
Please do not remove this page

A metamorphic relation-based approach to
testing web services without oracles
Sun, Chang Ai; Wang, Guan; Mu, Baohong; Liu, Huai; Wang, Zhaoshun; Chen, Tsong Yueh
https://researchrepository.rmit.edu.au/esploro/outputs/journalArticle/A-metamorphic-relation-based-approach-to-testing/9921861839301341/filesAn
dLinks?index=0

Sun, C. A., Wang, G., Mu, B., Liu, H., Wang, Z., & Chen, T. Y. (2012). A metamorphic relation-based
approach to testing web services without oracles. International Journal of Web Services Research, 9(1),
51–73. https://doi.org/10.4018/jwsr.2012010103

Published Version: https://doi.org/10.4018/jwsr.2012010103

Document Version: Published Version

Downloaded On 2024/04/25 11:15:25 +1000
© 2012, IGI Global
Repository homepage: https://researchrepository.rmit.edu.au

Please do not remove this page

https://researchrepository.rmit.edu.au/esploro/outputs/journalArticle/A-metamorphic-relation-based-approach-to-testing/9921861839301341/filesAndLinks?index=0
https://researchrepository.rmit.edu.au/esploro/outputs/journalArticle/A-metamorphic-relation-based-approach-to-testing/9921861839301341
http://doi.org/doi:https://doi.org/10.4018/jwsr.2012010103
https://researchrepository.rmit.edu.au


Thank

Citatio

See th

Version

Copyri

Link to

you for do

on: 

is record i

n:

ght Statem

o Published

wnloading

in the RMI

ment: ©  

d Version:

 this docum

IT Researc

ment from 

ch Reposit

the RMIT R

ory at:  

Research RRepository

PLEASE DO NOT REMOVE THIS PAGE

Sun, C, Wang, G, Mu, B, Liu, H, Wang, Z and Chen, T 2012, 'A metamorphic relation-based
approach to testing web services without oracles', International Journal of Web Services
Research, vol. 9, no. 1, pp. 51-73.

http://researchbank.rmit.edu.au/view/rmit:22540

Published Version

2012, IGI Global

http://dx.doi.org/10.4018/jwsr.2012010103

http://researchbank.rmit.edu.au/


International Journal of Web Services Research, 9(1), 51-73, January-March 2012   51

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Keywords: Metamorphic Testing, Service Oriented Architecture (SOA), Software Testing, Test Oracle, 
Web Services

INTRODUCTION

Service Oriented Architecture (SOA) has been 
evolving as a mainstream software development 

paradigm where Web services are basic elements 
(Papazoglou, Traverso, Dustdar, & Leymann, 
2008). A Web service often implements an ap-
plication or part of an application, and is able 
to make a set of operations available to its 
consumers through the Web Service Descrip-

A Metamorphic Relation-Based 
Approach to Testing Web 
Services Without Oracles

Chang-ai Sun, University of Science and Technology Beijing and Chinese Academy of 
Science, China

Guan Wang, University of Science and Technology Beijing, China

Baohong Mu, University of Science and Technology Beijing, China

Huai Liu, Swinburne University of Technology, Australia

ZhaoShun Wang, University of Science and Technology Beijing, China

T. Y. Chen, Swinburne University of Technology, Australia

ABSTRACT
Service Oriented Architecture (SOA) has become a major application development paradigm. As a basic unit 
of SOA applications, Web services significantly affect the quality of the applications constructed from them. In 
the context of SOA, the specification and implementation of Web services are completely separated. The lack of 
source code and the restricted control of Web services limit the testability of Web services, and make the oracle 
problem prominent. In this context, can one alleviate the test oracle problem, or effectively and efficiently test 
such Web services even without oracles? It is an important issue which has not been yet adequately addressed. 
To address the challenge of testing Web services, the authors propose a metamorphic relation-based approach 
to testing Web services without oracles. The proposed approach leverages so-called metamorphic relations 
to generate test cases and evaluate test results. To make the proposed approach practical and effective, the 
authors proposed a framework taking into account the unique features of SOA, and developed a prototype 
which partially automates the framework. Three case studies are conducted to validate the feasibility and 
effectiveness of the proposed approach. The work presented in the paper not only alleviates the test oracle 
problem of testing Web services, but also delivers an effective and efficient test technique without oracles.

DOI: 10.4018/jwsr.2012010103



52   International Journal of Web Services Research, 9(1), 51-73, January-March 2012

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

tion Language (WSDL) (Haas & Brown, 2004). 
In the context of SOA, Web services can be 
implemented and owned by one organization, 
and published as an independent resource that 
is consumed by other organizations. To imple-
ment complex applications, Web services have 
to be loosely orchestrated to fulfill a business 
goal (Peltz, 2003; Sun, Khoury, & Aiello, 2011).

Let us consider an e-bookstore system 
constructed by several Web services. Among 
them, a Web service is responsible for the 
electronic payment. Usually, such a Web ser-
vice is developed and owned by a third-party 
organization, such as a software company, a 
bank, or an independent commercial office. 
Due to the fact that the consumer (i.e., the e-
bookstore system) can access the Web service 
only through its description (namely WSDL) 
and cannot look into the source code of the 
Web service, this results in some inconsistency 
issues. For example, some faults may exist 
in the implementation regardless how many 
efforts are spent on testing. Also, the service 
owner may update the implementation due to 
changes of the payment policy (specification); 
however, the service consumer may not realize 
the changes happening to the implementation 
or specification. This may result in the situ-
ation where the consumer invokes the latest 
version of implementation while holds the old 
version of specification. All these cases bring 
us one question, namely “how should we assure 
the consistency between implementation and 
specification of Web services?”

Software testing provides a practical and 
feasible approach to the question. The basic 
idea of testing is to select some test cases for 
executing program under test, and then evaluate 
the output against the expected correct output 
(namely oracle). If the actual output equals to 
the oracle, such a test succeeds; otherwise the 
test detects a fault. In the context of SOA, new 
unique features pose challenges for testing Web 
services. For instance, the specification and 
implementation of Web services are completely 
separated, and often service consumers can-
not access the source codes of Web services 
they invoke. The lack of source code and the 
restricted control of Web services not only limit 

the testability of Web services, but also make 
white-box testing techniques inapplicable. 
One may argue that the lack of source codes is 
also present in the use of any normal software 
library, but they are totally different in that the 
implementation of a Web service can be written 
in any programming language and its specifi-
cation is written in the XML style. Moreover, 
the test oracle problem, which means in some 
situations it is impossible or practically too dif-
ficult to decide whether the program outputs on 
test cases are correct (Weyuker, 1982), is even 
amplified. In the example of the electronic pay-
ment service, the consumer, in some situations, 
may not know exactly how much should be 
charged for a given input (i.e., book price). The 
problem becomes even worse when the payment 
involves charges for transfer between accounts 
or currency exchange. Testing Web service 
under SOA calls for new techniques (Bartolini, 
Bertolino, Elbaum, & Marchetti, 2009; Canfora 
& Penta, 2009; Farooq, Georgieva, & Dumke, 
2008; Sun, 2011).

Although there exist many techniques for 
Web service testing in the literature (Bartolini, 
Bertolino et al. 2009, Bai, Lee et al. 2008, Lenz, 
Chimiak-opoka et al. 2007, Zhang and Qiu 
2006), most of these existing testing techniques 
always assume the presence of test oracles 
and thus cannot address the oracle problem. 
Metamorphic Testing (MT) was first proposed 
by Chen,Cheung et al. (1998) as a testing ap-
proach without the need of oracles. The basic 
idea behind MT is to leverage the metamorphic 
property of Web services to generate test cases 
and evaluate test outputs. Metamorphic property 
is a kind of inherent properties of software, 
referring to that for a pair of test cases satisfy-
ing relation R, and then their corresponding 
outputs should also satisfy relation Rf. During 
the testing, if there exist some tests where R 
is satisfied while Rf is violated, then a fault is 
detected. In this way, one can employ MT to test 
programs without precise oracles. It has been 
shown that MT has successfully alleviated the 
test oracle problem (Dong, Xu, Chen, Nie, & 
Wang, 2009). However, new features of SOA 
prevent the traditional MT framework from 
testing Web services. Recall the e-bookstore 



International Journal of Web Services Research, 9(1), 51-73, January-March 2012   53

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

system, the electronic payment Web services 
may be deployed in a different namespace with 
the client program, and it is invoked by a stan-
dard protocol (such as SOAP). This results in 
differences between testing a Web service and 
traditional software with libraries.

