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ABSTRACT
The recent developments of multipath data transport pro-
tocols such as Multipath TCP allow end-systems to explore
and share available resources within networks. Through dy-
namic load balancing over subflows these protocols ensure
high levels of robustness to network failures and traffic over-
loads. In this paper we use fluid models to study the benefits
that accrue when load is shared across subflows. We combine
insights gained from the fluid models with a precise descrip-
tion of the capacity region for the network and show that
our models of multipath protocols approach the boundary
of the capacity region as the intensity of the offered traffic
approaches a critical value. We quantify the extent to which
multipath protocols will make a network robust to unfore-
seen traffic mismatches and link failures and illustrate our
results with parameterised models for random fluctuations
in the offered traffic.

Categories and Subject Descriptors
C.2 [Computer-communication networks]: Packet switch-
ing networks

Keywords
Mutlipath, capacity bounds, performance analysis

1. INTRODUCTION
Communications based on single end-to-end paths can

easily expose data transmission to the risk of instability

∗Work undertaken while at the Computer Laboratory, Uni-
versity of Cambridge.

and disruption. In contrast, multipath extensions of data
transmission protocols aim to take advantage of path diver-
sity in order to achieve efficient bandwidth allocation while
maintaining stability and connectivity. The recent develop-
ments of multipath data transport protocols such as Multi-
path TCP (MPTCP) allow multi-homed end-systems with
potential access to a rich set of technologies and paths (e.g.
3G, 4G, 802.11, satellite) to explore and share available re-
sources by using existing path diversity within networks [19].
Through dynamic load balancing over subflows that can har-
ness the available path diversity, these protocols have the
potential to ensure certain levels of robustness to network
failures and traffic overloads. Such multipath resource pool-
ing extensions of data routing and congestion control imple-
ment decentralisation with implicit resource sharing and, at
the same time, may advantageously implement coordinated
control where the rates over available paths are determined
as a function of all or some of the available paths [13].

During the last decade researchers have studied various
properties and performance issues related to design and de-
ployment of MPTCP [18]. Wischik et al (2009) [25] showed
how the path choice offered by the network affects the abil-
ity of end-systems to shift their traffic across a pool of re-
sources. They defined and studied a resource poolability
metric, which measures for each resource how easy it is
for traffic to be shifted away from that resource, e.g. in
the event of a traffic surge or link failure. Chen et al [4]
provided a thorough field study and explored the perfor-
mance of MPTCP in the wild focusing on two path scenar-
ios and investigating how much benefit can arise from us-
ing multipath TCP over cellular and WiFi relative to using
only a single interface alone. Wischik et al (2011) [26] and
Khalili et al (2012) [14] considered various fairness proper-
ties as well as other aspects of MPTCP. Link utilisation and
route flappiness issues of multipath controllers were analysed
in [9]. Raiciu et al (2011) [22] proposed to use completely
distributed and topology agnostic MPTCP as a replacement
for TCP in data centers, as it more effectively and seamlessly
uses available bandwidth, giving improved throughput and
better fairness on many topologies. These authors conclude
that MPTCP is highly capable of finding free capacity in
the network and increasing fairness, and is robust to con-
gested links or failures because it combines path selection,
scheduling and congestion control.
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Design and stability of multipath end-to-end congestion
and rate/routing control algorithms can be studied and con-
veniently formulated at the scale of flow rates. In recent
years researchers have developed a framework that allows
congestion control algorithms to be interpreted as distributed
mechanisms solving a global optimisation problem [10,20,21,
23,24]. The framework is based on fluid-flow models, and the
form of the optimisation problem makes explicit the equilib-
rium resource allocation policy which can often be restated
in terms of a fairness criterion.

In this paper we use fluid models of scalable MPTCP to
study the benefits that accrue when load is shared across
subflows. We first obtain a precise description of the capac-
ity region of a communication system with multipath control
and then combine this description with insights gained from
the fluid models showing that our models of multipath proto-
cols can approach the boundary of the capacity region as the
intensity of the offered traffic approaches the critical value.
We consider the extent to which multipath protocols will
make a network robust to unforeseen traffic mismatches and
illustrate our results with parameterised models for random
fluctuations in the offered traffic.

