
A Layered Model for Building
Ontology Translation Systems

Osear Corcho, Intelligent Software Components, Spain*

Asunción Gómez-Pérez, Universidad Politécnica de Madrid, Spain

ABSTRACT

In this paper we present a model for building ontology translation systems between
ontology languages and/or ontology tools, where translation decisions are defmed
at four different layers: lexical, syntax, semantic, and pragmatic. This layered
approach provides a major contribution to the current state of the art in ontology
translation, since it makes ontology translation systems easier to build and
understand and, consequently to maintain and reuse. As part of this model, we
propose a method that guides in the process of developing ontology translation
systems according to this approach. The method identifies four main activities:
feasibility study, analysis ofsource, and target formats, design, and implementation
of the translation system, with their decomposition in tasks, and recommends the
techniques to be used inside each of them.

Keywords: ontologies; semiotics; transformation languages; transformation models

INTRODUCTION

An ontology is defined as a "formal
explicit specification of a shared
conceptualization" (Studer etal., 1998);
that is, an ontology must be machine read-
able (it is formal), all its components must
be described clearly (it is explicit), it de­
scribes an abstract model of a domain (it
is a conceptualization), and it is the prod-
uct of a consensus (it is shared).

Ontologies can be implemented in
varied ontology languages, which are usu-
ally divided in two groups: classical and
ontology markup languages. Among the
classical languages used for ontology con-
struction, we can cite (in alphabetical or-
der): CycL (Lenat& Guha, 1990), FLogic
(Kifer et al., 1995), KIF (Genesereth &
Fikes, 1992), LOOM (MacGregor,
1991), OCML (Motta, 1999), and
Ontolingua (Gruber, 1992). Among the

ontology markup languages used in the
context of the Semantic Web, we can cite
(in alphabetical order): DAML+OIL
(Horrocks and vanHarmelen, 2001), OIL
(Horrocks et al., 2000), OWL (Dean &
Schreiber, 2004), RDF (Lassila& Swick,
1999), RDF Schema (Brickley & Guha,
2004), SHOE (Luke & Hefflin, 2000),
and XOL (Karp et al., 1999). Each of
these languages has its own syntax, its own
expressiveness, and its own reasoning
capabilities provided by different inference
engines. Languages also are based on dif­
ferent knowledge representation para-
digms and combinations of them (frames,
first order logic, description logic, seman­
tic networks, topic maps, conceptual
graphs, etc.).

A similar situation applies to ontol­
ogy tools: several ontology editors and
ontology management systems can be
used to develop ontologies. Among them,
we can cite (in alphabetical order): KAON
(Maedche et al, 2003), OilEd (Bechhofer
et al., 2001), OntoEdit (Sure et al., 2002),
the Ontolingua Server (Farquhar et al.,
1997), OntoSaurus (Swartout et al.,
1997), Protégé-2000 (Noy et al., 2000),
WebODE (Arpírez et al., 2003), and
WebOnto (Domingue, 1998). As in the
case of languages, the knowledge models
underlying these tools have their own ex­
pressiveness and reasoning capabilities,
since they are also based on different
knowledge representation paradigms and
combinations of them. Besides, ontology
tools usually export ontologies to one or
several ontology languages and import
ontologies coded in different ontology lan­
guages.

There are important connections and
implications between the knowledge mod-
eling components used to build an ontol­
ogy in such languages and tools, and the
knowledge representation paradigms used
to represent formally such components.
With frames and first order logic, the
knowledge components commonly used
to build ontologies are (Gruber, 1993)
classes, relations, functions, formal axioms,
and instances; with description logics, they
are usually (Baader et al., 2003) concepts,
roles, and individuáis; with semantic net­
works, they are: nodes and ares between
nodes; etc.

The ontology translationproblem
(Gruber, 1993) appears when we decide
to reuse an ontology (or part of an ontol­
ogy) with a tool or language that is differ­
ent from those where the ontology is avail-
able. If we forcé each ontology-based
system developer to commit individually
to the task of translating and incorporat-
ing the necessary ontologies to the
developer's system, the developer will
need a lot of effort and time to achieve his
or her objectives (Swartout et al., 1997).
Therefore, ontology reuse in different con-
texts will be boosted highly, as long as we
provide ontology translation services
among those languages and/or tools.

Many ontology translation systems
can be found in the current ontology tech-
nology. They are aimed mainly at import-
ing ontologies implemented in a specific
ontology language to an ontology tool, or
at exporting ontologies modeled with an
ontology tool to an ontology language. A
smaller number of ontology translation
systems is aimed attransforming ontolo-

gies between ontology languages or be-
tween ontology tools.

Since ontology tools and languages
have different expressiveness and reason-
ing capabilities, translations between them
are neither straightforward ñor easily re-
usable. They normally require many deci-
sions at different levéis, which range from
low layers (i. e., how to transform a con-
cept ñame identifier from one format to
the other) to higher layers (i.e., how to
transform a ternary relation among con-
cepts to a format that only allows repre-
senting binary relations between con-
cepts).

Current ontology translation systems
usually do not take into account such a
layered structure of translation decisions.
Besides, inthese systems, translation de­
cisions usually are hidden inside their pro-
gramming code. Both aspects make it dif-
ficult to understand how ontology transla­
tion systems work.

To ameliorate this problem, in this
chapter we propose a new model for
building and maintaining ontology transla­
tion systems, which identifies four layers
where ontology translation decisions can
bemade: lexical, syntax, semantic, and
pragmatic. This layered architecture is
based on existing work in formal languages
and the theory of signs (Morris, 1938).

The following section describes the
four layers where ontology translation
problems may appear, with examples of
how transformations have to be made at
each layer; then we describe an ontology
translation method based on the previous
layers, which is divided into four main ac-
tivities; finally, we presentthe main con-
clusions of our work and related work.

ONTOLOGY
TRANSLATION LAYERS

As discussed previously, our ontol­
ogy translation model proposes to struc­
ture translation decisions in four different
layers. The selection of layers is based on
existing work on formal languages and the
theory of signs (Morris, 193 8), which con-
sider the existence of several levéis in the
definition of a language: syntax (related to
how the language symbols are structured),
semantics (related to the meaning of those
structured symbols), and pragmatics (re­
lated to the intended meaning of the sym­
bols; that is, how symbols are interpreted
orused).

In the context of semantic
interoperability, some authors have pro-
posed classifications of the problems to
be faced when managing different ontolo-
gies in possibly different formats. We will
enumérate only the ones that are due to
differences between the source and tar-
get formats1. Euzenat (2001) distinguishes
the following non-strict levéis of language
interoperability: encoding, lexical, syntac-
tic, semantic, and semiotic. Chalupsky
(2000) distinguishes two layers: syntax and
expressivity (aka semantics). Klein (2001)
distinguishes four levéis: syntax, logical
representation, semantics of primitives, and
language expressivity; the lastthree levéis
correspond to the semantic layer identi-
fied in the other classifications. Figure 1
shows the relationship between these
layers.

The layers proposed in our model
are based mainly on Euzenat, the only one
in the context of semantic interoperability

Figure 1. Classifications of semantic interoperability problems and relationships
between them

[Morris, 1938]

Pragmatic

Semantic

Syntax

[Chulupsky,2000]

Expressivity

Syntax

[Klein,2001]

Language expressivity
Semantics of primitives

Logical representation

Syntax

[Euzenat,2001]

Semiotic

Semantic

Syntax
Lexical
Encoding

who deals with pragmatics (although he
uses the term semiotics for it). However,
we consider it unnecessary to split the lexi­
cal and encoding layers when dealing with
ontologies and consider them as aunique
layer, called lexical.

In the next sections we describe the
types of translation problems thatusually
can be found in each of these layers and
will show some examples of common
transformations performed in each of them.

Lexical Layer

The lexical layer deals with the abil-
ity to segment the representation in char-
acters and words (or symbols) (Euzenat,
2001). Different languages and tools nor-
mally use different character sets and
grammarsforgeneratingtheirterminal sym­
bols (i.e., ontology componentidentifiers,
natural language descriptions of ontology
components, and attribute valúes). This
translation layer deals with the problems
that may arise in these symbol transfor­
mations.

Therefore, in this layer, we deal with
the following types of transformations:

• Transformations of ontology com-
ponent identifiers. For instance, the
source and target formats use different
sets of characters for creating identifi­
ers; the source and target format use
different naming conventions for their
component identifiers, or their compo­
nents have different scopes; henee,
some component identifiers cannot
overlap with the identifiers of other
components.

