
I. Introduction

Apache ZooKeeper [1] is a high-availabile system o�ering

coordination services to Internet-scale distributed applica-

tions. �ese services include: leader election (used by Apache

Hadoop [2]), failure-detection and group membership con-

�guration (by HBase [3]) and reliable information storage

and update (by Storm in Twi�er [4]). ZooKeeper itself is

a replicated system made up of N,N ≥ 3, servers that can

crash at any moment and recover a�er an arbitrary downtime

with pre-crash state in stable store. Server crashes may even

be correlated and all servers may crash at the same time.

Despite these failure possibilities, ZooKeeper is guaranteed

to provide uninterrupted services, so long as at least dN+1
2 e

servers are operative and connected.

At the heart of ZooKeeper is the ZooKeeper atomic broad-

cast protocol, Zab for short, to ensure that the service state

is kept mutually consistent across all correct servers. Zab 
performance therefore impacts that of Zookeeper. Further-

more, e�cient atomic broadcast protocols have far wider 
applications, e.g., in coordinating transactions particularly 
in large-scale in-memory database systems [5, 6]. In such 
applications, the atomic broadcast protocol typically operates 
in heavy load conditions and is expected to o�er low latencies 
even at such extreme loads. Zab is a leader-based protocol 
and, like many other leader-based ones, it tends to o‡er 
worsening performance when the load on the leader increases. 
For example, [7]

reveals that ZooKeeper throughput decreases gradually as the 
write requests outnumber the read requests in a cluster of any 
size. The reason is that read requests can be processed 
without involving Zab while write requests cannot proceed 
until Zab execution is completed.
The aim of this paper is to explore ways of improving
Zab performance,  particularly at high work loads, by pri-
marily shitting some of the leader load onto other nodes, 
while at the same time maintaining the well-understood and 
implementation-friendly structure Zab itself. We accomplish 
our aim in three ways.

First, we consider a set of restricted fault assumptions:

servers crash independent of each other and at least dN+1
2 e

servers remain operative and connected at all time. Secondly,

we let non-leader servers broadcast acknowledgements and

thereby deliver atomic broadcasts with less involvement from

the leader; a novel concept of coin-tossing is used to limit

the broadcast tra�c, particularly the incoming tra�c at the

leader. �irdly, the coin-tossing protocol is then upgraded to

operate with Zab fault assumptions, providing thus a genuine

alternative to Zab itself.

We develop 5 new protocols in total and their performance

are compared with Zab. All new protocols perform be�er

than Zab at all loads and the coin-tossing ones particularly

well under heavy loads. We identify a new protocol for a 3-

server system which outperforms all others at all loads, but

requires restrictive fault assumptions.

It is important to note that the new protocols we propose
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here di�er from Zab only in the la�er’s normal (fail-free)

part and are shown to preserve all invariants necessary

to make use of the crash-recovery part of Zab unchanged.

Hence they can be easily implemented using existing Zab

implementations.

�e paper is structured as follows. Section II describes

the role of Zab in the context of the ZooKeeper system,

Zab fault assumptions, and the protocol steps. Section III

presents the restrictive fault assumptions and develops three

new protocols. �e �rst one is suited only when N = 3,

the second uses acknowledgement broadcasting and the

last one reduces the tra�c through coin-tossing. Section

IV is devoted to extensive performance comparison using

latency and throughput as metrics. Having convinced of

the potentials of the coin-tossing approach for performance

improvement, we upgrade it to original Zab fault assumptions

in the following section; we also derive a version without

coin-tossing. �eir performance comparison with Zab further

con�rms the bene�ts of coin-tossing. Section VI discusses the

related work. Finally, Section VII concludes the paper and

outlines future research.

II. ZooKeeper Atomic Broadcast Protocol

ZooKeeper implements replicated services using an ensem-

ble of N , N ≥ 3, connected servers. N is typically an odd

number, commonly 3 and occasionally 5 or 7. �e following

assumptions are made.

A1 - Server Crashes: A server can crash at any time and

recover a�er a downtime of arbitrary duration. It has a stable

store or log and the log contents survive a crash. Server

crashes may be correlated and it is conceivable that all N
servers remain crashed at the same time.