This paper proposes a metamorphic 
relation-based approach to testing Web ser-
vices to address the challenges of testing Web 
services under SOA, in particular relevant to 
the prominent oracle problem with testing Web 
services. We propose a framework to examine 
key issues when applying MT to the testing of 
Web services, and developed a prototype to 
partially automate the framework. To validate 
the feasibility and effectiveness of the proposed 
approach, we conducted empirical studies where 
three real-life Web services are tested using our 
approach. Experimental results show that our 
approach can not only alleviate the test oracle 
problem of testing Web services, but also de-
liver an effective and efficient test technique 
without oracles. The work in this paper makes 
the following contributions:

1.  A MT framework which examines and 
answers the key issues when using MT to 
test Web services, and a prototype which 
partially automates the framework.

2.  An efficient testing technique for Web 
services. As to be observed from the results 
of the mutation analysis, MT can detect up 
to 94.1% faults of the subject Web services 
without oracles.

3.  Empirical studies which describe how MT 
can be employed to test three real-life and 
widely-practiced Web services and report 
the effectiveness. Results of the empiri-
cal studies clearly show the applicability 
and effectiveness of MT for testing Web 
services.

The rest of the paper is organized as 
follows. Next section introduces underlying 
concepts related to MT and mutation analysis, 
and then we propose our approach including a 
framework of MT for Web services and a pro-
totype. After that, we report empirical studies 

where the proposed approach is employed to 
test three real-life Web services, followed by a 
brief comparison of our approach with relevant 
methods. Finally, we conclude the paper and 
point out the future work.

BACKGROUND

In this section, we introduce the underlying is-
sues or concepts related to Web service testing, 
MT and mutation analysis.

Testing Web Services

Web services must be trustworthy before they 
can be used. Testing is a major activity to assure 
that Web services can be trusted. However, the 
testing of Web services is more challenging than 
that of traditional software due to the unique 
features of SOA. In particular, the lack of source 
codes and the restricted control of services limit 
the testability of Web services.

In order to address these challenges, re-
searchers have proposed various testing tech-
niques for Web services. For example, Bartolini, 
Bertolino, Marchetti, and Polini (2009) devel-
oped a tool called TAXI that generates test cases 
for Web services based on WSDL specifications. 
Bai, Lee, Tsai, and Chen (2008) proposed an 
ontology-based partition testing approach for 
Web services. Lenz, Chimiak-Opoka, and Breu 
(2007) applied model-driven approaches to the 
testing of Web services. Zhang (2011) created 
an effective and efficient testing platform to 
facilitate Web services testing by seamlessly 
integrating HP LoadRunner and IBM Aglet 
technology. Many other testing methods for 
web services can be found in the literature, such 
as contract-based Web services testing (Heckel 
& Lohmann, 2004), fault-based Web services 
testing (Offutt & Xu, 2004), and regression 
Web services testing (Ruth & Tu, 2007), etc.

Metamorphic Testing

Most testing techniques proposed so far are 
focused on how to effectively select test cases 
such that faults can be revealed as early as pos-



54   International Journal of Web Services Research, 9(1), 51-73, January-March 2012

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

sible or as many as possible. There is an implicit 
assumption behind most of these techniques, 
that is, there exists a test oracle that provides 
a systematic mechanism for verifying the test 
output given any possible program inputs. 
However, in many practical situations, the 
oracle does not exist, or it is very expensive, 
if not impossible, to verify the correctness of 
test outputs. Such an oracle problem hinders 
the applicability and effectiveness of many 
testing techniques.

Metamorphic testing (Chen et al., 1998) is 
an innovative approach to the oracle problem. In 
MT, testers first identify some properties from 
the software under test. A set of metamorphic 
relations (MRs) can then be constructed based 
on these properties. Some traditional testing 
techniques can be applied to generate some 
test cases, namely source test cases. MRs are 
used to convert source test cases into so-called 
follow-up test cases. Both source and follow-up 
test cases are executed. The execution results 
(that is, the test output) will be checked against 
the MRs (instead of using the oracle). If an MR 
is violated, a fault is said to be revealed.

One simple example for how MT works is 
as follows. Suppose P is a program that finds 
the shortest path from one node to another node 
in an undirected graph. For P, we can have an 
MR that a graph and its permutation should 
have the same output. In order to test P by MT, 
we generate a source test case (G, a, b), which 
G is a graph, a and b are two nodes of G, and 
then construct the follow-up test case (G’, a’, 
b’), where G’ is the permutation of G, while 
a’ and b’ are the permutated points of a and 
b, respectively. We execute both (G, a, b) and 
(G’, a’, b’), and check whether |P (G, a, b)| = 
|P (G’, a’, b’)|, where |P (G, a, b)| denotes the 
length of the returned shortest path from node 
a to node b in G. If the relation does not hold, 
we can say that P has a fault.

Besides providing a test output verification 
mechanism alternative to the oracle, MT has 
many other advantages. For example, it can be 

effectively applied by end users without much 
knowledge of software testing. It is also very 
easy to automate MT. Based on MRs, a large 
number of follow-up test cases can be automati-
cally generated at a low cost, and the test output 
verification can be easily fulfilled by writing 
some simple scripts. Researchers from differ-
ent application areas have used MT to detect 
bugs in various programs (Chen, Ho, Liu, & 
Xie, 2009; Murphy, Kaiser, Hu, & Wu, 2008).

Mutation Analysis

Mutation analysis (DeMillo, Lipton, & 
Sayward, 1978) is widely used to assess the 
adequacy of a test suite and the effectiveness 
of testing techniques. The mutation analysis 
technique applies some mutation operators to 
seed various faults into the program under test, 
and thus generates a set of variants, namely 
mutants. If a test case causes a mutant to show 
a behavior different from the program under 
test, we say that this test case can “kill” the 
mutant and thus detect the fault injected into 
the mutant. We normally use the mutation score 
(MS) to measure how thoroughly a test suite 
can kill the mutants, which is defined as

MS (p, ts) = N
N N

k

m e-  (1)

where p refers to the program being mutated, ts 
refers to test suite under evaluation, Nk refers to 
the number of killed mutants, Nm refers to the 
total number of mutants, and Ne refers to the 
number of equivalent mutants. An equivalent 
mutant refers to one whose behaviors are always 
the same as those of p. It has been pointed out 
that compared with manually seeded faults, 
the automatically generated mutants are more 
similar to the real-life faults, and the mutant 
score is a good indicator for the effectiveness of 
a testing technique (Andrews, Briand, & Labi-
che, 2005). In this paper, we will use mutation 
analysis technique to evaluate the effectiveness 
of our approach.



International Journal of Web Services Research, 9(1), 51-73, January-March 2012   55

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

METAMORPHIC TESTING 
FOR WEB SERVICES

When loosely-coupled web services are or-
chestrated to fulfill a business goal, the service 
consumer must be confident that the Web 
services being orchestrated should implement 
their expected functionalities. This assumption 
requires that the service owner/developer has 
adequately tested the Web services. However, 
the service owner/developer cannot cover all 
possible usages of Web services, and thus the 
executed tests are inadequate. On the other 
hand, the service consumers have very little 
documentation and cannot access source codes 
of Web services. In this situation, MT provides 
an appropriate testing technique which can 
help service consumers test a third-party Web 
services without oracles.

Figure 1 depicts a framework of MT for 
Web services. Within the framework, meta-
morphic relationships (MRs) play a key role 
because they determine the selection of test 
cases and the evaluation of test results. Note that 
with the framework, we assume that the service 
consumers can derive the metamorphic property 
specification from the limited documentation 
of Web services, and service description may 
record the tests already executed on the web 
service being tested.

When the framework is employed to test 
a Web service, the consumers first derive 
metamorphic property specifications from the 

description or WSDL of the Web service. Before 
the test starts, the consumers need to specify 
the options with the configuration, and select 
MRs to conduct tests. The consumers can em-
ploy the test case generator to construct test 
cases according to the selected MR. The ex-
ecutor is then employed to run test cases and 
get their outputs. Finally, the evaluator as-
sesses the tests and judges whether the MR is 
satisfied or violated. Next, we examine indi-
vidually how the components of the MT frame-
work work and how they are collaborated to 
test Web services without oracles.

