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ABSTRACT
In this paper we propose a highly accurate approximate per-
formance analysis of a heterogeneous server system with
a processor sharing (PS) service discipline and a general
job-size distribution under a generalized join the shortest
queue (GJSQ) routing protocol. The GJSQ routing proto-
col is a natural extension of the well-known join the short-
est queue (JSQ) routing policy that takes into account the
non-identical service rates in addition to the number of jobs
at each server. The performance metrics that are of inter-
est here are the equilibrium distribution and the mean and
standard deviation of the number of jobs at each server. We
show that the latter metrics are near-insensitive to the job-
size distribution using simulation experiments. By applying
a single queue approximation (SQA) we model each server
as a single server queue with a state-dependent arrival pro-
cess, independent of other servers in the system, and derive
the distribution of the number of jobs at the server. These
state-dependent arrival rates are intended to capture the in-
herent correlation between servers in the original system and
behave in a rather atypical way.

CCS Concepts
•Mathematics of computing → Queueing theory;
Markov processes; •General and reference→ Perfor-
mance;
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Heterogeneous servers; routing policy; approximations

1. INTRODUCTION

1.1 Motivation
This work is motivated by web server farms. Server farms

have gained popularity for providing scalable and reliable

computing and web services. Most commonly the objec-
tive in analyzing such a system lies in the determination of
an optimal or near-optimal load balancing routing proto-
col so as to maximize the performance of the system, see,
e.g., [1, 6, 8], where the performance of interest is usually
the mean response time for an arbitrary job. In this paper
the objective is to report some interesting properties of the
arrival flow to each server and suggest an approximation ap-
proach for the GJSQ routing protocol. We consider farms
with heterogeneous servers, which is motivated by the differ-
ent hardware and the wide variety of computing capacities
regarding processing power and memory access performance
seen in practice in server farms [13]. We assume that ser-
vice requests arrive to the system according to a Poisson
process. Upon arrival, a front-end dispatcher routes the re-
quest to one of the servers. After the request has been routed
to the server, we assume that it cannot balk or jokey. All
requests routed to a server are sharing the provided service
(think of bandwidth, CPU, or RAM). We assume a PS ser-
vice discipline at each server since it closely approximates
the scheduling policies [7, 10] employed by most commodity
operating systems (e.g., Linux CPU time-sharing) and is a
popular policy in computing centers (e.g., Cisco Local Di-
rector, IBM Network Dispatcher and Microsoft Sharepoint,
see [3] for a survey).

In [5] the authors consider a server farm consisting of ho-
mogeneous servers, where upon arrival jobs are routed ac-
cording to the JSQ routing protocol. This protocol in case
of homogeneous servers, due to the PS service discipline,
is performing near-optimal in terms of the mean response
time. However, as indicated by Whitt in [15], the JSQ pol-
icy is far from optimal in case of heterogeneous servers. In
[2] the authors comment on the performance of various sys-
tems under different routing protocols and conclude that
the shortest expected delay (SED) routing protocol is near-
optimal in terms of mean response time. The SED policy is
a policy that routes jobs upon arrival to the queue promis-
ing the minimum expected delay (which also includes the
processing time). In case of exponential job-size distribu-
tions, the GJSQ and SED routing protocols are identical
and in case of homogeneous servers GJSQ and JSQ are the
same. However, in case of general job-size distributions and
heterogeneous servers we assume that the only available in-
formation are the service rates and the number of jobs at
each server, i.e. we do not keep track of residual processing
times.

Due to the complexity and the various challenges that the
model at hand presents, we restrict our analysis to the case
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of two heterogeneous servers with a general job-size distribu-
tion under the GJSQ routing protocol. From here onwards
we refer to this model as the M/G(1, s)/2/GJSQ/PS sys-
tem, abbreviated as the GJSQ model, where G is the job-size
distribution and 1 and s are the service rates at servers 1 and
2, respectively. The approach described in this paper can be
seen as a first stepping stone towards the analysis of hetero-
geneous server farms with PS servers; a very broad area, full
of interesting problems. Moreover, the ideas presented here
extend the work of Gupta et al. [5] on the analysis of the
JSQ routing for homogeneous web server farms.