• Transformations of pieces of text
used for natural language docu-
mentation purposes. For instance,
specific characters in the natural lan­
guage documentation of a component
must be escaped since the target for­
mat does not allow them as part of the
documentation

• Transformations of valúes. For in­
stance, numbers must be represented
as character strings in the target for­
mat, or dates must be transformed ac-
cording to the date formulation rules of
the target format.

From a lexical point of view, among
the mostrepresentative ontology languages

and tools we can distinguish three groups
offormats:

• ASCII-basedformáis. Among these
formats, we can cite the following clas-
sical languages: KIF, Ontolingua, CycL,
LOOM, OCML, and FLogic. Also in
this group, we can include the ontology
tools related to some of these languages
(Ontolingua Server, OntoSaurus, and
WebOnto). These languages are based
on ASCII encodings, and henee, the
range of characters allowed for creat-
ing ontology componentidentifiers and
for representing natural language texts
and valúes is restricted to most of the
characters allowed in this encoding.

• UNICODE-based formats. Among
these formats, we can cite the follow­
ing ontology tools: OntoEdit, Protégé-
2000, and WebODE. These formats
are based on the UNICODE encod­
ing, which is an extensión of the ASCII
encoding and, thus, allows using more
varied characters (including Asian and
Arabic characters, more punctuation
signs, etc.).

• UNICODE&XML-based formats.
Among these formats we can refer to
the ontology markup languages: SHOE,
XOL, RDF, RDFS, OIL,
DAML+OIL, and OWL, and some of
the tools that are related to them, such
as KAON and OilEd. These formats
are characterized not only for being
UNICODE compliant, as the previous
ones, but also for restricting the use of
some characters and groups of char­
acters in the component identifiers and
in the natural language documentation
and valúes, such as the use of tag-style

pieces of text (e.g., <example>) in-
side documentation tags. An important
restriction is the compulsory use of
qualified ñames (QNames) as identifi­
ers of ontology concepts and proper-
ties, since they are used to construct
tags when dealing with instances.

The easiest lexical transformations
are usually those to be done from the first
and third group offormats to the second
one, which is the mostunrestricted one.
In other cases, the specific features of each
format do not allow us to generalize the
types of transformations to be done, which
mainly consist in replacing non-allowed
characters with others that are allowed,
or in replacing identifiers that are reserved
key words in a format with other identifi­
ers that are not. Obviously, there are also
differences among the languages and
tools inside each group, although the
transformations needed in those cases
areminimal.

Special attention deserves the prob-
lem related to the scope of the ontology
component identifiers in the source and
target formats, and to the restrictions re­
lated to overlapping identifiers. These
problems appear when, in the source for­
mat, a component is defined inside the
scope of another and, thus, its identifier is
local to the latter, while the correspondent
component has a global scope in the tar­
get format. As a consequence, there could
be clashes of identifiers if two different
components have the same identifier in the
source format.

Table 1 shows examples of how
some ontology component identifiers can
be transformed from WebODE to

Ontolingua, RDF(S), OWL andProtégé-
2000, taking into account the rules for
generating identifiers in each format and
the constraints aboutthe scope and pos-
sible overlap of some ontology compo-
nent identifiers.

As previously expressed, inside this
layer, we al so deal with the different nam-
ing conventions that exist in different for­
máis2. For instance, in Lisp-based lan­
guages and tools such as Ontolingua,
LOOM, OCML, and their correspond-
ing ontology tools, compound ñames usu-
ally are j oined together using hyphens (e.g.,
Travel-Agency). In tools like OntoEdit,
Protege, and WebODE, words are sepa-
rated with blank spaces (e.g., Travel
Agency). In ontology markup languages,
the convention used for class identifiers is
to write all the words together, with no
blank spaces or hyphens, and with the first
capital letter for each word (e.g.,
TravelAgency).

Syntactic Layer

This layer deals with the ability to
structure the representation in structured
sentences, formulas or assertions (Euzenat,
2001). Ontology components in each lan-
guage or tool are defined with different
grammars. Henee, the syntactic layer deals
with the problems related to how the sym-
bols are structured in the source and tar-
get formats, taking into account the deri-
vation rules for ontology components in
each of them.

In this layer, the following types of
transformations are included:

• Transformations of ontology com-
ponent definitions according to the
grammars of the source and target for­
mats. For instance, the grammar to de­
fine a concept in Ontolingua is different
than that in OCML.

• Transformations of datatypes. For
instance, the datatype date in WebODE
must be transformed to the datatype
&xsd;dateinOWL.

Figure 2 shows an example of how
a WebODE concept definition (expressed
in XML) is transformed into Ontolingua
and OWL. In this example, both types of
translation problems are dealt with.

Among the most representative on­
tology languages and tools, we can distin-
guish the following (overlapping) groups
of formats:

• Lisp-based formats. The syntax of
several classical ontology languages are
based on the Lisp language; namely,
KIF and Ontolingua, LOOM, and
OCML, together with their corre-
sponding ontology tools (Ontolingua
Server, OntoSaurus, and WebOnto,
respectively).

• XML-based formats. Ontology
markup languages are characterized by
being represented in XML syntax.
Among them, we can cite SHOE, XOL,
RDF, RDFS, OIL, DAML+OIL, and
OWL. In addition, ontology tools such
as OntoEdit, Protégé-2000, and
WebODE also provide ad hoc XML
backends to implement their ontologies.

• Ad hoc text formats. There are other
ontology languages that do not provide
any of the previ ous syntaxes, butthey

Table 1. Examples of transformations at the lexical layer

WebODE Identifier

Business Trip

IStarHotel

Concepts Ñame and Ñame

Concept Room
attribute f are

Concept F l i g h t
attribute f are

Concept Ñame
attribute Ñame

Target

Ontolingua

RDF(S)

Ontolingua

OWL

Protégé-2000

Result

Bus iness -Tr ip

OneStarHotel

classes Ñame and Ñame 1

classes Room, F l i g h t
datatyp ePr operty
roomFare
datatyp ePr operty
f l i g h t F a r e

class Ñame; slot ñame

Reasons for Transformation

Blank spaces in identifiers are
not allowed in Ontolingua

Identifiers cannot start with a
digit in RDF(S). They do not form valid
QNames

Ontolingua is not case sensitive

WebODE attributes are local to concepts.
OWL datatype properties are not defined
in the scope of OWL classes, but globally

The identifiers of classes and
slots cannot overlap in Protégé-2000

Figure 2. Examples of transformations at the syntactic layer

WebODE's XML syntax

•=: Concept=-
•=:Name :=• flight-ílName :=•
<Descriptifln>A trip made by or in an airplane or

spacec raft -:/Descriptiüit-
=: Instaure-Attrib ute:-

•=:Name >dep ariureDate=:/Naiiie>
<Descriptioiii>The date whenthe flight

depart s</DescriptiaiL>
•=:Type>Date-=: jTypo
-Mínimum- Caiuinali tp 1 -.'Mínimum- Cardinalitp
^Máximum- Caidiitalí tp 1 -'Máximum- Cardinalitp
</ínstame - Attribute>

</Concept>

Ontolingua
(Define-Frame flight
:Own-Slote
i (Instaure- Of Class)
(Documentation "A trip made by or in an airplane orspacecrafl."))

:Template-Slofc
(((departureDate (Minimum-Cardinalíty 1)

(Máximum- Caidinality 1)
(Value-Type Date)))))

OWL
<vwl:Clais idf:ID= "flight">

=:rdís:comment=Á trip made by or in an airplane or
spacec rañ =:/rdfs :co mment=

=:rdís:subClassOf=
-:owl:Restriction:-

<owl:oiiPropertyrdf:resoiirce=''#departTireDate'' />
<owl:allVahiesFromrdf:resource="&xsd^iate" l>

</owl:Restrictioit=
=:/rd£s:suJ)ClassOf:-
=:rdis:subClassOf=

=:owl:Restriction:=
<owl:onPniipertyrdf:resource="#departTireDate" />
<owl:CaidinaHtyrdf:datatype=',&xsd;noriNegatrvreInteger,'>

1
</owl: CardiiLality>

</owl:Resirictio3i>
=:,irdfs:subClassOf:=

</awl:Class>

provide their own ad hoc formats.
These languages are F-Logic, the
ASCII syntax of OIL, and the Nota-
tion-3 (N3) syntax used to represent
ontologies in RDF, RDFS, and OWL.
ExceptforF-Logic, these syntaxes are
alternative and mainly intended for hu­
man consumption.