(1)  Test Case Generator (TCG). This com-
ponent is responsible for generating test 
cases according to the selected MRi. TCG 
first needs to parse the WSDL to decide 
the format of test cases. For generating 
source test cases, there are two ways. 
One is to randomly generate them from 
scratch; the other is to extract them from 
the service description that has recorded 
the previously executed tests. Next, the 
TCG construct the follow-up test cases TCx’ 
by transforming the source test case TCx 
based on the MRi. Furthermore, the TCG 
may generate test cases in either the batch 
mode or the one-by-one mode. If the batch 
mode is adopted, it needs to know where 
to store the generated test cases. Both the 
mode and the storage location are specified 
through the Configuration component.

Figure 1. The framework of metamorphic testing for Web services



56   International Journal of Web Services Research, 9(1), 51-73, January-March 2012

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

(2)  Executor. This component executes Web 
services with test cases generated by the 
TCG via the SOAP message, and intercepts 
the output Oi from the execution. If the 
source test case TCx is extracted from the 
service description, and the corresponding 
output Ox is also recorded in the previously 
executed tests in its service description, we 
can skip the execution of TCx, and directly 
run the Web service with TCx’ and intercepts 
its output Ox’.

(3)  Evaluator. This component compares the 
outputs Ox and Ox’, and makes decision 
whether they satisfy or violate MRi. If MRi 
is violated, a fault is detected; otherwise, 
this test is passed.

(4)  Configuration. This component is respon-
sible for specifying the options during the 
MT process.
 ◦ Firstly, we can derive a set of MRs from 

the metamorphic property specifica-
tion. The configuration component 
must specify which MR is selected 
before the test.

 ◦ Secondly, for the given MRi, the con-
figuration component specifies how 
many test cases should be selected 
by the TCG.

 ◦ Thirdly, the configuration component 
must specify the mode for the TCG to 
generate test cases. For the batch mode, 
it also needs to further specify the file 
of the generated test cases.

 ◦ Finally, if the Evaluator detects a fault, 
the testing stops. However, the testing 
may not detect any fault although all 
the generated test cases have been 
executed. In such a situation, the 
configuration component will specify 
an option whether the testing should 
stop or continue by trying another MR.

One may discover that some components in 
the framework can be automated, such as Test 
Case Generator, Executor and Evaluator. In 
order to make the approach effective and practi-
cal, we have implemented a prototype which 

partially automates the framework. Figure 2 
shows a snapshot of the prototype. To start, one 
is required to input the WSDL URL of the Web 
service being tested, and then press the Parse 
button to automatically parse the WSDL and 
derive a list of operations implemented by the 
Web service. From the list, one can select and 
test operations individually. Generating a large 
size of source test cases is usually a trivial task 
and thus should be left for the prototype by 
selecting the Generate automatically option. 
This can be done by parsing the WSDL file to 
define the formats of input messages. Note that 
metamorphic relations (MRs) have to be defined 
manually; on the other hand, with the prototype 
one can select one or more MRs to automatically 
generate follow-up test cases. To execute the 
tests by pressing the Test button, the prototype 
converts test cases into input messages, invokes 
the interfaces of a Web service, and intercepts 
output messages. With the output messages of 
both source test case and follow-up test case, 
the prototype can then evaluate the result of 
tests by judging whether the selected MR is 
violated. If so, a fault is detected; otherwise the 
test is passed. Finally, the prototype produces a 
test summary in a file for the further analysis.

EMPIRICAL STUDIES

In this section, we report case studies which were 
conducted to illustrate the proposed approach 
and validate its effectiveness. Three real-life and 
commonly-used Web services are selected as 
the subject program of our experiments. Among 
them, the first one implements the electronic 
payment service and second one provides the 
query service. Testing such Web services meets 
with the prominent oracle problem. The third 
one implements a daily-practiced service related 
to processing financial affairs in China. To 
measure the effectiveness, mutation analysis is 
employed. The results of case studies suggest 
that the proposed approach is effective in test-
ing Web services and can detect from 77.5% 
to 94.1% mutants.



International Journal of Web Services Research, 9(1), 51-73, January-March 2012   57

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

We first present two metrics for effective-
ness measurement and describe the general 
experiment procedure. After that, we report 
three case studies individually. A few MRs were 
identified for each subject program. Mutation 
analysis technique was used to seed faults into 
subject programs and thus to generate mutants. 
The prototype was applied to generate test suites 
based on MRs and test the mutants. Finally, we 
summarize the proposed approach based on the 
experiments.

Measurement of Effectiveness

In our empirical studies, we evaluate the ef-
fectiveness of MT based on a group of mutants. 
When an MR is violated (that is, the source and 
follow-up test cases satisfies R, but their outputs 
do not satisfy Rf), a fault is said to be detected 
(that is, a mutant is killed). We use the following 
two metrics to measure the effectiveness of MT.

The first metric, mutation score (MS), as 
defined in the Mutation Analysis section, is the 
ratio of the number of mutants killed by a test 
suite over the number of all non-equivalent 
mutants. MS indicates the fault-based adequacy 
of test suite ts, that is, how thoroughly a test 
suite ts can detect possible faults that may be 
seeded into the program under test. Obviously, a 

higher MS indicates a higher effectiveness of a 
test suite, and hence a higher effectiveness of the 
MR, based on which the test suite is generated.

The second metric is the fault discovery 
rate (FDR), which is defined as follows.

FDR (m, ts) = N
N N

f

ts i-  (2)

where Nf refers to the number of test cases that 
can kill the mutant m, Nts refers to the total 
number of test cases in ts, and Ni refers to the 
number of invalid test cases. Invalid test cases 
refer to those that do not work properly for a 
given MR. In our experiments it is possible to 
derive some invalid follow-up test cases. Such a 
follow-up test case may violate the rules of the 
subject program, and thus should be excluded 
for experiments. FDR indicates the effectiveness 
of a test suite ts on a particular mutant m, that 
is, how likely test cases generated based on a 
certain MR can kill m. A higher FDR implies 
that the test suite ts and the related MR have 
higher chance to kill the mutant m.

Experimental Procedure

Given a subject program, we took the following 
steps to conduct our experiments.

Figure 2. A snapshot of the MT prototype



58   International Journal of Web Services Research, 9(1), 51-73, January-March 2012

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

• Identify MRs for the subject program

The identification of MRs is a key issue 
during the application of MT (Chen, 2010). 
Some guidelines are available for selecting 
MRs from the specification. In particular, 
Some researchres (Chen, Kuo, Liu, & Tang, 
2004; Chen, Huang, Tse, & Zhou, 2004; Chen, 
2010) have discovered that (1) good MRs are 
relations which involve the execution of the 
core functionality; (2) good MRs should be 
those that can make the multiple executions of 
the program as different as possible. According 
to the guidelines, we derived a set of MRs for 
each subject program, which will be reported 
later in this section. Note that the derivation of 
these MRs is based on the specification of the 
subject program, and is completely independent 
of the implementation. This means that MT does 
not need to access the source code and hence is 
widely applicable to SOA-based applications.

• Generate mutants of the subject program

All subject programs are written in Java, so 
we used a popular Java mutation tool, namely 
MuJava (Offutt, Ma, & Kwon, 2004), to auto-
matically seed faults by various mutation opera-
tors, and thus to generate a group of mutants 
for each subject program. We also attempted to 
identify and eliminate the equivalent mutants 
manually. Only the non-equivalent mutants 
were used in our experiments.

• Generate test cases based on MRs

In order to execute MT, test cases are 
produced based on the MRs. For the source 
test cases, one can employ traditional test case 
generation techniques, such as the special test 
value generation, the random test value gen-
eration and the iterative test value generation. 
Among them, the random test value generation 
is more favorable and efficient for MT, because 
it can generate a large amount of test cases at 
a low cost, and the randomly-generated test 
cases can cover the test domain without any 

bias (Chen et al., 2004; Wu, Shi, Tang, Lin, & 
Chen, 2005). Thus we employed the random 
test value generation to generate source test 
cases in our experiments. For the follow-up test 
cases, they are accordingly constructed from 
their source test cases using MRs defined for 
each subject program.