1.2 Related work
To the best of our knowledge there is no previous math-

ematical analysis of the GJSQ system. In [14], Selen et
al. derive the joint equilibrium distribution of the num-
ber of jobs at each server in the M/M(1, s)/2/SED/FCFS
model. They prove that this distribution can be expressed
as an infinite series of product forms using the compensation
approach. The benefit of that approach is that it produces,
by truncating the series expression, numerical results with
an a priori set accuracy level. Unfortunately, the compen-
sation approach is not appropriate (in its current setting)
for multiple servers, nor for general job-size distributions.
Before [14], very little was known regarding the mathemat-
ical analysis of the SED policy. In [11], the authors suggest
two models that act as upper and lower bounds to the SED
system. However, they do not provide closed form expres-
sions for the equilibrium distribution of these two bounding
models, but only an algorithmic approach based on matrix
analytic methods. Furthermore, in [4, 9], the authors show
that the SED routing policy is asymptotically optimal in
terms of the mean response time and results in complete
resource pooling in the heavy traffic limit. This heavy traf-
fic limit result may be used in a similar manner as in [12].
However, after a few numerical experiments, we concluded
that this approximation in our case results in poor estimates
and for this reason we did not proceed in this direction. On
the contrary, the approach developed by Gupta et al. [5]
on approximating the distribution of the number of jobs at
each server, as we show in this paper, is appropriate for the
GJSQ setting with heterogeneous servers. More concretely,
in [5], the authors develop the SQA method that accurately
determines the distribution of the number of jobs at each
server by modeling each queue as an Mn/M/1/PS system
with state-dependent arrival rates. These state-dependent
arrival rates are referred to as the conditional arrival rates
and are constructed in such a way that they capture the
inherent correlated behavior of the complete server farm.

1.3 Contributions
We believe that we provide the first approximate analysis

of the equilibrium distribution and moments of the number
of jobs at each server in the GJSQ system (and by Little’s
law also the mean response time for an arbitrary job). More-
over, the approximation is highly accurate: we encounter a
maximum relative difference between the approximation and
simulations of 2.2%. In deriving these approximations, we
provide three key contributions:

1. The mean and standard deviation of the number of
jobs at each server and the conditional arrival rates
are near-insensitive to the job-size distribution. This
allows us to study the more tractable model with an

exponential job-size distribution.

2. In case of an exponential job-size distribution, the SQA
method yields the same equilibrium distribution for
the number of jobs at each server as in the original
GJSQ model.

3. For the application of the SQA method we present an
approach for the derivation of the conditional arrival
rates. In particular, we show that the conditional ar-
rival rates, say λi(n), i = 1, 2, n ∈ N0, to server 1
satisfy

λ1(n)→ ρ1+s as n→∞, (1)

where ρ is the load on the system, see Section 2, and
the conditional rates to server 2 for large n oscillate
between s different points. Note that the former re-
sult is similar to the result obtained in [5] for the case
s = 1, however the latter result is very atypical and is
discussed in greater detail in Section 2.3.

1.4 Outline
The rest of the paper is organized as follows. In Section 2

we give a detailed model description and formally define and
investigate the time-average and conditional arrival rates.
Section 3 is devoted to showing that the performance metrics
of interest are near-insensitive to the job-size distribution.
We describe the SQA and determine the conditional arrival
rates in Section 4. The approximations are evaluated in
Section 5. In Section 6 we present some conclusions.

2. MODEL DESCRIPTION

2.1 Heterogeneous servers
We consider a system of two heterogeneous servers and a

single dispatcher. The servers employ a PS service discipline
and can have different service rates, i.e. server 1 has service
rate 1 and server 2 has service rate s. Jobs arrive to the
dispatcher according to a Poisson process with rate λ and
are routed immediately to one of the servers. Jobs cannot
switch servers after being routed. We detail the routing
policy in Section 2.2. The size of a job is drawn from a
general distribution G. Without loss of generality we assume
that the mean job size is 1. Note that, for example, the
(residual) processing time of a (residual) size G job that
runs on server 2 that is currently serving q2 jobs is given by
Gq2/s.

In what follows we assume that s is a positive integer
number. In the general case s ∈ R+ we can bound the cor-
responding system by two systems with service rates given
by the closest two integers to s.

2.2 Routing policy
The routing policy employed by the dispatcher is a state-

aware policy, i.e. the dispatcher is aware of the number of
jobs at each server just before an arrival instant, q1 and q2,
and the service rates. The GJSQ routing policy routes an
arriving job to the server with the smallest index (qi+1)/si,
where si is the service rate at server i. In case of a tie, the
job is randomly routed to one of the servers. These indexes
may be interpreted as an estimate of the expected process-
ing time for the arriving job, made by the dispatcher who
is unaware of the job-size distribution and the remaining
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Figure 1: Simulated long-term fraction of jobs
routed to server i as a function of the load ρ, where
s = 4 and the job-size distribution is exponential.
Dashed lines represent expected behavior.

processing times of the jobs currently in service, and fur-
thermore ignores future arrivals.