Ontology management APIs. Finally
several ontology languages andtools
provide ontology management APIs.
These APIs are included here because
they can be considered as another form
of syntax; the expressions used to ac-
cess, créate, and modify ontology com-
ponents in the programming language

in which these APIs are available have
to be created according to the specifi-
cation provided by the API. Among the
languages with an ontology manage-
ment API, we have all the ontology
markup languages, where ontologies
can be created using available XML
Java APIs such as DOM, SAX, and
so forth; and, more specifically, RDF,
RDFS, DAML+OIL, and OWL, for
which there are specific APIs that re-
semble the knowledge models of the
ontology languages, such as Jena, the
OWL API, and so forth. Among the
tools, we have KAON, OntoEdit,
Protégé-2000, and WebODE.

There are other aspects to be con-
sidered in this layer, such as the fact that
some ontology languages and tools allow
defining the same component with differ­
ent syntaxes. For example, Ontolingua
provides at least four different ways to
define concepts using KIF, using the
Frame Ontology or using the OKB C-
Ontology exclusively, or embeddingKIF
expressions inside definitions that use the
Frame Ontology. This variety adds com-
plexity both for the generation of such a
format (we must decide what kind of ex-
pression to use3) and for its processing
(we have to take into account all the pos-
sible syntactic variants for the same piece
ofknowledge).

Inside this layer, we also must take
into account how the different formats rep-
resent datatypes. Two groups can be dis-
tinguished:

• Formats with their own internal
datatypes. Among these formats, we

can refer to most of the ontology lan­
guages exceptRDF, RDFS, and OWL,
and most of the ontology tools.

• Formats with XML Schema
datatypes. These datatypes have been
defined with the aim of providing
datatype standardization in Web con-
texts (e.g., in Web services). They can
be used in the ontology languages RDF,
RDFS, and OWL, and in the ontology
tool WebODE, which allows using both
types of datatypes (internal and XML
Schema).

Therefore, with regard to datatypes,
the problems to be solved will consist
mainly of finding the relationships between
the internal datatypes of the source and
target formats (not all the formats have the
same group of datatypes) or finding rela­
tionships between the internal datatypes
of a format and the XML Schema
datatypes, and vice versa.

Semantic Layer

This layer deals with the ability to
constructthe propositional meaning of the
representation (Euzenat, 2001). Different
ontology languages and tools can be based
on different KRparadigms (frames, se­
mantic networks, first order logic, con­
ceptual graphs, etc.) oróncombinations
of them. These KR paradigms do not al-
ways allow expressing the same type of
knowledge, and sometimes the languages
and tools based on these KR paradigms
allow expressing the same knowledge in
different ways.

Therefore, in this layer, we deal not
only with simple transformations (e.g.,

WebODE concepts are transformed into
Ontolingua and OWL classes), but also
with complex transformations of expres-
sions that usually are related to the fact
that the source and target formats are
based on differentKRparadigms (e.g.,
WebODE disjoint decompositions are
transformed into subclass-of relationships
and PAL4 constraints in Protégé-2000,
WebODE instance attributes attached to
a class are transformed into datatype
properties in OWL and unnamed prop-
erty restrictions for the class).

As an example, Figure 3 shows how
to represent a concept partition in differ-
ent ontology languages and tools. In
WebODE and LOOM, there are specific
built-in primitives for representing partí -
tions. In OWL the partition must be rep-
resented by defining the rdfs:subClassOf
relationship between each class in the
partition and the parent class, by stating
that every possible pair of classes in the
decompositionis disjoint, andby defining
the parent class as the unión of all the
classes in the partition. In Protégé-2000,
the partition is represented like in OWL,
with swéc/ass-q/relationships between all
the classes in the partition and the parent
class, with several PAL constraints that
represent disjointness between all the
classes in the partition, and with the state-
ment that the parent class is abstract (that
is, it cannot have direct instances).

Most of the work on ontology trans-
lation done so far has been devoted to
solving the problems that arise in this layer
For example, in the literature, we can find
several formal, semi-formal, and informal
methods for comparing ontology lan­
guages and ontology tools' knowledge

models (Baader, 1996; Borgida, 1996;
Corcho & Gómez-Pérez, 2000; Euzenat
& Stuckenschmidt, 2003; Knublauch,
2003), which aim at helping to decide
whether two formats have the same ex-
pressiveness or not, so that knowledge can
be preserved in the transformation. Some
of these approaches also can be used to
decide whether the reasoning mechanisms
present in both formats will allow inferring
the same knowledge in the target format.

Basically, these studies allow analyz-
ingthe expressiveness (and, in some cases,
the reasoning mechanisms) of the source
and target formats, so that we can know
which types of components can be trans-
lated directly from a format to another,
which types of components can be ex-
pressed using other types of components
from the target format, which types of
components cannot be expressed in the
target format, and which types of compo­
nents can be expressed, although losing
part of the knowledge represented in the
source format.

Therefore, the catalogue of problems
that can be found in this layer are related
mainly to the different KR formalisms in
which the source and target formats are
based. This does not mean that translat-
ing between two formats based on the
same KR formalism is straightforward,
since there might be differences in the
types of ontology components that can be
represented in each of them. This is spe-
cially important in the case of DL lan­
guages, since many different combinations
of primitives can be used in each language,
and, henee, many possibilities exist in the
transformations between them, as shown
in Euzenat and Stuckenschmidt (2003).

Figure 3. Examples oftransformations at the semantic layer

hotel

partiü on

hotellStar hotel2Star ícteBSter hotellStar hotellStar

a) WebODE

hotel 1 Star U hoteES tai
U...Uhotel5Star

disjointWith

c)OWL

disjointWith

hotel

partitioiís

hotelPaititiorL

in-parti

hotellStar

inTi —
hotel2Star hoteBStar

- - iri prtitrri

hote!4Ster hotellStar

b) LOOM

s ^ ^ - ^ ^ ^

hotellStar hoteDStai

hotel A

<r se

hotel3Star

'^•y^^^^C

hotel4Star hotellStar

(forall'X
(=s (instara;e-of?X hotellStar)

(and (not (instance-of ?X hotel2Star))
(not(instance-of ?X hoteOStar))
Cnot(rnstance-of ?X hotel4Star))
Cnot(instance-of ?X hotel5Star))))))

d) Protégé-2000

However, the most interesting results ap-
pear when the source and target KR for-
malisms are difíerent.

Pragmatic Layer

This layer deals with the ability to
construct the pragmatic meaning of the
representad on (or its meaning in context).
Therefore, in this layer we deal with the
transformations to be made in the ontol-
ogy resulting from the lexical, syntactic,
and semantic transformations, sothatboth
human users and ontology-based appli-
cations will notice as few differences as
possible with respect to the ontology in the
original format, either in one-direction trans­
formations or in eyelie transformations.

Therefore, transformations in this
layer will requirethefollowing: adding spe-
cial labels to ontology components in or-
der to preserve their original identifier in
the source format; transforming sets of
expressions into more legible syntactic
construets in the target format; hiding com-
pletely or partially some ontology com­
ponents not defined in the source ontol­
ogy but that have been created as part of
the transformations (such as the anony-
mous classes discussed previously); and
so forth.

Figure 4 shows two transformations
of the OWL functional object property
usesTransportMean to WebODE. The
obj ect property domain is the class flight,
and its range is the class airTransportMean.