2. NETWORK MODEL

2.1 Network structure
We assume now that the network consists of a collection of

source-destination pairs S and a collection of links J . These
links represent capacitated directed edges between adjacent
forwarding nodes. Each s ∈ S identifies a unique source-
destination pair (we shall therefore also refer to s as source)
which is also associated with a set of routes R. Each such
route r ∈ R is a set of links, that is r ⊆ J . If source s
transfers data over route r, then we write r ∈ s. Similarly,
if a route r uses link j ∈ J , we write j ∈ r. Furthermore,
s(r) ∈ S refers to the unique source/destination pair identi-
fied with the route r.

Let Trj be the propagation delay from source s(r) to
link j ∈ r, that is the length of time it takes for a packet to
travel from s(r) to j along route r, and let Tjr be the prop-
agation delay from link j to source s(r), that is the length
of time it takes for congestion control feedback to reach s(r)
from j along r. (It is assumed that a packet must reach
its destination before an acknowledgment containing con-
gestion feedback is returned to its source.) The round trip
time for route r is then given by Tr = Trj +Tjr for all j ∈ r.
Finally, we use the notation a = [ b ]+c , defined for c ≥ 0, to
mean a = b if c > 0 and a = max(0, b) if c = 0.

2.2 Multipath rate allocation problem
A flow between each source and destination is split be-

tween a collection of, n, subflows which use various paths
and thus share network resources. A multipath TCP con-
troller can be applied as a pricing and congestion response
mechanism in order to dynamically control rate allocations
between subflows in a coordinated but still decentralized
fashion.

For each route r there is an associated flow rate xr(t) ≥ 0,
which represents a dynamic fluid approximation to the rate
at which the source s(r) sends packets along the route r at
time t.

We use the above network description and consider the
fluid model of multipath routing extension to TCP given

in [11] briefly summarising its primal version here. Further
discussion of fluid models for multipath TCP can be found
in [8,12] and [2] investigated their use in studying multipath
routing in hybrid networks. In this fluid-flow model of joint
routing and rate control, the flow rates, xr(t), vary according
to the following differential equations:

ẋr(t) =
xr(t− Tr)

Tr

[
a(1− λr(t))− brTrys(r)(t)λr(t)

]+
xr(t)

,

(1)
where

λr(t) = 1−
∏
j∈r

(1− µj(t− Tjr)) , ys(t) =
∑
r̃∈s

xr̃(t−Tr̃) (2)

and

µj(t) = pj

(∑
r̃:j∈r̃

xr̃(t− Tr̃j)

)
. (3)

In the above formulation a, br and functions λr(·) (r ∈ R),
µj(·), and pj(·) (j ∈ J) have the following interpretations.
Each link j has a capacity Cj > 0 and exhibits congestion
by dropping or marking packets via a penalty function given
by

pj(zj) =

(
zj
Cj

)βj
(4)

for some constant βj > 0 (known as the link responsiveness).
Thus, µj(t) is the link j’s dropping/marking rate at time t
and λr(t) is the route r’s proportion of the acknowledge-
ments that indicate congestion. The quantity a is a pro-
portionality factor of the amount by which the sending rate
is increased (on receipt of a positive acknowledgement), and
br is a route-specific proportionality factor of the amount by
which the sending rate is decreased (on receipt of a negative
acknowledgement through a timeout and so indicating con-
gestion). This controller takes the following form in terms
of a control window update algorithm:

• the algorithm responds to each acknowledgement re-
ceived in a round trip time in which congestion on
route r has not been detected with the update

cwndr ← cwndr + ā;

• upon the first detection of congestion in a given round
trip time, the congestion window cwndr is reduced as
follows

cwndr ← cwndr − brTrys(r)(t).

We will refer to the above controller with the choice of
values a = 0.01 and br = 0.125 as scalable Multipath TCP
(sMPTCP). For the experiments discussed in Section 4 we
use βj = 8. This choice of the controller’s parameters en-
sures its stability, as this choice fulfils the sufficient condi-
tion for local stability of the above (primal) algorithm with
the penalty function given by (4) (see [11]), namely that
a(1 + max

j∈J
βj) <

π
2
.

Note that equations (1)-(3) with r spanning the whole
set of routes R define a set of coupled first-order non-linear
differential equations with discrete time delays. Hence, in
order to obtain a particular flow dynamics xr(t), r ∈ R, in
a network topology with at least one shared link one needs
to solve the entire system of differential equations.



