloud), (4)
results are viewed on a personal resource andyraply, (5) steps 2-4 are part of an iterative
computation.

At a first sight, there may be no benefits for 8rp applications, unless they are modified,
but cloud flexibility may nevertheless help. Indeaduser application developed for a grid or
other resource may become unusable if (1) the he®mo (or no longer) access to the grid, or
(2) an update in grid operating system/middlewauires modifications to the application. A
possible solution is then to deploy the desirestditeof grid on top of a cloud, as explored in
(Vazquez, 2011), and run the unmodified application

PROVISIONING SYSTEMS
HPC and grid resources are usually controlled\fiykload and Resource Management Systems
(WRMS)which support

e resource management;

« job management; and

« job scheduling.

The term job refers to the set of instructions eeethb run an application or part of it on a
batch system, written according to some Job Desmnipanguage (JDL). A WRMS can be built
on top of another WRMS, as it is usually the ca#é grid middleware which relies upon an
underlying batch system referred to as a Local ResoManagement System (LRMS).

Users are granted access to a WRMS in a numbeays:w

« interactively from a front-end machine using a camohline interface (CLI);

« programmatically by means of specialized API; and

« in some cases, programmatically by means of tedgyohgnostic API, e.g. Open Grid

Forum Distributed Resource Management Applicatiehh @RMAA) (Troger, 2011).

Authentication mechanisms may range from simpledlemgals such as user/password to
sophisticated X.509 certificates based on a pWdicinfrastructure, both for users and software
services. Job submission to a grid WRMS is showrign 1 for gLite CREAM (Aiftimiei, 2010;
Laure, 2006).

Workload CREAM node
zlanagen‘l;:nts > TrustManager
LU L) (auth.)
submit_ CREAM service
proxy & jdlI v
Command
Manager
submit
proxy & jdl cream command &
Command
Queue
User
\ 4
Command
Executor
\ 4
BLAH
LRMS command & job ¢

LRMS (e.g. LSF)

Figure 1. Job submission with gLite CREAM (simgtiji

Job execution with CREAM can be summarized as Vigdlo(1) A grid user, using his/her
X.509 credentials, obtains an authentication privgyn the VO membership service (VOMS),
prepares the job and submits both the JDL file anoxy to CREAM service; (2) user
authentication and authorizatigby Local Centre Authorization Service, LCAS) is penfad,;
(3) user request is mapped to a cream command aaded; (4) the cream command is
processed and mapped to a specific LRMS requesgiaashdiser is mapped to a LRMS user (by
Local Credential Mapping Service, LCMAPS); andtfiy request is submitted to the LRMS.

CREAM is currently released only for Red Hat Entiesgo Linux 5.x and derived distributions
like CentOS 5.x and Scientific Linux 5.x, and sugpdhe following LRMS: Platform Load

Sharing Facility (LSF, 2005), Oracle Grid EngineGE 2009) and Adaptive Computing
Torque/Maui (TORQUE, 2012).

Cloud resources are typically supervised ynamic Infrastructure Management Systems
(DIMS), which offer two kinds of functionality: (1) physil resource management; and (2)
service management, where provisioned servicesmggskemented using virtual resources. We
are mainly interested in tHefrastructure as a Service (laa8jodel, which offers the maximum
flexibility by providing virtual machines and theamagement interface, as well as storage. User
access is performed:

« interactively from a client application;

» through a browser by means of suitable plug-ins;

« programmatically by means of specialized API; and

« programmatically by means of technology agnosticl ABch as Amazon Elastic

Compute Cloud (EC2) and Simple Storage Service (88)S, 2011; AWS, 2006).

Authentication mechanisms may vary as in the cadsaVBMS. An example of VM

provisioning in a cloud DIMS is illustrated in Fig.for Eucalyptus Community Cloud (Nurmi,

2009).
Cloud Controller Storage Controller
1

2

6 Walrus \:Iuster Controller

User

4 3
\ Y Node Controller
VM VM VM
A
Hypervisor 5

Operating system

Hardware

Figure 2. VM deployment with Eucalyptus Communlou@.

The main steps for the deployment of a VM are:gljser requests a new VM to the Cloud
Controller (CLC), (2) the CLC authorizes the requesd forwards it to the Cluster Controller
(CC), (3) the CC performs virtual network set-bprdware and IP addresses, and firewall rules)
and schedules the request to a Node Controller ,(K))the NC retrieves image files from
Walrus (or cache), (5) the NC starts the VM throtighhypervisor, and (6) the user logs into the
VM.

Quite interestingly, Mateescu (2011) recognizes theth WRMS and DIMS can be well
described by the managed computation factory miottelduced by Foster (2006), and shown in
Fig. 3. In this model, clients of computationalaesces do not directly interact with the bare
resources; rather they work with the managed coatiout abstraction. A managed computation

can be (1) started, (2) stopped, (3) terminatedm@nitored, and/or (5) controlled by interfacing
with a managed computation factory. The factoryinscharge of creating the managed
computation, which is assigned to one or more cdatjmmal resources. The managed
computation often operates as a service; henceatime managed computation service in Fig. 3.

Managed
Computation
Factory

A

A

) Managed
Client Computation >

Service

y

Resource

Figure 3. Managed Computation Factory model.

INTEGRATED PROVISIONING OF HETEROGENEOUS RESOURCES

In the previous sections we have discussed therappty of exposing scientific applications as
web services, coordinated by workflows or busir@ssesses, all of them running on a “smart”
aggregation of resources.

Resources are needed to run both web services wsideBs processes, which may be well
characterized in terms of the managed computatistraction discussed in the previous section.
Even if there is no fundamental difference betweeanaged computations involving web
services and business processes, we prefer tagliggth them at the logical level due to different
responsibilities:

« web services exposing scientific applications at pathem have the sole responsibility

of the computation on the assigned resources;

« business processes orchestrating one or more abihes web services are also in charge
of (1) obtaining the resources needed for each atatipn represented by a web service
and (2) managing their life cycle.

As a consequence, we distinguish two kindsegsburce requests

« business service requests managed computations involving the executibeotentific
applications, possibly exposed as web servicesisinbss services; and

« workflow engine requestfor managed computations based on workflow enawutme
which may as well expose workflow instances throagtveb service interface, i.e. a
business process.

Resources, which can be physical (PM) or virtualf\Vare classified accordingly: worker
nodes run scientific applications, while workflowgine nodes are dedicated to the execution of
workflow engines (WfE). However, it should be notkdt, at different times, a resource may act
as a worker node or as a workflow engine node, ritipg on the managed computation
assigned to it. In addition, all the resources bgleo one or more WRMS and/or DIMS
previously described, with the possible exceptibsame personal and specialized resource.