Figure 4. Examples of transformations at the pragmatic layer

WebODE option 1
sTerm-Kfilalioiis

<Namfi>iEesTtanspoitMean<ÍName:=
< Origjn>fl^ht=:/Origui>
<Destinatim>airTraiisportIvIearL<ÍDes1ÍJia.tiiiii>
=Máximum- Cardinalitjf11 ^/Marimum-Cardinalitp

^rTenu-EelatioR^

flight
(0,1)

airTransportMean

usesTransportMean

í
OWL

•ímvl: ObjectPiuperty rdf:ID= "usesTiansportMean ">
<:rdf:type rdf:resource="i6owlJ:iinctioiiaIPrciperty"l>
=:r4fs:domainnif:resource="snight" !s
<rdis:iangp idf:iiesoiirce="#airTraiispoitMearL" fa

</uwl: OhjectPrupertp-

I
WebODE option 2

<Teim- Ee latió it=
sNamesusesTiarispoitMeaii-s/Names
< Origiii>Thingí/Originf=
<Destinatim>ThingííDes1ÍJiatioiií=
= Máximum Cardiñalitjf1-1 <JMaximiim-Canliiia]itp

<ÍTerm-Rel»tion>

Thing S^^>(0,N)

us es Transp ortMean

sAxioms Axiorn #1
^Name^usesTrarispoitMean domain^/Name^ _-—-~"~~~"
=Exp ressran=|foiall(?X,?Y) (i]sesTiansporiMeaii(?X,?Y) -> ffi^pXJjjjEjpreiiiflif

Axiom #2

d'IAs¡om>
<Axiom>

«Name^iEesTianspoitMean ianss<:ÍName2 -—-~"~~~~
<Ej¡pressiim:='fora]Í(?X,?Y) (usesTransportMean(?X,?Y) -» airTraiispoiMean(?Y))]:ÍExpn;ssion>

<i¿aáom>
sAsioms Axiorn #3

<NainiR>iBPsTraiispnTtMiHaT) inmTiiiiTii raHii ial i ty<fNaii iR> _ - - - ~ ~ ~
gExpressran=(foiaÍl(?X,?Y,?Z) (usesTiaiispoitMean(?X,?Y) and usesTi™sportMean(?X,?Z) -> (?Y=?Z))
<ÍExpression>

<ÍAjdDm>

The figure shows two of the possible se-
mantically equival ent sets of expressions
that can be obtained when transforming
that definition. In the first one, the obj ect
property is transformed into the ad hoc
relation usesTransportMean that holds
between the concepts flight and
airTransportMean, with its máximum car-
dinality setto one. In the second one, the
obj ect property is transformed into the ad

hoc relation usesTransportMean, whose
domain and range is the concept Thing (the
root of the ontology concept taxonomy),
with no restrictions on its cardinality, plus
three formal axioms expressed in first-or-
der logic, the first one stating that the rela­
tion domain is flight, the second one that
its range is airTransportMean, and the third
one imposing the máximum cardinality
constraint5.

From a human user's point of view,
the first WebODE definition is more leg­
ible; at first glance, the user can see that
the relation usesTransportMean is defined
between the concepts flight and
airTransportMean, and that its máximum
cardinality is one. Inthe second case, the
user must find and interpret the four com-
ponents (the ad hoc relation definition and
the three formal axioms) to reach the same
conclusión.

A similar conclusión can be obtained
from an application point of view. Let us
suppose that we want to popúlate the on-
tology with an annotation tool. The be-
havior of the annotation tool is different
for both definitions. With the first defini­
tion, the annotation tool will easily under-
stand that its user interface cannot give
users the possibility of adding more than
one instance of the relation, and that the
drop-down lists used for selecting the
domain and range of a relation instance
will show only direct or indirect instances
of the concepts flight and
airTransportMean, respectively. With the
second definition, the annotation tool will
allow creating more than one relation in­
stance from the same instance and will dis-
play all the ontology instances in the drop-
down lists instead of just presenting in­
stances of flight and airTransportMean, re­
spectively. Afterthat, the annotation tool
will have to run the consistency checker
to detect inconsistencies in the ontology.

Relationships Between Ontology
Translation Layers

Figure 5 shows an example of a
transformation from the ontology platform

WebODE to the language OWL DL. In
this example, we have to transform two
ad hoc relations with the same ñame
{usesTransportMean) and with different
domains and ranges (a flight uses an
airTransportMean, and a cityBus uses a
bus). In OWL DL, the scope of an object
property is global to the ontology, and thus
we cannot define two different object
properties with the same ñame. In this
example, we show that translation deci-
sions have to be taken at all layers, and
we also show how the decisión taken at
one layer can influence the decisions to
be made at the others, henee showing the
complexity of this task.

Option 1 is driven by semantics; to
preserve semantics in the transformation,
two different obj ect properties with dif­
ferent identifiers are defined. Option 2 is
driven by pragmatics; only one object
property is defined from both ad hoc re­
lations, since we assume that they refer to
the same meaning, but some knowledge
is lost in the transformation (the one re-
lated to the obj ect property domain and
range). Finally, Option 3 also is driven by
pragmatics, with more care on the seman­
tics; again, only one object property is
defined, and its domain and range is more
restricted than in Option 2, although we
still lose the exact correspondence be­
tween each domain and range.

A LAYERED ONTOLOGY
TRANSLATION METHOD

Once we have described the four
layers where ontology translation decisions
have to be made, we will present our

WebODE

<Term-Relation>
=;Naine>usesTranspQrtMean</Name>
< Origin> flight</Origin>
< Des tinatio n > air Trans p ortMean < /Des tinatio n >

</Term-Relation>
<Term-Relation>

<Name>usesTranspartMean</Name>
< Origln>cityBus </Origin>
<Destination>biis </Destination>

<yTerm-Relation>

flight airTransp ortMean

usesTransportMean

cityBus

usesTransportMean

OWL(l)

<owl: ObjectProperty rdf: ID="flight_usesTransportMean">
<rdfs: domain rdf: resource= "#flight "/>
<rdfs:ranjp rdf:iesource="ífeirTransportMean"/>

</owl: Ob jectProperty>
<owl: ObjectProperty rdf:ID="cityBus_usesTransportMean">

<rdfs:domaitirdf:resource=ll#cityBus7>
<rdfs : ran^ rdf:iesource="#Dus"/>

</owl: Ob jectProperty>

<owl: Class rdf: ID-"flight">
==rdfs:sub Class Of>

<owl:Restriction>
<owl: onProperty

rdf:resource="#flight_useBTraiiBportIVlean" />
<owl: aUValuesFrom

rdf: resource="ífeirTransp ortMean" />
</owl: Restriction>

=/rdfs:sub Class Of>

<fawL:Ckss>
<owl: Class rdf:ID="cityBus">
<rdfs:sub Class Of>

<owl: R£striction>
<owl: onProperty

nlf:re50urce=''#cityBus_us es Transp ortMean'' />
<owl:allValijesFromrdf:resource="#Jus" />

<Jawl: Restriction>
</rdfs:suh Class Of>

</owl:Class>

Different identifiers for each object property

RDF/XML Abbrev

No losses of expressiveness

Both properties are interpreted as

different things

OWL(2)

«nvl:ObjectProperty rdf:ID="usesTransportMean"A>

<owl: Class rdf:ID="flight">
<rdfs:subClassOO

<owl: Restriction>
< owl: onProperty rdf:resource= "#usesTransp ortMean" />
<owl:al±ValuBsFrom rdf: resource="feir Transp ortMean" />

<!awl: Res trictio n>
</rdfs:subClassOf>

</awl:Class>

<owl: Class rdf:ID="cityBus">
<rdfs:sub Class Of>

<owl: Restriction>
<owl:onProperty rdf:resource= "#usesTransp ortMean" />
<owl:allValuesFrom rdf:resource-"ffl3us" 1>

< /owl: Res trictio n>
</rdfs:sub Class Of>

</owl:Class>

The same identifiers for both object properties

RDF/XML Abbrev

Some expressiveness lost: object property
can be applied to any class

Both properties are interpreted as the same.
By reading the object property definition,
it is not easy to know where it is applied

OWL

<owl:ObjectProperty rdf:ID="usesTransportMean">
<rdfs:domain>

<owl: Class>
<owl: unión Of rdf:parseType=" Coüection">

<owl: Class rdf:about="#flight"/>
<owl: Class rdf:ábout="#cityBus7>

=/owl:nit¡onOf>
</awl:Class>

</nlfs:domain>
<rdfs:range>

<owl: Class>
<owl: unión Of rdf:parseType=" Collection">

<owl: Class rdf:about="ífeirTransportMean"/>
<owl: Class rdf:about="íftius".t=

=^owl:unionOf>
</owl:Class>

<frdfs:ranf^>
</owl: Ob jectProperty>

The same identifiers for both object proper

(?)

<owl:Class rdf:ID="night">
<rdfs:sub Class Of>
<owl: Restriction>

< owl: onProp e rty
rdf: n?source="#us es Transp ortMean" />

< owl: allValuesFro m
rdf: íesource-Tfeir Transp ortMean" />

< /owl: Res trictio n>
</rdfs:sub Class Of>

</owl: Class>

<owl:Class rdf:ID="cityBus">
<rdfs:sub Class OS>
<owl: Restriction>

< owl: o riProp erty
rdf:resource="#use£TransportMean" />

<owl:a!lValuBsFmmrdf:resource=''ttius" />
</owl: Res trie tion>

</rdfs:sub Class Of>

</owl: Class>

ies

RDF/XML Abbrev

Some expressiveness lost: the exact correspondance
between domain and range is lost

Both properties are interpreted as the same
By reading the object property definition,
it is easier to know where it is applied

Lexical ¡ayer

Syntactic layer

Semantic layer

Pragmatic layer

method for building ontology translation
systems, based on these layers. This
method consists of four activities: feasibil-
ity study, analysis of source and target for­
máis, design and implementation of the
translation system. As we will describe
later, these activities are divided into tasks,
which can be performed by different sets
of people and with different techniques.