3. CAPACITY REGION AND BOUNDS
In this section we extend the fluid-level modelling to incor-

porate the notion of connections arriving with workload re-
quirements corresponding to individual file downloads. Thus
there is a need to understand the set of workload arrival
rates that are compatible with the available network capac-
ity to handle the offered load. Accordingly, in this section
we define the capacity region for our network and precisely
characterise the boundary of this region as the solution of
an optimisation problem. The optimisation problem takes
the form of a linear program and this then forms the basis
of a technique to determine the range of traffic arrival rates
compatible with stable network operation.

3.1 Determination of capacity region
Consider the description of the network model given in

Section 2.1 and further suppose that each directed link j ∈ J
has a capacity for flow given by Cj .

We now suppose that connections to the network arrive
according to a stationary stochastic processes of rate νs for
source-destination pair s independently across pairs. Each
individual connection for pair s has a randomly chosen file
size of data to be transferred, which we suppose has a mean
file size of ms, where file sizes are determined independently.
Thus the rate, ρs, of work arriving for source-destination
pair s is given by

ρs = νsms . (5)

Further, let xr ≥ 0 be the flow on route r and define the
following matrices. Let Ajr (for j ∈ J and r ∈ R) be 1 if
link j belongs to route r and 0 otherwise. Let Hsr (for s ∈ S
and r ∈ R) be 1 if source-destination pair s uses route r
and 0 otherwise. Thus,

Ajr =

{
1 if j ∈ r
0 otherwise

and Hsr =

{
1 if r ∈ s
0 otherwise

.

Write ρ = (ρs; s ∈ S), C = (Cj ; j ∈ J), m = (ms; s ∈
S) and x = (xr; r ∈ R). We can now define the capacity
region, Ω, for feasible workload rates as follows (see Fig. 1):

Ω =
{

(ρs; s ∈ S) ∈ R|S|+ : ∃xr ≥ 0, Ax ≤ C, ρ ≤ Hx
}

We can construct the boundary of Ω as follows. Suppose

that ρ is any non-zero vector in R|S|+ . Then scalar multi-
ples, αρ, of the vector ρ all lie in the direction of the ray ρ
from the origin and we can determine the boundary of Ω
by maximizing α subject to αρ remaining within the capac-
ity region. Accordingly, the maximal value, α∗, say, of the
objective function from the following linear program deter-
mines the point, α∗ρ, on the boundary of Ω that intersects
the ray ρ (see Fig. 1):

max α (6)

subject to Ax ≤ C ,αρ ≤ Hx , x ≥ 0 , α ≥ 0. (7)

For further examples of similar bounding techniques see [6].
The capacity region Ω describes the feasible set of work-

load rates (ρs; s ∈ S) that can be supported by the set
of routes and link capacities determined by the matrix H
and the vector C, respectively. Note that the use of linear
programming for determining the boundary of the capac-
ity region has further insightful features such as sensitivity
analysis and identifying network bottlenecks in terms of the
Lagrange multipliers.

0 ρ1

ρ2
ρ

α∗ρ

Ω

Figure 1: The capacity region Ω describes the set

of feasible workload vectors ρ ∈ R|S|+ .

3.2 Upper bound on arrival rates
We can view our construction of the capacity region Ω as

finding the feasible vectors of workload rates ρ constrained
in such a way that the workloads are in relative proportions
given by the relative proportions of the corresponding com-
ponents of ρ. If we take the specific choice ρ = (ms; s ∈ S)
then the point on the boundary, α∗ρ, will give the max-
imising scalar α∗ the interpretation of an upper bound on
the arrival rate common over source-destination pairs. This
follows from (5) and since α∗ρ = α∗m is the vector of work-
load rates when average file sizes for different connections
are given by the vector m and the arrival rate per connec-
tion is α∗.

3.3 Complexity
In our discussion of the capacity region Ω the matrix A

captures the link-route incidence relationship, whereas ma-
trix H captures the correspondence between existing routes
and available subflows. Hence, both matrices are highly
sparse and their dimensions vary with the choice of our pa-
rameter n—the number of subflow paths per source destina-
tion pair. Specifically, the size of A is |L| × |R| and the size
of H is |S| × |R|. Hence, the size of the linear program (6-
7) is (|L|+ |S|)× (|R|+ 1), or, O(N2)×O(nN2), where N
is the size of the set of communicating nodes and n is the
number of subflows in use.