The model

To promote the integration, cooperation and inferation of heterogeneous resources from
multiple providers as a cohesive aggregate, in sackvay that they can be requested,

provisioned, used, monitored, and disposed withartying about the underlying technological
infrastructure, we propose the dynamic on-demasduree provisioning model depicted in Fig.
4. The model builds upon HPC, grid and cloud systéweraging existing WRMS and DIMS,

and connecting the different components through $@étfaces whenever possible, directly or
by means of suitable wrappers/adapters.

workflow deployment
and enactment

job submission

resource status
and control

resource request

<
v A

|
Monitor Resource Integrator
and Provider <_ resource status

notification
Workload and Resource
Mangement System (WRMS) VM create and destroy

(cream [sk] sGE)

\ 4

Dynamic Infrastructure
Management Service (DIMS)

\ 4

) () () (o ¥ () () () (o)
[@ () (w) (w) | ,[Private/public clouds]4 > [@ () () (m) :
Worker nodes Wf engine nodes

+ v v
Application and Machine Storage
Image Repository Manager} Proxy ’

Figure 4. Model of dynamic on-demand resource @owing system.

The glue of the model is constituted by Besource Integrator and Provider (Resiif)ich acts
as a high level managed computation factory exgosiweb service interface:

« it accepts requests for resources from clients;

« it translates and forwards requests to the unagylWRMS and DIMS;

« it receives resource heartbeats and notificatiand,;

« it notifies asynchronous clients of resource engip@ivailability and status changes.

Integrating WRMS and DIMS requires (1) that theyp@se a network-enabled public
interface, possibly based on SOA standards, andef@edding the necessary logic into a
module of the ReslIP. Such integration is usuallffgpmed for entire classes of WRMS or
DIMS: a specific instance may then provide its tgees at any time as soon as a resource
request refers to it. This allows, for examplewirg resources from two or more Eucalyptus
Community Cloud infrastructures at the same time.

All resource requests are submitted to the Reslit;hwtakes the appropriate actions based on
the request type, as we are going to describeeifidlfowing subsections together with the other
components of the model. A successful resource estqwill start the desired managed

computation and provide the user with the compomiasiervice network endpoint and identifier:
due to the nature of the resources and of theiragement systems this may not immediately
happen, leaving users waiting for a variable amadrtime. Even if this is not necessarily a
problem, the ReslIP offers different strategiesiforim users when their managed computation is
at last started; in particular, clients may sultingir resource requests in a number of ways:
« asynchronous request returns successfully witlgiven timeout only if the computation
starts before the timeout expires;
« an asynchronous request without notification refunmmediately: clients may
periodically poll the ReslP to know if the compudatstarted; and
« an asynchronous request with notification retummediately but allows clients to be
notified as soon as the computation starts (cliemist be able to receive notifications).
The ReslIP is also responsible for disposing ressufcanceling jobs in a WRMS, or
terminating VMs in a DIMS) upon explicit requesgésource lifetime expiration or in case of
problems. The associated business service or warkéingine is informed of the imminent
disposal, is explicitly in charge of its own cleap-(and should be implemented accordingly),
and is required to notify the ResIP immediatelyobefexiting.

User interaction

User interaction should be kept as much as posgiblewvell-defined, (2) simple and, (3)
independent of the WRMS/DIMS used, i.e. technolegyostic; conforming to SOA, user
interaction is based on the exchange of XML documen

Users wishing to run a workflow-based applicatibowdd provide the following information:

« URL of the image of the workflow to be deployed amhcted on-demand (from a public

repository or user-provided);

« URL of the images of all business services to lagtei on-demand and used by the

workflow (from a public repository or user-provigednd

« endpoint and authentication credentials of the WRMES required to provide the

resources to run the on-demand workflow enginebarsihess services.

Based on the above information, users (1) prepadesand to the ResIP the workflow engine
request document (2), when the engine becomes,readgt one or more workflow instances by
preparing and sending the corresponding input deatsnand (3), when finished, send to the
ResIP the release request for the engine.

According to the information specified in the inpldtcument, the workflow is in charge of (1)
composing and sending to the ResIP the businesEseequest documents for all on-demand
services (2), when all business services are reéadgking them in the specified order with the
required input and (3), in the end, sending to ResIP the release request for all business
services.

The SoapUl application (SOAPUI, 2011) provides al @at can be of valuable help; after
reading the WSDL document associated to a webcgentiautomatically lays out the structure
of the XML input document leaving the user with gimpler task of filling in the data. SoapUl
can also send the document to the given web seovia®rkflow.

Workflow engine requests

A request for a resource dedicated to the execuati@enworkflow engine, workflow deployment,
and the subsequent enactment of workflow instancaes, be satisfied by materializing an
appropriate VM in a cloud. The request specifies:

« class of cloud DIMS that will provide the resourte,determine the interface used for
connecting;

« workflow engine type, needed for specific workfloeployment;

« workflow image, i.e. the URL of the archive contagnthe BPEL documents and related
files;

« cloud DIMS requirements such as cloud providerinitsrface endpoint, name of the VM
image embedding the desired workflow engine, VMrabeeristics or flavor (number of
CPUs, RAM size, etc.) and other cloud-specific paeters; and

« cloud authentication credentials.

Fig. 5 shows a fragment of the XML document repnéag a workflow engine request,
where the cloud interface is Amazon EC2, the workfengine is Apache Orchestration Director
Engine (ODE, 2011), the workflow image can be dmaded from the URL http://ws-
cyb.dsf.unica.it/ws/ode/DMProcesses1l_macro.zipctbed provider is Eucalyptus with its own
set of requirements (endpoint, region, zone, VM geaand flavor) and credentials
(username/password).

<r esour ceRequest >
<BSRequest >
<BSSchedul er >EC2</ BSSchedul er >
<BSType>0DE</ BSType>
<BSURL>htt p://ws-cyb. dsf.uni ca.it/ws/ode/ DVProcessesl_macro. zi p</ BSURL>
<BSRequi r ement s>
<EC2Par ans>
<ec2Provi der >eucal ypt us</ ec2Provi der >
<ec2Endpoi nt >ht t p: // 149. 165. 146. 135: 8773/ ser vi ces/ Eucal ypt us</ ec2Endpoi nt >
<ec2Regi on>Eucal ypt us</ ec2Regi on>
<ec2Zone>i ndi af g</ ec2Zone>
<ec?2l mage>em - 54090E06</ ec2| mage>
<ec?2Fl avor >c1. medi unx/ ec2Fl avor >
</ EC2Par ans>
</ BSRequi r enent s>
<BSCr edenti al s>
<Crypt edPWAut h>
<user nane>. .. </ user nane>
<crypt edPWs. . . </ crypt edPW
</ Crypt edPWAut h>
</ BSCr edent i al s>
</ BSRequest >
</ r esour ceRequest >

Figure 5. XML fragment representing a workflow emgrequest.