A server that remains operative during a period of interest

is said to be correct during that period.

A2 - Server Communication: Servers are connected by

a reliable communication subsystem: messages sent by a

correct server are never permanently lost and are received

by all correct destinations in the order sent.

Servers are replicas of each other and each maintains a

copy of the application state. Zookeeper clients can submit

their requests to any one of the N servers. Requests may be

broadly categorised as read or write; the la�er seek state

modi�cation while the former do not. Read requests are

serviced by the receiving server itself. Write requests, as

illustrated in Figure 1, are �rst subject to total ordering

through an execution of ZooKeeper atomic broadcast (Zab)

protocol and then are processed concurrently by all servers as

per the order decided. If a write request requires a response in

return, then only the server that received the request directly

from the client responds.

Let Π ={p1, p2, ...., pN} denote the set of Zab processes,

one in each server. One of the Zab processes is designated

as the leader and the rest as followers. As in 2-Phase commit

protocol, only the leader can initiate atomic broadcasting of

m, abcast(m) for short, and the followers execute Zab by

responding to what they receive. So, when a follower receives

ZooKeeper Services
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Fig. 1: Handling of Write Requests in ZooKeeper

a write request m for ordering, it forwards m to the leader

for initiating abcast(m) (see Fig 1). When Zab execution for

m terminates, both leader and followers deliver m locally for

processing, and this delivery event is denoted as abdeliver(m).
Since the leader can crash any moment, Zab, like its intel-

lectual ancestor Paxos [8], exploits the notion of quorums: a

quorum Q is any majority subset of Π and any two quorums

must intersect.

Let Q be the set of all quorums in Π: Q = {Q : Q ⊆
Π ∧ |Q| ≥ dN+1

2 e}. For any two Q,Q′ ∈ Q : Q ∩Q′ 6= { }.
For example, when N = 3,

Q = {{p1, p2}, {p2, p3}, {p3, p1}, {p1, p2, p3}}.
By the liveness arguments in [1] (see Claim 7), one process

gets elected as the new leader when the current leader

crashes, so long as a quorum of processes are correct and

can communicate in a timely manner. �e new leader starts

abcasting a�er it has synchronised its abdelivered message

history with those of the followers that elected it.

Let history Hi(t) denote the ordered sequence of messages

abdelivered by pi until (real) time t. (�e sequence order is

the order in which messages in Hi(t) were abdelivered by

pi.) Zab guarantees the following (see [1] for details) which

ensure that the service state remains mutually consistent

across all correct replicas:

G1 - Validity: If the leader does not crash until it completes

abcast(m), then m ∈ Hi(t) for any correct pi at some t.
G2 - Integrity: if m ∈ Hi(t) for any pi, abcast(m) occurred

at some t′ < t.
G3 - Total Order and Agreement: At any time t and for any

two pi and pj ∈ Π: either Hi(t) = Hj(t) or one is a pre�x

of the other.

A. Zab Protocol
Zab consists of the following steps.

• L1: Leader initiates abcast(m) by assigning m a sequence

number m.c and broadcasting m to all processes (includ-

ing itself);

• F1: A follower, on receiving m (with m.c) from the

leader, logs m and then sends an acknowledgement,

ack(m), to the leader;

• L2: Leader executes F1, sending ack(m) to itself. Upon

receiving ack(m) from a quorum, it sends commit(m) to

all processes (including itself);

• F2: A follower, on receiving commit(m), executes abde-
liver(m).



• L3: Leader, on receiving commit(m) (from itself), exe-

cutes abdeliver(m).
Zab protocol steps ensure the following invariant holds for

every abdeliver(m):
Zab Invariant on abdeliver: If a process executes abde-
liver(m), then all processes in some Q ∈ Q have logged m.

�e invariant is essential for correctly replacing a crashed

leader: any m that might have been abdelivered under the

old leadership is guaranteed to be abdelivered by the new

leader since the quorum that elects the la�er must intersect

with Q.

III. Zab Variations with Additional Assumptions

Assumption A2 is retained, A1 modi�ed into A1.1 and

A1.2, and A3 additionally made.