Ontology translation systems are dif-
ficult to créate, since many different types
of problems have to be dealt with. Con-
sequently, this method recommends de-
veloping ontology translation systems fol-
lowing an iterative life cycle. It proposes
identifying a first set of expressions that
can be translated easily firom one format
to another, so that the first versión of the
ontology translation system can be devel-
oped and tested quickly; then, it proposes
refining the transformations performed to
analyze more complex expressions and to
design and implementtheir transforma­
tions, and so forth. The reason for such a
recommendation is that developing an
ontology translation system is usually a
complex task that requires taking into ac-
counttoo many aspects of the source and
target formats, and many different types
of decisions on howto perform specific
translations. In this sense, an iterative life
cycle ensures that complex translation
problems are tackled once the develop-
ers have a better knowledge of the source
and target formats and once they have
tested simpler translations performed with
earlier versions of the software produced.

The feasibility activity is performed
at the beginning of the development
project. If this study recommends starting
with the ontology translation system de­

velopment, then for each cycle, the other
three activities will be performed sequen-
tially, although developers always can go
back to a previous activity using the feed-
back provided by the subsequent ones,
as shown in Figure 6, which summarizes
the proposed development process.

As a summary, Table 2 lists the ac­
tivities that the method proposes and the
tasks to be performed inside each activ­
ity. The design and implementation activi­
ties take into account the four translation
layers described in the previ ous section.

The method does not put special
emphasis on other activities that usually
are related to software system develop­
ment, either specific to the software de­
velopment process, such as deployment
and maintenance, or related to support
activities, such as quality assurance,
project management, and configuration
management. Ñor does it emphasize other
tasks usually performed during the feasi­
bility study, analysis, design, and imple­
mentation activities of general software
system development. It only describes
those tasks that are specifically related to
the development of ontology translation
systems and recommends performing such
additional activities and tasks that will be
beneficial to their development.

In the following sections, we will
describe briefly the obj ective of each of
these activities, the techniques that can be
used to perform them, and their inputs and
outputs.

Feasibility Study

The obj ective of this activity is to
analyze the ontology translation needs, so

Figure 6. Proposed development process of ontology translation system

Activity 1.
Feasibility study

Activity 2. Analysis of
source and target formats

Activity 3. Design of
the translation system

I Activity 4. Implementation
of the translation system

Activity 2. Analysis of
source and target formats

Activity 3. Design of
the translation system

Activity 4. Implementation
of the translation system

Table 2. List of activities and tasks ofthe methodfor developing ontology translation
systems

Activity

1. Feasibility study

2. Analysis of source
and target formats

3. Design ofthe translation
system

4. Implementation of the
translation system

Task

1.1. Identify ontology translation system scope
1.2. Analysis of current ontology translation systems
1.3. Ontology translation system requirement definition
1.4. Feasibility decision-making and recommendation

2.1. Describe source and target formats
2.2. Determine expréssiveness of source and target formats
2.3. Compare knowledge models of source and target formats
2.4. Describe and compare additional features of source and target formats
2.5. Determine the scope of translation decisions
2.6. Speciíy test plan

3.1. Find and reuse similar translation systems
3.2. Propose transformations at the pragmatic level
3.3. Propose transformations atthe semantic level
3.4. Propose transformations atthe syntax level
3.5. Propose transformations atthe lexical level
3.6. Propose additional transformations

4.1. Find translation ñinctions to be reused
4.2. Implement transformations in the pragmatic level
4.3. Implement transformations in the semantic level
4.4. Implement transformations in the syntax level
4.5. Implement transformations in the lexical level
4.6. Implement additional transformations
4.7. Declarative specification processing and integration
4.8. Test suite execution

Figure 7. Task decomposition of activity 1 (feasibility s

• KRR needs
• HigMeuel descr. of
cuireni systeT
Dewr, o f w i j i w
and target formáis

Activity 1. FMsibfflty study

Task 1 1 IdsntWy ontology

fa-anslation system seops

Task 1.2 Analy5Í5 oí cunent

ontology Iranslatton systems

Task 1.4 Feasibility decisión-

makirig and reconimendatton

Task 1.3 Ontology translation

syscam raqulremanc definición

-i • : '

• High-lsvel syatem
description
Requlrement caialcgua

• Relatad tflchnolagy
description

• Recarrimend alien

that the proposed solution takes into ac-
count not only the technical restrictions
(technical feasibility), but al so other restric­
tions related to the business obj ectives of
an organization (business feasibility) and
to the proj ect actions that can be under-
taken successfully (proj ect feasibility). As
a result of this activity, the main requisites
to be satisfied by the ontology translation
system are obtained, and the main costs,
benefits, and risks are identified. The most
important aspect of this feasibility study
regards the technical restrictions, which
can determine whether it is recommended
or not to proceed with the ontology trans­
lation system development.

The techniques (and documents)
used in the execution of these tasks are
inspired by knowledge engineering ap-
proaches (Gómez-Pérez et al., 1997;
Schreiber et al., 1999) and based mainly
on the CommonKADS worksheets.

As shown in Figure 7, we first pro­
pose to determine the scope of the ontol­
ogy translation system that will be imple-
mented, its expected outeome, the con-
text where it will be used, and so forth.
We then propose to analyze current trans­
lation systems that are available between
the source and target formats and deter­
mine the requisites of the new system. Fi-

nally, we propose to fill in a checklist where
the three dimensions identified are con-
sidered (technical, business, and proj ect
feasibility), allowing us to make a deci­
sión on the feasibility of the system and to
propose a set of actions and recommen-
dations to be followed.

Consequently, the input in this activ­
ity consists of some preliminary high-level
information about current systems, the
KRR needs, and the source and target
formats. The results consist in a deeper
description of the current ontology trans­
lation systems available for the origin and
target formats, a preliminary catalogue of
requisites for the system to be developed,
and the recommendation about its feasi­
bility, including the main costs, benefits,
and risks involved.

Analysis of the Source
and Target Formats

The objective of this activity is to
obtain a thorough description and com-
parison of the source and target formats
of the ontology translation system. We
assume that this will allow us to gain a
betterunderstanding of the similarities and
differences in expressiveness, which will
be useful in designing and implementing

Figure 8. Task decomposition of activity 2 (analysis of source and target formáis)

High-level aysffim
descripfcn
Hüqui-arnisM

P roposed aclors
Relatad technolcgy
descripfcn

and targal lomials

AítiVity 2 Analysis a!'sourceand ísrget formats

-

r"
Task 2.2 Determine the

expresaiveness of (he source
•end target farnwts

V

Task 2.3 Compare
knónledge múdale ctt

source and targd formáis

-^>
' Task 2.4 Describe and ''

compare additiorral
faatures of source and

larga! formáis
Task 2.6 Specify test plai rl

SMS

<R oiTtoiagiK sí
Eouitaand larga!
fórmate
Source and "taigel
formal comparison
Qnlolagy transía!Ion

Test plan and test

the translation decisions in the subsequent
activities. Moreover, in this activity we
refine the catalogue of requirements al-
ready obtained as a result of the feasibility
study, and we identify the test suite that
will be used to test the translation system
validity after each iteration in its develop-
ment process. A summary of the tasks to
be performed and the input and outputs
of this activity is shown in Figure 8.

Many techniques can be used to de­
scribe the source and target formats of the
translation system. Among them, the
method recommends describing their KR
ontologies (as shown in Broekstra et al.,
2000 or Gómez-Pérez et al., 2003),
which provide a good overview of the
ontology components that can be used to
represent ontologies with them.

For the comparison tasks, we can
use either formal, semi-formal, or infor­
mal approaches, such as the ones identi-
fied in Section 2.3, which show good ex-
amples of the results that should be ob­
tained. Once the two formats have been
described, evaluated, and compared, we
recommend focusing on other additional
features that might be needed in the trans­
lation process. They may include reason-
ing mechanisms or any other specific de-

tails that could be interesting for the task
of translation.