When the ReslP processes the request, a VM creatiotmand is submitted to the cloud
DIMS. The latter schedules the instantiation oka/ VM of the given flavor on its pool of PM,
and returns a VM identifier or an error. As soontlas VM is up and running, the embedded
workflow engine is started, and the workflow imagelownloaded and deployed; the ResIP is
then notified of the WIE interface endpoint.

As soon as the deployment is completed, the useenact the workflow by providing the
desired input document; many workflow instances rayenacted within the same WfE with
different input documents. When the WfE is no langeeded, the user sends a resource release
request to the ReslP which disposes the correspgndisource by sending a VM destroy
command to the DIMS.

A workflow is an abstract representation of a sttiienapplication and is made of a set of
activities or jobs with precedence constraints leetwthem (Singh, 2006). Each job needs a
resource to run on, and the workflow places theesponding resource requests on the ResIP as
described in the next subsection.

Business service requests

A request for a resource needed to run a jobairaodule of a scientific application in the form
of a business service, specifies:

« notification endpoint, used by the business serticadvertise itself once ready, and

usually pointing to the client that submitted thequest (e.g. a workflow);

« class of HPC/grid WRMS or cloud DIMS that will pide the resource, to determine the

interface used for connecting;

« web service (application) image, i.e. the URL of Hrchive containing the web service

executables and related files;

« WRMS or DIMS requirements such as interface endpaial other specific parameters;

and

« authentication credentials.

Fig. 6 shows a fragment of the XML document repnéag a business service request for a
grid resource, where the WRMS is gLite CREAM, th& \fhage can be download from the
URL http://ws-cyb.dsf.unica.it/ws/jar/PrimeNumbar,j the virtual organization is cybersar, the
LRMS batch system is Platform Load Sharing Fac{lit$F, 2005), the batch queue is cybersar,
and the authentication is performed through an Xpo&xy certificate. After start-up the
business service will advertise itself to the dlien endpoint
http://10.0.0.5:8099/0de/processes/DMWrapperPrdacésaNotification.

<r esour ceRequest >
<noti ficati onEndpoi nt >
<wsa: Endpoi nt Ref erence
xm ns: wsa="http://schemas. xm soap. or g/ ws/ 2004/ 08/ addr essi ng" >
<wsa: Addr ess>
http://10.0.0.5: 8099/ ode/ processes/ DMN apper Process1l RANoti fication
</ wsa: Addr ess>
<wsa: Servi ceNane port Nanme="ResourceAl | ocat orNotificationPort"
xm ns:ra="http://wsdl.resources. cybersar">
ra: DMW apper Process1_RANoti fication
</ wsa: Servi ceNane>
</ wsa: Endpoi nt Ref er ence>
</ noti fi cati onEndpoi nt >
<BSRequest >
<BSSchedul er >CREAMK/ BSSchedul er >
<BSURL>htt p://ws-cyb. dsf.unica.it/ws/jar/PrinmeNunber.jar</BSURL>
<BSRequi r ement s>
<CREAMPar amns>
<cr eantndpoi nt >htt ps://cecreamcyb. ca.infn.it:8443</creanmEndpoi nt >
<cr eanVO>cyber sar </ cr eanVO>
<cr eanBat chSyst enpl| sf </ cr eanBat chSyst en>
<cr eamQueue>cyber sar </ cr eanfueue>
</ CREAMPar ans>
</ BSRequi r enent s>
<BSCredenti al s>
<Pr oxyAut h>
<proxy>... </ proxy>
</ Pr oxyAut h>
</ BSCr edent i al s>
</ BSRequest >
</ r esour ceRequest >

Figure 6. XML fragment representing a businessisemequest.

The ReslIP forwards the requests to the specifistdlbr WRMS. A conventional job
submitted to a HPC or grid batch system contairs ithstructions needed to start the
computation, written according to some JDL. In oase, the job responsibility is to start the
web service (as a sub-process) and wait untibppsstwhile the real computation is orchestrated
by a workflow through one or more invocations of teb service. The ResIP is in charge of
preparing the job submitted to the WRMS by tramstpthe specifications contained in the
business service request document into the comesgpgp JDL. Job submission to a WRMS
returns a job identifier or an error. Fig. 7 shatws JDL file generated by translating the business

service request document represented in Fig. 6.

[

Vi rtual Organi sati on = "cybersar";

Execut abl e = "runbs. 135";

Argunent s =""

Bat chSyst em = "lIsf";

QueueNane = "cybersar";

St dQut put = "std.out";

St dError = "std.err";

| nput Sandbox = "runbs. 135" ;

| nput SandboxBaseDest Uri = "gsiftp://local host";

Qut put Sandbox = {"std.out", "std.err"};

Qut put SandboxBaseDest Uri = "gsiftp://1ocal host";
]

Figure 7. JDL file generated from the businessiserrequest document of Fig. 6.

If the job is to be executed by a VM allocated oclaud, the VM is created as described in
the previous subsection, except that a standardhiim@tmage is used unless a custom image is
specified; the VM is instructed to execute the gfer booting the operating system.

As soon as the job is started on a worker nodé, @M or VM, it notifies the workflow that
has placed the request (via the ReslIP) of the endpbthe web service, which is ready and
listening for incoming messages. When all the resesirequested by the workflow are
available, the execution can proceed with the iatioa of all the required web services in the
specified order.

External resources

In the foreseen environment, specialized nodefiemétwork may run static services that can be
invoked from within a workflow. In addition, an aresting degree of interactivity may be added
to plain workflow execution by invoking a visualtian service, e.g. at the end of each iteration
in an iterative simulation. Such visualization seevmay well be executed on a personal
resource, such as the user desktop, to give atinealvisual feedback of the state of the
simulation.

If the service endpoints are “immutable”, they camply be hard-coded into the workflow
description, but the visualization service preseatproblem. Hard-coding a user-specific
endpoint (the desktop network address) makes théfley unusable by different users. We
then need to account for resource requests thet teeexternal resources and for which creation
is not needed. This allows workflows to managgadls exactly in the same way, delegating to
the ResIP the responsibility for provisioning a mesource only if needed. To this end, business
service requests needing a personal resource adéeldan the following way: (1) the request is
submitted with WRMS/DIMS class set to “MANUAL” arttie notification endpoint set to point
to the workflow, (2) the user starts the businessise on the personal resource, (3) after start-
up the business service notifies the workflow &f éndpoint, (4) the workflow invokes the
business service at the provided dynamic endpoint.

