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ABSTRACT

As artificial intelligence is widely used in the automatic driving systems, the safety evaluation of 
automatic vehicles is considered to be the most important demand. Under this context, in this paper, 
an evaluation system, which is composed of several important evaluation projects, is proposed based 
on big data. These indicators reflect the performance of the automatic driving system. In addition, 
the principle of the evaluation index and the data management scheme are explained. In terms of the 
evaluation projects, the online test and the offline test are included, when the former focuses on the 
function design that is as expected, while the latter aims to ensure the actual driving experience of 
the automatic driving system. The evaluated results provide optimization direction of the algorithm 
index. Furthermore, based on AI technology and user big data management, the system saves test 
costs and guarantees algorithm performance and system stability.
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INTRODUCTION

Traditional automotive passive safety technologies to reduce accident hazards after an accident 
occurs, such as bumpers, seat belts, and airbags, cannot avoid collisions. In recent years, advanced 
driver assistance systems (ADAS) have received increasing attention. The ADAS is an active safety 
technology that uses sensor environment perception capabilities. It detects possible dangerous 
situations in advance through perceptual data analysis and takes actions in advance to reduce or even 
avoid collision damage. The ADAS is the foundation of autonomous driving and can be used with 
the Internet of Things (IoT; Zhou, Yang, et al., 2021). Common subdivision systems include adaptive 
cruise control (ACC), automatic emergency braking (AEB), the blind spot detection system (BSD), 
the forward collision warning system (FCW), the lane departure warning (LDW), the heads-up display 
(HUD), the automotive night vision system (NVS), the intelligent vehicle speed control (ISA), the 
intelligent headlight control (AFL), the parking assist system (PA), the pedestrian detection system 
(PDS), and the traffic sign recognition (TSR). This study described the evaluation system of the 
automatic emergency braking algorithm (AEB). The AEB function (Kim et al., 2019) is implemented to 
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measure the distance between the vehicle and the preceding vehicle, or the vehicle and other obstacles, 
while it adopts early warning and automatic braking when the distance is less than the safe distance.

The application scenarios of the automatic vehicles (Reddy et al., 2018) and in smart cities (F. 
Wang et al., 2022) are rich and complex, such as the diversity of weather, the change of light, and the 
irregular movement of vehicles and pedestrians. Therefore, in the development stage, the function 
test needs to go through thousands of kilometers of test distance to make a reliable evaluation of the 
performance. Under such testing requirements, traditional testing techniques are time-consuming 
and expensive. Considering that, as big data (Zhang et al., 2017) is featured with a large amount of 
data and many types of data. The application of user big data (Zhu, Yang, et al., 2021) testing has an 
excellent performance in testing comprehensiveness and diversity, and by constructing test cases, it 
is possible to achieve repeated testing of key scenarios.

BACKGROUND

Safety issues have always been the focus of research on autonomous driving, so that the evaluation 
system has received increasing attention this year. J. Han et al. (2016) proposed a vision-based FCW 
and AEB system. In this paper, the author installed a laser scanner synchronously with the vision 
sensor, and the perception data of the laser scanner was used as the ground truth to evaluate the 
detection results of the system, thus being able to method can evaluate the accuracy of the detected 
distance. Lim et al. (2017) presented an integrated system of vehicle detection and distance estimation 
for a real-time AEB system based on stereo vision (Xie et al., 2017). Apart from that, the authors here 
use the KITTI dataset, which was co-founded by Karlsruhe Institute of Technology in Germany and 
Toyota American Institute of Technology, as a benchmark to evaluate the detection accuracy of the 
verification function and estimate the processing time of the algorithm on the Titan X platform and the 
NVIDIA TXI platform. An et al. (2019) put forward a framework for evaluating ADAS performance 
when considering four aspects of efficiency, safety, cost, and driver acceptance. Furthermore, macro-
level factors (i.e., traffic volume and driving time) and micro-level indicators (i.e., reaction time and 
driver stress) were assessed. Due to limited time and experimental conditions, only ACC was tested 
as the main function of ADAS. However, the evaluation methods of the above systems consume a lot 
of time and human resources. In functional development, the evaluation scenarios are not sufficient, 
resulting in the risk of functional defects. Therefore, this study presents an evaluation system based 
on big data (Qi et al., 2015), aiming to reduce test costs and improve test reliability.

