
DOI: 10.4018/JOEUC.20210501.oa4

Journal of Organizational and End User Computing
Volume 33 • Issue 3 • May-June 2021

This article published as an Open Access article distributed under the terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and production in any medium,

provided the author of the original work and original publication source are properly credited.

This article, published as an Open Access article on April 2, 2021 in the gold Open Access journal, Journal of Organizational and End User
Computing (converted to gold Open Access January 1, 2021), is distributed under the terms of the Creative Commons Attribution License

(http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and production in any medium, provided the
author of the original work and original publication source are properly credited.

50

A Top-K QoS-Optimal Service
Composition Approach Based on
Service Dependency Graph
Baili Zhang, School of Computer Science and Engineering, Southeast University, Jiangsu, China

Kejie Wen, Research Center for Judicial Big Data, Supreme Court of China, Jiangsu, China

Jianhua Lu, Key Laboratory of Computer Network and Information Integration, Ministry of Education, Jiangsu, China

Mingjun Zhong, University of Lincoln, Lincolnshire, UK

ABSTRACT

With the development of internet of things (IoT) technology, servitization of IoT device functions has
become a trend. The cooperation between IoT devices can be equivalent to web service composition.
However, current service composition approaches applied in the internet cannot work well in IoT
environments due to weak adaptability, low accuracy, and poor time performance. This paper, based
on service dependency graph, proposes a top-k QoS-optimal service composition approach suitable
for IoT. It aims to construct the relationship between services by applying the service dependency
model and to reduce the traversal space through effective filtering strategies. On the basis of a
composition path traversal sequence, the generated service composition can be represented directly
to avoid backtracking search. Meanwhile, the redundant services can be removed from the service
composition with the help of dynamic programming. Experiments show that the approach can obtain
the top-k QoS-optimal service composition and better time performance.

Keywords
Dependency Graph, IoT, Path Traversal Sequence, QoS, Service Composition, Top-K

1. INTRODUCTION

Web services are network-accessible software modules, which implement specific functions and can
be integrated into Web service compositions to accomplish more complex tasks (Sheng et al., 2014;
Lemos, Daniel, & Benatallah, 2016; Ding, & Jiang, 2009; Baryannis et al., 2010; Al-Fuqaha, Guizani,
Mohammadi, Chiu, & Agrawal, 2012). QoS is important for describing nonfunctional characteristics
of Web services, then it is often employed in choosing a web service composition with optimal QoS
(Chen, & Ha, 2018; Wang, Zhao, & Huang, 2017; Zheng, Ma, Lyu, & King, 2011;Zheng, Zhang,
&Lyu, 2014). As QoS is an aggregated concept consisting of several attributes, service composition
on enormous candidate sets is a challenging multi-objective optimization problem and has been
attracting tremendous attention from both industrial and academic communities (Baryannis et al.,
2010; Lemos, Daniel, & Benatallah, 2016; Lemos, Daniel, & Benatallah, 2016).

Journal of Organizational and End User Computing
Volume 33 • Issue 3 • May-June 2021

51

With the maturity of IoT technology and the deepening of relevant research, servitization
trend of IoT functions has become increasingly prevalent. Smart devices in an IoT environment
are encapsulated as a collection of services with multiple functions, so cooperation between smart
devices can be equivalent to Web service composition. However, many IoT services are deployed
on battery-powered, resource-constrained and potentially mobile devices, and they can dynamically
change their state due to poor wireless links, awake/sleep duty cycles or battery shortage (Palade,
Cabrera, White, Razzaque, & Clarke, 2017). Any member’s service failure or timeout can easily
cause service composition exceptions (Al-Fuqaha, Guizani, Mohammadi, Aledhari & Ayyash, 2015).
Most existing service composition approaches don’t consider those excaptions comprehensively and
cannot work well in IoT environment.

Top-k service composition approaches can provide users with more options to improve the
availability and substitutability of service compositions. Meanwhile, it can also avoid the occurrence of
“service overheating” caused by frequent selection of a single service composition. However, related
research work on Top-k service composition is comparatively rare, especially in IoT environment.
Although some researchers have proposed their own approaches to Top-k service compositions
(Benouaret, Benslimane, Hadjali, & Barhamgi, 2011; Almulla, Almatori, & Yahyaoui, 2011; Jiang,
Hu, & Liu, 2014; Deng, Huang, Tan, & Wu, 2014), those approaches cannot perform well in IoT due
to low accuracy and poor time performance.

Motivated by aforementioned discussion, this paper aims to propose a Top-k QoS-Optimal
service composition approach (TQSCA) suitable for IoT based on service dependency graph. The
approach has the following features: Firstly, it adopts the service dependency model to construct
the relationship between the services, and reduces the traversal space through the effective filtering
strategy; secondly, it uses a composition path traversal sequence to directly represent the generated
service composition to avoid unnecessary backtracking search; thirdly, referring to dynamic planning,
the redundant services are removed from service compositions; finally, the composition path traversal
sequences are saved by the priority queue, then the local optimal situation is well avoided. Therefore,
the approach can guarantee the global optimality of results and better time performance.

Section 2 discusses related work. Section 3 lists the definitions of issue concerned. Section 4
introduces the specific service composition algorithm. Section 5 gives the experimental process and
analyzes the experimental results. The last section summarizes this article.

2. RELATED WORK

To place our work in a state-of-the-art context, we briefly describe the related work on service
composition and IoT.