A. Assumptions
A1.1 - Leader Crash and Recovery: When the leader server

crashes and recovers subsequently, it does not a�empt to

join the system until its successor has been installed, i.e., the

recovery from its crashing is complete.

Note that Zab tracks leadership changes through epoch
numbers [1]. �us, when a process logs the epoch number in

which it acts as a leader, it can, on recovery, suspend joining

the system until the current epoch number is larger.

A1.1 can block leader election. Assume N = 3 and p1 is

the leader in epoch 1. Following the crash of p1, let p2 also

crash and then p1 recovers. Even though a quorum {p1, p3}
is now correct, leader cannot be elected unless p1 takes part

in the election. Assumption A1.2 forbids crash of p2 in such

circumstances.

A1.2 - Server Crashes: No process can fail when exactly

dN+1
2 e processes in Π are executing the protocol.

�us, a quorum remains operative always, allowing a new

leader to be elected when a leader crashes and abdeliver to

continue when a follower crashes.

A2 - Server Communication: Same as A2 in § II.

A3 - Follower Crash Suspicions: Followers monitor each

other’s operative status and can thereby suspect a follower

crash. �is will require followers periodically exchanging

’heart-beat’ messages with each other. In our evaluations,

servers make use of JGroups membership views to become

aware of other server crashes.

B. De�nitions and Lemma
For `, 1 ≤ ` ≤ N , let Q` denote the set of all quorums

that contain p` and Q̄` be its complement:

Q` = {Q : Q ∈ Q ∧ p` ∈ Q}, and Q̄` = Q − Q`.

For example, Q1 = {{p1, p2}, {p3, p1}, {p1, p2, p3}}, and

Q̄1 = {{p2, p3}}, when N = 3.

Let q ¯̀ = {Q`−{p`} : Q` ∈ Q`}. Again, with N = 3 as an

example, q1̄ = {{p2}, {p3}, {p2, p3}}.
Note that q¯̀ ∈ q ¯̀ need not be a quorum and |q¯̀| ≥ dN−1

2 e.
Lemma: Any q¯̀ ∈ q ¯̀ and any Q′ ∈ Q̄` must intersect.

Proof : By de�nition, q¯̀
⋃
{p`} and Q′ are quorums which

must intersect. �e common process p cannot be p` since

p` 6∈ Q′. ∴ p ∈ q¯̀ must hold and hence the lemma.

C. Design Approach
Implicit Acknowledgements. In one protocol, a follower

does not transmit ack(m) for every m it receives from

the leader, and may at times omit such transmissions in

an a�empt to reduce the tra�c at the leader. When ack
transmissions are skipped, an ack(m) from a given follower

not only acknowledges m (with sequence number m.c), but

also will indicate an implicit acknowledgement for all m′ sent

by the same leader with m′.c < m.c.
�e leader will abdeliver(m) once it receives a quorum of

either implicit or explicit acknowledgements for m. Note that

a given m′ is implicitly acknowledged multiple times, i.e.,

whenever an ack(m), m.c > m′.c, is received. Any one of

them from a given process su�ces to build the necessary

quorum.

Use of implicit acknowledgements does not undermine

the correctness due to A2 (reliable communication and sent-

ordered message reception) but can delay abdelivery.

Commit Messages. Leader does not send commit messages

to followers which decide on abdelivery by themselves.

Invariants on abdeliver . Zab invariant stated earlier holds

only when the leader abdelivers m. For followers:

Follower Invariant on Abdelivery: If a follower process

abdelivers m that was abcast by leader p`, then all followers

in some q¯̀ ∈ q ¯̀ have logged m.

Recall that |q¯̀| ≥ dN−1
2 e. �is means that a follower can

abdeliver m as soon as at least dN−1
2 e followers are known

to have logged m; in particular, it is not conditional on p`
logging m. When p` does log m, the original Zab invariant

holds since q¯̀
⋃
{p`} is a quorum.

�us, the follower invariant eventually leads to Zab in-

variant, if p` does not crash. If p` does crash, it cannot, by

A1.1, take part in the subsequent leader election; by A1.2,

a quorum Q′ ∈ Q̄` must exist to elect the new leader. By

lemma, q¯̀ and Q′ intersect; so, the new leader is guaranteed

to abdeliver any m that could have been abdelivered when p`
was the leader. We note that Zab mechanisms for recovering

from leader crashes can be used unchanged in all variants

proposed.