Proxy

In general, worker nodes and workflow engine nddeson different private networks which
are not directly connected to one another (the aslyumption we do is that they can open
network connections towards the Internet throughes&ind of Network Address Translation or

NAT service), so aProxy service is essential in routing messages fromnlessi processes
(workflows) to business services (web services)\aoeversa.

Other components

The other components that complete the model &#ybdescribed here, leaving some details to
next section. TheStorage Managerprovides temporary storage to data-intensive lassin
services. Th&lonitor is a simple service that can be queried for resostatus information. The
Application and Machine Image Repositohpsts business service, workflow and virtual
machine images that will be executed on the promisil resources.

IMPLEMENTATION

In this section we describe a working implementatiof the model previously outlined.
According to the general philosophy of a SOA-basathework, we have developed a number
of infrastructure (web) services corresponding aous components of the model - using the
Java programming language - and re-used open-stoote and systems whenever possible,
operating the necessary integration. Fig. 8 shdwes domponent diagram of the presented
implementation with the basic dependencies betwamnponents, as described in the next
subsections.

Resource Manager

Monitor
<<query>>
status <<delegate>>
request

<<submit>> ResIP

WFE or BS request <<query>>
Storage Manager

User

<<delegate>>
request

<<enact>> <<delegate>>
workflow request

<<DIMS>>
Eucalyptus

<<delegate>>
request
<<read/write>>

<<WRMS>>

<<WRMS>> LSF

CREAM

\ P—
<<run>>

<<request>> - -
resource <<notify>> g Business Service

<<forward>> <<invoke>> / <<notify>>
output input E Proxy <<f°ima£d>> output

I —

<<run>>

Workflow Engine

Figure 8. Component diagram with basic dependencies

Integration of WRMS and DIMS

As already discussed, integrating WRMS and DIMSuires that they expose a network-enabled
public interface, possibly based on SOA standamishis work, we have developed ResIP
modules to interact with the following WRMS:

« (gLite v3.2 Compute Element (CE);

« gLite v3.2 Computing Resource Execution And ManageniCREAM);

« Platform Load Sharing Facility v6.2 (LSF); and

« Oracle Grid Engine v6.2 (SGE, 2009).

CE and CREAM expose OGSA-compliant interfaces am@ddition, it is possible to resort
to existing Java API such as jLite (Sukhoroslov)@0 On the contrary, LSF does not offer a
similar functionality, so we have developed a senplt effective web-service wrapper, the
Resource Manageand deployed it to one of the submission hostgpp of the LSF command
line interface. We have followed the same strafeg\sGE, too, even if the latter is supported by
DRMAA.
On the cloud side, we have integrated:
« OpenNebula, defined by its developers an “indudtgndard open source cloud
computing tool” (Sotomayor, 2009);

» OpenStack, an open-source porting of RackSpac&vtS¥Pepple, 2011); and

« Eucalyptus Community Cloud, presented as “a framkwioat uses computational and
storage infrastructure commonly available to academsearch groups to provide a
platform that is modular and open to experimematrumentation and study” (Nurmi,
2009).

According to their documentation, all these systexgose a RESTful interface compatible
with Amazon EC2 and S3 API, which are becoming &fadéo standard. In practice the
compatibility is not full, but for OpenStack anddalyptus we have successfully employed such
interface with the help of the jclouds library (JBUDS, 2011). OpenNebula needs additional
components to expose the EC2 interface, so we thesied to use its native interface, which is
anyway satisfactory.

Resource Integrator and Provider

In our implementation the Resource Integrator anaviBer functionality is mapped onto a
hierarchy of Java classes and is exposed throwgtbaservice interface. It would be impossible
to describe all classes in detail here, so we listiyheir key responsibilities:

« process all resource requests and make up thesponding jobs;

« interact with WRMS and DIMS for job and VM scheadhgj execution and control;

« receive status notifications from resources and/elethem to the interested entities (e.g.
workflows or monitoring applications);

« dispose resources;

« Mmanage resource context and status;

« register proxies, storage managers and monitoppycations;

» trace message flow and inform registered monitoaiogjications;

« enforce elementary security practices: authentinatiredentials containing plain text
passwords must be encrypted with the ResIP publjdlefore transmission; if necessary,
the use of one-time security tokens can be enabled;

» assign registered proxies and storage managerssiodss services.

The Java classes implementing the ResIP functignabrk with an abstract representation of
business service resources, embodied by the claRe®urce, which does not depend on the
resource type. The dynamic behavior of an abstesturce is captured by the state diagram
shown in Fig. 9.

Resource request

Figure 9. State diagram for an abstract resource.

If a resource request is permissible, a new instaridhe specific BSResource sub-class is
created with status set to SUBMIT and the corredpanphysical or virtual resource creation
advances as previously described. As soon as #munee becomes ready, the associated
business service sends a (resource status) ntidficenessage to the ReslP and such event
triggers a change of status from SUMBIT to RUN. yOat this point the resource can be used
and the ResIP notifies all the interested entittasce the resource is no longer needed, it may be
disposed,; its status is then set to RELEASE andlitygosal of the corresponding physical or
virtual resource proceeds. The business servicedssanother (resource status) notification
message that causes the status to change from REEEAEXIT.

Network connectivity

Network connectivity between the different compdsems guaranteed by the following
assumptions:

« the ReslP must live on a public network so thatrywther component can contact it,
including all the users of the system which, incdlaborative distributed environment,
can be located anywhere;

« worker and WfE nodes, as already observed, may divdifferent private networks
which are not directly connected to one anothet, o& assume that they can open
network connections towards the Internet throughes&ind of NAT service. The same
is true for personal resources;

« WRMS and DIMS, if not living on a public network,ust be accessible from the ResIP
(e.g. via a virtual private network or VPN);

« the Application and Machine Image Repository mayohea public network or may be
replicated on the private networks attached to @act of PM/VM; and

« the Storage Manager must live on a public networdlow for the sharing of data.

In addition the ResIP (public network) is requitednotify a WfE (private network) when a
requested business service resource is ready amaah be achieved by setting up a VPN
between the WfE node and the ResIP: the VM thatwges the WFE can be instructed to
initialize the VPN during start-up. The Proxy ser/described in the next subsection completes
the picture as previously discussed. The resuttetg/ork connectivity is synthesized in Fig. 10.

public networks

| 11

Storage
Manager

NAT | | | VPN

Wf engine |

ReslIP Monitor Proxy

DIMS

private network private network

Figure 10. Schema of network connectivity.