The information gathered in the pre­
vi ous tasks is used to determine the scope
of the translation decisions to be made;
that is, which components map to each
other, which components of the source
format must be represented by means of
others in the target format, which compo­
nents cannot be represented in the target
format, and so forth. As a result, we ob-
tain a refinement of the requirement cata­
logue obtained during the feasibility study,
which serves as the basis for the next ac­
tivities (design and implementation of the
translation system).

Finally, we propose to define the test
plan, which consists of a set of unitary tests
that the translation system must pass in
ordertobe considered valid. The test suite
must consider all of the possible transla­
tion situations that the translation system
must cover. These ontologies will be avail-
able in the source format and in the target
format, which should be the output of the
translation process. The test execution will
consist of comparing the output obtained
and the output expected. For each itera­
tion of the software development process,
we will define different sets of ontologies.

This activity receives as an input all
the results of the feasibility study, together
with the description of the source and tar-
get formats (al so used as an input for that
activity). It outputs a comparison of both
formats; the scope of the translation deci-
sions to be performed, with a refined re-
quirements catalogue; and a test plan with
its corresponding test suite.

Design of the
Translation System

The design activity aims atproviding
a detailed specification of the transforma-
tions to be performed by the ontology
translation system. From this specification,
we will be able to genérate the implemen-
tation of the translation decisions at each
layer, which will be used in its turn to gen­
érate the final ontology translation system.
The tasks, inputs, and outputs of this ac­
tivity are shown in Figure 9.

The obj ective of the first task is to
analyze similar ontology translation sys­
tems and to detect which of their transla­
tion decisions actually can be reused. We
assume that by reusing exi sting translation
decisions, we will be able to minimize the
sources of errors in our translation pro-
posals. Furthermore, we will benefit from
work already known, for which we al­
ready know its properties (namely, how
they preserve semantics and pragmatics).
We must remember that the potential re-
usable systems were already identified and
catalogued during the feasibility study.

The second group of tasks deals with
the four layers of translation problems
described in Section 2. We propose to
design transformadons at different inter-

related levéis, using different techniques
for each layer. All these tasks should be
performed mainly in parallel, and the de­
cisions taken at one task provide feed-
back for the others, as shown in the fig­
ure. We propose to start with the transla­
tion decisions atine pragmatic and seman-
tic levéis, leaving the syntax and lexical
transformations for the last steps. The
pragmatic and semantic translation deci­
sions are proposed mainly by knowledge
engineers, while the syntax and lexical
transformations can be proposed j ointly
by knowledge and software engineers,
since they have more to do with general
programming aspects rather than with the
complexity of transforming knowledge.
The method proposes to represent these
translation decisions mainly with tables and
diagrams, such as the ones proposed in
Table 3 and Figure 10 for transformations
between WebODE and OWL DL.

Finally, the obj ective of the last task
is to propose any additional transforma­
tions or design issues that have not been
covered by the previous tasks, because
they could not be catalogued as lexical,
syntax, semantic, or pragmatic transfor­
mations, which are necessary for the cor-
rect functioning of the ontology transla­
tion system. These transformations include
design issues such as the initialization and
setting up of parameters in the source and
target formats, any foreseen integration
needs of the generated system in the case
of transformations where ontology tools
or specific librarles are used, and so forth.

As shown in Figure 9, we may need
to come back to the second group of ac-
tivities after proposing some additional
transformations. This is a cyclic process

Figure 9. Task decomposition of activity 3 (design of the ontology translation
system)

• 5¡>urce and target
fe mi al tonpsriaor
Ontology translation
decís ¡ons smpe

• RelinM rerjuirement

^

Activity 3. Design o/ fransteh'on system

Task 3.3 Propose
n (le seman tlr lovel

until we have determined all the transfor-
mation to be performed in the corre-
sponding developmentiteration. All the
output results obtained from the tasks in
this activity are integrated in a single docu-
ment called "translation system design
document," as shown in the figure.

Implementation of the
Translation System

The objective of the implementation
activity is to créate the declarative speci-
fications of the transformations to be per­
formed by the ontology translation sys­
tem, which will be used to genérate its fi­
nal code. The method proposes to imple-
ment these translations using three differ-
ent formal languages—ODELex,
ODESyntax, and ODESem—which cor-
respond to the lexical, syntax, and seman-
tic/pragmatic ontology translation layers,
respectively. The same language
(ODESem) is used for implementing se-
mantic and pragmatic transformations,
because the translation decisions atboth

layers are similar. The description of these
languages is out of the scope of this chap-
ter and can be found in Corcho and
Gómez-Pérez (2004) and Corcho (2005).
We can say that the ODELex and
ODESyntax languages are similar to the
lex (Lesk, 1975) and yace (Johnson,
1975) languages used for compiler con-
struction, and that ODESem is based on
common rule-based systems.

As in the design activity, the tasks
inside this implementation activity are di-
vided in groups—four, in this case—as
shown in Figure 11.

The goal of the first task is to select
reusable pieces of code from the declara­
tive specifications of other ontology trans­
lation systems. These pieces of code are
selected on the basis of the results ob­
tained from the first task of the design ac­
tivity and can be related to any of the four
translation layers.

The next five tasks are grouped to-
gether and should be performed almost in
parallel, as shown in the figure. In these
tasks, software and knowledge engineers

Table 3. Semantic transformation ofWebODE partítions to OWL DL

WebODE
Partition(C, {Cl,C2,...,Cn})

OWLDL
C = C1 u C 2 u . . . u C n
C i c C V C i e {Cl,C2,...,Cn}
C i n C j c l VCi?Ci„Ci,Cie {Cl,C2,...,Cn}

Figure 10. Pragmatic transformations with regará to the scope of WebODE ad hoc
relations

Reladon S appears sereral times in the oruology

no (R1,R2, ... ,Rm)

ScDxR
DcVS.R

Sc(DluD2 u . . .uDn)xR
DlcVS.R
D2cVS.R

DncVS.R

ScDx(RluR2u. . . uEm)
D e V S. (RluR2u. . . uEm)

S l c D l x R l
D l c V S l . R l
S2cD2xR2

D2cVS2.R2

SncDnxRm
DncVSn.Rm

actually must implement the transforma­
tions at the four layers—lexical, syntax,
semantic, and pragmatic—and the addi-
tional transformations described in task
3.6. Unlike in the design activity, we pro­
pose to start with the low-level transfor­
mations (those at the lexical and syntax
layers) and continué with the more abstract
(and difficult) ones. The reason for the task
ordering suggested is that the semantic and
pragmatic transformation implementations
usually need to take into account the spe-
cific implementations atthe lexical and
syntax layers. We are currently develop-
ing automatic tools that transform the de-
clarative specifications in ODELex,

ODESyntax, and ODESem into Java
code.

In task 4.7—declarative specifica-
tion processing and integradon—the soft­
ware engineer is in charge of transforming
the previous declarative implementations
at all levéis, plus the additional transfor­
mations, into actual running code, which
will perform the translations as specified
in the previous code. In addition, the soft­
ware engineer has to intégrate the result-
ing ontology translation system into an-
other information system (e.g., an ontol­
ogy tool), if required. Given that most of
the transformations have been imple-
mented in formal languages, most of the

Figure 11. Task decomposition of activity 4 (implementation of the ontology
translation system)

Activity 4. bnpiemmfation otitis translation systaw

-Translación system
designdocumeill

-Te5-lpl.3-n.5nd tes! Task 4.7 Declara uve
•7 3 pee if callón processrng

and intnp'a-ticir

1 I "i
J Tasli AA Test suha I

Tra nal alio n system

processes involved in this task can be au-
tomated. If problems are detected during
this task, the method recommends going
back to the implementation activities in
order to sol ve them.

Finally, the method proposes to ex-
ecute the test suite that was defined dur­
ing the analysis activity, which is consid-
ered the system tests for our system. This
does not prevent us from defining and ex-
ecuting other kinds of tests (from unitary
tests to integration tests) at any point dur­
ing the development. This task consists of
inputting the ontologies in the test suite to
the resulting ontology translation system
and checking whether the output corre-
sponds to the one expected. Note that in
most cases, this check will consist of com-
paring whether the output file(s) and the
expected file(s) are identical, butthere are
cases where this kind of comparison will
not be possible, since the results can come
in any order (e.g., in RDF and OWL on­
tologies). If any of the test fails, we must
go back to the previous implementation
activities to deteetthe problems. Further-

more, we must consider that the method
allows moving to previous activities if
problems are detected at any point of our
development.