Nowadays, big data technology (E. Sun et al., 2021) and AI technology (X. Wu et al., 2022) have 
made rapid progress, and there are an increasing number of studies and application scenarios. George 
et al. (2014) proposed that the definition of big data lies in the fine-grained nature of the data itself. 
The focus of big data technology (Zhou, Li, & Liang, 2020) is not on the results but rather on acting 
on every micro-module in the process of function realization. These modules can be mapped onto 
factors that contribute to the success or failure of the function, while these modular tests provide rich 
functional microdata for helping predict and evaluate functional performance. R. Han et al. (2014) put 
forward a big data benchmarking system; when introducing the requirements and challenges of big 
data benchmarks in detail, the problems that should be solved during the execution process for fair, 
efficient, and successful benchmarking, and the management of big data benchmark methods. Liu et 
al. (2014) introduced a performance testing method in big data applications (J. Wu et al., 2022). The 
author focuses on the application analysis and test model of big data test design to ensure the efficient 
operation of the performance test method and demonstrates the effect of automated performance 
tests through the network public opinion monitoring system. So et al. (2019) presented a collision 
scene reconstruction method adopting big data technology (Salman et al., 2022). By extracting the 
accident description in the traffic accident report, the scene text weight was analyzed, and the test 
scene was constructed according to the weighted words, which helps generate more comprehensive 
test scenarios based on the systematic analysis of large amounts of crash data.
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This study introduces a kind of autonomous driving based on user big data management and 
artificial intelligence and focuses on the application of the user big data management and artificial 
intelligence in the functional performance test, so as to ensure the sufficiency and accuracy of 
evaluation. In the next section, we introduce data collection and data preprocessing in big data 
management. Following that, we explain the principle and structure of the evaluation system and 
then provide experiments and analysis to support that the proposed method is effective. Finally, we 
summarize our proposed evaluation scheme.

USER BIG DATA MANAGEMENT

In this section, the multi-level data collection method is introduced for the purpose of building a user 
big data management system in the binocular vision-based autonomous driving (Xie et al., 2022) 
framework. Figure 1 shows the system framework for data construction and autonomous driving.

The autonomous driving system is designed through the logic of perception, strategy, and 
execution. Vision sensors are the perception core of the autonomous driving system and are responsible 
for observing the environment around the vehicle. The vision sensor obtains the image data of the 
vehicle’s front scenery (Ma et al., 2021) and calculates the three-dimensional point cloud (F. Wang 
et al., 2021) information through the traditional matching algorithm (Long, Xie, Mita, Ishimaru, & 
Shirai., 2014), which is the process of the perception module. The strategic module is completed by 
the controller that detects obstacles based on the three-dimensional point cloud information, obtains 
the position information and category information of the obstacles, adds a tracking module to the 
detection results of the obstacles, acquires the stable spatial position, speed, and acceleration of the 
obstacles, and finally calculates the time-to-collision (TTC) value of the target obstacle. When there is 
a risk of collision, the autonomous driving system sounds an alarm and the braking system is activated.

In terms of hardware structure, the focal length of the binocular lens is 8.26 mm, while the 
baseline is 12 cm, and the picture element is 4.2 × 10-3 mm. The horizontal field of view (FOV) and 

Figure 1. System framework for data construction and autonomous driving
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vertical FOV of the camera are 30° and 20°, respectively, and the image resolution is 1280 × 720. In 
addition, the computing chip is Xilinx Z-7020, which integrates two ARM Cortex-A9 processors and a 
field-programmable gate array (FPGA; X. Wang et al., 2017). Other parameters are shown in Table 1.