Proxy

The Proxy service acts as an intermediary for nguSOAP) messages from WfE to business
services and vice-versa. When the ResIP needstify aoWfE about the endpoint (URL) of a
newly started business service, it replaces theness service private network address with the
Proxy public address. In this way, the messagesigea WfE to a business service are in fact
sent to the Proxy, which performs a sort of messagéng to its final destination, based on a
special message tag. Every business service, u@aoRup, opens a persistent bi-directional
network connection with the Proxy; the latter wike this channel to route all the messages
directed to the service.

Workflow engines

As suggested by Bosin (2011a) and Doérnemann (2G88).choice of a workflow language
naturally leads to the Business Process Executamgliage (OASIS, 2007) which belongs to the
family of SOA standards. BPEL is complementaryhi web service definition language (W3C,
2001) and in fact BPEL instances are themselvesseehces. Both languages are XML-based
and both make use of the XML schema definition legge. A number of BPEL engines were
considered:

« Sun BPEL engine for Glassfish server;

« Oracle BPEL Process Manager in the Oracle SOA Sdigg(ORACLE, 2011);

« ActiveVOS BPEL execution engine (AVOS, 2011);

« Orchestra (OW2, 2011); and

« Apache Orchestration Director Engine (ODE).

Due to our preference for open-source softwaresafidcontained tools, we have chosen to
work with ODE v1.3.5, leaving the integration ohet engines for the future. This requires (1) a
module in the ResIP to manage WfE requests, (Ehple SOA wrapper to interface ODE with
the ResIP and clients, and (3) a VM image embeddiD§.

Business services

Business services implement the business logiciehsfic applications, usually in a modular
form where the whole logic is partitioned into reable, loosely-coupled, cohesive software
modules. In a SOA-based framework, business serexpose their functionality through a web
service interface formally described by a WSDL dueut. To be integrated in our model,

business services, in addition to the core scierftihctionality just described, must implement
some housekeeping operations:

« immediately after start-up they must notify the Resf their status (RUN);

« immediately before exiting they must notify the RResf their status (EXIT);

« they must retrieve from the ReslIP the assigned yPemd Storage Manager service

endpoints;
« they should expose some standard operations suarssn(), load(), exit(), etc.; and
« they should provide asynchronous operations fagdmmning computations.

Other services

As already discussed, Storage Managers providedemp storage to data-intensive business
services. When the output from a business sernecees as input for a subsequent service
invocation during workflow execution, it would beeiffective to transfer the data back to the
workflow and forth again to the next service. Ther8ge Manager handles plain and efficient
HTTP uploads and downloads, assigning a uniqueiUtL to the uploaded data so that they
can be easily retrieved later when needed.

The Monitor is a simple service that can be queieednformation about the resource context
related to business services, such as resourcéfigerstatus, WSDL port type, last operation
invoked and the related time-stamp.

The Application and Machine Image Repository igrithated over a number of components:
a simple HTTP server hosts all the business selamceworkflow images, while every DIMS
manages its own dedicated virtual machine imagesitpy.

AUTHENTICATION AND SECURITY

In the current implementation, resource allocatisn done using real-life authentication
mechanisms such as grid proxy certificates or aigitgnatures, but the access to scientific
services is granted by using the resource idergif)eovided to users by the ReslP and contained
in the input messages. In the general case, whereger security is needed, an authorization
token (e.g., a session password) or the X.509 atitta¢ion framework with the Web Services
Security could be used together with HTTPS protéacdtansport SOAP messages (as with Grid
Services). In a prototype environment this is aditawhal complication, and we have not yet
implemented it.

While authorization is performed directly by WRM3MIS (e.g. LCAS with gLite or access

control lists in OpenNebula), here we give somaitetelated to user authentication.

« gLite authentication: a VOMS proxy certificate @given VO is manually generated by
the grid user through gLite or jLite command limkerfaces and included in the resource
request. In this case, users are required to HBvea(id grid credentials for the VO and
(2) access to a gLite user interface to be abliedoe the proxy generation commands.
The ReslIP employs the provided VOMS proxy to penfaiser authentication with gLite
CE or CREAM.

« LSF and SGE authentication: an LDAP server provigesssword-based user
authentication, but this is not suitable over amoek, and we have added public key
certificates for our users to the LDAP server. Usethentication is then performed by
verifying the digital signature placed on an auttoation token provided by the ResIP.

 Cloud authentication: Eucalyptus Community Cloudpe@Nebula and OpenStack
provide basic password-based user authentication; addition OpenStack and
OpenNebula can be configured to use public keyeatitation.

To prevent clear text passwords from floating atbimXML files, which may be exchanged
among users, the latter are forced to encrypt passawith ReslP public key (together with a
one-time token), by means of a simple command fow which outputs the proper XML
fragment (i.e. the elemer€r ypt edPWAUt h> in Fig. 5).

RESULTS AND DISCUSSION

In this section we wish to discuss some resultsraakie some considerations about:

« simple performance measurements;

« practical problems and possible solutions; and

« limitations of the model.

The performance measurements refer to a case &adging on a specific bio-informatics
domain: the application of machine learning techag to molecular biology. In particular,
micro-array data analysis (Bosin, 2007) is a chajleg area since it has to face with data-sets
composed by a relatively low number of records ahdracterized by an extremely high
dimensionality.

The workflow developed for this case study is ateesvorkflow. The invoked process, or
core processorchestrates a single iterative computation withitiple invocations of the data
mining operations exposed by a business service.ldtter can download the needed data files
from a web repository and reads/writes the dataegded during the computation from/to the
Storage Manager. The invoking processwoapper processmanages the concurrent execution
of a variable number of core processes. Optiondhg, workflow can link to an external
visualization service, running on the user desktimp, monitoring the execution of these
processes.

Performance measurements

To measure the time needed to start a managed tatigpuwe have considered three main
phases; (1) the request processing time is smalpaced to other times; (2) the resource set-up
time depends on WRMS/DIMS and is similar for theptoyed HPC and grid systems (on
average about 1 minute) and higher for cloud systamless special tuning is performed as
discussed by Bosin (2012) (on average 5-10 minwt@sh can be reduced to 1 minute); (3)
workflow engine and business service start-up tiamescomparable to resource start-up times
and depend on the speed of the network for dowmgdchages.