Switch to/from Zab: One of the protocols proposed in this

section is designed to perform well when all N −1 followers

are correct. It is also designed to switch to Zab whenever

a follower crash is observed, and back to itself when the

crashed follower joins the system. Assumption A3 is used

for this purpose.

D. Leader Protocol
�e steps executed by the leader are the same in all

variations proposed here. �ey are as follows.

• L1: Leader initiates abcast(m) by assigning m a sequence

number m.c and broadcasting m to all processes (includ-

ing itself);

• L2: On receiving m (with m.c) from itself, it logs m and

then sends an acknowledgement, ack(m), to itself;

• L3: Upon receiving ack(m) or an implicit acknowledge-

ment for m from a quorum, it sends commit(m) to itself;



• L4: Leader, on receiving commit(m), executes abde-
liver(m).

E. Protocol 1
1) Protocol 1.1: ZabAc: It works only when N = 3 and

allows a follower to ’Ack and commit’ without waiting for a

commit from the leader nor having any interaction with the

other follower. (Hence the name ZabAc, Zab appended with

’Ac’ for ack and commit.) �e protocol steps for a follower

are as follows.

• F1: A follower, on receiving m (with m.c) from the

leader, logs m;

• F2: It then sends ack(m) to the leader and to itself;

• F3: A�er receiving ack(m), it executes abdeliver(m).
When N = 3, each follower forms a q¯̀; so, the follower

invariant holds.

ZabAc is thus a simple protocol: it involves no switch to

or from Zab nor uses implicit acknowledgements. Message

complexity is 4 unicasts per abcast and abdelivery at

followers is faster compared to Zab.

2) Protocol 1.2: ZabAa: It is an extension of ZabAc for N >
3. Instead of unicasting ack(m) only to the leader, ack(m) is

broadcast to all. (Hence the name ZabAa: Zab appended with

’Aa’ for ack-all.) A follower abdelivers(m) once at least f =
dN−1

2 e followers are known to have logged m. Its protocol

steps are as follows.

• F1: A follower, on receiving m (with m.c) from the

leader, logs m;

• F2: It then sends ack(m) to the leader and to followers

(including itself);

• F3: On receiving ack(m) from f followers, it sends a

commit(m) to itself.

• F4: On receiving commit(m), it executes abdeliver(m).
Message complexity is N(N − 1) unicasts per abcast

and increases quadratically with N . �ough abdelivery at

followers can be expected to be faster, increased message

handling may slow down their responses. �ese will be

analysed in Section IV where we consider up to N = 9.

Next protocol seeks to reduce message complexity by

conditioning the sending of acknowledgements by followers

to outcomes of coin tosses.

F. Protocol 2: ZabCt
Each follower has a coin with prob(Head) = p. A�er logging

m, it sends an ack(m) to itself and tosses the coin; if

the outcome is Head, the follower behaves as in ZabAc or

ZabAa; otherwise, it does nothing. It makes use of implicit

acknowledgements for deciding on abdelivery and the steps

are as follows.

• F1: A follower, on receiving m from the leader, logs m;

• F2: It sends ack(m) only to itself and tosses the coin;

• F3: If (coin = Head) then it sends ack(m) to the leader;

if N > 3, it sends ack(m) to all other followers;

• F4: On receiving ack(m) or an implicit ack for m from

f followers, it sends a commit(m) to itself.

• F5: On receiving commit(m), it executes abdeliver(m).
1) Optimal Value for p: Ideally, we would prefer exactly

f followers to get Head, when they toss their coins for

every given m sent by the leader. �is will ensure that

the leader has (f + 1) ack(m) and each follower f ack(m),
and all processes abdeliver m without relying on implicit

acknowledgements which will only delay abdelivery of m.

For simplicity, assume that N is odd and all servers are

correct. �us, n = N−1 is the number of followers that toss

the coin on receiving m; f = dN−1
2 e = n

2 when N is odd.