DATA COLLECTION

Big data collection management is divided into four data modules. The first module is the basic 
data, which is the data collected by the perception module, including the left image and right images 
collected by the binocular vision sensor and the disparity map generated by the matching algorithm 
(Long, Xie, Mita, Nikejad et al.,2014). The basic data is used for the logic design verification in the 
functional development stage. The second module is module data. The module data generated by AI 
technology using the basic data is an indispensable source of truth in the evaluation system. Here, 
it should be noted that in this paper, the deep learning model (Xu et al., 2021) is adopted to train 
the basic data and can obtain the category information, position information, tracking information, 
and TTC of the obstacles, which are used as standard values in the evaluation system to evaluate the 
module effect of automatic driving. The third module is the collection of obstacle data to evaluate the 
detection result consistency between the development platform and the actual application platform 
in the system. The obstacle data includes the type of obstacle, the location of the obstacle, and the 
TTC. The last collection module is runtime data, which is used to verify the real-time effect of the 
function (C. Hu et al., 2021).

Because the binocular vision sensor used by the autonomous driving system is adopted to monitor 
the driving environment ahead in real time, it is usually installed on the front windshield. To ensure 
that the driver’s sight is not blocked, the volume of the hardware platform should not be too large, 
and the autonomous driving hardware design should capture the parameters of the vehicle motion, 
including the vehicle forward scene picture, vehicle speed information, collection time and body 
attitude information, etc. Apart from that, the hardware platform is connected to a personal computer 
(PC) through a universal serial bus (USB 3.0) high-speed data interface to transmit image data in real 
time and build a data set to be processed.

DATA PREPROCESSING

The data obtained in real time cannot be directly imported into the database for use. In this case, the 
data should be preprocessed to ensure the quality and uniformity of the data (Qi et al., 2021), as follows.

1.  Vehicle speed check: The hardware platform of the controller can obtain the real vehicle speed 
through the controller area network (CAN) bus.

2.  The collection time check: The collection device starts timing when it is powered on. After the 
device is connected to the computer, the timing can be synchronized with the world time. The 

Table 1. System hardware parameters

Items Parameters Items Parameters

Baseline 120 mm Focus length 8.26 mm

Picture element 4.2 × 10-3 mm Resolution 1280 × 720

Horizontal FOV 30° Vertical FOV 20°
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normally acquired timestamp can correspond to the acquisition time block after being converted 
by the Unix timestamp.

3.  File number check: The data collected by the binocular vision sensor includes the left image, 
the right image, and the disparity image at the same time. File loss or data anomalies that may 
be caused by unstable interface connections should be checked.

4.  Data attribute confirmation: The camera has a variety of specifications of different focal lengths, 
and the camera parameters are generated during calibration, and the actual camera parameters 
of the collected data need to be confirmed for data management.

5.  Data classification: Scene tags are added to the collected data, and test cases are made. The 
tags involved are:
a.  Test scene participant type labels, including cars, pedestrians, bicycles, and non-standard 

obstacles.
b.  Test scene participant location labels, including front, rear, left, right, front-left, rear-left, 

front-right, and rear-right.
c.  Test scene participant status labels, such as static, deceleration, acceleration, cut-in, cut-out, 

and traverse.
d.  Test scene road labels, including straight roads, curves, expressways, urban roads, country 

roads, mountain roads, multi-lane roads, single-lane roads, and tunnels.
e.  Test scene environment labels: sunny, overcast, rain, snow, fog, backlight, and night.

Data preprocessing is the basis for building user big data management. The incorrect data structure 
or format often consumes a lot of storage space. Through data preprocessing, the quality of the data 
is ensured, and the storage space occupancy is reduced to a great extent, which in turn generates cost 
benefits. Besides this, data preprocessing guarantees that data is injected without errors so that basic 
verification functions can function normally.

EVALUATION SySTEM FRAMEwORK

The evaluation work of the autonomous driving system is accompanied by the entire process of 
function development. The evaluation and development work needs to be carried out simultaneously. 
By integrating the evaluation work into the development to a certain extent, it is possible to observe 
whether the effect of the function module has reached the expectation very early and obviously reduces 
the chance of some errors. Actually, the purpose of the evaluation work is to check the effective 
operation of the function. To achieve the purpose, the evaluation system proposed by us consists 
of the offline test module and the online test module to complete the evaluation work together, as 
shown in Figure 2.

Figure 2. Evaluation system framework
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The offline test module uses the database (DB) we built to conduct local tests for the purpose 
of evaluating whether the function is complete and checking whether there are obvious bugs. The 
online test module is the actual driving environment test. Due to the rich and complex application 
scenarios of autonomous driving, the online test module creates a more comprehensive evaluation 
while ensuring the user’s subjective experience.