• Execute testing

With the test cases generated, we now can 
execute the testing on each mutant. It should be 
reminded that in our experiments, no oracle is 
required. Instead, MRs are used to verify the 
test results. A fault is said to be detected if an 
MR is violated. In order to make the testing 
efficient, we employed the prototype discussed 
(Figure 2). With the prototype, one can select 
one or more MRs to test subject programs. 
The prototype supports both the one-by-one 
mode and the batch mode. Test cases can be 
automatically generated or manually input, or 
imported from a file.

• Evaluate experimental results

Based on a particular MR, we can have 
test suite ts. After running all test cases in ts on 
a mutant m, we can collect the value of FDR 
for the specific MR and m. We use ts to test all 
mutants of a subject program, and then we can 
calculate MS of the MR on the subject program.

Case Study 1

Subject Program: Balance Transfer

A general ATM (Automatic Teller Machine) 
system is implemented as a Web service and 
deployed in the Tomcat server (Sun, Wang, & 
Zhao, 2011). The user and business data are 
stored in a MySQL database. The system offers 
several features, such as withdrawal, deposit, 
transfer, query, and each of them is encapsulated 
as a service operation. Among these features, 
we select the transfer feature for the case study 
because it is widely practiced in the electronic 



International Journal of Web Services Research, 9(1), 51-73, January-March 2012   59

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

payment and the oracle problem arises when 
testing such a feature.

Figure 3 shows a segment of WSDL for the 
transfer feature. The implementation consists 
of 136 lines of Java codes, which executes the 
connection to relevant database, SQL state-
ments, and numerical computing on the transfer 
amount and commission fee.

As for the commission fee charging crite-
rion, we refer to Agricultural Bank of China 
for the calculation rules as shown in Table 1. 
Transfer types I through IV refer to the transfer 
between two accounts in the same bank and 
city, in the same bank but different cities, in the 
same city but different banks, in different cities 
and different banks, respectively. From Table 
1, one can see that the commission fee varies 
a bit with different types of transfers. When 

transferring the money between two accounts, 
the user may not know the precise amount of 
commission fees because details of the recipi-
ent account may not be fully known. In other 
word, the oracle is not always available when 
testing such a Web service.

By analyzing the WSDL of the Web service, 
we can derive the input of the transfer operation, 
and it is represented as a 4-tuple integer vector 
(A, B, P, M), where

• A and B denote the sender and recipient 
account numbers for the transfer transac-
tion, respectively. They consist of 10 digits.

• P denotes the transfer type. Its value ranges 
from 0 to 3, corresponding to type I to IV 
in Table 1. Note that the transfer type can 

Figure 3. A segment of WSDL for the transfer interface

Table 1. Commission fee calculation 

I II III IV

Charge	Percentage 0% 0.5% 0.5% 1%

Min(\) 0 1 1 1

Max(\) 0 50 50 50

Limit	Per	Transfer	(\) 50000 50000 50000 50000



60   International Journal of Web Services Research, 9(1), 51-73, January-March 2012

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

be deduced from A and B. For simplicity, 
we explicitly specify the type by P.

• M denotes the amount of a transfer transac-
tion, ranging from 0 to 50000, inclusive.

For example, an input (1000000000, 
2000000000, 3, 5000) means that the sender 
account number is 1000000000, the recipient 
account number is 2000000000, \5000 is trans-
ferred from the sender account to the recipient 
account, and these two accounts are in different 
cities and different banks.

Similarly, we can derive the output of the 
transfer operation. For simplicity, it is repre-
sented as a 2-tuple positive real vector where

• ∆A denotes the difference between the 
balances of account A before transaction 
and after transaction.

• ∆B denotes the difference between the 
balances of account B after transaction 
and before transaction.

Note that both ∆A and ∆B must be positive 
after a transaction. We notice that the commis-
sion fee may be charged from either the sender 
account (i.e., A) or the recipient account (i.e., 
B). Here, we assume the former in order to fol-
low the policy of Agricultural Bank of China.

Metamorphic Relations

We derive six MRs for the transfer feature, as 
listed in Table 2. In this case study, all the se-
lected MRs can be decomposed such that each 

MR is a pair of R and Rf, where R denotes the 
relation between source and follow-up test cases 
(inputs) and Rf denotes the relation between their 
outputs. From MR1-1 to MR1-5, the follow-up 
test cases are derived from their source test cases 
via changing only one tuple once. Considering 
MR1-1, if one source test case is (a, b, p, m), 
its follow-up test case should be (A’=A, B’=B, 
P’=P, M’=2M). For MR1-6, the follow-up test 
cases are derived from their source test cases 
via exchanging the sender account with the 
recipient account.

Experimental Results

Table 3 summarizes the average FDRs of all 
129 non-equivalent mutants. In the experiments 
reported here, we set the size of valid test cases 
(namely Nts-Ni) to 50, 100 and 200, in order to 
make the experimental results conclusive and 
stable. We observe that MR1-2, MR1-3 and 
MR1-1 are more effective compared with other 
MRs, and thus should have higher priority when 
MT is employed.

We further select ten mutants from 129 
non-equivalent mutants for a detailed analysis 
of the FDR with respect to each MR. These ten 
mutants are selected in order to cover all types 
of mutation operators supported by MuJava, 
and at the same time we believe the associated 
faults with these mutants are very typical. Table 
4 summarizes the mutation description of these 
mutants.

Table 5 reports the FDRs on the ten mutants 
when MT is used to test the transfer. Each cell 
shows the FDR of a test suite generated by an 

Table 2. A set of MRs for the transfer feature 

MR R Rf

MR1-1 M’=2M ∆A’≤2∆A and ∆B’=2∆B

MR1-2 P= 1 and P’= 2 ∆A’- ∆B’=∆A- ∆B

MR1-3 P= 0 and P’≠ 0 ∆A’- ∆B’>∆A-∆B

MR1-4 P= 3 and P’≠ 3 ∆A’- ∆B’≤∆A-∆B

MR1-5 M’>M ∆A’> ∆A and ∆B’>∆B

MR1-6 A’=B and B’=A ∆A’=∆B



International Journal of Web Services Research, 9(1), 51-73, January-March 2012   61

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

MR on a mutant. For example, the right-bottom 
cell represents that the test suite with the size 
of 200 test cases generated by MR1-6 has an 
FDR of 100% on M133. We can observe from 
Table 5 that

• Each MR has a varying sensitivity to dif-
ferent mutants. For instance, MR1-1 is 
sensitive to M004 while not sensitive to 
M057; MR1-3 is sensitive to M021 and 
M093, while not sensitive to M007 and 
M004. Such observations imply that dif-
ferent MRs have different effectiveness on 
different types of faults. It is not surprising, 
as MRs are just necessary conditions of 
the specification which reflect specific 
aspects of the software. Testers should 

identify the properties that are the most 
important for the consumers of the software 
under test, and thus identify effective MRs 
based on these important properties.

• Among the ten mutants, M069 and M133 
can be killed by all MRs, M055 cannot 
be killed by any MR, and other mutants 
were killed by some MRs with varying 
FDRs but cannot be killed by other MRs. 
By further analysis of the implementation 
of M055, we found that this mutant cannot 
be killed because the seeded fault is related 
to exception processing while our MRs 
do not involve the feature of exception 
processing. This indicates that some MRs 
related to exception process may be able 
to detect such kinds of faults.