�us, n = 2f and (n−f) = f . �e Binomial probability that

f of these n (independent) coin tosses are heads, is given by:

B(n, f) =
(
n
f

)
pf (1− p)n−f =

(
n
f

)
pf (1− p)f .

B(n, f) is a concave function of p, with B(n, f) = 0 for

p = 0 and p = 1, and has its maxima for some 0 < p < 1.

Ḃ(n, f) = 0⇒ ( p
1−p )f = ( p

1−p )(f−1)
.

When p = 0.5, Ḃ(n, f) = 0 and B̈(n, f) < 0, ∀f ≥ 1.

�us, B(n, f) is at its maximum when the coin is fair.

Remark 1: Total Message Cost.
�e expected number of Heads from n independent coin

tosses is np. �us, the expected message complexity per

abcast is (N − 1) + (N − 1)p(N − 1). When p = 0.5, it

becomes (N −1)+0.5(N −1)2
which is now quadratic only

on (N − 1). Note that it is the same as the message cost in

ZabAc when N = 3.

Remark 2: Incoming Tra�c at the Leader.
Note also that the leader in ZabCt, irrespective of N , is

expected to receive 0.5 × (N − 1) follower acks per abcast,
which is just half of those it receives in ZabAc and ZabAa.

For example, the leader in ZabCt with N = 3 is expected

to receive one follower ack per abcast, while it receives 2

follower acks in ZabAc. Of course, this reduction in incoming

tra�c at the leader is at the cost of any additional waiting

to receive implicit acknowledgements when more than f
followers get Tail outcomes for a given abcast.
Remark 3: Role of abcasting Rate.

When a follower tosses its coin on successive abcast
receptions, the expected number of Tail outcomes before the

�rst Head is
1−p
p = 1. �us, if a follower skips transmi�ing

an ack once, it is expected that it would transmit ack(m) for

the next abcast(m) it receives. �is means that the more

frequently the leader abcasts, the less would be the extra

abdelivery delay imposed by implicit acknowledgements.

G. Switching Between Zab and ZabCt

Protocol switching is based on followers suspecting each

other’s crash and it must therefore account for the possibility

that a suspicion can be wrong and be reversed: a follower

pi that suspects crash of follower pj can receive a delayed

heartbeat message later from pj and reverse its suspicion

subsequently.

A follower pi that suspects another follower’s crash, sets

its p = 1 and sends its ack ai only to the leader p`, unicasting

as in Zab but with its ack �eld ai.zab = 1. When it suspects

none of N − 2 other followers, it reverts to ZabCt by (i)



rese�ing p = 0.5 and (ii) se�ing ai.zab = 0 in any ack it

broadcasts.

Whenever the leader p` receives an ack(m) with zab �eld

set to 1, it sends commit(m) message to the sender of that

ack when it sends, or if it has already sent, commit(m) to

itself.

Observe that when a follower pj does crash, Zab will be

executed with all follower acks having their zab �eld set to 1;

when all followers are correct and none suspects any other,

ZabCt will be executed with zab �eld in acks set to 0.

IV. Experiments and Performance Comparison

In this section, we compare the performances of the proto-

cols under di�erent load conditions. Atomic broadcast latency

and throughput are the two metrics used for comparison.

We use 250 concurrent clients distributed equally on 10

identical machines; each machine thus hosts 25 clients. At

most 9 machines were dedicated to running the protocols,

thus covering N = 3, 5, 7, 9. Machines used in our experi-

ments are commodity PCs of 2.80GHz Intel Core i7 CPU and

8GB of RAM, running Fedora 21 and communicating over

100 Mbps Switched Ethernet. Connections between machines

were established at the beginning of the experiment.

�e protocols, including Zab, were implemented in Java

(JDK 1.8.0) on the top of the JGroups framework. JGroups

is a toolkit for reliable communication and also supports

crash detection, joining of recovered process and installation

of group membership views [9]. Messages are transmi�ed

using JGroups’ FIFO reliable UDP, more precisely, by using

UNICAST3 protocol in JGroups suite which is functionally

identical to TCP.

Each client generates a read or write request with a

payload of 1Kbytes and sends the request to one of N servers.