CONCLUSIÓN

This chapter presents two important
contributions to the current state of the art
on ontology translation. First, it proposes
to consider that ontology translation prob­
lems can appear at four different layers,
which are interrelated, and can describe
the most common problems that may ap­
pear at each of those layers. Some exist-
ing approaches have identified similar lay­
ers in ontology translation. However, these
and other approaches have focused mainly
on the problems related to the semantic
layer and have not considered the other
ones, which are also important for build-
ing systems that make good quality trans-
lations. The low quality of some transla­
tion systems has been shown recently in
the interoperability experimentperformed
for the ISWC2003 workshop on Evalúa-

http://-Te5-lpl.3-n.5nd

tion of Ontology Tools6. The results ob-
tained in this workshop showed that mak-
ing good translation decisions at the lexi­
cal, syntax, and pragmatic levéis is also as
important as making good translation de­
cisions atthe semantic level.

The second main contribution of this
chapter is related to the fact that it is the
first approach that gives an integrated sup-
port for the complex task of building on­
tology translation systems. As we com-
mented in the introduction, ontology trans­
lation systems are not easy to créate and
are difficult to maintain, as well. Most of
the translation systems currently available
have been developed ad hoc; the transla­
tion decisions thatthey implement are usu-
ally difficult to understand and hidden in
the source code of the systems; and, in
addition, it is neither clear ñor documented
how much knowledge is lost in the trans-
formations that they perform. There are
many complex decisions that have to be
implemented, andthese decisions areusu-
ally taken at the low implementation level
instead of performing a detailed analysis
and design of the different translation
choices available and taking a decisión
based on the actual ontology translation
requirements. The method proposed in this
chapter helps in this task by identifying
clearly the activities to be performed, the
tasks in which each activity is decom-
posed, how these tasks have to be per­
formed, the inputs and outputs of the ac­
tivities, and the set of techniques that can
be used to perform them. Moreover, a set
of declarative languages is proposed, al-
though not described in this chapter, to
help in the implementation of translation
decisions.

This method has been derived from
our long expenence in the generation of
ontology translation systems from the on­
tology engineering platform WebODE to
different ontology languages and tools, and
vice versa (12 systems), and has been
used for building other six ontology trans­
lation systems. These systems have been
built successfully by different people with
backgrounds in knowledge and software
engineering, following the method pro­
posed in this chapter and the techniques
identified for each task.

RELATED WORK

Although there are no other inte­
grated methods for building ontology
translation systems available, we can find
some technology that allows creating
them. Specifically, we can cite two tools:
Transmorpher and OntoMorph:

• Transmorpher7 (Euzenat & Tardif,
2001) i s a tool that facilitates the defi-
nition and processing of complex trans-
formations of XML documents. Among
other domains, this tool has been used
in the context of ontologies, using a set
of XSLT documents that is able to
transform from one DL language to an-
other, expressed in DLML8. This tool
is aimed at supporting the "family of
ontology languages" approach for on­
tology translation described in Euzenat
and Stuckenschmidt(2003). The main
limitation of this approach is that it only
deals with problems in the semantic
layer and does not focus on other prob­
lems related to the lexical, syntax, and
pragmatic layers.

• OntoMorph (Chalupsky, 2000) is a
tool that allows creating translators de-
claratively. Transformations between
the source and target formats are speci-
fied by means of pattern-based trans-
formation rules and are performed in
two phases: syntactic rewnting and se-
mantic rewriting. The last one needs the
ontology or part of it translated into
PowerLoom, so that this KR system
can be used for certain kinds of rea-
soning, such as discovering whether a
class is a subclass of another, whether
a relation can be applied to a concept
or not, and so forth. Since this tool is
based on PowerLoom (and conse-
quently on Lisp), it cannot handle eas-
ily all the problems that may appear in
the lexical and syntax layers.

Although these tools do not give an
integrated support for the task of building
ontology translation systems, this does not
mean that they cannot be used as a tech-
nological support for the method pro-
posed in this chapter, especially for the
implementation activity.

ACKNOWLEDGMENTS

This work has been supported by
the IST project Esperanto (IST-2001-
34373). Part of this chapter is based on
Section 3.4 of the book A LayeredDe-
clarative Approach to Ontology Trans­
lation with Knowledge Preservation,
(Corcho, 2005).

REFERENCES

Arpírez, J.C, Corcho, O., Fernández-
López, M., & Gómez-Pérez, A.
(2003). WebODE in a nutshell. AI
Magazine, 2¥(3),37-48.

Baader, F. (1996). A formal definition for
the expressive power of terminological
knowledge representation languages.
Journal of Logic and Computation,
6(1), 33-54.

Baader, F., McGuinness, D., Nardi, D.,
& Patel-Schneider, P (2003). The de-
scription logic handbook: Theory
implementation and applications.
Cambridge, UK: Cambridge Univer-
sity Press.

Bechhofer, S., Horrocks, L, Goble, C,
& Stevens, R. (2001). OilEd: A rea-
sonable ontology editor for the Seman-
tic Web. Proceedings ofthe Joint Ger-
man/Austrian conference on Artificial
Intelligence (KI'01), Vienna, Austria.

Borgida, A. (1996). On the relative ex-
pressiveness of description logics and
predícate logics. Artificial Intelli­
gence, 52(1-2), 353-367.

Brickley, D., & Guha, R.V (2004). RDF
vocabulary description language 1.0:
RDF Schema. W3C. Retrieved from
http://www.w3. org/TR/PR-rdf-
schema

Chalupsky, H. (2000). OntoMorph: A
translation system for symbolic knowl­
edge. Proceedings ofthe 7th Inter­
national Conference on Knowl­
edge Representation and Reason-
ing (KR '00). Breckenridge, Colo­
rado.

Corcho, O. (2005). A layereddeclara-
tive approach to ontology translation

http://www.w3

with knowledge preservation. Fron-
tiers in Artificial Intelligence and its Ap­
plications. Dissertations in Artificial In­
telligence. IOS Press

Corcho, O., & Gómez-Pérez, A. (2000).
A roadmap to ontology specification
languages. Proceedings of the 12th

International Conference in Knowl­
edge Engineering and Knowledge
Management (EKAW'00), Berlin,
Germany.

Corcho, O., & Gómez-Pérez, A. (2004).
ODEDialect: A set ofdeclarative lan­
guages for implementing ontology
translation systems. Proceedings of
the ECAI2004 Workshop on Seman-
tic Intelligent Middleware for the Web
and the Grid, Valencia, Spain.

Dean, M., & Schreiber, G. (2004). OWL
Web ontology language reference.
W3C. Retrieved from http://
www.w3. org/TR/owl-ref/

Domingue, J. (1998). Tadzebao and
WebOnto: Discussing, browsing, and
editing ontologies on the Web. Pro­
ceedings of the llth International
Workshop on Knowledge Acquisi-
tion, Modeling and Management
(KAW'98). Banff, Canadá.

Euzenat, J. (2001). Towards a principled
approach to semantic interoperability.
Proceedings of the IJCAI2001 Work­
shop on Ontologies and Information
Sharing, Seattle, Washington.

Euzenat, L, & Stuckenschmidt, H. (2003).
The "family of languages " approach
to semantic interoperability. In B.
Omelayenko, & M. Klein (Eds.),
Knowledge transformation for the
semantic Web (pp. 49-63).

Amsterdam, The Netherlands: IOS
Press.

Euzenat, J., & Tardif, L. (2001). XML
transformation flow processing.
Markup Languages: Theory and
Practice, 3(3), 285-311.

Farquhar, A., Fikes, R, & Rice, J. (1997).
The ontolingua serven Atool for col-
laborative ontology construction. Inter­
national Journal of Human Com­
puter Studies, 46(6), 707-727.

Genesereth, M.R, & Fikes, R.E. (1992).
Knowledge Interchange Formal Ver­
sión 3.0. Reference Manual. Technical
Report Logic-92-1. Retrieved from
http://meta2. stanford. edu/kif/
Hypertext/kif-manual.html

Gómez-Pérez, A., Fernández-López, M.,
& Corcho, O. (2003). Ontological
engineering: With examplesfrom the
oreas of knowledge management, e-
commerce and the Semantic Web,
New York: Springer-Verlag.

Gómez-Pérez, A., Juristo, N., Montes,
C, & Pazos, J. (1997). Ingeniería del
conocimiento. Centro de Estudios
Ramón Areces

Gruber, T.R. (1992). Ontolingua: A
mechanism to support portable ontolo­
gies. Technical report KSL-91-66.
Retrieved from ftp://ftp.ksl.
stanford. edu/pub/KSL Reports/KSL-
91-66.ps

Gruber, T.R. (1993). A translation ap­
proach to portable ontology specifica­
tion. Knowledge Acquisition, 5(2),
199-220.