OFFLINE TEST

The evaluation system that applies the autonomous driving of vision processing can be deployed to 
multiple computer nodes using distributed testing (Xu et al., 2022) to achieve test resource sharing, 
decentralized execution, centralized management and control, collaborative work, and load balancing. 
Figure 3 is the frame diagram of distributed testing.

In the main workflow of distributed testing, the user provides the content to be evaluated and 
the relevant test case data path to the automatic test system (ATS) device where the test framework is 
deployed (the path of the test case comes from the DB), and then starts and coordinates the performance 
evaluation experiment through the master device. In terms of the master device, it coordinates the 
test tasks of the test device through GitLab continuous integration (CI), and multiple cooperating 
test devices cooperate with GitLab CI to run different evaluation tasks through the deployed GitLab 
Runner. Other than that, the ATS equipment collects all distributed test results and gives an overall 
evaluation result of offline test performance.

The autonomous driving system is composed of multiple function modules, each of which is 
designed by different developers, whose understanding and programming logic are different. Therefore, 
the function modules need to be distributed and tested. Distributed testing can not only improve test 
efficiency but also verify module defects, accurately locate function errors, and ensure that the overall 
function can work uniformly.

Figure 3. Distributed testing framework of the offline test
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Offline testing is divided into four sub-tasks to ensure the reliability of the evaluation. These 
four modules are evaluated from three evaluation directions. Firstly, the early warning effect test 
is performed to verify the final result of the autonomous driving system. Secondly, evaluation of 
tracking algorithm effect, evaluation of detection algorithm, and evaluation of classification algorithm 
effect are fine-grained effect evaluations. Finally, the algorithm stability evaluation guarantees the 
comprehensiveness and stability of the evaluation.

EARLy wARNING EFFECT TEST

The AEB system is the core function of autonomous driving, mainly including FCWs and automatic 
braking (AB), when the former is applied to the scene of automatically detecting obstacles ahead, 
predicting the danger of a forward collision, and issuing early warning signals in time to remind the 
driver. Therefore, this stage of the FCW is an essential module of the autonomous driving system. 
Thus, accurate early warning signals are the core test points.

The early warning signal of the system comes from the calculation of the TTC, commonly 
calculated as TTC = (s – d) / V, where s is the distance between the vehicle and the obstacle ahead, 
d refers to the safe stopping distance, and V denotes the relative speed of the vehicle and the forward 
obstacle, when the TTC is less than the preset threshold, an early warning signal is triggered.

Manual labeling is used as the true value. Firstly, the first-level labeling is performed, and the test 
cases are divided into two categories, namely the triggering warning category and the non-triggering 
warning category. Then, the second-level labeling is performed, performing fine-grained marking on 
test cases that have been assigned the triggering warning category. In specific operations, it marks 
the range of image sequences that should trigger warnings. In the actual test, the first-level labeling 
is used to verify the missing detection and false detection, as well as the early-warning accuracy of 
the second-level labeling verification function.

EVALUATION OF TRACKING ALGORITHM EFFECT

The early warning signal of the system comes from the calculation of the TTC, which depends on the 
position accuracy of the forward obstacle. Besides this, tracking is the module that ensures the stable 
spatial position, speed, and acceleration of the forward obstacle output. The evaluation system uses 
a deep learning network (Z. Sun et al., 2017) to train the test cases, approximate the results as the 
ground truth (Zhou, Li, & Liang, 2020, and compare the differences between the tracking results of 
the deep learning network and the actual algorithm tracking results (Zhou, Liang, et al., 2021). The 
specific evaluation process is as follows.

The first step is that both the deep learning network and the actual tracking module run the test 
case and retain the tracking result information that includes the position information, category, and 
tracking frame number of the target obstacle (T. Fan, 2020). The second step is to count the number 
of target obstacles with an intersection over union (IOU) ratio greater than 0.5 in the actual tracking 
module and the deep learning network tracking module, which is referred to as the NMT indicator, 
as shown in Equation 1.