Under this routing policy, we define the load on this sys-
tem as

ρ := λ/(1 + s). (2)

Throughout the rest of this paper we assume that ρ < 1.
Although not necessarily optimal, GJSQ routing outper-

forms JSQ routing when servers are non-identical. GJSQ
routing attempts to balance the load on the servers by tak-
ing into account the different service rates in addition to the
information on the current number of jobs at each server. In
Figure 1 we show that the long-term fraction of jobs routed
to the two servers is a function of the load ρ. In light traffic
GJSQ assigns all jobs to the fast server and in heavy traffic
the load is divided proportionally according to the service
rates. This is in contrast with JSQ routing, which assigns
a long-term fraction of the jobs to server 1 that decreases
from 1/2 to 1/(1 + s) for increasing load ρ (verified through
simulation).

2.3 Arrival rates
We briefly introduce two important concepts related to the

(time-average) arrival rates to each server. These concepts
will be used throughout the paper.

Definition 1. In the GJSQ model, the time-average ar-
rival rate to server i is defined as

λi := lim
t→∞

Ai(t)

t
, (3)

where Ai(t) is the number of arrivals at server i during the
time interval [0, t].

Definition 2. In the GJSQ model, the conditional arrival
rate to server i, given that server i has n jobs, is defined as

λi(n) := lim
t→∞

Ai,n(t)

Ti,n(t)
, (4)

where Ai,n(t) is the number of arrivals at server i during
the time interval [0, t] that see n jobs at server i on arrival
(excluding themselves), and Ti,n(t) is the total time spent
by server i with n jobs during the time interval [0, t].

The two definitions above are related. Assuming it exists,
let πi(n) be the equilibrium probability that there are n jobs
at server i, then λi =

∑∞
n=0 λi(n)πi(n).
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Figure 2: The conditional arrival rates to server 2
oscillate between s points.

Figure 2 depicts the conditional arrival rates to server 2
for varying s. Intuitively it makes sense that if a server has
many jobs, the other server will probably have few jobs and
thus it is less likely that the dispatcher routes the job to that
server. However, what we see here is a peculiar repeating
pattern that has s different points and does not align with
this intuition. We see that if server 2 has a multiple of s
jobs (or one less), fewer jobs are routed to server 2. This
pattern is difficult to explain, but it is definitely related to
the probability that server 1 has a lower index than server
2, given that server 2 currently has n jobs. We expect and
indeed verify that this probability also follows such a repeat-
ing pattern. Additionally, states in server 2 are somewhat
similar if they differ by a multiple of s jobs, which can be
derived from the equilibrium distribution in [14].

3. NEAR-INSENSITIVITY
In [5] the authors establish a near-sensitivity property in

the setting of a homogeneous server farm with JSQ rout-
ing. In particular, the first and second moment of the num-
ber of jobs at server i, Qi, and the conditional arrival rates
are near-insensitive to the job-size distribution. The near-
insensitivity of these two metrics seems related to the insen-
sitivity of the equilibrium distribution to the job-size distri-
bution in PS servers, see, e.g., Theorem 4.2 in [5]; and the
fact that the routing policy only uses the number of jobs at
each server when making a decision, as opposed to, e.g., us-
ing residual processing times. The GJSQ routing decisions
are based on the dynamically changing number of jobs at
each server as well as the service rates. Indeed, one expects
the near-insensitivity properties to extend also to the case of
heterogeneous servers and GJSQ routing. Establishing this
near-insensitivity property is important, since it allows us
to limit our attention to the more tractable GJSQ system
with an exponential job-size distribution.

3.1 Simulation settings
To support our claims, we simulate the GJSQ model. A

simulation consists of 2 · 106 job departures and each simu-
lation is repeated 50 times. Statistics are only computed for
departed jobs, i.e. data of jobs that are still in service at the
end of the simulation are discarded. In Table 1 we list the
four job-size distributions considered in this paper.



Name Distribution Support Variance

uni Uniform [0, 2] 1/3
exp Exponential [0,∞) 1
weib Weibull (0,∞) 5
logn Log-normal (0,∞) 10

Table 1: Job-size distributions used in simulations.

3.2 Near-insensitivity results
In Table 2 we show simulated statistics on the mean and

standard deviation σ(·) of Qi for the GJSQ model with var-
ious job-size distributions. For the settings considered in
Table 2, the mean number of jobs at server i deviates by no
more than 3.6% from the exponential case, while the stan-
dard deviation deviates by at most 4.4%. The largest de-
viations from the exponential case occur for the log-normal
job-size distribution. This is as expected, since this job-size
distribution has a variance that is 10 times higher than the
variance of the exponential job-size distribution. Although
the results are not as strong as those shown in Figure 3
of [5], we conclude that the more volatile environment of
heterogeneous servers and GJSQ routing also has the near-
insensitivity property for E[Qi] and σ(Qi). Moreover, the
performance in terms of the mean response time is also near-
insensitive to the job-size distributions by Little’s law.