If the request is of read type, then the server simply returns

the request as the response; if the request is of write type, the

server (if it is not the leader) forwards it for abcasting; when

a server abdelivers a request it had received directly from a

client, it sends the request back to the client as the response.

�us, no read/write operations actually occur since the aim is

to measure and compare abdelivery latencies and throughput.

On receiving the response, the client repeats its action and

selects the destination server in a round-robin manner. �us,

there are at most 250 client requests being handled by the

servers.

We use write-ratio, WR, 0 < WR ≤ 1, for clients to vary

the load they impose on servers. For every write request

that a given client generates, it will generate
1−WR
WR read

requests; in other words, WR > 0 is the probability that a

request generated by a client is of write type. Experiments

reported consider WR values of 25%, 50%, 75% or 100%.

In an experiment, where the protocol, WR and N are

�xed, clients send, and receive responses for, a total of 10000
write requests a�er the warm-up phase. For example, if

WR = 50%, the server system will process
10000

0.5 = 20000
read/write requests, i.e., each of the 250 clients will issue 80

requests. Note that servers handle at most 250×WR abcasts
at any moment.

Let t0 and t1 be the instants when a server receives a

request from a client and abdelivers that request respectively;

t1 − t0 de�nes the abdelivery latency for that request. We

compute the average of 10000 such latencies and repeat

the experiment 20 times for a con�dence interval of 95%.

�roughput is de�ned as the number of abdeliveries made by

all servers per unit time and is computed, like latencies, with

a 95% con�dence interval.

Experiments are run in failure-free and suspicion-free

scenarios. Furthermore, servers do not log m in disk (as

ideally required) but only record m in main-memory. �us

the performance �gures we present here do not include

disk write delays, but only network delays. �is kind of

evaluations correspond to the ’Net-Only’ category of the

evaluations in [1] where several ways of logging have been

considered. Since all protocol versions being compared re-

quire logging of m exactly at the same point in the execution

for every abcast(m), ignoring delays due to disk writes cannot

invalidate the integrity of observations made and conclusions

drawn from performance �gures.

A. Observations

Figure 2 presents the latency �gures for all three protocols

for each N = 3, 5, 7, 9.

Let us �rst focus on N = 3 depicted in Fig 2a. Both ZabAc

and ZabCt o�er shorter latencies compared to Zab.

�e di�erence between Zab and ZabAc increases as WR
increases: about 12 ms at WR = 25% to 17 ms at WR =
100%. �is can be a�ributed to the absence of commit
message transmissions in ZabAc (also in ZabCt), and Zab

followers having increased incoming tra�c at higher loads.

What is interesting to note is the performance of ZabCt

which nearly levels that of ZabAc when WR = 100%.

Frequent abcasting leads to frequent coin-tosses which in

turn reduce the delays due to the leader having to commit
by receiving implicit acks from followers; moreover, the

incoming tra�c at the leader halves (Remark 2 in § III-F)

when followers toss coins which will have the e�ect of

reducing latencies at the leader.

Note that the followers in ZabCt do not su�er from

implicit acks as they do not have to rely on each other’s

acks for abdelivery. �is advantage disappears in ZabCt for

N = 5, 7, 9 where a follower must await at least 1 ack from

another follower.

Considering the latency �gures for N = 5, 7, 9, we observe

the same trend between ZabAa and Zab as we did between

ZabAc and Zab for N = 3. What is very di�erent is the

behaviour of ZabCt compared ZabAa which are nearly close

at all WR and the closeness tightening as N increases. �is

leads us to conclude that ZabCt is a desirable alternative to

ZabAa from the perspectives of abdelivery latencies.

Fig 3 compares throughput at WR = 100% - a scenario

that favours the use of implicit acks and coin-tosses. While

the throughputs of proposed protocols perform at least as
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(a) Ensemble size N = 3.
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(b) Ensemble size N = 5.
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(c) Ensemble size N = 7.
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(d) Ensemble size N = 9.

Fig. 2: Latency comparison.

well as, if not be�er than, Zab, di�erences due to coin-tosses

are o�en within the widths of con�dence interval.