VM performances might be an issue, so we have cordpaxecution times using PM and
VM both for workflow engines and business serviaad found no substantial differences; our
tests require relevant CPU and network 1/O actsitiand no heavy local disk 1/0O which may be
slow on VM (Bosin, 2012).

The workflow described above has been enacted tiveHollowing parameters: the wrapper
process starts 10 concurrent instances of thegroress, each invoking its own business service
during 20 iterations; business services have bgeouting both on homogeneous resources and
on a mix of geographically distributed heterogerseinfrastructures such as Cybersar (2006) and
FutureGrid (2009). The generated data flow is thkWing: 2000 SOAP messages exchanged
through the Proxy service, 600 data files downldaidem web repositories (approx. 4.5 GB of

data), 800 write operations and 1000 read opemattoffrom Storage Manage service. The
execution time varies with the resource hardwatealso with the available network bandwidth
between business services, data repositories amdgétManager.

Many concurrent enactments of the workflow can beduto assess system scalability: with
the available resources, 10 concurrent workflowsewenacted (i.e. 10 workflow engines on
cloud and 100 business services half on cloud aitidm HPC/grid) without any particular
problem except for some transient failures in pilong the requested resources occurred with
some WRMS/DIMS (mostly Eucalyptus). From the tgmsformed we expect that the system
can manage a number of concurrent business setideast up to 1000 if the Proxy service is
replicated as discussed later in this section.

A key point in workflow engine and overall systemakability and performance is the
management of the data flow for data intensive adatpns. Many workflow engines
(including BPEL) act as brokers for all messageherges between the business services
participating in the workflow, but embedding largata-sets into such messages is not efficient
and can lead to a collapse of both the engine lamdPtoxy service. Rather, web repositories and
the Storage Manager should be used, and dataaetsecindirectly passed to business services
as URL references; in this way, each business@epan directly and efficiently read/write data
from/to repositories and the Storage Manager thusinmzing transfers and improving
scalability and performance.

Problems and solutions

A number of problems are related to the BPEL lagguand the engine implementations. The
BPEL specifications do not allow multiple receivetiaties in the same scope with the same
port type and operation. This is an annoying litieta which may be overcome by duplicating
the operations with different names. Different BP&hgines miss some of the functionality
dictated by the standard, or implement non standeatures. An example is variable
initialization, required by some engines and autically performed by others; another is
partnerLink assignment whose syntax can be different depermlinthe engine. In ODE, web
service functionality is built on top of Apache ARi (AXIS2, 2011), the older Apache WS
framework, and many advanced features are miskingxample WS-Security.

Another point that deserves some attention is ispodal of resources when they are no
longer needed. In principle, the resource life eycle. provisioning, usage and disposal, can be
managed through the workflow if the correct supporirovided at the business service level. If
no error occurs things go as expected, but if tmdyworkflow fails before disposal, a bunch of
resources may be left around reserved, unusedrasdme cases charged for. In addition, a
failure with a resource or business service maydeaworkflow indefinitely waiting for it; and
the list of possible errors is long. BPEL fault asaimpensation handlers may help in designing
better error resilience but can do nothing if therkflow engine or its VM crashes. The
infrastructure services (ReslP, DIMS and WRMS) mtis¢n be charged of the extra
responsibility of resource disposal when sometlgongs wrong, e.g. by periodically checking
resource status for failures or long inactivityipds or other abnormal behavior.

Limitations

The model presented in this work represents amattaimed at experimenting possible ways to
cope with the general and complex problem of thegration of heterogeneous resources from

multiple providers as a cohesive aggregate, andaiably has a number of limitations and
aspects not (adequately) covered; among others:

« Scalability with the number of workflow instancasdabusiness services can be an issue
for the Proxy service since it mediates most mesgaghanges; to account for this more
than one proxy can register with the ResIP, whedigms one of the available proxies to
each business process and service thus ensuripgrdoad balancing. ReslP scalability
has not been assessed except for the considethéibReslIP and all related services can
be replicated allowing for static load balancirtge(same WRMS/DIMS can be shared by
different ReslIP). The Storage Manager service eareplicated, too, but assignment to a
business process or service should be based onlsodhef network distance metric.

« Redundancy of the ReslIP service could be arguaiibireed by means of standard high
availability techniques (LHA, 2011) if persistenatd is stored into independent and
replicated DBMS; in addition, the use of multipleo#®y and Storage Manager services,
as suggested above, should also help to guardr@eetessary redundancy.

« Application recovery in case of network or otheiui@s has not been taken into
consideration; the simple solution of automaticakyenacting failed workflows may
work in case of transient failures but will not wan case of structural failures (e.g.
when a computation exceeds the memory limit olsauece).

« The need for a meta-scheduler has not been inaéstigsince WRMS and DIMS
provide their own schedulers; if needed, such arseheduler should be able to manage
resource requests with very different requiremears resource pools (WRMS and
DIMS) that change over time and over users.

Another important point concerns existing applieasi, domain-specific and resource-specific
tools; many VO have developed their own domain4igeavorkflow scheduling systems which
provide extensive monitoring, scheduling, data-sscend replication and user priority
management capabilities. We expect that users neaydmcerned by the problems/efforts
required to use or even re-implement such apptinatiand tools in a new environment
(Gentzsch, 2009). According to what we said initlteoduction, however, our proposal is not
meant to “replace” but rather to “complement”, se must be pragmatic: it makes no sense to
bother users which are happy with their applicajdools and resources. Many “conventional”
users will simply have no benefits from dynamicdemand provisioning of resources, but many
others may be attracted by this on one side antidoyadvantages offered by the SOA approach
on the other, and may be interested in creating areletter applications using existing ones as
building blocks; in most cases it will not be nesay to re-implement applications and tools but
simply wrap them with a SOA interface.

CONCLUSION
In this paper we have presented a model for theamiym on-demand provisioning of
computational resources from multiple providerssdohon the convergence and integration of
different computing paradigms and infrastructureleterogeneous distributed resources are
presented to their users with the illusion of aeite aggregate of resources, accessible through
a well-defined standards-based software interface.

In our opinion, the model benefits from a numbegoélifying and distinctive features; it (1)
is founded on firm SOA principles; (2) integratafestent computing paradigms, systems and
infrastructures; (3) is open to further integraicand extensions both in terms of new resource
management systems (WRMS and DIMS) and workflow agament systems; (4) takes

advantage from the integration and re-use of openeg tools and systems; (5) some of the
components can be easily made scalable and reduiradeh (6) promotes the development of
new applications exposed as web services and maiggsorkflows.