NMT NUM NUM
IOU
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The variable N indicates the total number of all target obstacles, and IOU is often used to measure 
the accuracy of target objects in detection tasks. The specific implementation is the intersection ratio 
of the actual tracking module obstacle frame and the deep learning network obstacle frame. As shown 
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in Figure 4, the two boxes represent the ground truth box and the detection box, respectively, where 
Area_1 is the intersection of the two boxes, and Area_2 is the union of the two boxes. The ratio of the 
area of the intersection to the area of the union is employed to measure the deviation of the detection 
result from the true value. The larger the value of IOU, the smaller the deviation between the detection 
result and the true value. We set the threshold of IOU to 0.5 to judge whether the detection result is 
qualified. The variable NUM is the number of obstacle boxes with an IOU greater than 0.5.

The third step is to count the average ratio of the actual obstacle tracking frames to the deep 
learning obstacle tracking frames among all NMT objects, which we record as the MAR indicator.

MAR
NMT

age

age
stereo

d
i

NMT
=

−∑
1

0
 (2)

The NMT value is the statistical result of the second step, while agestereo and agedl are the tracking 
frame number information of the actual tracking module and the deep learning network, respectively.

The larger the number of the NMT indicators, the more matching objects (Kasthuri et al., 2019) 
the actual tracking module and the deep learning network tracking barrier have and the closer the 
MAR indicator is to 1, while the closer the actual tracking module and the deep learning network 
tracking frames are. Through the above evaluation method, the effect of the tracking module can be 
observed according to the evaluation index. At the same time, this index can be used in the version 
iteration stage of the research and development process, which reflects whether the new version of 
the tracking strategy has significantly enhanced the effect.

Figure 4. IOU explanation diagram
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EVALUATION OF DETECTION ALGORITHM AND 
CLASSIFICATION ALGORITHM EFFECT

The input source of the tracking module is the detection information of the target obstacle (the location 
and category of the target obstacle), and the stable detection result is beneficial to the accuracy of the 
tracking result. In addition, the evaluation system compares the detection results of the deep learning 
network as ground truth. The specific evaluation process is as follows. In the first step, the deep learning 
network and the actual detection module are tested on the same data. The detection position and the 
category of the target obstacle frame are recorded. Among them, the category of the target obstacle 
frame includes pedestrians, vehicles, cyclists, and other non-standard obstacles. The second step is to 
count the Mbox indicators. The specific operation sets the IOU threshold to distinguish whether the 
detection is successful or not. We set this value to 0.2 in the implementation. As shown in Figure 5, 
IOU greater than 0.2 is considered a true positive, while less than 0.2 is considered a false negative, 
and the statistical mark is the mean IOU of the true positive obstacle box, as shown in Equation 3.

Mbox
n

IOU
IOU

i

nIOU=
>

−

>∑1

0 2
0

0 2

.

..  (3)

The third step is to count the Recallpos indicator and the Precisionpos indicator.

Recall
Obstacle

Obstaclepos
TP

d

=  (4)

Precision
Obstacle

Obstaclepos
TP

stereo

=  (5)

ObstacleTP is the obstacle frame identified as true positive in the second step, Obstacledl refers 
to the number of target obstacles detected by the deep learning network, and Obstaclestereo indicates 
the number of target obstacles correctly detected by the detection algorithm. Recallpos indicates the 

Figure 5. Schematic diagram of true positive and false negative
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closeness of the positive samples detected by the algorithm to the overall positive sample size of 
the ground truth, and Precisionpos signifies the probability that the detection algorithm can correctly 
detect the target obstacle.

For the calculation of the classification algorithm index, it is calculated separately according to 
different categories. The calculation formula for each category is:

Re
_

_
call

Obstacle label

Obstacle labellabel
TP

d

=  (6)

Pr
_

_
ecision

Obstacle label

Obstacle labelpos
TP

stereo

=  (7)

Obstacle_labelTP is the number of obstacle boxes for which both the actual classification algorithm 
and the deep learning network classification result are positive samples, and Obstacle_labeldl means the 
number of obstacle boxes for which the deep learning network classification result is a positive sample. 
Obstacle_labeldl refers to the number of obstacle boxes for positive samples. Recalllabel represents the 
percentage of correctly recognized objects that meet the requirements in the total number of objects 
in the test set, and Precisionpos indicates the percentage of correctly recognized objects that meet the 
requirements of the total number of recognized objects.

