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Abstract

In this paper we describe a new technique for the characterisation of
populations of DNA strands. Such tools are vital to the study of ecologi-
cal systems, at both the micro (e.g., individual humans) and macro (e.g.,
lakes) scales. Existing methods make extensive use of DNA sequencing
and cloning, which can prove costly and time consuming. The overall ob-
jective is to address questions such as: (i) (Genome detection) Is a known
genome sequence present at least in part in an environmental sample? (ii)
(Sequence query) Is a specific fragment sequence present in a sample? (iii)
(Similarity Discovery) How similar in terms of sequence content are two
unsequenced samples?

We propose a method involving multiple filtering criteria that result
in “pools” of DNA of high or very high purity. Because our method is
similar in spirit to hashing in computer science, we call the method DNA

hash pooling. To illustrate this method, we describe examples using pairs
of restriction enzymes. The in silico empirical results we present reflect
a sensitivity to experimental error. The method requires minimal DNA
sequencing and, when sequencing is required, little or no cloning.

1 Introduction

Biologists often examine large and diverse populations of organisms (for exam-
ple, molecules, microbes or plants). This is particularly the case in fields such as
microbial ecology, which studies the interactions between living microorganisms
(such as algae, or bacteria) and their environment. One of the most significant
and challenging problems in these areas of biology is to quantify the overall
diversity of a given population. This task is often made even more difficult by
the fact that many “wild” organisms resist laboratory cultivation (and, thus,
have unknown phenotypes and their genomes are unknown), or may be present
in a population in relatively low numbers.

The study of metagenomics has emerged in recent years [8, 10, 16, 18] to
perform what has been described as “environmental forensics,” including the
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quantification of relative abundances of known species, and the estimation of
the number of “unknown” species in a given environment [10]. The potential
impact of this new field is huge, with applications ranging from medicine to
agriculture and biotechnology. Further the insights gained will be of signifi-
cant assistance in furthering our understanding of biodiversity in both new and
familiar environments, such as frozen Antarctic lakes and the human gut [8].

Metagenomic analysis currently involves the extraction of DNA from an en-
vironmental sample, cloning of the DNA into a suitable “vector”, insertion of
the vector into a host bacterium and then screening the resulting transformed
bacteria [8]. Screening may occur on the basis of gene expression using mi-
croarrays [18] or some other trait, such as antibiotic production [15], or the
bacteria may simply be sequenced at random. We now briefly describe the first
(microarray) and third (sequence-based) methods.

1.1 Microarrays

Microarrays [14] permit the study of gene expression and the detection of mu-
tations. “Similar to the situation in which microprocessors have increased the
speed of computation, microarray-based genomic technologies have revolution-
ized genetic analysis of biological systems” [18]. However, they tend to be used
for relatively pure, or homogenous samples, and their applicability at the com-
munity level is less well-understood. In order to identify unknown bacterial
strains, the microarray requires a “probe” taken from a related strain, which
may or may not be available. In addition, the cost of microarray equipment is,
in the short to medium term, high for non-trivial studies.

1.2 Sequencing

Sequence-based approaches, on the other hand are guided by existing genomic
knowledge-bases, and we briefly describe two of these here.

1.2.1 Environmental Gene Tags

The assembly of genomes from complex communities currently “demands enor-
mous sequencing expenditure for the assembly of even the most predominant
members” [16]. Because of this difficulty, borne out by initial studies by Tringe
et al. [16], the authors decided to employ an alternative, “gene-centric” ap-
proach that does not attempt to attribute genes obtained to any particular
genome. They obtained their initial dataset by taking four sets of samples, one
from agricultural soil, and three from whale carcasses. Samples were then parti-
tioned into bacteria, archea or eukaryotes using PCR-amplified rRNA libraries.
Genomic small-insert libraries were then sequenced from each sample (100 mil-
lion base pairs from the soil and 25 million base pairs from each whale sample).
These sequences, derived from different population members, were termed “En-
vironmental Gene Tags” (EGTs), since they may encode regions of functional
genes that are necessary for survival in a particular environment. Different envi-
ronment types will exhibit unique EGT “fingerprints”, containing genes derived
from many different genomes. The study showed that two whale carcasses, lo-
cated 8000km apart, nontheless had very similar EGT patterns. Thus, one may
determine the type of environment from this fingerprinting technique.
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1.2.2 MEGAN

In a recent study, Huson et al present an approach [10] to the problem of genomic
assembly in which the authors compare sequenced data to existing databases.
Specifically, the set of DNA sequences obtained by random shotgun sequencing
from the environmental sample is run against known sequences using BLAST.
The resulting meta-data is then provided as input to the MEGAN package,
which estimates and explores the taxonomical content of the data set. This
may be a good technique to obtain the most abundant species in a sample, but
will have difficulty locating rare sequences of interest. One of the themes of our
approach is to hunt systematically for signs of a genome of interest.

1.3 Implications

The existing approaches require significant sequencing effort. In 2007, DNA
sequencing costs approximately 1 (U.S.) cent per base [5]. Even for a relatively
simple community study on the drainage region of an acid mine, roughly 15
million bases were sequenced in order to obtain the required metagenomic data
[16], at a cost (today) of approximately $150,000. A soil study, requiring at
least 50 million bases, might then cost half a million US dollars.

Fortunately, sequencing is not always necessary as a first step. Molecular
techniques that work at the whole sequence level may be used to reduce the
initial complexity of a sample population. One tool commonly employed is “GC
fractionation” [9], which works along the principles of a molecular “sieve”, sort-
ing strands according to their relative GC content (guanine and cytosine being
heavier than their counterparts adenine and thymine). This may be effective
when trying to partition a sample into eukaryotic and bacterial sets, since eu-
karyotic DNA tends to have a much lower GC content (e.g, we selected two
complete bacterial genome sequences, A (Escherichia coli K12) and B (Shigella
boydii Sb227) for early studies; each of these had a GC content of roughly 51%,
while the human genome is made up of around 45% GC and that of the mouse
roughly 44%). However, such a relatively crude tool rapidly proves ineffective
when dealing with shorter sequences, where we may only possess genomic frag-
ments within our sample. For bacterial sequence A, when taking 200 random
consecutive sequences of length 50,000, we obtained a GC content ranging from
46.7% to 53.3% with the 90% confidence interval ranging from 47.3% to 52.8%.