As opposed to many other systems proposed in thetiire, which focus on a single
paradigm, this work is a first attempt aimed at ptementing, integrating and building on
existing HPC, grid and cloud paradigms, by playiing role of a dynamic resource aggregator
exposing a technology agnostic abstraction layBe proposed approach is quite general and
flexible. It has been applied to bioinformatics eamments and has returned a set of results
and feedbacks regarding its implementation, usagel, the overall feasibility. However,
application scenarios are not limited and spannbdginamics investigation, geo-informatics
and drug discovery, etc.

Issues to be addressed arise in various areas,asuiorkflow execution monitoring, fault
handling and compensation, scalability, policy eaément, trust and security support, quality
of service monitoring, transaction logging, andso

ACKNOWLEDGEMENTS

The author acknowledges the Cybersar Consortiunthimruse of its computing facilities. This
material is based upon work supported in part lgyNlational Science Foundation under Grant
No. 0910812.

REFERENCES

Aiftimiei C., Andreetto P., Bertocco S., Dalla Fia Dorigo A., Frizziero E., Gianelle A.,
Marzolla M., Mazzucato M., Sgaravatto M., Traldi€&&Zangrando L. (2010). Design and
implementation of the gLite CREAM job managememviee, Future Generation Computer
Systems26, 654-667.

Akram A., Meredith D. & Allan R. (2006). Evaluatiaf BPEL to scientific workflows. In
Proceedings of CCGRID'Ogp. 269-274). Washington, DC, USA: IEEE Comp@eciety.

AVOS (2011). ActiveVOS platform. Retrieved Apr. Z8)11, from http://www.activevos.com

AWS (2006). Amazon Web Services: Amazon Simple&jerService - AP| Reference.
Retrieved Apr. 24, 2011, from http://awsdocs.s3amaws.com/S3/latest/s3-api.pdf

AWS (2011). Amazon Web Services: Amazon Elastic @aim Cloud - API Reference.
Retrieved Apr. 24, 2011, from http://awsdocs.s3 amaws.com/EC2/latest/ec2-api.pdf

AXIS2 (2011). Apache Axis2. Retrieved Jun. 5, 20tdm
http://axis.apache.org/axis2/java/core

Bosin A., Dessi N. & Pes B. (2007). A Cost-SensitApproach to Feature Selection in Micro-
Array Data Classificatior,ecture Notes in Computer Science, vol. 4§{8 571-579). Berlin,
Germany: Springer.

Bosin A., Dessi N. & Pes B. (2011a). Extending3@A paradigm to e-Science Environments,
Future Generation Computer Systerag, 20-31.

Bosin A., Dessi N., Bairappan M. & Pes B. (2011050A-Based Environment Supporting
Collaborative Experiments in E-Scienteternational Journal of Web Portgl8(3), 12-26.

Bosin A., Dessalvi M., Mereu G. M. & Serra G. (2p12nhancing Eucalyptus Community
Cloud, Intelligent Information Managemerg(4), 52-59.

Brandic I., Pllana S. & Benkner S. (2006). Highdegomposition of QoS-aware Grid
workflows: an approach that considers locatiométifi In: Proceedings of WORKSQpp. 1-
10). Paris, France.

Chao K., Younas M., Griffiths N., Awan I., Anane,R. Tsai C.-F. (2004). Analysis of Grid
service composition with BPEL4AWS. IRroceedings of AINA'0§. 284). Los Alamitos, CA,
USA: IEEE Computer Society.

Churches D., Gombas G., Harrison A., Maassen hinRon C., Shields M., Taylor I. & Wang I.
(2006). Programming scientific and distributed wlnks with Triana serviceg;oncurrency
and Computation: Practice and Experiend8& (10), 1021-1037.

Cybersar (2006). Cybersar consortium for supercamgucomputational modeling and
management of large databases. Retrieved Jan022, fom http://www.cybersar.com

Deelman E., Singh G., Su M., Blythe J., Gil Y., Eglsnan C., et al. (2005). Pegasus: a
framework for mapping complex scientific workflowato distributed systemSgientific
Programming 13 (3), 219-237.

Deelman E., Gannon D., Shields M. & Taylor I. (2D0&orkflows and e-Science: an overview
of workflow system featureguture Generation Computer Syster?s, 528-540.

Doérnemann T., Friese T., Herdt S., Juhnke E. &dteben B. (2007). Grid workflow modeling
using Grid-specific BPEL extensions. Proceedings of German e-Science ConfereBeeen-
Baden, Germany.

Doérnemann T., Juhnke E. & Freisleben B. (2009).d®@mand resource provisioning for BPEL
workflows using Amazon's elastic compute cloudIrCappello, C. Wang, R. Buyya (edSih
IEEE/ACM International Symposium on Cluster Compyaind the Gridpp. 140-147).
Piscataway, NJ, USA: IEEE Computer Society.

EGEE (2010). Enabling Grids for E-sciencE proj&strieved Apr. 11, 2011, from
http://www.eu-egee.org

Elmroth E., Hernandez F. & Tordsson J. (2010). &dmmdamental dimensions of scientific
workflow interoperability: model of computationniguage and execution environmemiture
Generation Computer Systen2§, 245-256.

Emmerich W., Butchart B., Chen L., Wassermann Br&e S. (2005). Grid service
orchestration using the business process exedatguage (BPEL)Journal of Grid
Computing 3 (3-4), 283-304.

Fahringer T., Prodan R., Duan R., Hofer J., NadEemerieri F., et al. (2007). ASKALON: a
development and Grid computing environment forrgdie workflows. In: Taylor I., Deelman
E., Gannon D., Shields M. (eds/yorkflows for eScience: Scientific Workflow for d3ripp.
450-471). Berlin, Germany: Springer-Verlag.

Foster I., Kesselman K., Nick J. M. & Tuecke S.q2p The Physiology of the Grid - An Open
Grid Services Architecture for Distributed Systemggration Globus Alliance. Retrieved Jan.
24, 2012, from http://www.globus.org/alliance/pablions/papers/ogsa.pdf

Foster I., Keahey K., Kesselman C., Laure E., LivhyMartin S., Rynge M. & Singh G.
(2006).Embedding community-specific resource manageregireigl-purpose grid
infrastructure(Tech. Rep. ANL/MCS-P1318-0106). Lemont, IL, US¥gonne National
Laboratory.

Fox G. & Gannon D. (2006A survey of the role and use of web services arvicseoriented
architectures in scientific/technical Griggech. Rep. 08/2006Bloomington, IN, USA: Indiana
University.