2.1 Web Service Composition
At present, many information technologies, such as cloud computing, big data, Internet-of-things,
mobile computing and artificial intelligence, are being widely applied (Hu, Li, Cheng, Yu, Wang, &
Bie, 2016a; Hu et al., 2016b; Pan, Lei, & Zhang, 2018; Peng, Leung, & Zheng, 2018; Xu et al., 2018;
Xu, Dou, Zhang, & Chen, 2016; Xing, Hu, Yu, & Jiang, 2017). At the same time, as an emerging
technique, Web service composition is developing fast and has received significant interest in the
past years (Alrifai, Risse, & Nejdl, 2012; Almulla, Almatori, & Yahyaoui, 2011; Atzori, Lera, &
Morabito, 2010; Yu, Chen, Lin, & Wang, 2014; Benouaret, Benslimane, Hadjali, & Barhamgi, 2011;
Bao, Zhao, Shen, & Chen, 2016; Deng, Huang, & Tan, 2014; Gong, Qi, & Xu, 2018; Huang, Jiang,
& Hu, 2009; Huo, & Wang, 2016; Jiang, Hu, & Liu, 2014; Jiang, Zhang, & Huang, 2010; Jaeger,
Rojec-Goldmann, & Muhl, 2004; Menasce, 2004; Oh, Lee, & Kumara, 2007; Qi, Zhang, Dou, &
Ni, 2017; Tao, Zhao, Hu, & Zhou, 2008; Wagner, Klein, & Klopper, 2012; Wagner, Ishikawa, &
Honiden, 2011; Yan, Cui, Qi, Xu, & Zhang, 2018; Yan, Xu, & Gu, 2009; Zheng, Ma, Lyu, & King,
2011). Several efforts have led to the development of platforms and languages to support composition

Journal of Organizational and End User Computing
Volume 33 • Issue 3 • May-June 2021

52

and deployment of services (Sheng et al., 2014; Chafle et al., 2007; Xia et al.,2015). Despite this
considerable progress, the composition process still poses limitations and challenges which have
not been addressed by current technologies and tools for Web service composition (Lemos, Daniel,
& Benatallah, 2016; Ding, & Jiang, 2009; Baryannis et al., 2010). One challenging issue is that the
explosive growth of the number of functionally-equivalent services puts a pressing need for efficient
service composition algorithms, which are able to deal with the combinatorial candidate service space
in these large-scale service environments. Another challenging issue is the selection of the best set of
services that meet the QoS constraints, also known as QoS-aware service composition (Zheng, Ma,
Lyu, & King, 2011). QoS describes nonfunctional characteristics of Web services, and this drags
more complexity in choosing a service composition with optimal QoS concert (Chiu, & Ayyash,
2012; Ding, & Jiang, 2009; Deng, Xiang, Yin, Taheri, & Albert, 2018).

2.2 IoT Services and Top-K Service Compositions
Service composition becomes increasingly difficult in IoT environment, for service compositions have
to cope with the high scalability, complexity, heterogeneity and dynamicity features inherent in IoT
environments. Current Web service composition approaches mainly focus on finding a QoS-optimal
service composition approach (Deng, Xiang, Yin, Taheri, &Albert, 2018; Chen, Cardozo, & Clarke,
2016; Cabrera et al., 2017; White, Nallur, & Clarke; 2017). More service invalidation caused by
network dynamics reduces the availability of a single service composition significantly. Meanwhile,
a single service composition does not adequately satisfy user’s complex preferences.

Top-k service composition approaches can provide users with more options to meet their
various needs and improve the availability of services. At the same time, it can also avoid the
“service overheating” caused by frequent selection of a single service composition. So this
research areas has gradually attracted the interest of some researchers. Benouaret et al. (2011)
proposed a Top-k query-based service composition algorithm to solve the problem of fuzzy
matching queries. Based on the concept of Pareto field, they proposed an efficient ranking
rule that could be used to calculate Top-k service compositions quickly. However, this ranking
criterion only considers the functional relevance between the service composition and the user
query. The QoS of the service composition has not been covered. Wang et al. (2006) incorporated
the calculation of QoS into service composition, and tried to find an approach to Top-k service
composition with optimal QoS. However, it simply added QoS of the different service up to the
overall QoS rather than considered different composition modes and properties of QoS. Jiang et
al. (2014) proposed and implemented a gradual incremental KeyPathLoose algorithm to improve
the time performance. However, Top-k service compositions achieved by this algorithm are not
accurate ones. Deng et al. (2014) attempted to deal with Top-k service composition issue in
large datasets. They used MapReduce to propose a parallel solution algorithm for Top-k service
composition. But it does not consider the real need of IoT service composition.

3. RELATED KNOWLEDGE AND DEFINITION OF THE ISSUE CONCERNED

3.1 Service Dependency Graph Model
In order to accurately specify the relationship between services and QoS, this paper models the service
set by applying the service dependency graph G= (V, E).

In G, the node set V represents a set of services. Each service Wi is represented as a node in G.
The directed edge set E represents a set of linkages. The set satisfies: ∀ k ∈ , ek=(vn, vm, tagk), in which
vn and vm respectively represent the service nodes corresponding to the start and the end of the edge;
tagk satisfies the following relationship:

tagk⊆ n.O	

Journal of Organizational and End User Computing
Volume 33 • Issue 3 • May-June 2021

53

tagk⊆ m.I	 (1)

When there is a service request R, the entrance service node Start and the exit service node End
are dynamically added in G. The two service nodes satisfy the following relationship:

Start.I=∅ Start.O=R.I	

End.I=R.O; End.O=∅ 	 (2)

According to the above analysis, if the service set is in Table 1, the service request is R=<I,O>,
where I={A,B,C} is input parameter of the request and O={D} is output parameter of the request .
The service dependency graph constructed can be shown in Figure 1.

Table 1. Service node

Service name Input parameters Output parameters QoS value

v1 A,B,C D 900

v2 A,B E,F 100

v3 C,E H 200

v4 C,F G 500

v5 L,J D 600

v6 K H 500

v7 H D 200

v8 G H 500

Figure 1. Service dependency graph

Journal of Organizational and End User Computing
Volume 33 • Issue 3 • May-June 2021

54

3.2 Definition of Issue Concerned
Based on the service dependency graph, the definition of Top-k QoS-Optimal service composition
issue can be formulated.

Definition 1 (Top-k QoS-Optimal Service Composition): Given a service request R and a service
dependency graph G=(V,E), SG={ SGi } is a subgraph set of G, where SGi represents a service
composition. SG is the Top-k QoS-Optimal service compositions iff each SG satisfies the
following conditions:

SG I R I SG O R O
i i
⋅ ⋅= ⋅ = ⋅; 	

SG k= 	 (3)

∀ ∈ ¬ ∃ ∈ −()∧()⋅ ⋅SG SG SG SG SG SG QoS SG QoS
i i all i i

, ' ' � 	

� indicates that SG QoS
i
' ⋅ is better than SG QoS

i
⋅ (e.g. the response time of the service

composition is less), SG
all

 represents all subgraphs in G satisfied R.