Table 3. A summary of average FDR of 129 mutants using MT on transfer interface 

MR1-1 MR1-2 MR1-3 MR1-4 MR1-5 MR1-6

FDR

Size=50 30.4% 31.7% 31.5% 20.3% 15.4% 13.8%

Size=100 30.2% 32.8% 31.3% 20.3% 15.3% 13.8%

Size=200 30.6% 31.8% 30.8% 20.3% 15.3% 13.8%

Table 4. A summary of mutation description of ten mutants 

ID Mutation	Description

M004 Line 88: money => money++

M007 Line111: money => --money

M021 Line 123: commission_charge => --commission_charge

M055 Line 149: EXCEPTION_DATABASE_ERROR 
=> -EXCEPTION_DATABASE_ERROR

M057 Line 111: money * rate2 => money / rate2

M069 Line 88: money > maxTransferAmount_Once 
=> !(money > maxTransferAmount_Once)

M093 Line 126: commission_charge<1 && commission_charge>0 
=> commission_charge < 1^commission_charge > 0

M096 Line 110: same_bank == false && same_location == false 
=> same_bank == false ^ same_location == false

M116 Line 110: same_bank == false => same_bank != false

M133 Line 88: money > maxTransferAmount_Once 
=> money <= maxTransferAmount_Once



62   International Journal of Web Services Research, 9(1), 51-73, January-March 2012

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Table 6 summarizes the test adequacy of 
MT with respect to MS for each MR. “The “Nk” 
row shows the number of mutants killed by a 
MR, and the “MS” row shows the mutation score 
of each MR (= Nk /129). The “Total” column 
shows the performance of MT when the testing 
results of all six MRs are considered. We get 

the same MS regardless of the different sizes of 
test cases (50, 100 or 200). It can be observed 
from Table 6 that

• The MS of each MR can be used to compare 
their effectiveness. Among these MRs, 

Table 5. A summary of FDR for ten mutants when the size of valid test cases is 50, 100 and 200 

ID MR1-1 MR1-2 MR1-3 MR1-4 MR1-5 MR1-6

Size of valid test 
cases=50

M004 100% 0% 0% 0% 0% 0%

M007 30% 0% 0% 0% 0% 0%

M021 38% 0% 100% 24% 14% 26%

M055 0% 0% 0% 0% 0% 0%

M057 0% 100% 0% 0% 0% 0%

M069 100% 100% 100% 100% 100% 100%

M093 0% 0% 100% 0% 0% 0%

M096 0% 0% 52% 72% 0% 0%

M116 0% 18% 28% 74% 0% 0%

M133 100% 100% 100% 100% 100% 100%

Size of valid test 
cases=100

M004 100% 0% 0% 0% 0% 0%

M007 31% 0% 0% 0% 0% 0%

M021 32% 0% 100% 35% 24% 26%

M055 0% 0% 0% 0% 0% 0%

M057 0% 100% 0% 0% 0% 0%

M069 100% 100% 100% 100% 100% 100%

M093 0% 0% 100% 0% 0% 0%

M096 0% 0% 42% 65% 0% 0%

M116 0% 27% 38% 69% 0% 0%

M133 100% 100% 100% 100% 100% 100%

Size of valid test 
cases=200

M004 100% 0% 0% 0% 0% 0%

M007 20% 0% 0% 0% 0% 0%

M021 39% 0% 100% 35% 27% 16%

M055 0% 0% 0% 0% 0% 0%

M057 0% 100% 0% 0% 0% 0%

M069 100% 100% 100% 100% 100% 100%

M093 0% 0% 100% 0% 0% 0%

M096 0% 0% 36% 70% 0% 0%

M116 0% 19% 32% 65% 0% 0%

M133 100% 100% 100% 100% 100% 100%



International Journal of Web Services Research, 9(1), 51-73, January-March 2012   63

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

MR1-1, MR1-2, and MR1-3 are more ef-
fective, while MR1-4, MR1-5 and MR1-6 
are less effective. For instance, the MS of 
MR1-1 (45.0%) is larger than that of MR1-6 
(17.8%), we can say that MR1 is more 
effective than MR6 to some extent.

• All six MRs altogether can kill up to 77.5% 
of all mutants. The total value of MS is 
larger than MS of any single MR. That is 
to say, as many MRs as possible should 
be used to generate test suites provided 
that there is no concern with testing costs. 
Otherwise, taking into account the results 
in Table 4, the priority order of these MRs 
should be MR1-1>MR1-3>MR1-2>MR1-
4>MR1-5 >MR1-6.

With Case Study 1, we have demonstrated 
in detail how the proposed approach was applied 
to test a Web service without oracles. We have 
also measured its effectiveness in terms of both 
MS and FDR, and provided a detailed analysis. 
In order to make the subsequent description 
more compact, we will discuss some key issues 
while skipping over the experimental details for 
the remaining two cases studies.

Case Study 2

Subject: Seismic Service

The Web service under test provides a seismic 
data query service (Sosnoski, 2009). It is based 
on an actual database of more than 93,000 earth-
quakes that occurred in the worldwide over a 
period of nearly 4 years. The implementation 
consists of 551 lines of Java codes, which are 
mostly of data query statements. The entire 
database is kept in a text file on disk. Requests 
to the service specify query ranges for latitude, 

longitude, date, or magnitude, and the service 
returns all matching earthquakes grouped by 
region and in date order. Obviously, it is impos-
sible or difficult for one to decide for any given 
inputs whether a returned result is correct or 
not. So, the oracle problem arises when testing 
such a Web service.

Figure 4 shows a segment of WSDL for 
the seismic service.

By analyzing the WSDL of the Web Service, 
we derive the input of the matchQuakes opera-
tion. It is represented as a 10-tuple vector: 
<minLat, MaxLat, minLng, MaxLng, minDate, 
maxDate, minMag, maxMag, minDepth, max-
Depth>. Each tuple of the input is described in 
Table 7.

Similarly, we can derive the output of the 
matchQuakes operation. It is represented as a 
3-tuple vector: <area-name, regions*, quakes*>, 
where the “*” refers to a complex type. Each 
vector of the output is described in Table 8.

Metamorphic Relations

We derived 12 MRs as listed in Table 9. Note 
that the derivation of these MRs is quite easy 
and intuitive. They are achieved using the rule: 
for any two inputs a and a’, their correspond-
ing outputs are o and o’, respectively, if some 
constraint conditions in a’ are weaker than a 
and in the meanwhile, the other remains the 
same, then the relation (o ⊆ o’) must come 
into existence. Let us consider the rule in the 
context of MT. Taking the first two MRs which 
are relevant to the minLat and maxLat tuple, we 
expand the range of latitude in follow-up test 
cases. According to the expansion, the number 
of quakes in the output of follow-up test case 
should be equal to or larger than that of source 
test cases, and the set of quakes in the output 

Table 6. A summary of MS of 129 mutants using MT on transfer interface 

MR1-1 MR1-2 MR1-3 MR1-4 MR1-5 MR1-6 Total

Nk 58 54 56 38 25 23 100

MS 45.0% 41.9% 43.4% 29.5% 19.4% 17.8% 77.5%



64   International Journal of Web Services Research, 9(1), 51-73, January-March 2012

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

of follow-up test cases should subsume that 
of source test cases. Similarly, we derived the 
other ten MRs.

Experimental Results

Table 10 summarizes the average FDRs of 
all 724 mutants of the seismic service. In the 
experiments, we set the size of valid test cases 
(namely Nts-Ni) to 100. Based on Table 10, 
we observe that all MRs have similar average 
values of FDRs.

Table 11 summarizes the test adequacy of 
MT with respect to MS for each MR. The results 
are very exciting. It can be observed from Table 
11 that (1) MRs 2-1 to 2-4 and 2-11 can kill 
most mutants, while the other MRs can kill 
more than 20% mutants, and (2) when the 12 

MRs are used together, MT can kill up to 94.1% 
of all mutants, which is larger than the MS of 
any single MR.

Case Study 3

Subject: RMB Converter Service

This Web service converts a numerical form of 
money into Chinese character form. Such a ser-
vice is very important and widely used in daily 
financial and business affairs in China, because 
Chinese people have to use Chinese characters 
to represent a certain amount of money under 
many situations (such as signing contract, 
getting reimbursement, and so on). Table 12 
shows the Chinese characters which represent 
various orders of magnitude in a Chinese form 

Figure 4. A segment of WSDL for the seismic service



International Journal of Web Services Research, 9(1), 51-73, January-March 2012   65

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Table 7. A summary description of inputs of matchQuakes operation 

Tuple Format Detail

maxDate Y Y Y Y - M M - d d  H H : m m : s s , 
the range is (2000-01-01, 2003-08-31)

Upper limit of date for querying

minDate Y Y Y Y - M M - d d  H H : m m : s s , 
the range is (2000-01-01, 2003-08-31)

Lower limit of date for querying

maxLat Float type, the range is(-90.0, 90.0) Upper limit of latitude for querying

minLat Float type, the range is(-90.0, 90.0) Lower limit of latitude for querying

maxLng Float type, the range is(-180.0, 180.0) Upper limit of longitude for querying

minLng Float type, the range is(-180.0, 180.0) Lower limit of longitude for querying

maxMag Float type, the value is positive, can be null(no 
limitation on this condition)