Preliminary work on estimating the complexity of a heterogenous popula-
tion of DNA strands (without using sequencing) is reported in [7]. This paper,
motivated in part by the authors’ earlier work on DNA-based computing [1],
reports initial experimental investigations into the use of basic laboratory meth-
ods (combined with probability theory) to estimate the complexity of a tube of
strands. Faulhammer et al. digested their initial tube with a set of restriction
enzymes with recognition sites differing in sequence and of length 4 ≤ k ≤ 8.
The contents of the tube were then visualised in a gel, and the number of distinct
bands observed used to obtain an estimate of the number of different strands.

Our proposal uses some of the same basic laboratory methods, but it differs
from that of [7] in several important ways:

1. Rather than simply counting the number of different restriction fragments
obtained, we use the lengths themselves to obtain a partition of segments.
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2. We use the resulting data structure both in silico and in vitro to compare
different DNA “tubes”.

3. We use multiple levels of restriction enzyme digestion.

This basic approach (the use of restriction enzymes to digest a population
sample, followed by analysis of the fragment size) also underpins an early variant
of the well-known technique of DNA fingerprinting [11]. Restriction fragment

length polymorphisms (RFLPs) [6] provide a technique by which organisms may
be differentiated by comparing the patterns obtained by digesting a certain
portion of their DNA. If two organisms differ in the distance between restriction
sites, the length of the fragments produced will differ (i.e., be polymorphic) when
the DNA is digested. However, this method is generally only useful when the
population sample is relatively homogeneous (e.g., one wishes to distinguish
between members of the same species).

In the rest of the paper, we present and evaluate a simple and powerful
technique called DNA hash pooling. We conclude with a discussion of plans for
future theoretical and experimental work.

2 DNA Hash Pooling

In computer science, hashing [12] maps a relatively small set from a large domain
(e.g., 10,000 integers ranging in value from 0 to one billion) to a small domain
(e.g,. the set of integers from 1 to 5000) through a mathematical hash function.
Applications of hashing include cryptography, error correction, authentication
and identification. A typical hash function is modulus (i.e., remainder). For
example, 7 mod 5 = 2 because 2 is the remainder after dividing 7 by 5. For the
same reason, 28 mod 5 = 3. A hash data structure based on “mod 5” will map
28 to bucket (or pool) 3, 7 to pool 2, 12 to pool 2, 59 to pool 4, and so on. There
are many variants of hashing, some of which entail hashing each pool resulting
from the first hash function in order to get “purer” pools, and then using the
combined hash results to generate an item “label”. For example, using a second
hash function, based on “mod 7”, 28 would map to 0 and 53 to 5. Thus the
full “label” of 28 would be (3, 0) because 28 mod 5 = 3 and 28 mod 7 = 0. By
contrast, the label of 53 would be (3, 4) because 53 mod 5 = 3 and 53 mod 7 is
4. Associated with each unique label is a pool having a relatively small number
of distinct values.

DNA hash pooling or hash pooling for short is the analogous operation on
DNA. The “hash functions” in this scenario correspond to biological operations
that give rise to distinctive and quantifiable “fingerprints” (e.g., measurement
of GC content followed by digestion by a set of restriction enzymes). The label
components correspond to the “values” obtained by application of the hash
functions (e.g. GC content and fragment length).

In silico, our method involves simulating these operations on known se-
quences (typically though not necessarily of entire genomes) and characterizing
different portions of those sequences from the result(s). In vitro, our method
involves performing the bench-based operations and sequencing only those pools
that are likely to be pure (this is, unique to one genome), or otherwise of interest.

For concreteness, this paper focusses on hash pooling based solely on restric-

tion enzymes. The basic operations are
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Separate on
length after 6 b.p.
restriction enzyme

Associate label L, M
with pool

Restrict with 4 b.p.

Separate on
length

restriction enzyme

Pool
associated with length M

Strands of length L

Figure 1: Two-stage hash pooling

1. Apply a six base-pair (base pair) restriction enzyme to a sequence, yielding
a set of fragments.

2. Partition those fragments based on length (perhaps approximately), using
a technique such as gel electrophoresis.

3. Apply a four base pair restriction enzyme to a selected subset of partitions
and separate on length again.

4. Sequence selected lengths.

Each resulting pool is therefore associated with a label consisting of two
lengths, the first based on a six base pair restriction enzyme and the second
based on a four base pair restriction enzyme (Figure 1).
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The procedure may be described for K stages in pseudo-code as follows:

hash(stage j, sample s, label L, K)

r: = restriction enzyme for stage j

frags := apply r to s

mysamps := partition frags on length

for each t in mysamps

tlabel := L concat (r, length(t))

if (j < K)

hash(j+1, t, tlabel, K)

else (t, tlabel) is a member of the final pool

end for

Pseudo-code for K stage hash pooling based on restriction enzymes.

The initial call on an initial sequence orig would be

hash(1, orig, null, K), where null is the empty label.

For example, consider the genomic sequence of bacterium A (E. coli K12).
If we cut A using the enzyme SmaI (recognising CCCGGG), take the pool
corresponding to length 264, cut that pool with RsaI (GTAC) and take the pool
of length 31, we get a pool having label (264, 31). It happens to have a single
member with the sequence CTATCCGCTCAATGAGTCGGTCGCCATTGCC.
By contrast, the pool with label (770, 207) has three different sequences. For
some applications, we will want pools having singletons (i.e., a set with only a
single element) in order to obtain a pure sequence without the need for cloning.

