
Introducing a Distance Vector Routing Protocol
for ns-3 Simulator

Janaka Wijekoon
Hiroaki Nishi Laboratory, Keio

University, Japan
janaka@west.sd.keio.ac.jp

Rajitha Tennekoon
Hiroaki Nishi Laboratory, Keio

University, Japan
rajitha@west.sd.keio.ac.jp

Erwin Harahap
Hiroaki Nishi Laboratory, Keio

University, Japan
erwin2h@west.sd.keio.ac.jp

Hiroaki Nishi
Dept. of Systems Design
Engineering Keio Univ.
west@sd.keio.ac.jp

ABSTRACT
In network research, network simulators have been shown to be
useful for testing and changing network protocols by means of a
controlled manner. As an Internet systems simulator, ns-3 simula-
tor provides an ideal simulation environment for network research.
However, ns-3 is lack of table-driven IPv4 routing modules. De-
spite the fact that a routing protocol is a mandatory component of
a network, it is necessary to introduce a table-driven routing proto-
col for the ns-3 which is able to maintain the network connectivity
and consistency. To this end, we introduce a distance vector IPv4
wired routing protocol for the ns-3 simulator (DVRP). The propos-
ing protocol is developed as a table-driven wired routing protocol.
In this study, we describe the proposing routing protocol, including
its design, implementation, behavior on networks, and limitations.

Categories and Subject Descriptors
C.2.6 [Internetworking]: Routers; C.2.2 [Network Protocols]:
Routing Protocols

General Terms
Algorithms, Design

Keywords
ns-3, routing protocol, distance vector routing, network simulation,
wired routing protocols.

1. INTRODUCTION
Network researchers must test and evaluate numerous network

protocols in controlled environments to determine whether such
protocols are robust and reliable. Because the Internet is the largest
production-scale network, it is impractical to conduct controlled
experiments directly on the Internet. Therefore, simulation soft-

.

ware is a vital tool in developing, testing, debugging, and evalu-
ating network protocols. Nevertheless, simulation software should
be able to simulate a particular network’s behavior and, should be
able to provide analysis tools to evaluate results. In the study of [3],
Carniro et al. stated that the ns-2 [8] is the most used simulator
among network researchers. As the successor of the ns-2 simula-
tor [8], the ns-3 simulator [21] was introduced for more realistic
simulations of network protocols.

The ns-3 simulator [21] is a discrete-event simulator, and
was proposed as the eventual replacement of the ns-2 simula-
tor [8]. The ns-3 simulator uses ns3::NetDevices to connect ns-
3::Nodes, because the ns3::NetDevices emulate physical network
cards and the ns-3::NetDevices possess both Layer-3 IP and Layer-
2 MAC addresses. Two ns3::NetDevices are connected using an
ns3::Channel, which represents a network communication medium
(wired or wireless links) [20]. Furthermore, ns-3 supports most
generic real-world packet structures, and the packets are serialized
and de-serialized as they traverse the network stack [3]. In addi-
tion, ns-3 supports both IPv4 and IPv6 addressing schemes. These
features make ns-3 simulator an ideal simulator, which provides a
more realistic and real-world-like simulation environment [19, 20].

Despite its advantages, ns-3 is still a new simulator and new
models are currently being developed and incorporated into ns-3
distributions [5,16–18,23,25,26,28]. Because ns-3 was introduced
to simulate real-network-like simulations, ns-3 must support rout-
ing protocols for realistic evaluations of networks. A routing proto-
col is necessary to maintain routes despite changes in network con-
nections [7, 13]. In [2], Brakmo et al. theorized that most practical
networks exhibit extremely complex behavior because of: 1) suit-
able protocol interaction, 2) complicated network topologies, and
3) complex traffic patterns. Moreover, according to [2,6,7,9,13,26],
a routing protocol is directly related to the performance of a net-
work. However, thus far, ns-3 does not comply with any Ipv4 wired
routing protocol modules. This limitation limits the ability to sim-
ulate and analyze network topologies such as CDNs [22,27] on the
ns-3 simulator.

To this end, in this study, we present the design and implemen-
tation of a table-driven IPv4 wired routing protocol for ns-3. The
proposing protocol is developed as a distance vector routing pro-
tocol (DVRP) based on RFC 1058 [14] and RFC 2080 [11]. The
DVRP uses some vital functions of the aforementioned RFCs to
route and neighbor management. The ns-3 DVRP module supports:
1) neighbor discovery and management, 2) shortest path calcula-
tion based on the number of hops to a particular destination, 3)
route management including processing periodic and triggered up-
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Figure 1: DVRP Class Diagram

date messages, and 4) per-node packet buffering to support consis-
tent packet delivery. We compared the DVRP module with existing
ns-3 IPv4 routing protocols and herein discuss the results.