3.4 Examples
We shall now consider computing α∗ in several illustra-

tive example networks. In our first example we used the
network shown in Fig. 2 (referred to as the single-parented1

network) which has N = 10 nodes and a total of 30 directed
links j ∈ J with link capacities Cj = 1. The nodes are of
two types: five source-destination nodes (n1, n2, . . . , n5) con-
nected with inbound and outbound links to a fully connected
core network consisting of five nodes (n6, n7, . . . , n10). The
set S is the set of distinct node pairs in {n1, n2, . . . , n5}2.
The mean files sizes of connections were ms = 1 for all s ∈ S.
For this network we take a single subflow, that is n = 1,
routed along the shortest path (according to hop count). By
inspecting the number of subflows present on an individual
link we can readily determine that the upper bound on ar-
rival rate is α∗ = 0.25 since each peripheral node connects to
the core through a link of capacity 1 that carries four sub-
flows, one to each of the remaining four peripheral nodes.
We also verified this value by computing the bound through
the linear programming approach given in Section 3.2.

1More generally, multi-parented networks have been well-
studied for their robustness properties in the context of
circuit-switched telecommunication networks, for example
see [7].
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Figure 2: A single-parenting communication net-
work with the complete graph (nodes n6, n7, . . . , n10)
as its core part.
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Figure 3: This figure shows the processor sharing
approximation to the number of active flows (the
blue dashed line) and it’s relation to the upper
bound α∗ on νs. Also shown are simulation results
for our connection-level fluid model.

Consideration of the number of subflows on a single link
also suggests a straightforward approximation for the stochas-
tic process determining the number of flows currently present
(termed the active flows). Consider a M/G/1 processor
sharing queue model where jobs in the queue represent ac-
tive flows for a fixed source node and take the service rate of
the queue equal to the common link capacity Cj = 1. Such a
queue is known to be insensitive to the job size distribution
other than to its first moment and for the equilibrium dis-
tribution to be geometric with mean 4νs/(1− 4νs) where νs
is the arrival rate of connections between a source and des-
tination pair. Here, 4νs is the arrival rate of connections to
an individual link. Fig. 3 shows the upper bound α∗ = 0.25
on the arrival rate νs obtained by solving the linear pro-
gram together with the mean number of active flows in the
network (as the blue dashed line) given by the expression

5× 4νs
1− 4νs

, (8)

if we also assume independence between the five processor
sharing resources.

For fundamental insensitivity results on the processor shar-
ing queue see [15, 16]. In this example we maintain a high
degree of symmetry over connections and the processor shar-
ing model seems insightful. More widely, there are natu-
ral concerns about the application of (egalitarian) processor
sharing to the sharing of resources by TCP flows with dif-
fering round trip times and other sources of differentiation:
see [1] for a detailed presentation.

Fig. 3 also includes further results obtained by a simula-
tion approach which we will return to in Section 4.
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Figure 4: A dual-parenting communication network
with the complete graph (nodes n6, n7, . . . , n10) as its
core part.
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Figure 5: This figure shows the processor sharing
approximation to the number of active flows (the
blue dashed line) and it’s relation to the upper
bound α∗ on νs given by the capacity region for the
dual-parented example. Also shown are simulation
results for our connection-level fluid model.

Our second example network (referred to as the dual-
parented network) is shown in Fig. 4. It again contains N =
10 nodes with five nodes as a fully connected core but where
now each peripheral node connects to two parent nodes as
shown. We again take mean file sizes as ms = 1 and link
capacities as Cj = 1. In contrast with the single-parented
network we now allow n = 4 subflows for each connection
using shortest path routes. Again we can determine the up-
per bound α∗ on the arrival rate νs but now we must count
subflows. Consider a single source node and note that each
peripheral link of capacity 1 now carries two subflows. Thus
an individual peripheral link has a mean of 2νs/(1 − 2νs)
active subflows. There are 10 such peripheral links and each
flow splits into n = 4 subflows. Hence, overall, the mean
number of active flows is given by the expression

10

4
× 2νs

1− 2νs
, (9)

which is shown as the blue dashed line in Fig. 5 together
with the bound α∗ = 0.5 verified by our linear programming
approach.