One may object that separating fragments by length entails a certain inac-
curacy imposed by the laboratory technique; a reasonable estimate of this error
may be plus or minus 10 base pairs[3]. In this case, in order to obtain a pure
sample, we may be interested in finding a pool whose label has no “10 base
pair-neighbors.” The labels L and L′ are 10 base pair-neighbors if (i) the first
component of L and the first component of L′ are different but differ by 10 or
less (0 <| L[0] − L′[0] |≤ 10); or (ii) the first component of L and L′ are the
same but the second components differ by 10 or less (0 <| L[1]− L′[1] |≤ 10).
For E. coli K12, the labels (188, 59) and (188, 106), for example, have no 10
base pair-neighbors.

3 Experiments

Having presented our formal framework, we can now present several applications
and our in silico empirical results.

3.1 Genome Detection

The first question we ask is the following: given a tube, T , of unknown DNA
(perhaps from an environmental sample) and a genome whose sequence is known,
are “reasonably sized” portions of that genome present in T , even if in small
concentrations? (Figure 2)

A “reasonably sized” portion is a sequence of length at least 200,000 base
pairs (or roughly 5% of the length of a bacterial genome.) This might be used for
the detection of bacterial pathogens in food, for example. In what follows, we
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Find intersection among
candidates based on labels
and test equi−label pairs
for sequence equality

DNA sequences

Determine lengths with

restriction enzyme

In silico, create hash pool
and determine candidates

Known genome

Apply 6 b.p.

no 10 b.p. neighbors

restriction enzyme

Environmental

In silico, apply 6 b.p.

Figure 2: Genome sequence detection

used bacterium A, E. coli K12, which is often used as an indicator organism in
the detection of faecal contamination. Our in silico result involved the following
steps:

1. Compute the candidate set of A, consisting of possibly non-singleton pools
having no 10 base pair neighbors. There were 3,567 candidates. This gives
us a “comparison library” of pools. It is important to note that this step is
purely computational and can be computed just once for any combination
of known genome and restriction enzyme set.

2. We simulate the unknown sample T by taking a 200,000 consecutive base
pair subsequence of A (with the start position taken uniformly at random)
and combining it with a sequence of length four times that of A (generated
pseudo-randomly to have the same GC content as A).

3. We then compute the resulting candidate set of hash pools, based on no
10 base pair neighbors.

Having tried this 20 times, we found, on average, 2,000 pools in the second
candidate set. On average the two sets had an intersection of cardinality 71
based on their labels. When labels were equal, 99.8% of the time there was a
match of the sequence and the sequence came from that 200,000 consecutive
base pair subsequence, giving a precision of 99.8%. This implies that one may
be able to avoid sequencing if one finds enough common candidates. Further
the recall was 100% in that we always found a matching label.

When applying this in a laboratory setting, there is the significant question
of whether this operation many separate DNA extractions and applications of
a restriction enzyme. Fortunately, the answer is no. For each of the 20 tests,
first the six base pair restriction enzyme was used. This gave a collection of
fragment lengths. On average only 5.8 of those lengths had no 10 base pair
neighbors and had lengths similar to the lengths of the candidates from A. 1 So
on average only 5.8 fragment lengths required extraction. Of those, 4.7 (on av-
erage) yielded matching sequences. So, if this were done in vitro, approximately

1Typical lengths were between 7,000 base pairs and 39,000 base pairs
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70 common strands would be found using one application of SmaI and under
six applications of RsaI. Virtually all (99.8tested strands would be shown to be
equal, so sequencing would not even be necessary.

This experiment shows that in silico hash pooling on a known genome can
identify pools to look for in a sample, such that those pools have a strong
likelihood of containing a subsequence of the known genome. Thus, we can see
this method as an improvement over random sampling, and can be used even if
the bacterium of interest is relatively rare in the sample.

3.2 Sequence Query

Here we address the question: given a query sequence, is that sequence present,
at least in part, in the tube? This might be used to look for the presence of a
pathogen, for example. This question is clearly related to the previous one. In
fact, an experiment similar to that used to address the first question serves as
an illustration: suppose the sample under scrutiny contains A plus a lot of other
assorted DNA (e.g. the full genome of A amongst a pseudo-random sequence
four times the length of the A sequence and having the same GC content).
Then, 20 times, we take a random query subsequence of length 200,000 from A
and see if we can find matching parts in the sample tube.

The sample tube (A sequence plus a random sequence four times A in length
with no 10 base pair neighbors) has 3,516 candidate pools. The average 200,000
base pair subsequence of A has about 200 candidates. In our 20 experiments,
whenever two labels are equal, the corresponding sequences matched 100% of
the time (precision of sequence matching given label match of 100%). This is
not guaranteed to hold always of course, but again shows that even without
sequencing one can be quite sure that sequences will match if labels match.
Recall was not as good, as we found matching labels in 17/20 or 85

As in the first experiment, the six base pair restriction enzyme would cut
the fragments into certain lengths, but, on the average, only 2.3 of those lengths
(ranging from 10,000 base pairs to 30,000 base pairs) would have the properties
that (i) they had no 10 base pair neighbors and (ii) they matched the candidates
from the 200,000 base pair query sequence. Thus, on the average, under three
extractions need to be taken and then digested by the four base pair restriction
enzyme.

We also tried the negative case when the query sequence was nowhere present
in the sample. In that case, on the average, after cutting with the six base pair
restriction enzyme, on the average, under one of those lengths had the properties
that (i) they had no 10 base pair neighbors and (ii) they matched the candidates
from the 200,000 base pair query sequence. When extracted and digested by
the four base pair restriction enzyme, there were no matching labels (other than
a single label whose final fragment length was only 4). So this technique does
not throw up false positives.