Upper limit of magnitude for querying

minMag Float type, the value is positive, can be null(no 
limitation on this condition)

Lower limit of magnitude for querying

maxDepth Float type, the value is positive, can be null(no 
limitation on this condition)

Upper limit of quake depth for querying

minDepth Float type, the value is positive, can be null(no 
limitation on this condition)

Lower limit of quake depth for querying

Table 8. Output and its tuples of matchQuakes operation 



66   International Journal of Web Services Research, 9(1), 51-73, January-March 2012

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Table 9. A set of MRs for the matchQuakes feature 

MR R Rf

MR2-1 minLat’<minLat, 
maxLat’=maxLat

quakes.count ≤ quakes’.count, 
(quake1, quake2, …)Í (quake1’, quake2’, …)

MR2-2 minLat’=minLat, 
maxLat’>maxLat

quakes.count ≤ quakes’.count, 
(quake1, quake2, …)Í (quake1’, quake2’, …)

MR2-3 minLng’<minLng, 
maxLng’=maxLng

quakes.count ≤ quakes’.count, 
(quake1, quake2, …)Í (quake1’, quake2’, …)

MR2-4 minLng’=minLat, 
maxLng’>maxLng

quakes.count ≤ quakes’.count, 
(quake1, quake2, …)Í (quake1’, quake2’, …)

MR2-5 minDepth’<minDepth, 
maxDepth’=maxDepth

quakes.count ≤ quakes’.count, 
(quake1, quake2, …)Í (quake1’, quake2’, …)

MR2-6 minDepth’=minDepth, 
maxDepth’>maxDepth

quakes.count ≤ quakes’.count, 
(quake1, quake2, …)Í (quake1’, quake2’, …)

MR2-7 minMag’<minMag, 
maxMag’=maxMag

quakes.count ≤ quakes’.count, 
(quake1, quake2, …)Í (quake1’, quake2’, …)

MR2-8 minMag’=minLat, 
maxMag’>maxMag

quakes.count ≤ quakes’.count, 
(quake1, quake2, …)Í (quake1’, quake2’, …)

MR2-9 minDate’<minDate, 
maxDate’=maxDate

quakes.count ≤ quakes’.count, 
(quake1, quake2, …)Í (quake1’, quake2’, …)

MR2-10 minDate’=minDate, 
maxDate’>maxDate

quakes.count ≤ quakes’.count, 
(quake1, quake2, …)Í (quake1’, quake2’, …)

MR2-11
minDepth=null, maxDepth=null, 
minDepth’≠null, 
maxDepth’ ≠null

quakes.count ≤ quakes’.count, 
(quake1, quake2, …)Í (quake1’, quake2’, …)

MR2-12 minMag=null, maxMag=null, 
minMag’≠null,maxMag’ ≠null

quakes.count ≤ quakes’.count, 
(quake1, quake2, …)Í (quake1’, quake2’, …)

Table 10. A summary of average FDR of 724 Mutants using MT on seismic service 

MR2-1 MR2-2 MR2-3 MR2-4 MR2-5 MR2-6

FDR 23.9% 27.1% 23.9% 26.3% 22.7% 22.5%

MR2-7 MR2-8 MR2-9 MR2-10 MR2-11 MR2-12

FDR 22.6% 22.6% 22.6% 22.6% 23.3% 22.6%



International Journal of Web Services Research, 9(1), 51-73, January-March 2012   67

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

of money. Table 13 summarizes the Chinese 
characters to represent all digits. For example, 
such a service can covert “1234567.89” into “
壹佰贰拾叁万肆仟伍佰陆拾柒元捌角玖分”.

Figure 5 shows a segment of WSDL for 
the RMB converter service.

Metamorphic Relations

We derived 4 MRs as listed in Table 14. Here, we 
assume that the input and output for the source 
test case are denoted by N and O, respectively, 
and the input and output for the follow-up test 
case are denoted by N’ and O’, respectively. 
These MRs are derived to cover a variety of 
situations when transforming a number to 
Chinese characters, in particular those related 
to processing the zero and magnitude.

Experimental Results

Table 15 summarizes the average FDRs of 
all 195 non-equivalent mutants of the RMB 
converter service. In the experiments reported 
here, we set the size of valid test cases (namely 
Nts-Ni) to 100. From Table 15, we observe that 
(1) the average FDR values of the four MRs 
vary noticeably, and (2) among them, the MR3-4 
has the largest value of FDR, while MR3-2 has 
the smallest one.

Table 16 summarizes the test adequacy of 
MT with respect to MS for each MR. We observe 
that (1) All MRs have a high MS varying from 
62.6% to 81.0%, which means that they can 
kill most of mutants, (2) when the four MRs 
are used together, the MS does not increase 
evidently.

Table 11. A summary of MS of 724 mutants using MT on seismic service 

MR2-1 MR2-2 MR2-3 MR2-4 MR2-5 MR2-6

Nk 665 665 664 673 193 164

MS 91.9% 91.9% 91.7% 93.0% 26.7% 22.7%

MR2-7 MR2-8 MR2-9 MR2-10 MR2-11 MR2-12 Total

Nk 167 173 177 174 661 171 681

MS 23.1% 23.9% 24.4% 24.0% 91.3% 23.6% 94.1%

Table 12. Chinese characters representing various orders of magnitude in a form of money 

Order of 
magnitude Cent Ten 

cents Dollar Ten Hundred Thousand Ten thou-
sand

Hundred 
thousand Million

Chinese 分 角 圆 拾 佰 仟 万 拾万 佰万

Table 13. Chinese characters representing all digits 

Digit 0 1 2 3 4 5 6 7 8 9

Chinese 零 壹 贰 叁 肆 伍 陆 柒 捌 玖



68   International Journal of Web Services Research, 9(1), 51-73, January-March 2012

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Figure 5. A segment of WSDL for the RMB converter service

Table 14. A set of MRs for the RMB converter service 

MR R Rf

MR3-1 N’ is constructed by adding a non-zero digit d 
to the left of N.

O’ = Cd + Cp + O, where Cd and Cp are the Chinese 
characters of digit d and its corresponding order of 
magnitude, respectively.

MR3-2

Given that N does not contain “.”, that is, the 
number is an integer. N’ is constructed by 
adding “.” and two digits dj and df, whose cor-
responding Chinese characters are Cdj and Cdf, 
respectively.

(1) O’ = O + Cdj + “角” + Cdf + “分”, when dj ≠ 0 
and df ≠ 0;
(2) O’ = O + Cdj + “角”, when dj ≠ 0 and df = 0; or
(3) O’ = O + Cdf + “分”, when dj = 0 and df ≠ 0.

MR3-3 N’ is constructed by changing a non-zero digit 
d of N to another non-zero digit d’.

O’ should be identical to the string replacing Cd in 
O by C’d, where Cd and C’d are the Chinese charac-
ters for d and d’, respectively.

MR3-4 N’ is constructed by changing a non-zero digit 
d of N to “0”.

O’ should be identical to the string deleting Cd 
and Cp from O, where Cd and Cp are the Chinese 
characters of digit d and its corresponding order of 
magnitude, respectively.



International Journal of Web Services Research, 9(1), 51-73, January-March 2012   69

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Summary

Through the empirical studies, we have validat-
ed the feasibility of the proposed metamorphic 
relation-based approach and evaluated its effec-
tiveness. The case studies have been conducted 
to test three real-life Web services from different 
domains. One advantage of the proposed ap-
proach is that no oracle is needed. This greatly 
alleviates the more prominent oracle problem 
when testing Web services under SOA. The 
other is that the experimental results suggest 
that 77.5% ~ 94.1% mutants are killed in three 
case studies, which demonstrates a high fault 
detection capability of the proposed approach. 
In summary, the proposed approach delivers an 
effective and efficient testing technique without 
oracles for Web services.