Concerning the conditional arrival rates, we see in Fig-
ure 3 that the simulated values for the job-size distributions
of Table 1 match the results of the algorithm for the ex-
ponential case [14]. Simulated values for states where the
sample standard deviation is not too high differ by at most
5% from the results for the exponential case. So, also the
conditional arrival rates are near-insensitive to the job-size
distribution.

4. SINGLE QUEUE APPROXIMATION
We have established near-insensitivity of E[Qi], σ(Qi) and

the conditional arrival rates to the job-size distributions.
Thus, we may limit our attention to systems with an ex-
ponential job-size distribution. In this section we derive an
approximation for the distribution of the number of jobs
at each server using the SQA, which models server i as
an Mn/Mi/1/PS queue with state-dependent arrival rates
λi(n), see also Section 3 in [5]. SQA is exact when the job-
size distribution is exponential and the routing belongs to a
specific class of routing policies; the following theorem is a
version of Theorem 3.1 in [5] that is applicable to the GJSQ
model.

Definition 3. A stationary state-aware routing policy is
a time-stationary routing policy that only uses information
about the number of jobs at the servers and the service rates
at the instant of an arrival. The decisions may be made
probabilistically, possibly biased in favor of certain servers.

Theorem 1. Consider the M/M(1, s)/2/R/S queueing
model, where R is any stationary state-aware routing policy,
e.g. GJSQ, and S is any stationary, size-independent, work-
conserving service discipline, e.g. PS. Consider server i in
this model. Then SQA with the exact conditional arrival
rates λi(·) yields the same equilibrium distribution for the
number of jobs at each server as in the original model.

It remains to specify the conditional arrival rates λi(n) for
both servers. We combine exact limiting results for n ≥ Ni
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Figure 3: Simulated conditional arrival rates in the
GJSQ system with various job-size distributions.
The dotted curves represent values determined by
the algorithm in [14] for the exponential job-size dis-
tribution.

and approximation results for n < Ni, where N1 = 3 and
N2 = 2s. These choices for Ni result in accurate approxi-
mations.

We note that Theorem 1 implies that in order to determine
the conditional arrival rates, we may assume a FCFS service
discipline.

In Figure 2 we have seen that the conditional arrival rates
λi(n) exhibit a repeating pattern from some n and onwards.
We rigorously characterize this limiting repeating pattern in
the next theorem.

Theorem 2. For the M/M(1, s)/2/GJSQ/PS queueing
model with s ∈ N,

lim
n→∞

λ1(n) = ρ1+s, (5)

lim
n→∞

λ2(sn+ r) =

{
sA(r+1)

A(r)
, r = 0, 1, . . . , s− 2,

sρ1+s A(0)
A(s−1)

, r = s− 1,
(6)

where

A(r) =

s∑
i=1

ηi
βi

ρ1+s − βi
i+(ρ1+s, βi, r) + h(r)

+
βs+1

1− βs+1
i−(ρ1+s, βs+1, r), (7)

and the variables β1, . . . , βs+1, η1, . . . , ηs, and the functions
h(·), i+(·), i−(·) are defined in Lemma 5.11 in [14].

Proof. See Appendix A.

For the rates λ1(n), n < 3 and λ2(n), n < 2s we provide
approximations that are functions of s and ρ. For server



Job-size distribution SQA
s ρ Metric uni exp weib logn Value Diff.

2 0.7 E[Q1] 0.9139 (0.0030) 0.9232 (0.0030) 0.9223 (0.0029) 0.9361 (0.0038) 0.9077 1.7%
σ(Q1) 1.0404 (0.0049) 1.0505 (0.0050) 1.0560 (0.0056) 1.0704 (0.0067) 1.0462 0.4%
E[Q2] 2.0111 (0.0059) 2.0289 (0.0061) 2.0222 (0.0057) 2.0519 (0.0074) 2.0329 −0.2%
σ(Q2) 2.0302 (0.0099) 2.0465 (0.0106) 2.0506 (0.0114) 2.0813 (0.0141) 2.0484 −0.1%

0.9 E[Q1] 3.2244 (0.0336) 3.2797 (0.0336) 3.2316 (0.0298) 3.2396 (0.0266) 3.2188 1.9%
σ(Q1) 3.2208 (0.0590) 3.2716 (0.0723) 3.2186 (0.0575) 3.2002 (0.0505) 3.2161 1.7%
E[Q2] 6.6841 (0.0676) 6.7915 (0.0674) 6.6834 (0.0587) 6.6988 (0.0524) 6.6424 2.2%
σ(Q2) 6.4289 (0.1185) 6.5288 (0.1453) 6.4186 (0.1141) 6.3828 (0.1016) 6.4091 1.9%