3.3 Similarity Discovery

Here we consider the problem: given two tubes of DNA, do they contain strands
that are the same or very similar? This might be useful when comparing samples
of unsequenced genomes. In this case, we cannot compute candidate pools that
have no 10 base pair neighbors using known genomes. Instead, we have to
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4 b.p. restriction enzyme to those
fragments. 

long fragment lengths. Apply the
Choose pairs that have the same

Apply 6 b.p.
restriction enzyme

Apply 6 b.p.
restriction enzyme

For resulting fragments having the same labels,
test for sequence equality

Figure 3: Sample comparison

measure them. Sometimes we may not know whether the sample contains known
sequences. If it does, we can use the techniques in the Subsequence Detection
subsection above to find out which known genomes each sample contains and
then see which are the same.

Let us assume however that the sample contains no known genomes (or
that we want to detect commonalities besides those among known genomes).
Our strategy will be to choose the most likely pairs to study by focussing on
“unusual” labels (Figure 3). We therefore performed the following in silico

experiment:

1. Take a 200,000 base pair sequence, target, with the same GC content as
A, plus a random sequence four times the size of A (4×4.7Mb =≈ 20Mb),
with the same average GC content as A.

2. For the second sample, we use the same 200,000 base pair sequence target
plus another random sequence four times the size of A, with the same
average GC content. Thus the target in each sample is 200,000 base pairs
long, just 1% of the roughly roughly 20 million for the entire sequence
present in each tube.

Now the question is this: in which pools should we look for common strands?
That is, is it better to look at pools where the six base pair restriction enzyme
has cut strands of length approximately 4,000 (the expected value) or much
longer? The in silico answer is obvious in retrospect: to find common strands,
the best pools to look at are ones corresponding to long lengths when cut by
the first restriction enzyme. Thus the procedure is this:

1. Cut each sample with the six base pair restriction enzyme, then find all
lengths that are the same (within an accuracy of 10 base pairs).

2. On the upper quartile of those lengths (approximately 235 of them), apply
the four base pair restriction enzyme.

Of those fragments that have the same lengths (within 10 base pairs) for
both the first and second restriction enzymes, between 4% and 7% are the same
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sequence over the 20 experiments that we tried. Other quartiles are about a
factor of 10 less good. On the other hand, if we look at dectiles (1/10), then
the upper 1/10 of the lengths (from 10,210 to 24,550) gives a hit ratio of about
14%, and only 94 lengths from the six base pair restriction enzyme require an
application of the second restriction enzyme.

If we have already identified known genomes that the two tubes share in
common, then we should avoid labels that correspond to those.

4 Implementation Issues

In this section we give a brief overview of the two main laboratory tools from
which our basic operations are built: restriction enzymes (for chopping DNA
into sections) and gel electrophoresis (for sorting fragments according to length).
The descriptions are taken from [2].

4.1 Restriction Enzymes

Restriction endonucleases [17] (often referred to as restriction enzymes) recog-
nize a specific sequence of DNA known as a restriction site. Any DNA that
contains the restriction site within its sequence is cut by the enzyme at that
point.
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Figure 4: (a)Double-stranded DNA. (b) DNA being cut by RsaAI. (c) The
resulting blunt ends

For example, the double-stranded DNA in Fig. 4a is cut by restriction en-
zyme RsaI, which recognizes the restriction site GTAC. The enzyme breaks (or
“cleaves”) the DNA in the middle of the restriction site (Fig. 4b). The exact
nature of the break produced by a restriction enzyme is of great importance.
Some enzymes like RsaI (mentioned earlier) leave “blunt” ended DNA (Fig. 4c).

4.2 Gel Electrophoresis

Gel electrophoresis is an important technique for sorting DNA strands by size [4].
Electrophoresis is the movement of charged molecules in an electric field. Since
DNA molecules carry a negative charge, when placed in an electric field they
tend to migrate toward the positive pole. The rate of migration of a molecule
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Gel

BufferDNA

Electrostatic gradient

DNA separates into bands
Smallest

Electrophorese

Figure 5: Gel electrophoresis process

in an aqueous solution depends on its shape and electric charge. Since DNA
molecules have the same charge per unit length, they all migrate at the same
speed in an aqueous solution. However, if electrophoresis is carried out in a
gel (usually made of agarose, polyacrylamide, or a combination of the two), the
migration rate of a molecule is also affected by its size.2 This is due to the
fact that the gel is a dense network of pores through which the molecules must
travel. Smaller molecules therefore migrate faster through the gel, thus sorting
them according to size.

A simplified representation of gel electrophoresis is depicted in Fig. 5. The
DNA is placed in a well cut out of the gel, and a charge applied.

Once the gel has been run (usually overnight), it is necessary to visualize the
results. This is achieved by staining the DNA with the fluorescent dye ethidium
bromide and then viewing the gel under ultraviolet light. At this stage the gel
is usually photographed.

One such photograph is depicted in Fig. 6. Gels are interpreted as follows;
each lane (1–7 in our example) corresponds to one particular sample of DNA
(we use the term tube in our abstract model). We can therefore run several tubes
on the same gel for the purposes of comparison. Lane 7 is known as the marker

lane; this contains various DNA fragments of known length, for the purpose of
calibration. DNA fragments of the same length cluster to form visible horizontal
bands, the longest fragments forming bands at the top of the picture, and the
shortest ones at the bottom. The brightness of a particular band depends on
the amount of DNA of the corresponding length present in the sample. Larger
concentrations of DNA absorb more dye, and therefore appear brighter. One
advantage of this technique is its sensitivity – as little as 0.05 µg of DNA in one
band can be detected as visible fluorescence.

The size of fragments at various bands is shown to the right of the marker
lane, and is measured in base pairs. In the photograph, the largest band resolv-
able by the gel is 2,036 base pairs long, and the shortest one is 134 base pairs
long. Moving right to left (tracks 6–1) is a series of PCR reactions which were
set up with progressively diluted target DNA (134 base pairs) to establish the
sensitivity of a reaction. The dilution of each tube is evident from the fading of
the bands, which eventually disappears in lane 1.