RELATED WORK

As pointed out in the BACKGROUD section, 
there are various techniques for the testing of 
Web services reported in the literature, such as 
WS-TAXI (Bartolini, Bertolino et al. 2009), 
ontology based partioning testing (Bai, Lee 
et al. 2008), fault-based web service testing 
(Offutt and Xu 2004), etc. However, most of 
these techniques are focused on the selection 
of test cases for Web services. There is often 

an assumption behind these test case selection 
techniques, that is, an oracle exists for test 
result verification. The effectiveness of these 
testing techniques is greatly limited when the 
oracle is absent. The MT technique proposed 
in this paper provides a test result verification 
mechanism alternative to oracle, and thus can 
conduct effective testing without the need of 
oracles. MT has been used to alleviate the oracle 
problem of fault-based testing (Chen,Tse et al. 
2003) and symbolic execution (Chen, Tse et al. 
2011). It is interesting to study how MT can 
be integrated with other Web service testing 
techniques, aiming at effective testing in the 
absence of oracles.

Several researchers have conducted studies 
on the oracle problem in Web services. Tsai, 
Chen, Paul, Huang, Zhou, and Wei (2005) pro-
posed a technique called adaptive service testing 
and ranking with automated oracle generation 
and test case ranking (ASTRAR), where a set 
of Web services with the same specification are 
executed, and a voting algorithm is applied to 
the outputs of these Web services to find the 
majority output, which will be used to form 
the oracle. Such an approach is effectively 
N-version programming (Knight & Leveson, 
1986). ASTRAR is applicable when there are 
a large number of Web services with the same 
specification. In addition, it is well known that 
N-version programming is not always a reliable 

Table 16. A summary of MS of 195 mutants using MT on RMB converter service 

MR3-1 MR3-2 MR3-3 MR3-4 Total

Nk 141 122 158 154 161

MS 72.3% 62.6% 81.0% 79.0% 82.6%

Table 15. A summary of average FDR of 195 Mutants using MT on RMB converter service 

MR3-1 MR3-2 MR3-3 MR3-4

FDR 64.1% 58.9% 64.8% 74.2%



70   International Journal of Web Services Research, 9(1), 51-73, January-March 2012

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

method to the oracle problem. Our MT method 
can test a single Web service, and provide a 
reliable test output verification mechanism 
alternative to the oracle. Chan, Cheung, and 
Leung (2007) have proposed to use MT in the 
online testing of service-oriented software ap-
plications. Their method takes the successful 
test cases for offline testing as the source test 
cases for online testing. However, they have 
assumed the existence of an oracle during the 
offline testing. Our method never has such an 
assumption.

The MT technique has been applied to 
solve the oracle problem in various domains, 
such as machine learning (Murphy, Kaiser 
et al., 2008) and bioinformatics (Chen et al., 
2009). However, these studies only proposed 
MRs suitable for specific application domains, 
without studying the unique features of these 
domains and the possible impacts on applying 
MT technique. In this paper, we not only explore 
a new application domain for the MT technique, 
but also investigate how to integrate MT into 
the unique environment of Web services and 
thus propose a comprehensive framework for 
applying MT into Web service testing.

CONCLUSION AND 
FUTURE WORK

Web services must be trustworthy before they 
are integrated to construct SOA applications. 
Testing presents a practical approach for ensur-
ing the trustworthiness of Web services. Testing 
normally consists of test case generation, test 
execution, and test result verification against 
test oracle. Most existing testing techniques 
assume the existence of oracles when they 
are employed to test Web services. However, 
some unique features, such as the lack of source 
code and the limited control on Web services, 
restrict the testability of Web services, and thus 
make the oracle problem more prominent. This 
indicates that existing testing techniques may 
not be applicable to Web Services. We have 
presented a novel testing technique for Web 

services to address the challenge of testing SOA 
applications. The proposed approach leverages 
metamorphic relations to generate test cases 
and verify test results. Follow-up test cases 
are constructed based on source test cases and
according to metamorphic relations. The outputs 
of source and follow-up test cases are compared 
against metamorphic relations. Thus, our ap-
proach can verify the test results without oracles. 
We have also proposed a testing framework for 
Web services which combines the principle of
metamorphic testing with the unique features 
of SOA. To make the framework more practical 
and efficient, we have implemented a prototype 
which automates some components in the frame-
work. We have conducted empirical studies to 
validate the feasibility and effectiveness of our 
approach. In the experiments, three real-life and 
commonly-used Web services were selected as 
subject programs. Testing such Web services 
faces the oracle problem to some extent. Muta-
tion analysis is used to seed possible faults into 
the implementations of Web services under test. 
In three case studies, 77.5% ~ 94.1% mutants 
are killed, which indicates exciting performance 
of our approach. The results of the empirical 
studies clearly show that our approach delivers 
an effective and efficient testing technique for 
Web services without oracles.

In our future work, we would enhance the 
automation capability of the prototype devel-
oped in this study. Another work is to conduct 
more empirical studies to further evaluate the 
effectiveness and identify limitations of the 
proposed approach. Finally, we want to explore 
the combination of the proposed approach with 
existing testing techniques for Web services to 
improve their applicability.

ACKNOWLEGMENTS

This research is supported by the Fundamental 
Research Funds for the Central Universities 
(New Testing techniques and Tools for SOA 
Applications), the National Natural Science 
Foundation of China (Grant No. 60903003), the 



International Journal of Web Services Research, 9(1), 51-73, January-March 2012   71

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Beijing Natural Science Foundation of China 
(Grant No. 4112037), the Research Fund for 
the Doctoral Program of Higher Education of 
China (Grant No.2008000401051), the Open 
Funds of the State Key Laboratory of Com-
puter Science of Chinese Academy of Science 
(Grant No. SYSKF1105) and a discovery grant 
of the Australian Research Council (Grant 
No.DP0771733). This paper is an extended ver-
sion of paper titled “Metamorphic Testing for 
Web Services: Framework and a Case Study” 
in Proceedings of the 9th IEEE International 
Conference on Web Services (ICWS 2011). 

REFERENCES

Andrews, J. H., Briand, L. C., & Labiche, Y. (2005). Is 
mutation an appropriate tool for testing experiments? 
In Proceedings of the 27th International Confer-
ence on Software Engineering, St. Louis, MO (pp. 
402-411).

Bai, X., Lee, S., Tsai, W.-T., & Chen, Y. (2008). 
Ontology-based test modelling and partitioning 
testing of web services. In Proceedings of the 6th 
International Conference on Web Services, Beijing, 
China (pp. 465-472).

Bartolini, C., Bertolino, A., Elbaum, S., & Marchetti, 
E. (2009). Whitening SOA testing. In Proceedings 
of the 7th Joint Meeting of the European Software 
Engineering Conference and the ACM SIGSOFT 
Symposium on the Foundations of Software Engi-
neering, Amsterdam, The Netherlands (pp. 161-170).

Bartolini, C., Bertolino, A., Marchetti, E., & Polini, 
A. (2009). WS-TAXI: A WSDL-based testing tool of 
web services. In Proceedings of the 2nd International 
Conference on Software Testing Verification and 
Validation, Denver, CO (pp. 326-335).

Canfora, G., & Di Penta, M. (2009). Service Oriented 
Architecture testing: A survey. In A. De Lucia & F. 
Ferrucci (Eds.), Proceedings of the International 
Summer Schools Lectures on Software Engineering 
(LNCS 5413, pp. 78-105).

Chan, W. K., Cheung, S. C., & Leung, K. R. P. H. 
(2007). A metamorphic testing approach for online 
testing of service oriented software applications. 
International Journal of Web Services Research, 
4(2), 61–81. doi:10.4018/jwsr.2007040103

Chen, T. Y. (2010). Metamorphic testing: A simple 
approach to alleviate the oracle problem. In Pro-
ceedings of the 5th IEEE International Symposium 
on Service Oriented System Engineering, Nanjing, 
China (pp. 1-2).

Chen, T. Y., Cheung, S. C., & Yiu, S. M. (1998). 
Metamorphic testing: A new approach for generating 
next test cases (Tech. Rep. No. HKUST-CS98-01). 
Clear Water Bay, NT, Hong Kong: Hong Kong 
University of Science and Technology.

Chen, T. Y., Ho, J. W. K., Liu, H., & Xie, K. (2009). 
An innovative approach for testing bioinformatics 
programs using metamorphic testing. BMC Bioin-
formatics, 10, 14. doi:10.1186/1471-2105-10-24

Chen, T. Y., Huang, D. H., Tse, T. H., & Zhou, Z. 
Q. (2004). Case studies on the selection of useful 
relations in metamorphic testing. In Proceedings 
of the 4th Ibero-American Symposium on Software 
Engineering and Knowledge Engineering, Madrid, 
Spain (pp. 569-583).