4 0.7 E[Q1] 0.4688 (0.0016) 0.4747 (0.0017) 0.4705 (0.0017) 0.4667 (0.0022) 0.4741 0.1%
σ(Q1) 0.6685 (0.0024) 0.6730 (0.0026) 0.6700 (0.0029) 0.6652 (0.0031) 0.6655 1.1%
E[Q2] 2.5386 (0.0063) 2.5507 (0.0069) 2.5177 (0.0070) 2.4997 (0.0067) 2.5866 −1.4%
σ(Q2) 2.5082 (0.0102) 2.5179 (0.0115) 2.4936 (0.0133) 2.4744 (0.0122) 2.5457 −1.1%

0.9 E[Q1] 1.8662 (0.0191) 1.8793 (0.0145) 1.8830 (0.0196) 1.9400 (0.0223) 1.8813 −0.1%
σ(Q1) 1.9404 (0.0338) 1.9539 (0.0314) 1.9801 (0.0444) 2.0394 (0.0408) 1.9566 −0.1%
E[Q2] 8.2405 (0.0769) 8.2773 (0.0597) 8.2631 (0.0783) 8.4863 (0.0861) 8.3642 −1.0%
σ(Q2) 7.6982 (0.1374) 7.7507 (0.1264) 7.8485 (0.1815) 8.0912 (0.1652) 7.7692 −0.2%

Table 2: Simulated mean and standard deviation of Qi, for the GJSQ system with various s, ρ and job-size
distributions. Sample standard deviation is shown in parentheses. Last two columns show the value obtained
by the SQA and the relative difference with respect to the exponential case.

1 we use a multiple linear regression model to fit an ap-
proximate function for the conditional arrival rates on data
obtained from the algorithm in [14] for s = 1, 2, 3, 4 and ρ
from 0.3 to 0.99. Obviously, one can also use conditional
arrival rates obtained by simulation for these fitting pur-
poses. We carefully select a set of 5 independent variables
for each conditional arrival rate. This leads to the following
approximate conditional arrival rates for server 1:

λ1(0)

ρ1+s
≈
[
sρ s s

ρ
1 ρ2

s2

]
β0, (8)

λ1(1)

ρ1+s
≈
[
sρ2 1 1

ρ
1
sρ

ρ1/s
]
β1, (9)

λ1(2)

ρ1+s
≈ 1 +

[
sρ 1

sρ
ρ
s2

1
s2

ρ1/s
]
β2, (10)

where

β0 =
[

0.669 −1.90 1.23 1.86 −0.192
]T
,

β1 =
[
−0.00856 1.37 −0.0578 0.123 −0.254

]T
,

β2 =
1

100

[
−0.131 −0.820 −6.48 10.4 0.893

]T
.

For s = 1, one should consider λ1(·) = λ2(·) and use the
approximations presented in (8)-(10).

For server 2, let us note that λ2(n) = λ, n = 0, . . . , s− 2
due to the GJSQ routing. Using a multiple regression model
in this case is more difficult, since the number of states for
which we need to obtain a fit increases with s. To circum-
vent a possibly complex fitting procedure, we establish a
relation between the conditional arrival rates for the states
n = s − 1, s, . . . , 2s − 1 and the limiting conditional arrival
rates determined in Theorem 2. Namely,

λ2(n) ≈
(

1 +
(1

s
− ρ

2s− 1

) 1

2n−(s−1)

)
λlim
2 (n− s), (11)

where for convenience λlim
2 (r) is defined as the right-hand

side of (6) and λlim
2 (−1) = λlim

2 (s− 1). The approximations
(8)-(11) behave in various limiting regimes as expected:

Proposition 3.

1. For s → ∞, we have that λ1(n) ↓ 0 and λ2(n) = λ
for all n ∈ N0. No job will join server 1, since the
processing times in server 2 are instantaneous.

2. In the light-traffic regime, i.e. ρ ↓ 0, we find that
λ1(n) ↓ 0, n ∈ N0 and λ2(n) ↓ 0, n ≥ s− 1.

3. In the heavy-traffic regime, i.e. ρ ↑ 1, we establish that
λ1/λ = 1/(1 + s) and λ2/λ = s/(1 + s) which is con-
sistent with the findings in Figure 1.