The remainder of the paper is structured as follows. Section 2
explains the existing routing protocols implemented in ns-3. Sec-
tion 3 describes the design of DVRP module. Section 4 provides
the evaluation details of the proposed method. Section 5 concludes
the study and suggests future studies.

2. EXISTING NS-3 ROUTING PROTO-
COLS

The infrastructure of ns-3 and its design are intended to support
both Ipv4 and Ipv6 routing protocols. ns-3 supports open source
routing implementations and also facilitates research into novel
routing techniques [5, 20, 21, 25]. Furthermore, ns-3 provides Di-
rect Code Execution (DCE), which is a framework for ns-3 that
provides environment to execute existing implementations (e.g.,
network protocols, applications and user-space protocols) without
source code changes.

Literature reveals that the ns-3 simulator is popular among re-
searchers who are experimenting on wireless mobile ad hoc net-
works (MANET) [15]. Consequently, with in recent years, several
wireless routing protocols such as DSR [5], DSDV [18], AODV
[18], and OLSR [1], have been introduced and tested on ns-3. Fur-
thermore, the ns-3 is used by numerous researches to compare wire-
less routing protocols (e.g., compare OLSR and DSDV Protocols in
a VANET Scenarios) [24].

When considering LAN/WAN implementations on the ns-3, in
[17], Ashok Kumar et al. proposed ns-3 to simulate various archi-
tectures of data center networks, including both wired and wireless
topologies. In [16], Junseok Kim argued that AODV is a proactive
table-driven routing protocol, and its link usage is comparatively
high. As a solution, they proposed a simple reactive on-demand

routing protocol for Wi-Fi access points. However, thus far ns-3 is
lack of wired routing protocol implementations. ns-3 only consist
of reacting on-demand routing protocols [5, 6] (See Section 2.1).

2.1 Existing ns-3 wired routing protocols
The ns-3 simulator [21] essentially introduces three IPv4 con-

nectivity methods for wired network simulations: 1) default/static
Ipv4 routing protocol [20], 2) IPv4 global routing protocol [20]
and, 3) IPv4 NIX-vector routing protocol [19]. These three rout-
ing protocols are reactive on-demand routing protocols [5, 6] IPv4
global and IPv4 NIX-vector routing protocols maintain per-node
routing tables. However, those routing tables are built by ana-
lyzing the total topology only once at the beginning of a simula-
tion [19,20] and thus, both these protocols do not use a route adver-
tisements to maintain up-to-date routing tables based on changes
to a network topology. Besides, by using these packet forwarding
methods, the ns-3 simulator can send packets between two nodes.
Yet, simulate and analyze real networks such as a CDN [21] on the
ns-3 simulator is impossible and thus represents a limitation for this
simulator.

2.1.1 Default / Static Routing Module
The ns-3 simulator uses the ns3::IPv4StaticRouting module as

the basic connectivity method of small networks [20]. However,
static routing is not a practical solution for route management on
medium and large-scale networks [7].

2.1.2 Global Routing Module
The ns3::GlobalRoutingModule is a reactive on-demand routing

protocol [20]. At the beginning of a simulation, the module collects
all static routes and stores them in routing tables. Upon packet
arrival, routers that are configured for global routing then return
the first route available in the routing table that matches the packet’s
destination. The returned route is not necessarily the shortest path



for a particular destination. Therefore, packets might reach their
destinations through a long distance path. In addition, a global
routing module does not employ route update messages to maintain
an up-to-date routing table according to the network changes.

2.1.3 NIX-Vector Routing Module
The ns3::Ipv4NixVectorRouting performs on-demand route

computation using a breadth-first search and efficient route-storage
data structure known as a NIX-vector [19]. When a packet is gener-
ated at the packet generation node, the Ipv4NixVectorRouting mod-
ule first calculates the destination route. The created route is then
stored in an NIX-vector which is attached to the generated packet.
Routers use the NIX-vector to determine the next forwarding hop
toward the packet’s destination [19]. Similar to the global routing
module, this module does not maintain routing updates to adapt
network changes.

2.1.4 BRITE Routing Module
In addition to the aforementioned basic ns-3 connectivity meth-

ods, Swenson and Riley proposed a method to generate large
topologies on an ns-3 simulator using a novel method called a
BRITE routing topology generation tool [26]. They stated that to
"maintain a proper routing protocol is mandatory for large network
topologies." Therefore, they proposed an enhancement to the ns-
3 global routing module to generate a per-node routing table and
to calculate routes using a CUDA kernel. They showed that the
CUDA-based routing module is faster than the ns-3 NIX vector
routing protocol. Unfortunately, the proposed routing method is
also not capable of route advertisement to adapt the topological
changes.

2.1.5 RIPng Routing Module for IPv6
The RIPng module is the most recently introduced routing pro-

tocol to the ns-3. It was developed by T. Pecorella based on RFC
2080 [11] to the ns-3.20 [23]. This is the only fully functional rout-
ing module that ns-3 presents thus far. Unfortunately, as the RIPng
module only supports IPv6 routing, it is not capable of simulating
IPv4 routing. Therefore, in this study, this module was not com-
pared to the DVRP module.