In our first two examples we have held the number of sub-
flows fixed at n = 1 and n = 4, respectively. We now con-
sider several examples where it is natural to vary n and we
observe how the capacity region is extended as n increases.
Our third example network shown in Fig. 6 contains N = 6
nodes and 18 directed links each labelled by their capacity.
The choice of links was chosen to give a regular graph where
every node has degree 3. We vary n in the range from 1 to 4
and use n shortest paths for the subflows. We computed the
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Figure 6: A six node network with 18 directed links
labelled by their respective capacities. This network
has a regular structure of node degree 3 and there
are a total of 30 (ordered) source destination pairs.
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Figure 7: Upper bounds for the arrival rate νs with
varying parameter n controlling the number of sub-
flows and hence the extent of load balancing across
subflow paths.

upper bound α∗ using the linear programming technique and
our results are shown in Fig. 7. We find that α∗ increases
with n from 1 to 2 and from 2 to 3 but then remains constant
with further increases beyond n = 4.

Our fourth example considered a network with N = 50
nodes with links chosen to form a regular graph with a node
degree of 15. The link capacities were assigned randomly
by drawing independent observations from a uniform distri-
bution on the interval 10 to 100. The mean file sizes were
again taken to be ms = 1 for all s ∈ S. Although the lin-
ear program in this case was substantially larger than that
for the first three examples it remained tractable and we
were able to compute α∗ and obtained the bounds shown
in Fig. 8 which increased as far as n = 6 before levelling
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Figure 8: Upper bounds for the arrival rate νs in
a N = 50 node network with regular node degree
equal to 15 as the number of subflows, n, varies.

off for n increased further. In this example the set of paths
for a particular value of n was found by applying a hashing
technique designed to balance load across paths at each node
when deciding which of the outgoing links to use (see [3] for
full details of the mod k hashing technique).

The linear program technique is seen to be a useful and
flexible tool for investigating the effectiveness of single and
multipath protocols. In the next section we will find the
bounds insightful regarding our fluid level simulations.

4. EXPERIMENTS

4.1 Simulation of fluid models
In this section we discuss approaches to simulating the

stochastic process of connections with random file sizes ar-
riving according to independent Poisson processes. Suppose
connections arrive according to a Poisson process of rate νs
common to all source-destination pairs s. Each connection
has an associated random file size drawn independently from
a Pareto distribution of mean ms = 1 (specifically with a lo-
cation parameter of 2/3 and a shape parameter of 3). The
Pareto distribution is frequently chosen as a distribution for
filesize downloads. The round-trip times (RTT) for the var-
ious routes, Tr, are given by 2 × 10−3 time units per hop
(both ways). Thus, for example, a path of length three
would have an RTT of 6× 10−3 time units. Connections for
a given source-destination pair use n ∈ {1, 2, 3, 4} multipath
subflows.

Although the fluid model with time delayed differential
equations provides a detailed fluid approximation of flow dy-
namics we have found that solving this time delayed version
of the fluid model is very computationally intensive. Instead,
in a simplified model we shall determine equilibrium sending
rates for all connections and suppose that the connections
send at these (constant) rates until either a new connection
arrives or some active connection reaches the end of its file
transfer (whichever occurs first). At such time epochs a sin-
gle connection is either added or removed from the set of
active multipath connections and the equilibrium sending
rates are then re-computed before the file transfers for ac-
tive connections proceed. In this way we have a simplified,
piece-wise constant, view of the way in which sending rates
vary over time.

Mathematically, the system of delayed differential equa-
tions (1-3) is replaced with the simpler system of ordinary
differential equations without time delays

dxr(u)

du
= fr ((xr(u); r ∈ R)) , (10)

where the derivative functions fr are given by modifying (1-
3) to reflect the instantaneous rather than the delayed quan-
tities so that

fr ((xr(u); r ∈ R)) =

xr(u)

Tr

[
a(1− λr(u))− brTrys(r)(u)λr(u)

]+
xr(u)

(11)

where

λr(u) = 1−
∏
j∈r

(1− µj(u)) , ys(u) =
∑
r̃∈s

xr̃(u) (12)



and

µj(u) = pj

(∑
r̃:j∈r̃

xr̃(u)