2Migration rate of a strand is inversely proportional to the logarithm of its molecular weight
[13].
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Figure 6: Gelelectrophoresis photograph

5 Conclusions

DNA Hash pooling is a method to simplify many problems in metagenomics. It
gives the experimenter the ability to query for known sequences and genomes in
a sample or to find common sequences from unknown genomes in two or more
samples even if the identified sequences are rare. The version of the technique
described in this paper involves a small number of steps of the form: extract
DNA of a certain length, apply a restriction enzyme to it, and measure the
lengths of the results. In most cases, sequencing is unnecessary and, where it
is, cloning is not. The main technical challenge is to get reasonably accurate
measurements of length.

The main future work we anticipate is to validate the technique and then
extend the method as new application scenarios present themselves.
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Abstract

In this paper we describe a new technique for the characterisation of
populations of DNA strands. Such tools are vital to the study of ecological
systems, at both the micro (e.g., individual humans) and macro (e.g.,
lakes) scales. Existing methods make extensive use of DNA sequencing
and cloning, which can prove costly and time consuming. The overall
objective is to address questions such as: (i) Is a known genome sequence
present in an environmental sample? (ii) Is a specific fragment sequence
present in a sample? (iii) How similar in terms of sequence content are
two samples? (iii) Does a sample contain a desired concentration of a long
sequence?

We aim to answer these questions using minimal DNA sequencing and,
when sequencing is required, using little or no cloning. Furthermore, we
seek to design a method that is economical and practical. We propose
a probabilistic method involving multiple filtering criteria that result in
“pools” of DNA of high or very high purity. Because our method is similar
in spirit to hashing in computer science, we call the method hash pooling.
To illustrate this method, we describe examples using pairs of restriction
enzymes. Our empirical results are in silico but reflect a sensitivity to
experimental error.

1 Introduction

Biologists often examine large and diverse populations of organisms (for exam-
ple, molecules, microbes or plants). This is particularly the case in fields such as
microbial ecology, which studies the interactions between living microorganisms
(such as algae, or bacteria) and their environment. One of the most significant
and challenging problems in these ares of biology is to quantify the overall di-
versity of a given population. This task is often made even more difficult by
the fact that many “wild” organisms resist laboratory cultivation (and, thus,
have unknown phenotypes and their genomes are unknown), or may be present
in a population in relatively low numbers. In this paper, we present a novel
approach to solving this problem.

The rest of the paper is organized as follows. We first motivate what follows
by introducing the new field of metagenomics, which is concerned mainly with
population-level genetic studies. By describing existing methods for character-
izing DNA samples, we highlight potential shortcomings in their methodology
or applicability. We then present an alternative technique, which we call DNA

hash pooling, describe the method and the results of preliminary in silico studies,
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and conclude with a discussion of plans for future theoretical and experimental
work.

2 Metagenomics

The study of metagenomics has emerged in recent years [?, ?, ?, ?] to perform
what has been described as “environmental forensics”, including the quantifica-
tion of relative abundances of known species, and the estimation of the number
of “unknown” species in a given environment [?]. The potential impact of this
new field is huge, with applications ranging across medicine, agriculture and
biotechnology, and the insights gained will be of significant assistance in further-
ing our understanding of biodiversity in both new and familiar environments,
such as frozen Antarctic lakes and the human gut [?].

Metagenomic analysis involves the extraction of DNA from an environmental
sample, cloning of the DNA into a suitable “vector”, insertion of the vector into
a host bacterium and then screening the resulting transformed bacteria [?].
Screening may occur on the basis of gene expression using microarrays [?] or
some other trait, such as antibiotic production [?], or the bacteria may simply
be sequenced at random. We now briefly describe the first (microarray) and
third (sequence-based) methods.

2.1 Microarrays

Microarrays [?] permit the study of gene expression and the detection of mu-
tations. “Similar to the situation in which microprocessors have increased the
speed of computation, microarray-based genomic technologies have revolution-
ized genetic analysis of biological systems” [?]. However, they tend to be used for
relatively pure, or homogenous samples, and their applicability at the commu-
nity level is less well-understood. In order to identify unknown bacterial strains,
the microarray will still require a “probe” taken from a related strain, which
may or may not be available. In addition, the cost of microarray equipment
may prove prohibitive for non-trivial studies in the short to mid-term.

2.2 Sequencing

Sequence-based approaches, on the other hand are guided by existing genomic
knowledge-bases, and we briefly describe two of these here.

2.2.1 Environmental Gene Tags

The assembly of genomes from complex communities may well “demand enor-
mous sequencing expenditure for the assembly of even the most predominant
members” [?], and may well prove to be infeasible for most communities in
the forseeable future. Because of this difficulty, borne out by initial studies by
Tringe et al. [?], the authors decided to employ an alternative, “gene-centric”
approach, without attributing genes obtained to any particular genome. They
obtained their initial dataset by taking four sets of samples, one from agricul-
tural soil, and three from whale carcasses. Samples were then partitioned into
bacteria, archea or eukaryotes using PCR-amplified rRNA libraries. Genomic
small-insert libraries were then sequenced from each sample (100 million base
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pairs from the soil and 25 million base pairs from each whale sample). These
sequences, derived from different population members, were termed “Environ-
mental Gene Tags” (EGTs), since they may encode regions of functional genes
that are necessary for survival in a particular environment. Different environ-
ment types will exhibit unique EGT “fingerprints”, containing genes present in
many different genomes. The study showed that two whale carcasses, located
8000km apart, nontheless had very similar EGT patterns.

2.2.2 MEGAN

In a recent study, Huson et al present an alternative approach [?] to the problem
of genomic assembly in which the authors compare sequenced data to existing
databases, using BLAST. The set of DNA sequences obtained from the environ-
mental sample is run against known sequences in silico using BLAST. The set
of reads, obtained by running random shotgun sequencing on the environmental
sample, is run against known sequences in silico using BLAST. The resulting
meta-data is then provided as input to the MEGAN package, which estimates
and explores the taxonomical content of the data set. This may be a good
technique to obtain the most abundant species in a sample.