FutureGrid (2009). FutureGrid: a distributed tedtb® Clouds, Grids, and HPC. Retrieved Nov.
17, 2011, from https://portal.futuregrid.org

Gentzsch W. (2009). Porting Applications to Gridsl &louds]nternational Journal of Grid
and High Performance Computingy(1), 55-77.

JCLOUDS (2011). Jclouds multi-cloud library. Reted Apr. 24, 2011, from
http://code.google.com/p/jclouds

Laure E., Fisher S. M., Frohner A., Grandi C., Kairi3,, Krenek A., Mulmo O., Pacini F., Prelz
F., White J., Barroso M., Buncic P., Hemmer F.Mgiglio A. & Edlund A. (2006).
Programming the Grid with gLit€Gomputational Methods in Science and Techngl@gyl),
33-45.

Leymann F. (2006). Choreography for the Grid: taigditting BPEL to the resource
framework,Concurrency and Computation: Practice and Experggd@ (10), 1201-1217.

LHA (2011). Linux-HA. Retrieved Jan. 13, 2012, frdwtp://www.linux-ha.org/wiki/Main_Page

LSF (2005), Platform Load Sharing Facility. Retaehdun. 9, 2011, from
http://lwww.platform.com/workload-management/highfpemance-computing

MaR.Y., WuY.W.,, Meng X. X., Liu S. J. & Pan (2008). Grid-enabled workflow
management system based on BPEternational Journal of High Performance Computing
Applications 22 (3), 238-249.

Mateescu G., Gentzsch W. & Ribbens C. J. (2011hridyComputing — Where HPC meets grid
and Cloud Computind;uture Generation Computer Systerdg, 440-453.

McPhillips T., Bowers S., Zinn D. & Ludascher BO@). Scientific workflows for mere
mortals,Future Generation Computer Syster2s, 541-551.

Mietzner R. & Leymann F. (2008). Towards provisiumthe cloud: on the usage of
multigranularity flows and services to realize dfied provisioning infrastructure for SaaS
applications. IrProceedings of IEEE Congress on Serviggs 3-10). Los Alamitos, CA, USA:
IEEE Computer Society.

Murphy M. A. & Goasguen S. (2010). Virtual Orgartina Clusters: Self-provisioned clouds on
the grid,Future Generation Computer Systerp6, 1271-1281.

Nurmi D., Wolski R., Grzegorczyk C., Obertelli G., SomanYuseff L. & Zagorodnov D.
(2009). The Eucalyptus Open-Source Cloud-Compuiiygiem. In F. Cappello, C. Wang, R.
Buyya (eds.)Proceedings of the 9th IEEE/ACM International Sysmpm on Cluster Computing
and the Grid(pp. 124-131). Piscataway, NJ, USA: IEEE CompB&iegiety.

OASIS (2007). Web Services Business Process Execlinguage Version 2.0. Retrieved Jun.
9, 2011, from http://docs.oasis-open.org/wsbpeM&sDbpel-v2.0.html

ODE (2011). Apache Orchestration Director Enginetrigved Jun. 9, 2011. from
http://ode.apache.org

Oinn T., Addis M., Ferris J., Marvin D., Senger I&reenwood M., et al. (2004). Taverna: a tool
for the composition and enactment of bioinformaticskflows, Bioinformatics 20 (17), 3045-
3054.

Oinn T., Li P., Kell D. B., Goble C., Goderis A.ré&nwood M., Hull D., et al. (2007).
Taverna/myGrid: aligning a workflow system with tife sciences community. In: Taylor I.,
Deelman E., Gannon D., Shields M. (edé/prkflows for eScience: Scientific Workflow for
Grids (pp. 300-319). Berlin, Germany: Springer-Verlag.

ORACLE (2011). Oracle BPEL Process Manager. Retdeiun. 9, 2011, from
http://www.oracle.com/technetwork/middleware/bpediview/index.html

OW?2 (2011). Orchestra User Guide. Retrieved Jan2@¥2, from
http://download.forge.objectweb.org/orchestra/Ostte4.9.0-UserGuide.pdf

Pennington D. D., Higgins D., Townsend Petersonénes M. B., Ludascher B. & Bowers S.
(2007). Ecological Niche modeling using the Keplarkflow system. In: Taylor I., Deelman E.,

Gannon D., Shields M. (edsWorkflows for eScience: Scientific Workflow for d@3rfpp. 91-
108). Berlin, Germany: Springer-Verlag.

Pepple K. (2011)Deploying OpenStacksebastopol, CA, USA: O'Reilly Media.

SGE (2009). Oracle Grid Engine. Retrieved Jun09,12 from
http://www.oracle.com/us/products/tools/oracle-egitgine-075549.html

Singh G., Kesselman C. & Deelman E. (2006). Appiicalevel resource provisioning on the
grid. In IEEE International Conference on e-Science and @uaanputing(p. 83). Piscataway,
NJ, USA: IEEE Computer Society.

Slominski A. (2007). Adapting BPEL to scientific vkflows. In: Taylor I., Deelman E., Gannon
D., Shields M. (eds.)Workflows for eScience: Scientific Workflow for @rfpp. 208-226).
Berlin, Germany: Springer-Verlag.

SOAPUI (2011). Eviware SoapUl. Retrieved Jun. 8,122Grom http://www.soapui.org

Sotomayor B., Montero R. S, Llorente I. M. & Fastg2009). An Open Source Solution for
Virtual Infrastructure Management in Private andHg Cloudsnternet Computing13(5), 14-
22.

Sukhoroslov, O. V. (2009). JLite: a lightweight daAPI for gLite. Retrieved Jan. 25, 2012,
from http://jlite.googlecode.com/files/jLite.pdf

Taylor I., Shields M., Wang |. & Harrison A. (200%jisual Grid workflow in TrianaJournal of
Grid Computing 3 (3-4), 153-169.

TORQUE (2012). Adaptive Computing Torque Resouramdfer. TORQUE Administration
Guide v2.5.9. Retrieved Jun. 5, 2012, from
http://lwww.adaptivecomputing.com/download/resouidess/torque/2-5-

9/pdf/ TORQUE_Administrator%27s_Guide.pdf

Tréger P. (2011). DRMAAV2 - An Introduction. Retred Jan. 23, 2012, from
http://www.drmaa.org/drmaav2-ogf33.pdf

Vazquez C., Huedo E., Montero R. S. & Llorente I.(2D11). On the use of clouds for grid
resource provisioningsuture Generation Computer Syster®8g, 600-605.

W3C (2001). Web Services Description LanguageRetrieved Jun. 9, 2011, from
http://www.w3.0org/TR/wsd