3.3 Global QoS Calculation Rules
In the service dependency graph, the global QoS (gQoS) calculation rule is mainly determined by
the composition mode and QoS type. QoS type is generally classified into two types. One is negative
type, that is, the greater the value, the worse the service quality, such as response time and price.
The other is the positive type, that is, the greater the value, the better the service quality, such as
energy and bandwidth. In order to adopt unified metrics on multiple QoS, QoS can also be classified
into the following four types according to different measurements: (1) Accumulation type, such as
response time. For two sequentially invoked services, the global response time can be accumulated
by the response time of each service; (2) Minimum type, such as throughput. The global throughput
of two sequentially invoked services is determined by the service with the smallest throughput; (3)
Product type, such as reliability; (4) Maximum type, such as latency.

In terms of the composition mode, since the subgraphs obtained by the service composition are
mostly directed acyclic graphs (DAG), there are mainly three kinds of composition modes: Sequence,
Joint, and Split, as shown in Figure 2.

According to different composition modes, if the response time is taken as an example, the global
QoS calculation rules are shown in Table 2.

4. COMPOSITION APPROACH DESCRIPTION

The TQSCA mainly contain three modules: hierarchy service filtering, traversal sequence acquiring,
and traversal sequence converting. Firstly, in the service filtering module, an effective hierarchy
filtering algorithm is adopted to filter the candidate services from initial service set. The search space
of the graph and the time complexity of the entire algorithm can be reduced greatly. Secondly, in
the traversal sequence acquiring module, the service dependency graph is constructed by candidate
services, and the traversal can be conducted entirely in the graph. In the traversal process, the Top-k
composition path sequences associated with each service node are constructed and saved, where the
sequences are sorted according to gQoS values. Finally, in the traversal sequence converting module,

Journal of Organizational and End User Computing
Volume 33 • Issue 3 • May-June 2021

55

the Top-k composition path traversal sequences at the exit service node End are converted into the
final Top-k service composition. The main framework is shown in Figure 3. Each of the stages in
the approach is described in detail below.

4.1 Hierarchy Service Filtering Module
Compared with the entire service set, the number of services associated with user’s request is often very
small. In other words, many services in the service set are irrelevant to the current request. Therefore,
these irrelevant services can be eliminated before the service compositions are generated, and the
search space can be reduced in the service composition process. For the purpose, an effective hierarchy
service filtering algorithm (HSF) is proposed. The pseudocode is shown in Algorithm 1 (Table 3).

The algorithm is divided into two stages. In the first stage, the input parameter IR of service
request is used to initialize a parameter set, then the entire service set is traversed. The services are
added to the hierarchy service list, which are triggered by the parameter set. The forward filtering
(line 4-10 in HSF) does not end until no service can be triggered by the parameter set. Services that
are not irrelevant to request and input parameters can be filtered out in this stage. In the second stage,
the hierarchy service list obtained in the first stage, is traversed from the highest level to the lowest
level. Similar to the first stage, the output parameters of the request are used to initialize a temporary
parameter set, which determines whether the traversed service can be triggered. The services which

Figure 2. Graph composition mode

Table 2. gQoS Calculation Rules

Mode Calculation Rules

Sequence wGQ wQ w Q
i

n

i
. . .= +

=∑ 1

Joint wGQ wQ w GQ
i i

n. . max . |= + { } =1

Split w GQ wGQ w Q k n
k k
. . .= + ≤ ≤()1

Journal of Organizational and End User Computing
Volume 33 • Issue 3 • May-June 2021

56

cannot be triggered will be deleted from the hierarchy service list (line 11-17 in HSF). Therefore,
the services, which still exist in the hierarchy service list, are valid services and are associated with
the requested service.

Taking the services and request described in Table 1 as an example: R=<I,O>, I={A,B,C}, O={D}.
After HSF algorithm, the original service set v5, v6, and v9 services are identified as irrelevant services

Figure 3. Composition algorithm flow

Table 3. Algorithm 1: HSF

Input: W(service set), R(request for service)
OutPut: levelWNodeList (effective level service list)

1. Initial Start node and End node by R
2. level = 0; levelWNodeList[level]← Start;
3. allActivePars← Start.O; tempLevelPars←end.I;
4. while allActivePars is extensible or not contain end.I do
5. for every service in W do
6. if service can be triggered by the elements in allActivePars do
7. levelWNodeList[level]← service;
8. allActivePars← service.O;
9. level++;
10. end while
11. for i from level to 0 do
12. for every s in levelList do
13. If s.O ∪ tempLevelPars!=∅ do
14. tempLevelPars←s.I;
15. else levelList remove s;
16. end for
17. return levelWNodeList

Journal of Organizational and End User Computing
Volume 33 • Issue 3 • May-June 2021

57

of request R. Therefore, they are removed from the original data set. The service dependency graph
constructed at this time is shown in Figure 4.

4.2 Traversal Sequence Acquiring Module
Different from the existing QoS-based service composition algorithms, which need process of
traversing and backtracking to achieve the compositions, this paper proposes a composition path
traversal sequence acquiring algorithm (CPTSA), which is just based on traversing the composition
path sequences. During traversing, the algorithm records the Top-k composition path traversal
sequences, which are associated with current service node. The sequences are converted into the
final service compositions only at the end of traversal. The backtrack process of compositions can
be avoided absolutely.

During traversing the entire service dependency graph, breadth-first traversal is employed in the
light of service level achieved in HSF. In the traversing of each service node, it is necessary to save its
associated Top-k gQoS-optimal sequences. But two steps are needed to obtain the sequences: first of
all, the forerunner service nodes with first k QoS values should be obtained and then the composition
path sequences constructed by forerunner service nodes should be merged together. The pseudo code
of the algorithm is shown as follows in Table 4.