ALGORITHM STABILITy EVALUATION

In the development stage, the visual inspection system is often developed according to some clear 
requirement rules. A complete system must not only perform well within the requirement rules but 
also ensure that scenarios outside the requirement rules will not collapse. The autonomous driving 
being evaluated usually focuses on the design and debugging of common road scenes during the 
development stage, while ignoring other unconventional scenes, such as images containing only walls, 
ceiling scenes, and indoor scene images (Lu et al., 2021), or unusually garbled images. Moreover, the 
stability test is to use the data of these scenarios to test that the function does not trigger errors and 
crashes, thereby ensuring the robustness of the algorithm (F. Wang et al., 2021).

ONLINE TEST

The autonomous driving application scenario uses the low-power platform FPGA (Xie et al., 2021) 
+Acorn RISC Machine (ARM; Linux environment), and the research and development (R&D) process 
adopts a PC processor (Windows environment). Online testing ensures consistency between the 
R&D and actual application scenarios through conformance testing and guarantees actual functional 
experience through time-consuming testing and online stability testing.

CONFORMANCE EVALUATION

The autonomous driving platform is different in development and actual use. The identical line 
of codes or the same function calling may return different results, the cause of which should be 
identified. In this case, the test is implemented by the model-based definition (MBD) method. Firstly, 
the software-in-the-loop (SIL) test is performed to verify the consistency of the auto-generated code 
and the code-generated model. The code is compiled into a dynamic-link library (DLL) file, while the 
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test case is used as input, and whether the output data of the model and the DLL file are consistent 
is observed. Among them, test cases can reuse the data employed in offline testing. If the tests are 
sufficient and the output is consistent, it can be roughly assumed that the code and the model behave 
in the same way.

The SIL test code runs on the Windows platform and cannot guarantee the effect on the target 
processor. Therefore, the processor-in-the-loop (PIL) tests are conducted to verify the consistency 
of the target processor. In terms of the PIL test, it is to compile the code into the form required by 
the target processor and then download it together with the test case to the target processor to run. 
Besides this, the same test case is used as the SIL test, and the output results are observed. The data 
observed and compared between the SIL test and the PIL test include obstacle information and the 
TTC. If the difference is within the allowable range, the test is passed.

RUNNING TIME EVALUATION

The autonomous driving platform is an FPGA+ARM architecture, which has combined advantages 
in performance, cost, and power consumption. The perception module is deployed on the FPGA, 
including the acquisition of the left image and the right image and the calculation of stereo matching. 
The strategic module deployed on the ARM is divided for obstacle detection, obstacle tracking, and 
TTC calculation. The specific deployment strategy is shown in Figure 6.

Figure 6. The deployment strategy
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The perception module and the strategic module use distributed computing. After the ARM has 
processed the data of the current frame and the FPGA has processed the disparity map of the next 
frame, the ARM will immediately start the detection of the next frame. This deployment method has 
not yet entered parallel computing in the first frame, and there is a maximum delay time. After the 
function runs, the average delay time is maintained. Here, it should be mentioned that our running 
time test is used to evaluate the average delay time. The sampling frame rate of the system perception 
module we evaluate is about 12.5 fps. Thus, the state of evaluating the average delay time of fewer 
than 80 ms is considered acceptable.

ONLINE STABILITy EVALUATION

The autonomous driving system will eventually need to be tested on public roads. Due to the ever-
changing real road scenes, the test cases cannot completely cover all driving situations, so that the 
evaluation results may deviate from the actual situation. Therefore, road tests are carried out for a 
longer period of time to ensure that the functions are functioning properly under normal driving 
conditions. In the test, the functional status is displayed in real time through the user interface, which 
is monitored by the tester. Under the specified test duration, it is ensured that the function has no 
memory leaks and no crash information.

RESULTS AND DISCUSSION

In this section, the evaluation schemes mentioned are analyzed with practical tests. Besides this, the 
big data set has a total of 400,000 test images, covering driving scenes in different weather, different 
light, different seasons, and different road conditions.