Proof. 1. Follows straightforwardly by taking the limit
s→∞ in (8)-(10) while taking into account that ρ = λ/(1+
s). Furthermore, observe that λ2(n) = λ, n = 0, . . . , s − 2,
so that lims→∞ λ2(n) = λ, n ∈ N0.
2. See Appendix B.
3. From the approximate conditional arrival rates λ1(·)
one can derive (approximate) equilibrium probabilities π1(·).
Then, λ1 =

∑∞
n=0 λ1(n)π1(n) =

∑∞
n=0 π1(n+1) = 1−π1(0)

by exploiting the balance equations. For ρ ↑ 1 it can be ver-
ified that π1(0) ↓ 0, so that limρ↑1 λ1/λ = 1/(1 + s). The
result for server 2 follows analogously.

5. EVALUATING THE APPROXIMATION
We are now in a position to evaluate the proposed ap-

proximations. First, we show that the approximations for
the conditional arrival rates follow closely the exact values,
which were determined using the algorithm in [14]. Second,
we establish that the mean and standard deviation of the
number of jobs at each server is also well approximated.

Figure 4 compares the conditional arrival rates obtained
from the algorithm in [14] and the approximations derived
in the previous section. For the cases considered in the fig-
ure, the maximum relative difference of the approximation
with respect to the values determined by the algorithm is
1.5% for λ1(·) and 4.1% for λ2(·). Since both methods con-
sider exponential job-size distributions, the difference is due
to the fitting error introduced in the approximations of the
conditional arrival rates in Section 4 and the truncation er-
ror in the algorithm in [14]. However, since the truncation
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Figure 4: Comparison of conditional arrival rates determined by the algorithm in [14] (lines) and our approx-
imations (marks) for ρ = 0.4 ( , ), ρ = 0.7 ( , ), and ρ = 0.9 ( , ).

error has been chosen to be of the order 10−5, it has little
influence.

In the two rightmost columns of Table 2 we provide the
mean and standard deviation of the number of jobs at both
servers determined using the SQA. We report highly accu-
rate approximations that deviate less than 2.2% from the
case with an exponential job-size distribution for the listed
values of s and ρ. Although our approximations are not
aimed at the case s = 1, we report accurate approximations
also in this setting with maximum relative differences of the
same order as in Section 6.1 of [5].

6. CONCLUSION
In this paper, we provide an approximate performance

analysis of a queueing system consisting of two heteroge-
neous PS servers with service rates 1 and s ∈ N, respectively,
a general job-size distribution and GJSQ routing. More con-
cretely, we derived the approximate equilibrium distribution
of the number of jobs at each server using the SQA method.
In order to apply SQA, we established that the GJSQ system
is near-insensitive to the job-size distribution and thus we
approximated the system at hand with exponentially dis-
tributed job-sizes. We then approximated the conditional
arrival rates for the exponential case, by combining exact
limiting results for large number of jobs and approxima-
tion results, which were obtained using a multiple linear
regression model, for small number of jobs. Ultimately, the
aforementioned approach resulted in approximations that
are highly accurate; we reported a maximum relative dif-
ference with respect to exact or simulation results of 4.1%
for the conditional arrival rates and 2.2% for the mean and
standard deviation of the number of jobs at each server.

In this paper we set the groundwork for the analysis of
server farms with heterogeneous servers under the GJSQ
routing policy by analyzing the case of two servers. Of
course, server farms consist of multiple servers so it is in

0 5 10 15
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3

n

Figure 5: Simulated conditional arrival rates for a
system with three servers with service rates 1 ( ),
2 ( ), and 5 ( ), with ρ = 0.7.

our future plans to extend the analysis presented in this pa-
per to more than two servers. The most difficult aspect of
this task would be the derivation of the conditional arrival
rates, which possibly has to rely on simulation data, since
the approach in [14] is in its current setting restricted to two
servers. In Figure 5 we present an example of the simulated
conditional arrival rates in case of three servers with service
rates 1, 2 and 5. Note that the structure of the conditional
arrival rates is as expected, i.e. the number of points in the
repeating pattern is directly related to the rate of service,
but the exact values of these points differ from the values
obtained by formulas (5) and (6).
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APPENDIX
A. PROOF OF THEOREM 2

The proof is based on the exact results of the related
M/M(1, s)/2/SED/FCFS system, with s ∈ N, presented
in [14]. Although we obtain similar results for the limiting
conditional arrival rates for server 1 as in [5], we use here a
completely different approach in deriving the limits.