Horrocks, L, Fensel, D., Harmelen, F.,
Decker, S., Erdmann, M., & Klein, M.
(2000). OIL in aNutshell. Proceed­
ings of the 12th International Con-

http://
http://www.w3
http://meta2
ftp://ftp.ksl

ference in Knowledge Engineering
and Knowledge Management
(EKAW'OO). Juan-Les-Pins, France.

Horrocks, I , & vanHarmelen, F. (Eds.)
(2001). Reference description ofthe
DAML+OIL (March 2001) ontology
markup language [technical report],
Retrieved from http://www.daml.org/
2001/0 3/reference.html

Johnson, S.C. (1975). Yace: Yetanother
compiler compiler. Computing sci-
ence technical report no. 32. Murray
Hill, NJ: Bell Laboratories.

Karp, P.D., Chaudhri, V, & Thomere, J.
(1999). XOL: An XML-based ontol­
ogy exchange language. Retrieved from
http://www. ai. sri. com/~pkarp/xol/
xol.html

Kifer, M., Lausen, G., & Wu, J. (1995).
Logical foundations of object-oriented
and frame-based languages. Journal of
theACM, 42(4), 741-843.

Klein, M. (2001). Combining and relat-
ing ontologies: An analysis of problems
and solutions. Proceedings of the
Workshop on Ontologies and Infor­
mation Sharing, Seattle, Washington.

Knublauch, H. (2003). Editing semantic
Web content with Protege: The OWL
pPlugin. Proceedings of the 6th

Protege Workshop. Manchester, UK.
Lassila, O., & Swick, R (1999). Re-

source description framework (RDF)
model and syntax specificatión. W3C.
Retrieved from http://www.w3.org/
TR/REC-rdf-syntax/

Lenat, D.B., & Guha, RV. (1990). Build-
ing large knowledge-basedsystems:
Representation and inference in the
eyeproject. Boston: Addison-Wesley.

Lesk, M.E. (1975). Lex—A lexicalana-
lyzer generator. Computing Science
Technical Report No. 39. Murray Hill,
NJ: Bell Laboratories.

Luke, S., & Heflin, J. (2000). SHOE
1.01. Proposed specification. Techni­
cal Report. Parallel Understanding Sys­
tems Group. Retrieved from http://
www. es. umd. edu/projects/plus/
SHOE/spec 1.01.htm

MacGregor, R (2001). InsidetheLOOM
classifier. SIGARTBulletin, 2(3), 88-
92.

Maedche, A., Motik, B., Stojanovic, L.,
Studer, R, & Volz, R (2003). Ontolo­
gies for enterprise knowledge manage-
ment. IEEE Intelligent Systems,
75(2), 26-33.

Morris, C.W. (1938). Foundations ofthe
theory of signs. In O. Neurath, R.
Carnap, C.W. Morris (Eds.), Interna­
tional Encyclopedia of Unified Sci­
ence. Chicago, JL: Chicago University
Press.

Motta, E. (1999). Reusable components
for knowledge modelling: Principies
and case studies in parametric de-
sign. Amsterdam, The Netherlands:
IOS Press.

Noy, N.F., Fergerson, R.W., & Musen,
M.A. (2000). The knowledge model
of Protege-2000: Combining
interoperability and flexibility. Proceed­
ings of the 12th International Con-
ference in Knowledge Engineering
and Knowledge Management
(EKAW'OO), Juan-Les-Pins, France.

Schreiber, G., et al. (1999). Knowledge
engineering and management. The
commonKADS methodology. Cam­
bridge, MA: MIT Press.

http://www.daml.org/
http://www
http://www.w3.org/
http://

Studer, R., Benjamins, VR., & Fensel, D.
(1998). Knowledge engineering: Prin­
cipies and methods. IEEE Transac-
tions on Data and Knowledge Engi­
neering, 25(1-2), 161-197.

Sure, Y, Staab, S., & Angele, J. (2002).
OntoEdit: Guiding ontology develop-
mentby methodology and inferencing.
Proceedings ofthe Confederated In­
ternational Conferences CoopIS,
DO A and ODBASE 2002, Berlin, Ger-
many.

Swartout, B., Ramesh, R, Knight, K., &
Russ, T. (1997). Toward distributeduse
of large-scale ontologies. Proceedings
of the Spring Symposium on Onto­
logical Engineering, Stanford, Cali­
fornia.

ENDNOTES

The current affiliation ofthe author is
Intelligent Software Components,
Spain. The work presented was per-
formed at Universidad Politécnica de
Madrid.

1 The problems that may appearinthe
context of semantic interoperability are
due not only to the fact that ontologies

are available in different formats, but
they are al so related to the content of
ontologies, their ontological commit-
ments, and so forth. We only focus on
the problems related exclusively to the
differences between ontology languages
and/or tools.

These types of problems also may be
related to the pragmatic layer, as we
will describe later in this section. We
also will see that the limits of each trans-
lation layer are not strict; henee, we can
find transformation problems that are
in the middle of several layers.
As with naming conventions, this deci­
sión also will be related to the prag­
matic translation layer.
Protege Axiom Language
We must note that this second option
may be obtained because expressions
in OWL ontologies may appear in any
order in an OWL file and, henee, may
be processed independently.
http://km.aifb.uni-karlsruhe.de/ws/
eon2003/

http://transmorpher.inrialpes.fr/
Description Logic Markup Language.
http://co4.inrialpes.fr/xml/dlml/

Dr Osear Corcho has worked at iSOCO as a research manager since March 2004.
Previously, he belonged to the Ontological Engineering Group ofthe AI Department
of the Computer Science School, Universidad Politécnica de Madrid (UPM). He
graduated in computer science from UPM in 2000 and received the third Spanish
award in computer science from the Spanish Government. He obtained an MSc in
software engineering from UPM (2001) and a PhD in artificial intelligence (2004).
His research activities include ontology languages and tools, the ontology
translation problem and the Semantic Web and grid. He has published the books
Ontological Engineering and A Layered Declarative Approach to Ontology Translation
with Knowledge Preservation. He has published more than 30 journal and conference/
workshop papers on ontology languages and tools in important forums for the

http://km.aifb.uni-karlsruhe.de/ws/
http://transmorpher.inrialpes.fr/
http://co4.inrialpes.fr/xml/dlml/

ontology community (ISWC, EKAW, KAW, KCAP, AI Magazine, IEEE Intelligent
Systems), and reviews papers in many conferences, workshops and journals. He
chaired the demo/industrial sessions at EKAW2002 and co-organised the ISWC2003
andISWC2004 Workshops on Evaluation of Ontology Tools (EON2003, EON2004).

Dr Asunción Gómez-Pérez is the director of the Ontological Engineering Group at
UPM. She earned a BA in computer science (1990), an MSc in knowledge
engineering (1991), and a PhD in computer science (1993) from the Universidad
Politécnica de Madrid (UPM). She also has an MBA (1994) from the Universidad
Pontificia de Comillas. From 1994 to 1995, she visited the Knowledge Systems
Laboratory at Stanford University. She is associate professor at the Computer
Science School at UPM. From 1995 to 1998 she was executive director of the
Artificial Intelligence Laboratory at the school. She is currently a research advisor
of the same lab. Her current research activities include, among others:
interoperability between different kinds of ontology development tools;
methodologies and tools for building and merging ontologies; ontological
reengineering; ontology evaluation; and ontology evolution, as well as uses of
ontologies in applications related with Semantic Web, e-commerce and knowledge
management. She has published more than 100 papers on the above issues. She
has led several national and international projects related to ontologies funded
by various institutions and/or companies. She is the author of one book on
ontological engineering and is co-author of a book on knowledge engineering.
She was the co-director and local organiser of the first and second European
summer schools on ontologies and the Semantic Web, and chair of the 13th

International Conference on Knowledge Acquisition and Management (EKAW-
02). She has been co-organizer of the workshops and conferences on ontologies
at ECAI-04, IJCAI-03, ECAI-02, IJCAI-01, ECAI-OO, IJCAI-99, ECAI-98, SSS-97
and ECAI-96. She has taught tutorials on ontological engineering at ECAI-04,
ECAI-98, SEKE-97 and CAEPIA-97. She acts as reviewer in many conferences
and journals.