EARLy wARNING EFFECT EVALUATION EXPERIMENT (OFFLINE TEST)

Considering the final results of the autonomous driving system, firstly, the warning effect was 
quantitatively evaluated, as shown in Table 2. The test data of the two development versions were 
compared, and the correct rate of positive samples (should be warned) and that of negative samples 
(should not be warned) were counted. Among them, the correct rate (84.02%) of the scenarios that 
should be warned in Version 2.0 is higher than that of Version 1.0, but the number of scenarios that 
should not be warned is lower than that of Version 1.0. On the whole, Version 2.0 improves the 
underreporting situation more than Version 1.0 but aggravates the false-positive rate.

Table 2. Early warning assessment results

Early Warning Scene No Warning Scene

Version Label 
Number

Detect 
Number

Correct Rate 
(%)

Label 
Number

Detect 
Number

Correct Rate 
(%)

1.0 2654 1922 70.42 410 328 80.00

2.0 2654 2230 84.02 410 250 60.98
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TRACKING EFFECT EVALUATION EXPERIMENT (OFFLINE TEST)

In the tracking module, the two metrics, namely the NMT and the MAR, are employed to evaluate 
the performance. To simplify the evaluation steps without losing the evaluation effect, we sampled 
and extracted the multi-scene data of tracking 15 frames, 25 frames, and 50 frames for comparison. 
Figure 7 displays the evaluation effect of each scene. The above test data are compared according 
to the scene, and the tracking performance of the two scenes is also counted. Table 3 counts the 
differences between the two versions under the tracking module.

The NMT indicator in Version 1.0 has dominant group ratios of 78.85%, 71.15%, and 51.92% 
for 15 frames, 25 frames, and 50 frames, respectively, which is higher than the 21.15%, 28.85%, and 
48.08% ratios in Version 2.0. The proportion of the dominant group in the MAR indicator is not very 
different between the two versions. Beyond that, the average MAR values of Version 2.0 (0.6859%, 
0.7233%, and 0.7337%) are slightly higher than those of Version 1.0 (0.6696%, 0.6988%, and 0.7401%).

Figure 7. The evaluation effect of each scene
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OBSTACLE DETECTION AND CLASSIFICATION MODULE 
EVALUATION EXPERIMENT (OFFLINE TEST)

In the detection module, the Mbox index, the Precision index, and the Recall index are evaluated. 
Figure 8 shows the performance in different scenarios, and Table 4 presents the statistics.

Compared with the Version 1.0 test, the Version 2.0 test reduces the Recall rate by 6.3%, from 
26.29% to 19.99%, but the Precision rate increases by 30.13%, from 45.63% to 75.76%.

Table 3. Tracking assessment results

15-NMT 25-NMT 50-NMT

Version Advantages 
Number

Ratio (%) Advantages 
Number

Ratio (%) Advantages Number Ratio (%)

1.0 41 78.85 37 71.15 27 51.92

2.0 11 21.15 15 28.85 25 48.08

15-MAR 25-MAR 50-MAR

Version Advantages 
Number

Mean Advantages 
Number

Mean Advantages Number Mean

1.0 28 0.6696 27 0.6988 26 0.7401

2.0 24 0.6859 25 0.7238 26 0.7337

Table 4. Obstacle detection assessment results

Version Mbox (%) Precision (%) Recall (%)

1.0 35.18 45.63 26.29

2.0 29.48 75.76 19.99

Figure 8. Obstacle detection assessment results of different scenarios
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In the classification evaluation, the obstacles are classified into vehicles, pedestrians, and others. 
The Precision index and the Recall index are used for quantitative evaluation (see Table 5).

Judging from the classification statistics, the two comparative versions have little difference in 
the classification performance of vehicles. In the classification effect of pedestrians, the Precision 
of Version 2.0 (41.11%) is slightly higher than that of Version 1.0 (39.92%). For the classification 
effect of other categories, the Precision (87.14%) and Recall (72.96%) of Version 2.0 are both lower 
than the Precision (82.85%) and the Recall (69.44%) of Version 1.0, respectively. In general, the 
classification effect of \Version 2.0 is more obvious than that of Version 1.0 on pedestrians, but the 
recognition effect of other categories is worse.