)
, (13)

and with the initial conditions xr(u)|u=0 = xr(t) for all r ∈
R. We have introduced the alternative time variable u in
place of t to emphasise that our determination of the long-
run stationary solution does not take place over simulated
time t but is rather a computation to determine the piece-
wise constant sending rates xr(t) = limu→∞ xr(u). These
rates xr(t) are then updated at time epochs when the num-
ber of connections changes and a new equilibrium solution
pertains. Numerically we use a fourth order Runge-Kutta
method applied to the system (11-13) with a time step incre-
ment of ∆u = 10−2 and where the iteration is terminated
when ||xr(u + ∆u) − xr(u)||∞ < 5 × 10−4 (here ||z||∞ =
max{|z1|, |z2|, . . . , |zn|} denotes the maximum norm for n-
dimensional vectors).

For an alternative approach based on multipath dual rather
than primal congestion control algorithms see [17].

4.2 Comparison with bounds
Recall our first two example networks from Section 3.4

shown in Fig. 2 and Fig. 4. We simulated the connection-
level stochastic processes using the fluid model to allocation
sending rates and obtained detailed statistics on the number
of active flows present in the network. For the case of the
single-parented network (shown in Fig. 2) Fig. 3 shows the
estimated mean number of active flows as a function of the
arrival rate νs as well as the standard errors in our estimates
given by the short vertical bars. We can see that the re-
sponse is similar to ourM/G/1 processor sharing model with
a rapid increase in the number present as νs approaches α∗

from below.
Similarly, Fig. 5 which shows the estimated mean number

of active flows for the dual-parented network together with
standard errors. Here the processor sharing model is not
quite so accurate but it still captures the essential response
as well as the behaviour close to the bound α∗.

Note, however, that the M/G/1 processor sharing model
makes a number of assumption which may lead to inaccura-
cies: (i) the model assumes independence and (ii) the egal-
itarian sharing of the entire available service rate which is
unlikely to be achieved by our penalty function approach
(see equation 4) in the fluid model.

4.3 Teletraffic models of robustness
Multpath protocols offer several advantages compared to

single path protocols but perhaps their most significant ben-
efit is that they introduce a degree of robustness to traffic
mismatches and link failures through load balancing. In this
section we investigate this type of robustness through study
of changes to the capacity region as traffic or link capacity
are perturbed.

Consider the network of Fig. 9 with N = 12 nodes and 15
directed links. This network was studied in [5] with a static
configuration of connections. The capacities of the links are
equal to 1 with the exception of the link from n9 to n10 which
has a variable capacity of C. There are just three source des-
tination pairs, namely: (n1, n4), (n2, n5) and (n3, n6). Each
connection uses n = 2 subflows assigned to the two three-hop
paths. If C = 1 then the pattern of traffic resulting from
multipath protocols is symmetric and the capacity region

n3 n11 n12 n6

n2 n9 n10 n5

n1 n7 n8 n4

C

Figure 9: A network with three source destination
pairs and 15 directed links.

approach gives a maximum arrival rate of α∗ = 1. Now con-
sider reducing the capacity by a factor f as f varies from 0
to 1. Fig. 10 shows the effect on the maximal arrival rate for
multipath with n = 2 and for comparison where at least one
of the single paths (n = 1) of the three communicating pairs
uses link (n9, n10). We can see that multipath protocols are
able to adapt to capacity reductions more easily than single-
path protocols. With single-path TCP, as f increases, the
single link from n9 to n10 will act as the bottleneck and
the achievable arrival rates, ν, will be constrained so that
ν ≤ 1 − f . However, with multipath TCP the cut separat-
ing the source nodes from the destination nodes comprising
the three links: (n7, n8), (n9, n10) and (n11, n12) acts as the
bottleneck and so the achievable arrival rates are instead
constrained by 1

3
× (2 + (1−f)) , which is greater than 1−f

for f > 0.
Alternatively, capacities may remain fixed but traffic varies

to become non-uniform. In order to better understand this
effect we consider a model for parametrized traffic mismatch
considered in [7]. Consider a parameter δ fixed with 0 ≤
δ ≤ 1 and then take a uniform traffic matrix of rate ν0, say,
and shuffle it according to the following procedure. Pick two
pairs of nodes which act as sources and destinations of traf-
fic chosen equally likely and a random variable uniformly
distributed on [0, δν0] and swap that amount of traffic be-
tween the two pairs of nodes. Now remove those two pairs of
nodes from consideration and repeat the procedure with the
remaining pairs of nodes swapping randomly chosen traf-
fic between the pairs of nodes but leaving the total traffic
fixed. Formally, this traffic reshuffling scheme is outlined in
Procedure 1.