In [14], the state space {(q1, q2) | (q1, q2) ∈ N2
0} of the

Markov process is transformed to the state space {(m,n, r) |
m ∈ N0, n ∈ Z, r = 0, 1, . . . , s−1} wherem = min(q1, b q2s c),
n = b q2

s
c−q1 and r = mod(q2, s). Let us denote the equilib-

rium probabilities for the three-dimensional state space as
p(m,n, r). The equilibrium probability p(m,n, r) has a se-
ries expression, i.e. p(m,n, r) =

∑∞
l=0 x(l,m, n, r), namely,

for m ≥ 0, n ≥ 1,

p(m,n, r) = C

∞∑
l=0

(s+1)l∑
i=1

s∑
j=1

βnl,d(i)+j
(
ηl,d(i)+jα

m
l,i

+ νl+1,d(i)+jα
m
l+1,d(i)+j

)
i+(αl,i, βl,d(i)+j , r). (12)

For m ≥ 0,

p(m, 0, r) = C

∞∑
l=0

(s+1)l∑
i=1

αml,ihl,i(r). (13)

For m ≥ 0, n ≤ −1,

p(m,n, r) =

C

∞∑
l=0

(s+1)l∑
i=1

ηl,i(s+1)α
m
l,iβ
−n
l,i(s+1)i−(αl,i, βl,i(s+1), r)

+C

∞∑
l=0

(s+1)l∑
i=1

νl+1,i(s+1)α
m
l+1,i(s+1)β

−n
l,i(s+1)×

i−(αl+1,i(s+1), βl,i(s+1), r). (14)

For the exact interpretation of each variable we refer the
reader to [14]. In [14] the authors establish the following
properties:

1. There exists a positive integer N such that p(m,n, r)
converges absolutely for all m ≥ 0, |n| ≥ 1 with m +
|n| > N .

2. For m + |n| > N , we have |x(l,m, n, r)| < u(l) and∑∞
l=0 u(l) <∞.

3. The series
∑
m+|n|>N p(m,n, r), r = 0, 1, . . . , s−1 con-

verges absolutely.

4. |αl,i| > |βl,d(i)+j | and |βl,i| > |αl+1,i| with α0,1 =

ρ1+s < 1.

In this proof we make use of the dominated convergence
theorem for complex-valued functions.

A.1 Server 1
The limiting conditional arrival rate to server 1 can be

determined from

lim
n→∞

λ1(n) = lim
n→∞

π1(n+ 1)/αn+1
0,1

π1(n)/αn0,1
α0,1. (15)

The marginal distribution for server 1 is given by, where
m = b q2

s
c and r = mod(q2, s),

π1(n) =

∞∑
m=0

s−1∑
r=0

p(min(n,m),m− n, r)

=

n−1∑
m=0

s−1∑
r=0

p(m,m− n, r) +

s−1∑
r=0

p(n, 0, r)

+

∞∑
m=1

s−1∑
r=0

p(n,m, r). (16)

Furthermore,

lim
n→∞

π1(n)

αn0,1
= lim
n→∞

n−1∑
m=0

s−1∑
r=0

p(m,m− n, r)
αn0,1



+

s−1∑
r=0

lim
n→∞

p(n, 0, r)

αn0,1
+

∞∑
m=1

s−1∑
r=0

lim
n→∞

p(n,m, r)

αn0,1
, (17)

where the interchange of the limit and the series for the
third term on the right-hand side of (17) is allowed by the
dominated convergence theorem, because one can bound
p(n,m, r) from above by p(0,m, r) and

∑∞
m=0 p(0,m, r) <

∞ since it is a subseries of
∑
m+|n|>N p(m,n, r), which con-

verges absolutely by property 3. Furthermore, we know
that limm→∞ p(m,n, r) = limm→∞

∑∞
l=0 x(l,m, n, r) which

is equal to
∑∞
l=0 limm→∞ x(l,m, n, r) by the dominated con-

vergence theorem for complex-valued functions in combina-
tion with property 2. This allows us to compute the second
and third term on the right-hand side of (17). The first term
on the right-hand side of (17) can be determined as follows

lim
n→∞

n−1∑
m=0

s−1∑
r=0

p(m,m− n, r)
αn0,1

= C
(

lim
n→∞

∞∑
l=0

(s+1)l∑
i=1

ηl,i(s+1)

(
αl,i

α0,1

)n
−
(
βl,i(s+1)

α0,1

)n
αl,i

βl,i(s+1)
− 1

×

s−1∑
r=0

i−(αl,i, βl,i(s+1), r)

+ lim
n→∞

∞∑
l=0

(s+1)l∑
i=1

νl+1,i(s+1)

(
βl,i(s+1)

α0,1

)n
−
(
αl+1,i(s+1)

α0,1

)n
1− αl+1,i(s+1)

βl,i(s+1)

×

s−1∑
r=0

i−(αl+1,i(s+1), βl,i(s+1), r)
)

= C
η0,s+1
α0,1

β0,s+1
− 1

s−1∑
r=0

i−(α0,1, β0,s+1, r). (18)

Interchange of the limit and series is again allowed here since
one can bound the absolute value of the summands from
above by v(l) for sufficiently large n and

∑∞
l=0 v(l) < ∞.