Figure 4. Service dependency graph after reducing service

Table 4. Algorithm 2: CPTSA

Input: levelWNodeList (effective service set),k
OutPut: nodePathInfoMap(composition path information table)

1. create WSDG by levelWNodeList
2. nodePathInfoMap←∅;
3. OutParsInvertedMap←levelWNodeList;
4. for each snode by level in WSDG do
5. k_preMergeNodes←getKPreNodeSet(snode,k, OutParsInvertedMap); //get the forerunner service collection
6. k_mergePathInfo←getKMergePathInfo(snode, k_preMergeNodes, nodePathInfoMap); //combining path traversal sequence
7. nodePathInfoMap.put(snode, k_mergePathInfo);
8. end for
9. return nodePathInfoMap;

Journal of Organizational and End User Computing
Volume 33 • Issue 3 • May-June 2021

58

The whole process of CPTSA algorithm mainly involves the calculation of current node’s
forerunner service set and the merging of the composition traversal sequence. Two important processes
are discussed separately in the following two sections.

4.2.1 Calculation of the Forerunner Service Set

Definition 2 (Forerunner Service): Wa is the forerunner service of Wb, if and only if part of Wa’s
output parameter set are equal to part of Wb’s input parameter set.

For a service with multiple input parameters, the set of forerunner services is generally gotten
by a Cartesian product. For example, the input parameter set for a service is {a, b, c}, and the input
parameter a is associated with the forerunner service node set {W1}, the input parameter b is associated
with the forerunner service node set { W1, W2}, the input parameter c is associated with the forerunner
service node set { W1, W3}. After the Cartesian product is conducted, four forerunner service sets are
obtained: {W1}, {W1, W2}, {W1, W3}, {W1, W2, W3}. It can be concluded that too many input parameters
of the service nodes will result in very large set of forerunner services obtained by doing Cartesian
product calculation, which in turn cause the performance of the algorithm to decrease drastically.

Therefore, the dynamic programming approach is adopted to find the forerunner service node
set (with first k QoS values) of current service nodes. First, if each forerunner service can trigger
the service node, it is added into the forerunner service set queue (the size of the queue is k). If the
forerunner service cannot trigger the service node, it is added into suspended set. In addition to
verifying whether each forerunner service can directly trigger the current service node, it also needs
to merge with each suspended set and then verify whether the current service node can be triggered.
This method can reduce the size of forerunner service set, and avoid the redundant services in the
suspended service set.

In the above example, the input parameters of the forerunner service W1 are {a, b, c}, W2 is {b},
and W3 is {c}. W1 can directly trigger the current service node, so there is a set of forerunner services
{W1}; W2 cannot trigger the current service node, so it joins the suspended set; W3 cannot trigger
the current service node either, so it needs to merge with the service in the suspended set. After the
merging, {W2, W3} still cannot trigger the current service node, so the last forerunner service set is {W1}.

4.2.2 The Merging of Composition Path Traversal Sequence
The composition path traversal sequence is composed with a service node and an associated forerunner
service node set. A two-tuple is generally used to represent the elements in the sequence, RPa=<Wa.
name, WSa>, where Wa.name represents the ID or name of the service node and WSa represents the
set of forerunner services of Wa. Because the start node start does not have any forerunner services,
its representation is as RPstart=<start, null>. Taking Figure 4 as an example, for the v3, its set of
forerunner service nodes is {start, v2}, then v3 can be expressed as PRv3=<v3, {start, v2}> in the
information sequence containing v3.

The composition path traversal sequence of a service node is generally merged from traversal
sequences associated with its forerunner service node. The merging process is similar to the union
process of sets. It also needs to deduplicate the elements in the path sequences. That is, for each
service node, its associated sequence elements can only appear once in one path sequence. Finally,
the current service node is added to the merged sequence to construct the associated composition
path sequence of the current service node.

Then v3 in Figure 4 is taken as an example. Its forerunner service node set is {start, v2}. At this
time, the sequence associated with the start service node is <start, null>, and the sequence associated
with the v2 is <start, null> < v2, {start}>. Then, the sequence of v3 needs to combine the sequences
of start and v2. The sequence elements associated with the start have duplicates and need to be de-
duplicated. Then add the sequence elements associated with v3 itself to finally get the sequences of v3

Journal of Organizational and End User Computing
Volume 33 • Issue 3 • May-June 2021

59

as <start, null>< v2, {start}>< v3, {start, v2}>. Consequently, run the CPTSA to obtain the composition
path sequence associated with each service node in Figure 4 as shown in Table 5.

4.3 Traversal Sequence Converting Module
The CPTSA algorithm finally obtains its associated composition path traversal sequence at the exit
service node End. Each sequence has a corresponding relationship with a final service composition
(represented as a DAG subgraph). The sequence record all the service nodes required to constitute
the service composition. At the same time, each service node’s forerunner service set corresponds
to the invoking relationship between services. The sequence can be easily converted into a service
composition represented by a DAG. Therefore, in this section, a composition path traversal sequence
converting algorithm (CPTSC) is proposed to transform the composition path traversal sequence into
a DAG. The algorithm is shown in Algorithm 3 (Table 6).

Taking the compositon traversal sequence associated with the End node in Table 5 as an example,
the two sequences are converted into a service composition, as shown in Figure 5(a) and Figure 5(b).