Procedure 1 TrafficReshuffle
Input: S, ν0 ≥ 0 and δ ∈ [0, 1].
Output: A perturbed traffic matrix ν.
1: Σ← S
2: while |Σ| > 1 do
3: Choose s1 ∈ Σ and s2 ∈ Σ at random
4: Sample U ∼ Uniform[0, δν0]
5: νs1 ← ν0 − U ; νs2 ← ν0 + U ; Σ← Σ \ {s1, s2}
6: end while
7: return ν = (νs; s ∈ S)

Fig. 11 shows the effect this procedure has on the upper
bound of the arrival rate given by our linear programming
formulation. In the case of the multipath protocol swapping
traffic in this way has no effect on the capacity available to a
connection but when n = 1 and a single subflow the random
shuffling of the traffic will reduce the upper bound on the
arrival rate. Fig. 11 shows the median rate together with
the inter-quartile range of rates shown by the vertical lines.
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Figure 10: Arrival rate determined by the capacity
region with varying middle link capacity.
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Figure 11: Arrival rate determined by the capacity
region with varying traffic mismatch parameter δ.
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Figure 12: A network with 6 nodes acting as sources
and destinations of traffic and with 30 directed links.

0.0

0.1

0.2

0.3

0% 25% 50% 75% 100%

Capacity reduction factor, f

A
rr

iv
al

 r
at

e 
gi

ve
n 

by
 c

ap
ac

ity
 r

eg
io

n

Multipath TCP

Single−path TCP

Figure 13: Arrival rate determined by capacity re-
gion with varying middle link capacity.
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Figure 14: Arrival rate determined by the capacity
region with varying traffic mismatch parameter δ.

Fig. 12 shows our second example but now all of the
nodes n1, n2, . . . , n6 are sources and destinations. We make
the capacities of the links between the yellow nodes equal
to 1 except for (n9, n10) and (n10, n9) which take the com-
mon variable capacity C, C ∈ [0, 1]. All other link capacities
are set to a very large number; specifically, the capacity of
any link connecting a blue and yellow node equals 103. In
this example the choice of routes for single paths is as fol-
lows:
• link (n7, n8) carries traffic for n1 ↔ n4, n1 ↔ n5,
n2 ↔ n4;
• link (n9, n10) carries traffic for n1 ↔ n6, n3 ↔ n4,
n3 ↔ n6;
• link (n11, n12) carries traffic for n2 ↔ n5, n2 ↔ n6,
n3 ↔ n5.

When n = 2, the communicating (blue) nodes are, whenever
possible, connected via two different paths, e.g. n1 connects
to n4 via both (n7, n8) and (n9, n10); however, both multi-
path subflows connecting n1 to n6 use the path n1 → n9 →
n10 → n6.

Applying the above traffic reshuffle scheme detailed in
Procedure 1 we obtain Fig. 13 and Fig. 14. In this case, the
multipath protocol with n = 2 is also affected by the traffic
mismatch parameter δ but, as expected, shows a higher de-
gree of robustness compared to single-path TCP. Note also
that in this example link (n9, n10) represents a bottleneck
for both single-path and multipath TCP (when connecting
between nodes n1 and n6 as well as n3 and n4), and so one
would indeed expect both lines from Fig. 13 to meet when
the middle link’s capacity reduction factor equals 100%.

5. CONCLUSIONS
In this paper we have considered multipath protocols and

constructed a capacity region for achievable workload rates
determined by a linear programming approach. The bounds
are approached by connection-level simulations of a fluid
model for the behaviour of the multipath rate controller.
We have further investigated the robustness properties of
multipath TCP according to the degree of load balancing
introduced by the use of multiple subflow paths. Finally,
we have quantified the robustness in situations arising from
random traffic mismatches or from link failures.
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