Reference Hub4
MagiThings: Gestural Interaction with Mobile Devices Based on Using Embedded Compass (Magnetic Field) Sensor

MagiThings: Gestural Interaction with Mobile Devices Based on Using Embedded Compass (Magnetic Field) Sensor

Hamed Ketabdar, Amin Haji-Abolhassani, Mehran Roshandel
Copyright: © 2013 |Volume: 5 |Issue: 3 |Pages: 19
ISSN: 1942-390X|EISSN: 1942-3918|EISBN13: 9781466634503|DOI: 10.4018/jmhci.2013070102
Cite Article Cite Article

MLA

Ketabdar, Hamed, et al. "MagiThings: Gestural Interaction with Mobile Devices Based on Using Embedded Compass (Magnetic Field) Sensor." IJMHCI vol.5, no.3 2013: pp.23-41. http://doi.org/10.4018/jmhci.2013070102

APA

Ketabdar, H., Haji-Abolhassani, A., & Roshandel, M. (2013). MagiThings: Gestural Interaction with Mobile Devices Based on Using Embedded Compass (Magnetic Field) Sensor. International Journal of Mobile Human Computer Interaction (IJMHCI), 5(3), 23-41. http://doi.org/10.4018/jmhci.2013070102

Chicago

Ketabdar, Hamed, Amin Haji-Abolhassani, and Mehran Roshandel. "MagiThings: Gestural Interaction with Mobile Devices Based on Using Embedded Compass (Magnetic Field) Sensor," International Journal of Mobile Human Computer Interaction (IJMHCI) 5, no.3: 23-41. http://doi.org/10.4018/jmhci.2013070102

Export Reference

Mendeley
Favorite Full-Issue Download

Abstract

The theory of around device interaction (ADI) has recently gained a lot of attention in the field of human computer interaction (HCI). As an alternative to the classic data entry methods, such as keypads and touch screens interaction, ADI proposes a touchless user interface that extends beyond the peripheral area of a device. In this paper, the authors propose a new approach for around mobile device interaction based on magnetic field. Our new approach, which we call it “MagiThings”, takes the advantage of digital compass (a magnetometer) embedded in new generation of mobile devices such as Apple’s iPhone 3GS/4G, and Google’s Nexus. The user movements of a properly shaped magnet around the device deform the original magnetic field. The magnet is taken or worn around the fingers. The changes made in the magnetic field pattern around the device constitute a new way of interacting with the device. Thus, the magnetic field encompassing the device plays the role of a communication channel and encodes the hand/finger movement patterns into temporal changes sensed by the compass sensor. The mobile device samples momentary status of the field. The field changes, caused by hand (finger) gesture, is used as a basis for sending interaction commands to the device. The pattern of change is matched against pre-recorded templates or trained models to recognize a gesture. The proposed methodology has been successfully tested for a variety of applications such as interaction with user interface of a mobile device, character (digit) entry, user authentication, gaming, and touchless mobile music synthesis. The experimental results show high accuracy in recognizing simple or complex gestures in a wide range of applications. The proposed method provides a practical and simple framework for touchless interaction with mobile devices relying only on an internally embedded sensor and a magnet.

Request Access

You do not own this content. Please login to recommend this title to your institution's librarian or purchase it from the IGI Global bookstore.