Table 5. Composition path sequence information of service node

Service Node Node
hierarchy Composition Path Traversal Sequence gQos

Start 0 <start, null> 0

v1 1 <start, null>< v1, {start}> 900

v2 1 <start, null>< v2, {start}> 100

v3 2 <start, null>< v2, {start}>< v3, {start, v2}> 300

v4 2 <start, null>< v2, {start}>< v4, {start, v2}> 600

v8 3 <start, null>< v2, {start}>< v4, {start, v2}>
< v8, {v4}> 1100

v7 3

<start, null>< v2, {start}>< v3, {start, v2}>
< v7, {v3}> 400

<start, null>< v2, {start}>< v3, {start, v2}>
< v8, {v4}>< v7, {v8}> 1300

End 4
<start, null>< v2, {start}>< v3, < v7, {v3}>
< v7, {v3}>< end, {v7}> 400

<start, null>< v1, {start}>< end, {v1}> 900

Table 6. Algorithm 3: CPTSC

Input: nodePathInfoMap, End
OutPut: k_DAGSolution (DAG service composition solution)

1. initial k_DAGSolution;
2. initial SingelDAGSolution;
3. k_mergePathInfo← nodePathInfoMap.get(End);
4. for every mergePathInfo in k_mergePathInfo do
5. for each RP in mergePathInfo do
6. SingelDAGSolution.addNode(RP.W);
7. SingelDAGSolution.addEdge(RP.W,RP.WS);
8. end for
9. k_DAGSolution.add(SingelDAGSolution);
10. end for
11. return k_DAGSolution;

Journal of Organizational and End User Computing
Volume 33 • Issue 3 • May-June 2021

60

4.4 Algorithm Performance Analysis
The approach mainly consists of three stages. First, in the worst situation, HSF algorithm requires the
entire service set that is traversed both in the forward filtering and the reverse filtering. Therefore,
the time complexity of the algorithm is O(2n), where n is the number of services in the service set.
Second, when CPTSA algorithm obtains a set of forerunner services for each service node and the
number of forerunner services for each service is c, the time complexity of the process is O(c2). In
the merging of the composition path traversal sequence, if the average length of the composition
path is p and the average number of suspended service sets per service is m, the time complexity of
the merge process is O (kp*logm). Therefore, the time complexity of CPTSA algorithm is: O(n1*(c2
+ kp*logm)), where n1 is the number of valid services and n is the worst case of n1. Third, CPTSC
algorithm only needs to traverse k composition path traversal sequences. So its time complexity is
O(kp). For the whole approach, the time complexity is: O(n+kp+n(kp*logm+c2)).

5. EXPERIMENT

5.1 Experiment Procedure
All of the algorithms in this paper were written in Java language. Except for the use of SAX-related
software packages in the xml file parsing module, no other third-party software packages were used.
The entire experimental system is shown in Figure 6.

In the experiment, WSBen tool was applied to generate five test sets with different service sizes
(200-5000). Each test set contained three types of files: The WSDL file described the input and output
parameters of the service; the WSLA file described the QoS of the service; the request file described
the user’s request. Each experiment selected a data set as the input of the system. The input file was
parsed by the xml parsing module into standard data formats of service node and the request. These

Figure 5. Two sequences are converted into a service composition

Journal of Organizational and End User Computing
Volume 33 • Issue 3 • May-June 2021

61

nodes were then processed by the composition module. In the end, the Top-k service compositions
with the best QoS were obtained. In addition, the test hardware environment was Intel Core PC.

5.2 Accuracy Evaluation of Experiment Results
TQSCA achieved the first k service compositions that satisfied the optimal QoS condition. In
contrast, KPL (Jiang, Hu, &Liu, 2014) achieved the Top-k service compositions in accordance with
QoS rankings of different compositions. The specific results are illustrated by the example shown
in Figure 7.

As shown in Figure 7, the service dependency graph is constructed. The input parameter set of the
service request, (I, J, G), is represented as the Start node, and the output parameter (K) is represented
as the End node. The associated QoS values are labeled. Here, the default type of QoS is negative,
and the attribute of QoS can be regarded as the response time. KPL and TQSCA were used to obtain
the optimal first three service compositions (Top-3) respectively. The results are shown in Table 7.

Figure 6. Experimental System Framework

Figure 7. Service dependency graph

Journal of Organizational and End User Computing
Volume 33 • Issue 3 • May-June 2021

62

It can be concluded that the Top-3 service compositions obtained by TQSCA possess the optimal
QoS. It can be easily found out that two of the three service compositions obtained by KPL are not
optimal, because their gQoS are greater than the optimal gQoS.

Experiment 1: Accuracy comparison based on different service sets.

In accordance with the experimental procedure described in 4.1, this experiment was to verify
their different accuracy of two approaches. Here, the ratio of the gQoS value by KPL to that by
TQSCA was taken as a measure of the accuracy.

Table 8 shows accuracy comparisons of KPL and TQSCA under different service set sizes. In the
experiment, k is set to 5, and n means the size of service set. Table 8 indicates that all ratio is greater
than 1. The attribute of QoS represents the response time, so it can be concluded that the response time
of the k service compositions obtained by KPL is greater than that of TQSCA. Therefore, TQSCA
is superior to the KPL in acquiring accurately QoS-optimal service compositions.

5.3 Experimental Effect of Hierarchy Service Filtering Algorithm
To verify the effect of the hierarchy service filtering algorithm, the filtering algorithm was run on
the six data sets to calculate the number of valid services.

Since the filtering algorithm was related to the input and output of the requesting service, eight
request services randomly generated were run for each service set. The final result was the average
of eight results. Experimental results are shown in Figure 8. It’s revealed that the hierarchy service
filtering algorithm could generally reduce the initial service set size by about 90%, which can greatly
reduce the search space in the CPTSA and improve the operating efficiency of the entire approach.

Table 7. Service composition result (Top-3)

Journal of Organizational and End User Computing
Volume 33 • Issue 3 • May-June 2021

63

5.4 Algorithm Performance Comparison
The experiment was mainly designed to compare the time performance between the above-mentioned
KPL and TQSCA proposed in this paper. The comparison involved two aspects. One was to verify
how different size of service set impacted the time performance of KPL and TQSCA. The other was,
under the same service set, to verify how different k values impacted the time performance of two
approaches.

Experiment 2: Effects of different service set sizes on the algorithm.

Figure 9 shows the time consumption of KPL and TQSCA when the k value is 10 and the size of
different service sets vary from 200 to 10000. As a whole, the time consumption of the two approaches
indicates an upward trend as the scale of the service set increases. Due to adopting an effective
filtering policy to reduce the size of service set, lots of accesses to invalid services during traversal
are avoided significantly, which makes the overall time consumption in TQSCA lower than in KPL.

Experiment 3: Effect of different k-values on the algorithm.