2.3 Implications

Both of the existing approaches require significant sequencing effort. In 2007,
DNA sequencing costs approximately 1 (U.S.) cent per base [?]. Even for a rela-
tively simply community study on the drainage region of an acid mine, roughly
15 million bases were sequenced in order to obtain the required metagenomic
data [?], at a cost (today) of approximately $150,000. A soil study, requiring at
least 50 million bases, might then cost half a million US dollars.

However, it may not always be necessary to perform sequencing as a first
step. Molecular techniques that work at the whole sequence level may be used
to reduce the initial complexity of a sample population. One tool commonly
employed is “GC fractionation” [?], which works along the principles of a molec-
ular “sieve”, sorting strands according to their relative GC content (guanine and
cytosine being heavier than their counterparts adenine and thymine). This may
be effective when trying to partition a sample into eukaryotic and bacterial
sets, since eukaryotic DNA tends to have a much lower GC content (e.g, we se-
lected two complete bacterial genome sequences, A (Escherichia coli K12) and
B (Shigella boydii Sb227) for early studies; each of these had a GC content of
roughly 50%, while the human genome is made up of around 45% GC and that
of the mouse roughly 44%). However, such a relatively crude tool rapidly proves
ineffective when dealing with shorter sequences, where we may only possess ge-
nomic fragments within our sample. For sequence A, when taking 200 random
consecutive sequences of length 50,000, we obtained a GC content ranging from
46.7% to 53.3% with the 90% confidence interval ranging from 47.3% to 52.8%.
If we reduce the sequence length even further, to 10,000, then the GC content
90% confidence interval ranges from 45.8% to 54.1%.

Preliminary work on estimating the complexity of a heterogenous popula-
tion of DNA strands (without using sequencing) is reported in [?]. This paper,
motivated in part by the authors’ earlier work on DNA-based computing [?],
reports initial experimental investigations into the use of basic laboratory meth-
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ods (combined with probability theory) to estimate the complexity of a tube of
strands. Faulhammer et al. digested their initial tube with a set of restriction
enzymes with recognition sites differing in sequence and of length 4 ≤ k ≤ 8.
The contents of the tube were then visualised in a gel, and the number of distinct
bands observed used to obtain an estimate of the number of different strands.

Although our proposal uses the same basic laboratory methods, it differs
from that of [?] in several important ways:

1. Rather than simply counting the number of different restriction fragments
obtained, we use the lengths themselves to obtain a partition of segments.

2. We use the resulting data structure both in silico and in vitro to compare
different DNA “tubes”.

3. We may often use several levels of restriction enzyme digestion.

This basic approach (the use of restriction enzymes to digest a population
sample, followed by analysis of the fragment size) underpins an early variant
of the well-known technique of DNA fingerprinting [?]. Restriction fragment

length polymorphisms (RFLPs) [?] provide a technique in which organisms may
be differentiated by comparing the patterns obtained by digesting their DNA. If
two organisms differ in the distance between restriction sites, the length of the
fragments produced will differ (i.e., be polymorphic) when the DNA is digested.
However, this method is generally only useful when the population sample is
relatively homogeneous (e.g., one wishes to distinguish between members of the
same species). We now describe our alternative scheme in more detail.

3 DNA Hash Pooling

In computer science, hashing [?] maps a relatively small set from a large domain
(e.g., the set of integers from 0 to one billion) to a small domain (e.g,. the set
of integers from 1 to 5000) through a mathematical hash function. Applications
of hashing include cryptography, error correction, authentication and identifica-
tion. A typical hash function is modulus (i.e., remainder). For example, 7 mod
5 = 2 because 2 is the remainder after dividing 7 by 5. For the same reason,
28 mod 5 = 3. A hash data structure based on “mod 5” will map 28 to bucket
(or pool) 3, 7 to pool 2, 12 to pool 2, 59 to pool 4, and so on. There are many
variants of hashing, some of which entail hashing each pool resulting from the
first hash function in order to get “purer” pools, and then using the combined
hash results to generate an item “label”. For example, if there were a second
hash function, this time based on “mod 7”, then 28 would map to 0 and 53 to
5. Thus the full “label” of 28 would be (3, 0) because 28 mod 5 = 3 and 28
mod 7 = 0. By contrast, the label of 53 would be (3, 4) because 53 mod 5 = 3
and 53 mod 7 is 4. Associated with each unique label is a different pool usually
having a small number of distinct values.

DNA hash pooling or hash pooling for short is the analogous operation on
DNA. The “hash functions” in this scenario correspond to biological operations
that give rise to distinctive and quantifiable “fingerprints” (e.g., measurement
of GC content followed by digestion by a set of restriction enzymes). The label
components correspond to the “values” obtained by application of the hash
functions (e.g. GC content and fragment length).
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Figure 1: Two-stage hash pooling

In silico, our method involves simulating these operations on known se-
quences (typically of entire genomes) and characterizing different portions of
those sequences from the result(s). In vitro, our method involves performing
the analogous, bench-based operations and sequencing only those pools that
are likely to be pure (this is, unique to one genome), or otherwise of interest.
Such pools tend to pertain to long lengths, as we shall see later.

For concreteness, this paper focusses on hash pooling based solely on restric-

tion enzymes. The basic operations are

1. Apply a six base-pair (b.p.) restriction enzyme to a sequence, yielding a
set of fragments.

2. Partition those fragments based on length (perhaps approximately), using
a technique such as gel electrophoresis.

3. Apply a four b.p. restriction enzyme to each partition (or a selected subset
of partitions) and separate on length again.

Each resulting pool is therefore associated with a label consisting of two
lengths, the first based on a six b.p. restriction enzyme and the second based
on a four b.p. restriction enzyme (Figure 1).
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The algorithm may be described in pseudo-code as follows:

hash(stage j, sample s, label L, K)

r: = restriction enzyme for stage j

frags := apply r to s

mysamps := partition frags on length

for each t in mysamps

tlabel := L concat (r,|t|)

if (j < K)

hash(j+1, t, tlabel)

else (t, tlabel) is applied to the final pool

end for

Pseudo-code for k stage hash pooling based on restriction enzymes.