One can finally establish that

lim
n→∞

π1(n)

αn0,1
= C

( η0,s+1
α0,1

β0,s+1
− 1

s−1∑
r=0

i−(α0,1, β0,s+1, r)

+

s−1∑
r=0

h0,1(r) +

s∑
j=1

η0,jβ0,j
1− β0,j

s−1∑
r=0

i+(α0,1, β0,j , r)
)
. (19)

Thus, by (15) and (19), limn→∞ λ1(n) = α0,1 = ρ1+s.

A.2 Server 2
The limiting conditional arrival rate to server 2 can be de-

termined from limn→∞ λ2(sn+r), where, for r = 0, 1, . . . , s−
2,

lim
n→∞

λ2(sn+ r) = lim
n→∞

s
π2(sn+ r + 1)/αn0,1
π2(sn+ r)/αn0,1

(20)

and for r = s− 1,

lim
n→∞

λ2(sn+ r) = lim
n→∞

s
π2(sn+ r + 1)/αn+1

0,1

π2(sn+ r)/αn0,1
α0,1. (21)

The marginal distribution for server 2 is given by, for r =

0, 1, . . . , s− 1,

π2(sn+ r) =

∞∑
q1=0

p(min(q1, n), n− q1, r)

=

n−1∑
q1=0

p(q1, n− q1, r) + p(n, 0, r) +

∞∑
q1=1

p(n,−q1, r). (22)

For π2(sn+ r + 1), r = s− 1 we should replace n by n+ 1
and r by 0 in (22). Furthermore, for r = 0, 1, . . . , s− 1,

lim
n→∞

π2(sn+ r)

αn0,1
= lim
n→∞

n−1∑
q1=0

p(q1, n− q1, r)
αn0,1

+ lim
n→∞

p(n, 0, r)

αn0,1
+ lim
n→∞

∞∑
q1=1

p(n,−q1, r)
αn0,1

. (23)

Using identical arguments as for the limiting conditional ar-
rival rate for server 1, we establish for r = 0, 1, . . . , s− 1,

lim
n→∞

π2(sn+ r)

αn0,1
= A(r), (24)

where A(r) is given in (7). Finally, combining (20)-(21) and
(24) proves (6).

B. PROOF OF PROPOSITION 3, POINT 2
By letting ρ ↓ 0 in (8)-(10) and λ1(n) ≈ ρ1+s, n ≥ 3 we

immediately find that λ1(n) ↓ 0, n ∈ N0.
We note that in (11) the factors on the right-hand side

in front of λlim
2 (n − s) go to a constant for ρ ↓ 0. So, what

remains is that we establish that limρ↓0 λ
lim
2 (r) = 0, r =

0, 1, . . . , s − 1. This part of the proof relies heavily on the
asymptotic results of [14]. We denote α = ρ1+s and investi-
gate for r = 0, 1, . . . , s− 1,

A(α, r)

αr/s
=

s∑
i=1

ηi
βi/α

1− βi/α
ui
(βi
α

)r/s
+ α1/s h(r)

α(r+1)/s

+ α1−r/s βs+1/α

1− βs+1
i−(α, βs+1, r), (25)

where we used that i+(α, βi, r) = uiβ
r/s
i with ui the i-th

unit root of us = 1, which is established in Lemma 5.6 of
[14]. Now,

lim
α↓0

A(α, r)

αr/s
= c(r), (26)

where c(r) is some constant. In the following we denote ci
as some constant that can be a function of r. Equation (26)
follows from the fact that for α ↓ 0 we have that βi/α →
c1 < 1, i = 1, 2, . . . , s, βs+1/α→ c2 (Lemma 5.15(i)(a) and

(i)(c) of [14]); h(r)/α(r+1)/s → c3(r) (Appendix B, part (c)
of [14]); i−(α, βs+1, r) → c4(r) (Lemma 5.15(i)(d) of [14]);
βs+1 → 0 (Corollary 5.14 in [14]); and

∑s
i=1 ηiui → c5 (α ↓ 0

in (5.46) of [14]).
Finally, for r = 0, 1, . . . , s− 2,

lim
α↓0

A(α, r + 1)

A(α, r)
= lim

α↓0

α(r+1)/s

αr/s
A(α, r + 1)/α(r+1)/s

A(α, r)/αr/s

= lim
α↓0

α1/s c(r + 1)

c(r)
= 0 (27)

and for r = s− 1,

lim
α↓0

α
A(α, 0)

A(α, s− 1)
= lim

α↓0
α1/s c(0)

c(s− 1)
= 0. (28)