It can be seen from Figure 10 that the time consumption of KPL and TQSCA both increased
with the rising of k value. The main reason is that both approaches need more time to deal with the
increasing service compositions when k value increased. The advantage of TQSCA over KPL is that

Table 8. Algorithm accuracy comparison

n
Top-5 service compositions

1 2 3 4 5

200 1.000 1.030 1.080 1.087 1.083

500 1.000 1.001 1.002 1.006 1.008

1000 1.000 1.008 1.015 1.016 1.018

2000 1.000 1.006 1.017 1.023 1.026

5000 1.000 1.004 1.008 1.011 1.015

10000 1.000 1.002 1.005 1.007 1.014

Figure 8. Effect of Hierarchy service filtering algorithm

Journal of Organizational and End User Computing
Volume 33 • Issue 3 • May-June 2021

64

it is less sensitive to the k value. To KPL, a larger value of k means more backtracking composition
process and more time consumption. And to TQSCA, a larger value of k just means more composition
paths during traversal.

6. CONCLUSION

With the development of IoT technology, servitization of IoT device functions has become a trend.
Academic and industrial communities have put forward higher requirements for automatic service
composition technology. Top-k service composition approaches can provide users with more
service options, meet diverse application requirements, and eliminate the “overheating” of services
brought by the centralized selection of optimal approaches. However, the research on IoT service
composition is still in its infancy, and related research work on this issue is also comparatively rare.
To overcome the shortcomings of current Top-k service composition approaches, TQSCA, a Top-k
service composition approach, is proposed in this paper. Through an effective filtering strategy and
the serialization representation of the service composition solution, the Top-k service composition
approaches can be obtained from a large data set within a short period of time. Experiments show
that this algorithm can guarantee reliable accuracy and better time performance.

Figure 9. Relationship between time performance and service set size

Figure 10. Relationship between algorithm time performance and k

Journal of Organizational and End User Computing
Volume 33 • Issue 3 • May-June 2021

65

On the other hand, dynamics of IoT environment and QoS may make some of service compositions
generated by TQSCA invalid. Normally the service composition process is redone to obtain new
service compositions, but this approach is often less efficient. Our future work will focus on how
to obtain the QoS-optimal service compositions in real-time dynamic environment. Meanwhile, the
time performance of TQSCA sometimes is not satisfying in the case of massive service sets. It is also
our next research focus to solve the problem by distributed parallelism or approximate calculation.

ACKNOWLEDGMENT

This work was partly supported by the National Key R&D Program of China (2018YFC0830200),
the Fundamental Research Funds for the Central Universities (2242018S30021 and 2242017S30023)
and Open Research Fund from Key Laboratory of Computer Network and Information Integration
In Southeast University, Ministry of Education, China.

Journal of Organizational and End User Computing
Volume 33 • Issue 3 • May-June 2021

66

REFERENCES

Al-Fuqaha, A., Guizani, M., Mohammadi, M., Aledhari, M., & Ayyash, M. (2015). Internetof things: A survey
on enabling technologies, protocols, and applications. IEEE Communications Surveys and Tutorials, 17(4), 30.
doi:10.1109/COMST.2015.2444095

Almulla, M., Almatori, K., & Yahyaoui, H. (2011). A QoS-based fuzzy model for ranking real world web services.
IEEE International Conference on Web Services, 203-210. doi:10.1109/ICWS.2011.43

Alrifai, M., Risse, T., & Nejdl, W. (2012). A hybrid approach for efficient Web service composition with end-
to-end QoS constraints. ACM Transactions on the Web, 6(2), 7. doi:10.1145/2180861.2180864

Atzori, L., Lera, A., & Morabito, G. (2010). The Internet of Things: A Survey. Computer Networks, 54(15),
2787–2805. doi:10.1016/j.comnet.2010.05.010

Bao, L., Zhao, F., Shen, M., Qi, Y., & Chen, P. (2016). An orthogonal genetic algorithm for QoS-aware service
composition. The Computer Journal, 59(12), 1857–1871. doi:10.1093/comjnl/bxw043

Baryannis, G., Danylevych, O., Karastoyanova, D., Kritikos, K., Leitner, P., Rosenberg, F., & Wetzstein, B.
(2010). Service composition. Service research challenges and solutions for the future internet- S-cube-towards
engineering, managing and adapting service-based systems, 55–84. doi:10.1007/978-3-642-17599-2_3

Benouaret, K., Benslimane, D., Hadjali, A., & Barhamgi, M. (2011). Top-k web service compositions using fuzzy
dominance relationship. 2011 IEEE International Conference on Services Computing, 144-151. doi:10.1109/
SCC.2011.86

Cabrera, C., Li, F., Nallur, V., Palade, A., Razzaque, M., White, G., & Clarke, S. (2017). Implementing
heterogeneous, autonomous, and resilient services in IOT: an experience report. In 2017 IEEE 18th International
Symposium on a World of Wireless, Mobile and Multimedia Networks (WoWMoM). IEEE. doi:10.1109/
WoWMoM.2017.7974341

Chafle, G., Das, G., Dasgupta, K., Kumar, A., Mittal, S., Mukherjea, S., & Srivastava, B. (2007). An integrated
development environment for web service composition. In ICWS (pp. 839–847). IEEE Computer Society.
doi:10.1109/ICWS.2007.38

Chen L, & Ha, W. (2018) Reliability prediction and QoS selection for web service composition. Int J C18omput
Sci Eng, 16(2), 202.

Chen, N., Cardozo, N., & Clarke, S. (2016). Goal-driven service composition in mobile and pervasive computing.
IEEE Transactions on Services Computing, 99.

Chiu, D., & Agrawal, G. (2012). Cost and accuracy aware scientific workflow composition for service-oriented
environments. IEEE Transactions on Services Computing, 4(2), 140–152.