For example consider the genomic sequence of bacterium A (E. coli K12).
If we cut A using the enzyme SmaI (recognising CCCGGG), take the pool
corresponding to length 264, cut that pool with RsaI (GTAC) and take the pool
of length 31, we get a pool having label (264, 31), its only member being the
sequence CTATCCGCTCAATGAGTCGGTCGCCATTGCC. By contrast, the
pool with label (770, 207) has three different sequences. For some applications,
we will want pools having singletons (i.e., a set with only a single element) in
order to obtain a pure sequence without the need for cloning.

One may object that separating fragments by length entails a certain inac-
curacy imposed by the laboratory technique; a reasonable estimate of this error
may be plus or minus 10 b.p. In this case, in order to obtain a pure sample, we
may be interested in finding a pool whose label has no “10 b.p.-neighbors.” The
labels L and L′ are 10 b.p.-neighbors if (i) the first component of L and the first
component of L′ are different but differ by 10 or less (0 <| L[0]− L′[0] |≤ 10);
or (ii) the first component of L and L′ are the same but the second components
differ by 10 or less (| L[1] − L′[1] |≤ 10). For E. coli K12, the labels (188, 59)
and (188, 106), for example, have no 10 b.p.-neighbors.

4 Experiments

Having presented our formal framework, we can now present several applications
and our in silico results.

4.1 Large Genome Sequence Detection

The question we ask is the following: given a tube, T , of unknown DNA (per-
haps from an environmental sample) and a genome whose sequence is known,
are “reasonably sized” portions of that genome present in T , even if in small
concentrations? (Figure 2)

A “reasonably sized” portion is a sequence of length at least 200,000 b.p.
(which might account for roughly 5% of the size of a bacterial genome.) This
might be used for the detection of bacterial pathogens in food, for example.
In what follows, we used bacterium A, E. coli K12, which is often used as
an indicator organism in the detection of faecal contamination. Our in silico

experiment involved the following steps:

6



Find intersection among
candidates based on labels
and test equi−label pairs
for sequence equality

DNA sequences

Determine lengths with

restriction enzyme

In silico, create hash pool
and determine candidates

Known genome

Apply 6 b.p.

no 10 b.p. neighbors

restriction enzyme

Environmental

In silico, apply 6 b.p.

Figure 2: Genome sequence detection

1. Compute the candidate set of A, based on no 10 b.p. neighbors. There
were 3,567 candidates (final pools from A having no 10 b.p. neighbors).
This gives us a “comparison library” of pools. It is important to note that
this is a “once only” operation for any combination of known genome and
restriction enzyme set.

2. Take a 200,000 consecutive b.p. subsequence of A. (with the start position
taken uniformly at random) and combine it with a sequence of length
four times that of A (generated pseudo-randomly to have the same GC
content as A.) Compute its candidate set of hash pools, based on no 10
b.p. neighbors.

Having tried this 20 times, we found, on average, 2,000 pools in the second
candidate set. On average the two sets had an intersection of cardinality 71
based on their labels. When labels were equal, 99.8% of the time there was a
match of the sequence and the sequence was in bacterium A.

When applying this in a laboratory setting, there is the significant question
of whether this operation requires many rounds of DNA digestions. Fortunately,
the answer is no. For each of the 20 tests, the six b.p. restriction enzyme was
used and, on average, 5.8 fragment lengths were chosen, 4.7 of which (on aver-
age) yielded matching sequences. So, if this were done in vitro, approximately
70 common strands would be found using one application of SmaI and approxi-
mately six applications of RsaI. Virtually all tested strands would be shown to
be equal (so sequencing would not even be necessary).

Martyn: we should test this for sure

When the neighbor condition is reduced to 5 b.p., E. coli yields 6,008 candi-
date pools. The comparison group (again 200,000 bases from A and a pseudo-
random sequence four times the length of A based on the same GC content)
yielded approximately 6,500 candidate pools each time, based on no 5 b.p.
neighbors. On average the two sets had an intersection of cardinality 150 based
on their labels. When labels were equal, 99.2% of the time there was a match
of the sequence and the sequence was in bacterium A. In each of the 20 tests,
the six b.p. restriction enzyme was used and then, on average, 8.75 fragment
lengths were chosen, 6.75 of which (on average) yielded matching sequences.
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Figure 3: Sequence querying

This experiment shows that in silico hash pooling on a known genome can
identify pools to look for in a sample, such that those pools have a strong
likelihood of containing a subsequence of the known genome. Thus, we can see
this method as an improvement over random sampling, and can be used even if
the bacterium of interest is relatively rare in the sample.

4.2 Sequence Detection

Here we address the question: given a query sequence, is that sequence present,
at least in part, in the tube? This might be used to look for the presence of a
pathogen, for example. This question is clearly related to the previous one. In
fact, an experiment similar to that used to address the first question serves as
an illustration: suppose the sample under scrutiny contains A plus a lot of other
assorted DNA (the full genome of A amongst a pseudo-random sequence four
times the length of the A sequence.) Then, 20 times, we take a random query
subsequence of length 200,000 from A and see if we can find matching parts in
the sample tube.

The sample tube (A sequence plus a random sequence four times A in length
with no 10 b.p. neighbors) has 3,567 candidate pools. The average 200,000
b.p. subsequence of A has about 200 candidates. If two labels are equal, the
corresponding sequences matched 100% over all 20 tests of length 200,000.This
is not guaranteed, but again shows that relatively little sequence is likely to be
required to find a matching subsequence of the query string if it is present. If
the query string is not present in the sample at all, then very few corresponding
pools will be found.

4.3 Sample Comparison

Here we consider the problem: given two tubes of DNA, do they contain strands
that are the same or very similar? This might be useful when comparing samples

8
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Figure 4: Sample comparison

of unsequenced genomes. In this case, we cannot compute candidate pools that
have no b.p. neighbors, because we do not have access to full genomic sequences.
However, we can choose the most likely pairs to study by focussing on “unusual”
labels (Figure 4). We therefore performed the following in silico experiment:

1. Take a 200,000 b.p. sequence, target, with the same GC content as A, plus
a random sequence four times the size of A (4 × 4.7Mb =≈ 20Mb), with
the same average GC content as A.