In the above experiments, the performance of the autonomous driving system was evaluated by 
the offline test module in all aspects. To make the comparison of the two versions more intuitive, 
the test results were partially integrated, as shown in Table 6 and Figure 9.

The mean values of the MAR and the NMT were calculated in the tracking evaluation experiment, 
and the mean Mbox value and the Recall and the Precision of the detection module were also 
measured. It can be seen from the data that Version 2.0 (0.8819%) is significantly better than Version 
1.0 (0.4838%) in terms of accuracy, while in other indicators, the performance of Version 2.0 has 
decreased.

Table 5. Obstacle classification assessment results

Version Vehicle Pedestrian Other

1.0 Precision (%) 85.40 39.92 87.14

Recall (%) 95.65 37.46 72.96

2.0 Precision (%) 85.83 41.11 82.85

Recall (%) 96.01 37.31 69.44

Table 6. Summary of various indicators (data)

Version Mbox (%) Recall (%) Precision (%) NMT (%) MAR (%)

1.0 0.2980 0.2149 0.8819 0.2500 0.6469

2.0 0.3867 0.2787 0.4838 0.7500 0.6798
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MODEL QUANTIZATION ACCURACy EXPERIMENT

Deploying deep learning models on FPGAs requires model quantization. Model quantization converts 
floating-point calculations into low-ratio-specific point calculations. It reduces the computational 
intensity, parameter size, and memory consumption, which helps improve operating efficiency, but 
the disadvantage is that there is an accuracy loss. In this experimental module, we compare the 
quantification results of the two versions of the model.

Figure 9. Summary of various indicators (map)

Table 7. Model quantization results

Version Pedestrian Vehicle

Before 
Quantification

After 
Quantification

Before 
Quantification

After 
Quantification

1.0 Number 19072 18088 98995 97979

AP (%) 0.57 0.50 0.74 0.75

2.0 Number 18641 18232 98958 97776

AP (%) 0.57 0.57 0.75 0.67
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As shown in Table 7, the two versions of the model are tested on the same dataset before and 
after quantization. On the one hand, we count the number of detections of pedestrians and vehicles, 
and on the other hand, we calculate the average precision (AP) metric of the model. It can be seen 
that there is little difference in the indicators of the two models before quantification, and there is a 
difference after quantification. The model of Version 1.0 has a large loss of accuracy in the pedestrian 
category, and the AP indicator has dropped from 0.57% to 0.50%. On the contrary, the AP index of 
the model in Version 2.0 changes from 0.75% to 0.67% in the vehicle category, and there is a large 
loss of accuracy.

RUNNING TIME EVALUATION EXPERIMENT (ONLINE TEST)

In this experiment, the average delay time is evaluated in the actual drive test scenario, and the test 
time is not less than one hour. Besides this, the statistics are calculated according to the two standards 
of less than 80 ms and less than 100 ms, as shown in Table 8 and Figure 10. For the tests of these 
two different versions, it can be concluded that 95% of the results of the two meet the requirement 
of 12.5 fps (80 ms/frame) under normal scenarios.

Table 8. Running time assessment results

Version Statistics Time (h) Less Than 80 ms (%) Less Than 100 ms (%)

1.0 1.38 98.56 99.72

2.0 1.00 95.15 99.96

Figure 10. Running time distribution (map)
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CONCLUSION

In this paper, an autonomous driving evaluation system based on user big data management and AI 
technology is presented for the purpose of improving automotive active safety technologies. Besides 
this, the user big data management method, the automatic driving offline evaluation scheme, and the 
automatic driving online evaluation scheme are respectively introduced. Importantly, the user big 
data management solution is taken to enhance the data processing capability of the evaluation system, 
including the whole process processing capability of data adoption, data analysis, and data release. 
Apart from that, the combination of AI technology and the evaluation system effectively solves the 
problem of true value acquisition in the process of applying big data evaluation, thereby enhancing 
the automation of the evaluation system. The experimental results on real datasets indicate that our 
proposed evaluation system has achieved effective results. In the future, user big data management 
and AI technology will be further developed to improve the automation of the evaluation system.
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