Deng, S., Huang, L., Tan, W., & Wu, Z. (2014). Top-k Automatic Service Composition: A Parallel Method
for Large-Scale Service Sets. IEEE Transactions on Automation Science and Engineering, 11(3), 891–905.
doi:10.1109/TASE.2014.2306931

Deng, S., Xiang, Z., Yin, J., Taheri, J., & Albert, Y. (2018). Zomaya: Composition-Driven IoT Service Provisioning
in Distributed Edges. IEEE Access: Practical Innovations, Open Solutions, 6, 54258–54269. doi:10.1109/
ACCESS.2018.2871475

Ding, Z. H., Jiang, M. Y., & Kandel, A. (2009). Port-based reliability computing for service composition. IEEE
Transactions on Services Computing, 5(3), 422–436. doi:10.1109/TSC.2011.17

Gong, W., Qi, L., & Xu, Y. (2018). Privacy-aware Multidimensional Mobile Service Quality Prediction and
Recommendation in Distributed Fog Environment. Wireless Communications and Mobile Computing, 2018, 8.
doi:10.1155/2018/3075849

Hu, C., Li, R., Mei, B., Li, W., Alrawals, A., & Bie, R. (2016b). A Secure and Verifiable Access Control Scheme for
Big Data Storage in Clouds. IEEE Transactions on Big Data, 4(3), 341–355. doi:10.1109/TBDATA.2016.2621106

Hu, C., Li, W., Cheng, X., Yu, J., Wang, S., & Bie, R. (2016a). Secure and Efficient data communication
protocol for Wireless Body Area Networks. IEEE Transactions on Multi-Scale Computing Systems, 2(3), 94–107.
doi:10.1109/TMSCS.2016.2525997

http://dx.doi.org/10.1109/COMST.2015.2444095
http://dx.doi.org/10.1109/ICWS.2011.43
http://dx.doi.org/10.1145/2180861.2180864
http://dx.doi.org/10.1016/j.comnet.2010.05.010
http://dx.doi.org/10.1093/comjnl/bxw043
http://dx.doi.org/10.1007/978-3-642-17599-2_3
http://dx.doi.org/10.1109/SCC.2011.86
http://dx.doi.org/10.1109/SCC.2011.86
http://dx.doi.org/10.1109/WoWMoM.2017.7974341
http://dx.doi.org/10.1109/WoWMoM.2017.7974341
http://dx.doi.org/10.1109/ICWS.2007.38
http://dx.doi.org/10.1109/TASE.2014.2306931
http://dx.doi.org/10.1109/ACCESS.2018.2871475
http://dx.doi.org/10.1109/ACCESS.2018.2871475
http://dx.doi.org/10.1109/TSC.2011.17
http://dx.doi.org/10.1155/2018/3075849
http://dx.doi.org/10.1109/TBDATA.2016.2621106
http://dx.doi.org/10.1109/TMSCS.2016.2525997

Journal of Organizational and End User Computing
Volume 33 • Issue 3 • May-June 2021

67

Huang, Z., Jiang, W., & Hu, S. (2009). Effective pruning algorithm for QoS-aware service composition. 2009
IEEE Conference on Commerce and Enterprise Computing, CEC 2009, 519-522. doi:10.1109/CEC.2009.41

Huo, L., & Wang, Z. (2016). Service composition instantiation based on cross- modified Artificial Bee Colony
Algorithm. China Communications, 13(10), 233–244. doi:10.1109/CC.2016.7733047

Jaeger, M. C., Rojec-Goldmann, G., & Muhl, G. (2004). Qos aggregation for web service composition using
workflow patterns. Eighth IEEE International Enterprise Distributed Object Computing Conference, 149-159.
doi:10.1109/EDOC.2004.1342512

Jiang, W., Hu, S., & Liu, Z. (2014). Top k query for QoS-Aware Automatic Service Composition. IEEE
Transactions on Services Computing, 7(4), 681–695. doi:10.1109/TSC.2013.41

Jiang, W., Zhang, C., & Huang, Z. (2010). Qsynth: A tool for QoS-aware automatic service composition. 2010
IEEE International Conference on Web Services, 42-49. doi:10.1109/ICWS.2010.38

Lemos, A. L., Daniel, F., & Benatallah, B. (2016). Web service composition: A survey of techniques and tools.
ACM Computing Surveys, 48(3), 33. doi:10.1145/2831270

Menasce, D. A. (2004). Composing web services: A QoS view. IEEE Internet Computing, 8(6), 88–90.
doi:10.1109/MIC.2004.57

Oh, S. C., Lee, D., & Kumara, S. R. T. (2007). Web service planner (wspr): An effective and scalable web service
composition algorithm. International Journal of Web Services Research, 4(1), 1–22. doi:10.4018/jwsr.2007010101

Palade, A., Cabrera, C., White, G., Razzaque, M., & Clarke, S. (2017). Middleware for internet of things: a
quantitative evaluation in small scale. In 2017 IEEE 18th International Symposium on a World of Wireless,
Mobile and Multimedia Networks (WoWMoM). IEEE. doi:10.1109/WoWMoM.2017.7974340

Pan, Z., Lei, J., Zhang, Y., & Wang, F. L. (2018). Adaptive fractional-pixel motion estimation skipped algorithm
for efficient HEVC motion estimation. ACM Transactions on Multimedia Computing Communications and
Applications, 14(1), 19. doi:10.1145/3159170

Peng, K., Leung, V., Zheng, L., Wang, S., Huang, C., & Lin, T. (2018). Intrusion Detection System Based on
Decision Tree over Big Data in Fog Environment. Wireless Communications and Mobile Computing, 2018(10),
1155. doi:10.1155/2018/4680867

Qi, L., Zhang, X., Dou, W., & Ni, Q. (2017). A Distributed Locality-Sensitive Hashing based Approach for
Cloud Service Recommendation from Multi-Source Data. IEEE Journal on Selected Areas in Communications,
35(11), 2616–2624. doi:10.1109/JSAC.2017.2760458

Sheng, Q. Z., Qiao, X., Vasilakos, A. V., Szabo, C., Bourne, S., & Xu, X. (2014). Web services composition: A
decade’s overview. Inf Sci, 280, 218–238. doi:10.1016/j.ins.2014.04.054

Tao, F., Zhao, D., Hu, Y., & Zhou, Z. (2008). Resource service composition and its optimal selection based on
particle swarm optimization in manufacturing grid system. IEEE Transactions on Industrial Informatics, 4(4),
315–327. doi:10.1109/TII.2008.2009533

Wagner, F., Ishikawa, F., & Honiden, S. (2011). QoS-aware automatic service composition by applying functional
clustering. 2011 IEEE International Conference on Web Services, 89-96. doi:10.1109/ICWS.2011.32

Wagner, F., Klein, A., & Klöpper, B. (2012). Multi-objective service composition with time-and input-dependent
QoS. 2012 IEEE 19th International Conference on Web Services, 234-241.