2. For the second sample, we use target plus another random sequence four
times the size of A, with the same average GC content. Thus the target
in each sample is 200,000 b.p. long, compared to roughly 20 million for
the entire sequence present in each tube.

Now the question is this: in which pools should we look for common strands?
That is, is it better to look at pools where the six b.p. restriction enzyme has
cut strands of length approximately 4,000 (the expected value) or much longer?
The in silico answer is obvious in retrospect: to find common strands, the best
pools to look at are ones corresponding to long lengths when cut by the first
restriction enzyme. Thus the procedure is this:

1. Cut each sample with the six b.p. restriction enzyme, then find all lengths
that are the same (within an accuracy of 10 b.p.).

2. On the upper quartile of those lengths (approximately 235 of them), apply
the four b.p. restriction enzyme.

Of those fragments that have the same lengths (within 10 b.p.) for both the
first and second restriction enzymes, between 4% and 7% are the same sequence
over the 20 experiments that we tried. Other quartiles are about a factor of 10
less good. On the other hand, if we look at dectiles (1/10), then the upper 1/10
of the lengths (from 10,210 to 24,550) gives a hit ratio of about 14%, and only
94 lengths from the six b.p. restriction enzyme require an application of the
second restriction enzyme.
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4.4 Vector Candidate Sequence Identification

Given a tube of strands from one or more known genomes, can we find a pure
strand of several thousand? This might be useful when trying to assemble
vectors for DNA insertion, for example. Given what we already know, this is
very easy: we simply find sequences with no 10 b.p. neighbors.

5 Implementation Issues

In this section we give a brief overview of the two main laboratory tools from
which our basic operations are built: restriction enzymes (for chopping DNA
into sections) and gel electrophoresis (for sorting fragments according to length).
The descriptions are taken from [?].

5.1 Restriction Enzymes

Restriction endonucleases [?] (often referred to as restriction enzymes) recognize
a specific sequence of DNA known as a restriction site. Any DNA that contains
the restriction site within its sequence is cut by the enzyme at that point.1
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Figure 5: (a)Double-stranded DNA. (b) DNA being cut by RsaAI. (c) The
resulting blunt ends

For example, the double-stranded DNA in Fig. 5a is cut by restriction en-
zyme RsaI, which recognizes the restriction site GTAC. The enzyme breaks (or
“cleaves”) the DNA in the middle of the restriction site (Fig. 5b). The exact
nature of the break produced by a restriction enzyme is of great importance.
Some enzymes like RsaI (mentioned earlier) leave “blunt” ended DNA (Fig. 5c).
Others may leave “sticky” ends. For example, the double-stranded DNA in
Fig. 6a is cut by restriction enzyme Sau3AI, which recognizes the restriction
site GATC (Fig. 6b). The resulting sticky ends are so-called because they are
then free to anneal to their complement. It is important to note that we use
only blunt-ended restriction enzymes, in order to prevent erroneous annealing.

1In reality, only certain enzymes cut specifically at the restriction site, but we take this
factor into account when selecting an enzyme.
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Figure 6: (a) Double-stranded DNA being cut by Sau3AI. (b) The resulting
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Figure 7: Gel electrophoresis process

5.2 Gel Electrophoresis

Gel electrophoresis is an important technique for sorting DNA strands by size
[?]. Electrophoresis is the movement of charged molecules in an electric field.
Since DNA molecules carry a negative charge, when placed in an electric field
they tend to migrate toward the positive pole. The rate of migration of a
molecule in an aqueous solution depends on its shape and electric charge. Since
DNA molecules have the same charge per unit length, they all migrate at the
same speed in an aqueous solution. However, if electrophoresis is carried out in
a gel (usually made of agarose, polyacrylamide, or a combination of the two),
the migration rate of a molecule is also affected by its size.2 This is due to the
fact that the gel is a dense network of pores through which the molecules must
travel. Smaller molecules therefore migrate faster through the gel, thus sorting
them according to size.

A simplified representation of gel electrophoresis is depicted in Fig. 7. The
DNA is placed in a well cut out of the gel, and a charge applied.

Once the gel has been run (usually overnight), it is necessary to visualize the
results. This is achieved by staining the DNA with the fluorescent dye ethidium
bromide and then viewing the gel under ultraviolet light. At this stage the gel
is usually photographed.

One such photograph is depicted in Fig. 8. Gels are interpreted as follows;
each lane (1–7 in our example) corresponds to one particular sample of DNA
(we use the term tube in our abstract model). We can therefore run several tubes

2Migration rate of a strand is inversely proportional to the logarithm of its molecular weight
[?].
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Figure 8: Gelelectrophoresis photograph

on the same gel for the purposes of comparison. Lane 7 is known as the marker

lane; this contains various DNA fragments of known length, for the purpose of
calibration. DNA fragments of the same length cluster to form visible horizontal
bands, the longest fragments forming bands at the top of the picture, and the
shortest ones at the bottom. The brightness of a particular band depends on
the amount of DNA of the corresponding length present in the sample. Larger
concentrations of DNA absorb more dye, and therefore appear brighter. One
advantage of this technique is its sensitivity – as little as 0.05 µg of DNA in one
band can be detected as visible fluorescence.

The size of fragments at various bands is shown to the right of the marker
lane, and is measured in base pairs (b.p.). In our example, the largest band
resolvable by the gel is 2,036 b.p. long, and the shortest one is 134 b.p. long.
Moving right to left (tracks 6–1) is a series of PCR reactions which were set up
with progressively diluted target DNA (134 b.p.) to establish the sensitivity of
a reaction. The dilution of each tube is evident from the fading of the bands,
which eventually disappear in lane 1.

6 Conclusions
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