V. Coin Tossing Under Assumptions A1-A3

Encouraged by the observations that coin-tossing and

use of implicit acks do not seriously undermine abdelivery
latencies, we consider upgrading ZabCt under original Zab

crash-recovery assumptions. More precisely,

We restore Assumption A1 (see Section II), discard its

restricted alternatives A1.1 and A1.3 (see Subsection III-A),

retain A2 and A3. �us, A3 is the only additional assumption

made compared to Zab protocol. �e upgraded version of

ZabCt is denoted as ZabCT (with the upper-case T implying

least restrictive assumptions). It involves minor changes in

steps F3 and F4 of ZabCt:

• F1-F2: As in ZabCt (see subsection III-F);

• F3: If (coin = Head) then it sends ack(m) to the leader

and to all other followers;

• F4: On receiving ack(m) or an implicit ack for m from

f+1 followers, it sends a commit(m) to itself.

• F5: As in ZabCt.

A follower pi commits m a�er it knows that f+1 processes

have logged m. �us, ZabCT preserves the original Zab

Invariant on abdelivery for followers as well. �erefore, it

operates under assumption A1.

A follower waiting for 1 more ack(m) before doing com-
mit(m) additionally prolongs abdelivery latencies, whenever

fewer than (f ) other followers get a Head outcome when

tossing for a given abcast(m). A follower relies much more on

(i) implicit acks and (ii) a di�erent set of followers ge�ing the

Head outcome while tossing the coin for abcast(m’), m′ > m.

Change in step F4 also requires a follower to send acks
to all followers (on coin=Head) irrespective of N . �is is
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Fig. 3: �roughput comparison for WR = 100%.
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Fig. 4: Latency comparison for Zab, ZabCT and ZabAA for

N=3.

re�ected in Step F3 above.

1) ZabAA with p =1: An interesting variation of ZabCT is

when p is �xed at 1, i.e., (coin = Head) in step F4 returns true
for every abcast(m). �is is similar to ZabAa, but operates for

all N and under A1 and hence it is denoted as ZabAA. Also,

it, unlike ZabAa, must switch to Zab when follower crashes

are suspected.

Observe that the total message cost per abcast(m) in

ZabAA is 6 when N = 3 which is the same as in Zab. In

what follows, we compare the performance of Zab, ZabCT

and ZabAA only for N = 3 - the most common N for Zab.

A. Performance Comparison with N = 3

Fig 4 depicts the latencies of Zab, ZabAA and ZabCT.

ZabAA abdelivers faster than Zab as followers need not wait

for commit messages. ZabCT is even faster than ZabAA at

all WR; this suggests that delays due to implicit acks are

outdone by bene�ts of reduced message tra�c due to coin

toss. However, when we compare ZabAA and ZabCT with

ZabAc and ZabCt for N = 3, the la�er are much faster.

Fig 5 presents the throughput averages of all protocols

for N = 3 at WR = 100% for an overall comparison.

ZabAc outperforms all, closely followed by both coin-tossing

protocols.
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Fig. 5: �roughput comparison for WR = 100% and N = 3.

VI. Related Works

As per [10], Zab belongs to the group of �xed sequencer

protocols because the leader is responsible for establishing

the order on abcast messages. �e widely studied Paxos

[8, 11] is the intellectual ancestor of Zab. It permits di�erent

abcasts to be made with the same m.c and resolves the

con�ict using ballots. Where as in Zab, there can at most

be one leader at any moment and a new leader cannot

commence its leadership role until a quorum of servers

have disowned the old leader; there is no need for ballots.

However, some abcasts may be permanently ’lost’ due to

leadership change; i.e., they may not be abdelivered at all

prior to or a�er the new leadership begins. Consequently Zab

does not preserve the causal order delivery as traditionally

understood [12].

Leader based protocols such as Zab tend to overload

the leader disproportionately (compared to followers) and

several authors [13, 14, 15, 16] have sought to remedy this

drawback. S-Paxos [13], for instance, relieves the leader from

broadcasting client requests by separating the roles of request

dissemination and request ordering. Each process directly

broadcasts client requests to others (instead of forwarding

to the leader) and request ordering is done through Paxos

executions using only request identi�ers.