Wang, S., Zhao, Y., & Huang, L. (2017). QoS prediction for service recommendations in mobile edge computing.
Journal of Parallel and Distributed Computing.

White, G., Nallur, V., & Clarke, S. (2017). Quality of service approaches in IOT: A systematic mapping. Journal
of Systems and Software, 132, 186–203. doi:10.1016/j.jss.2017.05.125

Xia, Y., Zhou, M. C., Luo, X., Zhu, Q., Li, J., & Huang, Y. (2015). Stochastic Modeling and Quality Evaluation
of Infrastructure-as-a-Service Clouds. IEEE Transactions on Automation Science and Engineering, 12(1),
162–170. doi:10.1109/TASE.2013.2276477

http://dx.doi.org/10.1109/CEC.2009.41
http://dx.doi.org/10.1109/CC.2016.7733047
http://dx.doi.org/10.1109/EDOC.2004.1342512
http://dx.doi.org/10.1109/TSC.2013.41
http://dx.doi.org/10.1109/ICWS.2010.38
http://dx.doi.org/10.1145/2831270
http://dx.doi.org/10.1109/MIC.2004.57
http://dx.doi.org/10.4018/jwsr.2007010101
http://dx.doi.org/10.1109/WoWMoM.2017.7974340
http://dx.doi.org/10.1145/3159170
http://dx.doi.org/10.1155/2018/4680867
http://dx.doi.org/10.1109/JSAC.2017.2760458
http://dx.doi.org/10.1016/j.ins.2014.04.054
http://dx.doi.org/10.1109/TII.2008.2009533
http://dx.doi.org/10.1109/ICWS.2011.32
http://dx.doi.org/10.1016/j.jss.2017.05.125
http://dx.doi.org/10.1109/TASE.2013.2276477

Journal of Organizational and End User Computing
Volume 33 • Issue 3 • May-June 2021

68

Baili Zhang is an associate professor in School of Computer Science and Engineering, Southeast University, China.
Before joining university, he worked as an engineer in NARI, a famous electric power research institution in China.
He obtained his PhD in Computer Applications from School of Computer Science and Engineering, Southeast
University. His current research focuses on (1) big data and service computing, (2) uncertain data management,
(3) materialized view in data warehouse, and application of wireless sensor network.

Kejie Wen is a master student in School of Computer Science and Engineering, Southeast University, China, her
research direction is service computing and big data.

Jianhua Lu is an associate professor in School of Computer Science and Engineering, Southeast University, China.
He obtained his PhD in Computer Science from School of Information Science and Engineering, Northeastern
University of China. His current research focuses on (1) data science and data engineering, (2) healthcare data
analytics, (3) anomaly detection and fault diagnosis.

Mingjun Zhong is a Senior Lecturer in Machine Learning at the School of Computer Science in the University of
Lincoln. His research interests include Machine Learning, Data Science, and Applied Statistics. Before coming
to Lincoln, he was a Research Associate at the School of Informatics in the University of Edinburgh. He was an
Associate Professor in the Dalian University of Technology, China. He was a Research Assistant at the School
of Computing in the University of Glasgow. He obtained his PhD in Applied Mathematics from the Department of
Applied Mathematics in the Dalian University of Technology, China.

Xing, K., Hu, C., Yu, J., & Jiang, C. (2017). Mutual Privacy Preserving k-Means Clustering in Social Participatory
Sensing. IEEE Transactions on Industrial Informatics, 13(4), 2066–2076. doi:10.1109/TII.2017.2695487

Xu, X., Dou, W., Zhang, X., & Chen, J. (2016). An Energy-Aware Resource Allocation Method for Scientific
Workflow Executions in Cloud Environment. IEEE Transactions on Cloud Computing, 4(2), 166–179.

Xu, X., Fu, S., Cai, Q., Tian, W., Liu, W., Dou, W., Sun, X., & Liu, A. X. (2018). Dynamic Resource Allocation
for Load Balancing in Fog Environment. Wireless Communications and Mobile Computing, 2018(2), 1–15.
doi:10.1155/2018/6421607

Yan, C., Cui, X., Qi, L., Xu, X., & Zhang, X. (2018). Privacy-aware Data Publishing and Integration for
Collaborative Service Recommendation. IEEE Access: Practical Innovations, Open Solutions, 6, 43021–43028.
doi:10.1109/ACCESS.2018.2863050

Yan, Y., Xu, B., & Gu, Z. (2009). A QoS-driven approach for semantic service composition. IEEE Conference
on Commerce and Enterprise Computing, 523-526. doi:10.1109/CEC.2009.44

Yu, Y., Chen, J., Lin, S., & Wang, Y. (2014). A dynamic QoS-aware logistics service composition algorithm
based on social network. Emerging Topics in Computing IEEE Transactions on, 2(4), 399-410.

Zheng, Z., Ma, H., Lyu, M. R., & King, I. (2011). QoS-aware web service recommendation by collaborative
filtering. IEEE Transactions on Services Computing, 4(2), 140–152. doi:10.1109/TSC.2010.52

Zheng, Z., Zhang, Y., & Lyu, M. R. (2014). Investigating qos of real-world web services. IEEE Transactions on
Services Computing, 7(1), 32–39. doi:10.1109/TSC.2012.34

http://dx.doi.org/10.1109/TII.2017.2695487
http://dx.doi.org/10.1155/2018/6421607
http://dx.doi.org/10.1109/ACCESS.2018.2863050
http://dx.doi.org/10.1109/CEC.2009.44
http://dx.doi.org/10.1109/TSC.2010.52
http://dx.doi.org/10.1109/TSC.2012.34