Chen, T. Y., Kuo, F. C., Liu, Y., & Tang, A. (2004). 
Metamorphic testing and testing with special values. 
In Proceedings of the 5th ACIS International Confer-
ence on Software Engineering, Artificial Intelligence, 
Networking and Parallel/Distributed Computing, 
Beijing, China (pp. 128-134).

Chen, T. Y., Tse, T. H., & Zhou, Z. Q. (2003). Fault-
based testing without the need of oracle. Information 
and Software Technology, 45(1), 1–9. doi:10.1016/
S0950-5849(02)00129-5

Chen, T. Y., Tse, T. H., & Zhou, Z. Q. (2011). Semi-
proving: An integrated method for program prov-
ing, testing, and debugging. IEEE Transactions on 
Software Engineering, 37(1), 109–125. doi:10.1109/
TSE.2010.23

DeMillo, R. A., Lipton, R. J., & Sayward, F. G. (1978). 
Hints on test data selection: Help for the practicing 
programmer. IEEE Computer, 1(4), 31–41.

Dong, G. W., Xu, B. W., Chen, L., Nie, C. H., & 
Wang, L. L. (2009). Survey of metamorphic test-
ing. Journal of Frontiers of Computer Science and 
Technology, 3(2), 130–143.

Farooq, A., Georgieva, K., & Dumke, R. R. (2008). 
Challenges in evaluating SOA test processes. In R. 
R. Dumke, R. Braungarten, G. Büren, A. Abran, & 
J. J. Cuadrado-Gallego (Eds.), Proceedings of the 
International Conferences IWSM, Metrikon and 
Mensura on Software Process and Product Measure-
ment (LNCS 5338, pp. 107-113).



72   International Journal of Web Services Research, 9(1), 51-73, January-March 2012

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Haas, H., & Brown, A. (2004). Web services glossary. 
Retrieved from http://www.w3.org/TR/ws-gloss/

Heckel, R., & Lohmann, M. (2004). Towards con-
tract-based testing of web services. In Proceedings 
of the International Workshop on Test and Analysis 
of Component Based Systems, Barcelona, Spain 
(pp. 145-456).

Knight, J. C., & Leveson, N. G. (1986). An experi-
mental evaluation of the assumption of independence 
in multi-version programmings. IEEE Transactions 
on Software Engineering, 12(1), 96–109.

Lenz, C., Chimiak-Opoka, J., & Breu, R. (2007). 
Model driven testing of SOA-based software. In 
Proceedings of the Workshop on Software Engi-
neering Methods for Service-Oriented Architecture, 
Hannover, Germany (pp. 99-110).

Murphy, C., Kaiser, G., Hu, L., & Wu, L. (2008). 
Properties of machine learning applications for use 
in metamorphic testing. In Proceedings of the 20th 
International Conference on Software Engineering 
and Knowledge Engineering, San Francisco Bay, 
CA (pp. 867-872).

Offutt, J., Ma, Y. S., & Kwon, Y. R. (2004). An 
experimental mutation system for Java. ACM 
SIGSOFT Software Engineering Notes, 29(5), 1–4. 
doi:10.1145/1022494.1022537

Offutt, J., & Xu, W. (2004). Generating test cases 
for web services using data perturbation. ACM 
SIGSOFT Software Engineering Notes, 29(5), 1–10. 
doi:10.1145/1022494.1022529

Papazoglou, M., Traverso, P., Dustdar, S., & 
Leymann, F. (2008). Service-oriented computing: 
A research roadmap. International Journal on 
Cooperative Information Systems, 17(2), 223–255. 
doi:10.1142/S0218843008001816

Peltz, C. (2003). Web services orchestration: A review 
of emerging technologies, tools, and standards (Tech. 
Rep.). Palo Alto, CA: Hewlett-Packard Company. 
Retrieved from http://devresource.hp.com/drc/

Ruth, M., & Tu, S. (2007). A safe regression test 
selection technique for web services. In Proceedings 
of the 2nd International Conference on Internet and 
Web Application and Services, Mauritius, République 
de Maurice (p. 47).

Sosnoski, D. (2009). Electronic source with authors 
and publication time. Retrieved from http://www.
ibm.com/developerworks/java/library/j-jws6/index.
html

Sun, C. (2011). On open issues on SOA-based soft-
ware development. Journal of China Science Paper 
Online. Retrieved from http://www.paper.edu.cn/
index.php/default/releasepaper/content/201107-461

Sun, C., Khoury, E., & Aiello, M. (2011). Transaction 
management in service-oriented systems: Require-
ments and a proposal. IEEE Transactions on Services 
Computing, 4(2), 167-180.

Sun, C., Wang, G., & Zhao, Y. (2011). Web service 
development: A process framework and case study. 
Journal of China Science Paper Online. Retrieved 
from http://www.paper.edu.cn/index.php/default/
releasepaper/content/201104-18

Tsai, W. T., Chen, Y., Paul, R., Huang, H., Zhou, X., 
& Wei, X. (2005). Adaptive testing, oracle genera-
tion, and test case generation for web services. In 
Proceedings of the 29th International Computer 
Software and Applications Conference, Edinburgh, 
UK (Vol. 2, pp. 101-106).

Weyuker, E. J. (1982). On testing non-testable 
programs. The Computer Journal, 25(4), 465–470.

Wu, P., Shi, X. C., Tang, J. J., Lin, H. M., & Chen, 
T. Y. (2005). Metamorphic testing and special case 
testing: A case study. Journal of Software, 16(7), 
1210–1220. doi:10.1360/jos161210

Zhang, J. (2011). A Mobile Agent-Based Tool Sup-
porting Web Services Testing. Wireless Personal-
Communications, 56(1), 147-172.

Zhang, J. and Qiu, R.G. (2006). Fault Injection-based 
Test Case Generation for SOA-oriented Software. In 
Proceedings 2006 IEEE International Conference on 
Service Operations and Logistics, and Informatics, 
Shanghai, China (pp. 1070-1078).



International Journal of Web Services Research, 9(1), 51-73, January-March 2012   73

Copyright © 2012, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chang-ai Sun is an Associate Professor in the School of Computer and Communication Engineer-
ing, University of Science and Technology Beijing. Before that, he was an Assistant Professor at 
Beijing Jiaotong University, China, a postdoctoral fellow at the Swinburne University of Technol-
ogy, Australia, and a postdoctoral fellow at the University of Groningen, The Netherlands. He 
received the bachelor’s degree in Computer Science from the University of Science and Tech-
nology Beijing, China, and the PhD degree in Computer Science from the Beijing University of 
Aeronautics and Astronautics, China. His research interests include software testing, software 
architecture, and Service-Oriented Computing.

Guan Wang is a master student at the School of Computer and Communication Engineering, 
University of Science and Technology Beijing. He received a bachelor degree in Computer Sci-
ence from University of Science and Technology Beijing. His current research interests include 
software testing and Service-Oriented Computing.

Baohong Mu is a PhD student at the School of Computer and Communication Engineering, 
University of Science and Technology Beijing. He received a master degree in Computer Science 
from Taiyuan University of Technology. His current research interests include software testing 
and Service-Oriented Computing.

Huai Liu is a Research Associate at the Faculty of Information and Communication Technologies 
in Swinburne University of Technology. He received his PhD degree in Software Engineering 
from Swinburne University of Technology, Australia, and M.Eng. in Communications and In-
formation Systems and B.Eng. in Physioelectronic Technology from Nankai University, China. 
His current research interests include software testing, web services, telecommunications, and 
end-user software engineering.

ZhaoShun Wang is a Professor in the School of Computer and Communication Engineering, 
University of Science and Technology Beijing, China. He obtained the PhD degree in Computer 
Science from University of Science and Technology Beijing, and BSc and MPhil. in Mathematics 
from Beijing Normal University. His research interests include software testing and information 
security.

T. Y. Chen is a Chair Professor of Software Engineering at the Faculty of Information and Com-
munication Technologies in Swinburne University of Technology. He received his PhD degree 
in Computer Science from the University of Melbourne; MSc, and DIC in Computer Science 
from Imperial College of Science and Technology; and BSc, and MPhil. from The University 
of Hong Kong. His current research interests include software testing and debugging, software 
maintenance, and software design.