Mencius [14], on the other hand, allows each process to

act as a leader by numbering its own abcasts with unique



and increasing m.c such that abcasts from all processes are

uniquely and continuously numbered. It thus achieves a high

throughput by balancing network utilization. However, the

crash of any single server stops atomic broadcast delivery

until recovery.

Chain replication [15] reduces the leader load by distribut-

ing the role between two servers called the head and the

tail. �e head is responsible for handling write requests

and provides m.c for each write which it passes down the

chain sequentially until received by the tail. �is sequential

transmission tends to increase abdelivery latencies for large

N .

Broadcasting an acknowledgement is common in symmet-

ric (leaderless) atomic broadcast protocols such as [5]. �at it

can help to avoid the leader broadcasting commit messages

has been hinted by Zab authors themselves (e.g., [1]). In this

paper, we explored this idea under various fault assumptions.

Implicit acknowledgments and crash suspicions which we

have used here are not new. �e former are commonly used

in TCP implmentations where they are also called cumulative

acknowledgements. Suspecting crashes (using timeouts) is

the basis for crash detection and building unreliable fail

detectors [17] to ensure liveness in atomic broadcasting.

VII. Conclusion and Future Work

We have extended the well-known Zab protocol under

its original fault assumptions as well as under a restricted

fault assumptions which are yet practical. Extensions use ack
broadcasting - not an unknown idea - and coin tossing to

reduce tra�c at the leader. �e la�er is novel and, to the

best of our knowledge, coin-tossing protocols are new.

Performance comparisons have been carried out without

disk-based logging but the results still hold as logging is

common to all protocols being compared. Two important

conclusions emerge: restrictive fault assumptions do bring

performance bene�ts when N = 3, the most common

Zab con�guration, in the form of ZabAc; secondly, coin-

tossing is an e�ective alternative to naively broadcasting acks,
irrespective of WR and N , in both the restricted and the Zab

fault assumptions.

We plan to pursue the coin-tossing approach to improving

Zab performance under high loads in the light of Remarks

made in Section III-F: p needs to be adaptively chosen based

on the abcasting rates observed and when number of correct

followers is less than N − 1 but more than f + 1.

References

[1] F. P. Junqueira, B. C. Reed, and M. Sera�ni, “Zab: High-

performance broadcast for primary-backup systems,” in

IEEE/IFIP 41st International Conference on Dependable
Systems & Networks (DSN), 2011, pp. 245–256.

[2] K. Shvachko, H. Kuang, S. Radia, and R. Chansler, “�e

hadoop distributed �le system,” in IEEE 26th Symposium
on Mass Storage Systems and Technologies (MSST), 2010.

IEEE, pp. 1–10.

[3] L. George, HBase: the de�nitive guide. ” O’Reilly Media,

Inc.”, 2011.

[4] A. Toshniwal, S. Taneja, A. Shukla, K. Ramasamy, J. M.

Patel, S. Kulkarni, J. Jackson, K. Gade, M. Fu, and

J. Donham, “Storm@ twi�er,” in Proceedings of the 2014
ACM SIGMOD international conference on Management
of data. ACM, pp. 147–156.

[5] P. Ruivo, M. Couceiro, P. Romano, and L. Rodrigues,

“Exploiting total order multicast in weakly consistent

transactional caches,” in IEEE 17th Paci�c Rim Interna-
tional Symp. on Dependable Computing (PRDC), 2011.

[6] R. Emerson and P. Ezhilchelvan, “An atomic-multicast

service for scalable in-memory transaction systems,” in

IEEE 6th International Conference on Cloud Computing
Technology and Science, 2014, pp. 743–746.

[7] P. Hunt, M. Konar, F. P. Junqueira, and B. Reed,

“Zookeeper: Wait-free coordination for internet-scale

systems,” in USENIX Annual Technical Conference, vol. 8,

p. 9.

[8] L. Lamport, “Paxos made simple,” ACM Sigact News,
vol. 32, no. 4, pp. 18–25, 2001.

[9] B. Ban, “Jgroups, a toolkit for reliable multicast commu-

nication,” URL: h�p://www. jgroups. org, 2002.
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