3. DVRP MODULE FOR NS-3
This section describes the design and implementation of the ns-3

DVRP module and focuses on: 1) neighbor discovery and main-
tenance, 2) route-table creation and maintenance, 3) route- and
neighbor-table update mechanism, and 4) packet-buffering mech-
anism. All major attributes used in this implementation are listed
in Table 1 and relationships among all classes are illustrated in Fig-
ure 1.

The ns-3 DVRP module is developed using the DVR algorithm
[10]. The DVRP module uses the minimum hop path as the shortest
path for a certain destination and the shortest path is calculated us-
ing the Bellman-Ford algorithm [4]. Routers calculate the shortest
paths on update message arrival and the calculated shortest path is
used to update the routing tables. Note that the current DVRP ver-
sion is developed as a host-address-based routing protocol and thus
maintains a host-address-based routing table instead of a network-
address-based routing table.

The basic functions of the DVRP module can be explained as
follows. For simplicity of explanation, we assume the following
scenario: let X be a router that receives a new destination D from
its neighbor N at a distance of cN . This means thatX can reach to D
through N with the cost c = cD + cN . Consequently, the following
rules were implemented to the DVRP for route-table maintenance

and route-table advertisement processes. Note: the s denotes the
sequence number of the existing record and snew denotes the se-
quence number of the newly received record.

• if D is a new destination, X adds D in to the routing table as
(D, viaN, cD + cN , snew)

• if D is a destination that is already in the routing table with
(D,M, c, s), where c > cD + cN and s > snew, then the routing
entry will update for (D, viaN, cD + cN , snew)

• if D is a destination that is already in the routing table with
(D,M, c, s), where c > cD+cN and s <= snew, then the routing
entry will not be updated.

• the X sends periodic updates to its neighbors about D by set-
ting c = c + 1 and snew = s + 2

• in the event that D is not responsive for a defined time in-
terval, X sends periodic / (triggered) updates to its neighbors
about D by setting c = INFINIT and snew = s + 1

As the proposed protocol is implemented based on the distance
vector algorithm [10], the DVRP module is implemented based on
the complements and limitations of the algorithm. However, some
techniques such as triggered updates hold-down timers, packet
buffering and encapsulated update messages are used to address
certain limitations inherited from the distance vector routing algo-
rithm [10].

3.1 Class Overview
The ns3::DVRP::RoutingProtocol class is implemented to the

ns-3 by extending the abstract base class ns3::Ipv4L4Protocol. The
ns3::DVRP::PacketHeader and ns3::DVRP::Hello classes are ex-
tended from ns3::Header. The ns3::DVRP::NeighborTableEntry
class is declared to store neighbor information and the
ns3::DVRP::NeighborTable class is declared to store all neighbor
records in a table. Similarly, the ns3::DVRP::RoutingTableEntry
class is designed to store route information, while the
ns3::DVRP::RoutingTable is declared to create routing tables. In
addition, the ns3::DVRP::QueueEntry class was introduced to store
packets and the ns3::DVRP::PacketQueue class was introduced to
manage all stored queue entries. The ns3::DVRP::RoutingProtocol
class is the main class that combines all the aforementioned classes
and maintains route and neighbor management functions.

The DVRP module can be configured to a simulation topol-
ogy using the same method that ns-3 provided to config-
ure list routing protocols [5, 18, 20, 25]. As an example,
first create an object of DVRPHelper and attach it to the
ns3::Ipv4ListRoutingHelper. The ListRoutingHelper then must be
attached to the ns3::InternetStackHelper to initialize the DVRP
module.

3.2 Neighbor Management
The structure of the DVRP neighbor module consists of two

main classes: the NeighborTable and NeighborTableEntry classes.
The NeighborTable class is a collection of NeighborTableEntry
class records.

3.2.1 Neighbor Table
As previously stated, the NeighborTableEntry contains neighbor

information such as the IP address of the neighbor, local router’s
interface at which the neighbor can be reached, local forwarding
socket, and last updated time. As depicted in Figure 3, neighbor
records are mapped to the NeighborTable. The NeighborTable class
has methods to add, remove, update, and print neighbor records.



Table 1: DVRP Attributes and default Values

Attribute Default Value Summery
PeriodicUpdateInterval 20s Time between two periodic updates.
KeepAliveInterval 30s Time between two keep alive messages.
SettlingTime 30s Minimum time to settle a route record.
HoldTimes 90s Maximum time that a route record can wait without and updated.
MaxNeighborTime 60s Maximum time that a neighbor record can wait without an update.
MaxQueueLen 1000 Maximum number of packets that can be allowed to store in the queue.
MaxQueueTime 45s Maximum time that a packet can be in the Queue before it is discarded.
EnableBuffering True Enable packet buffering if no route found to its destination.

for each KAM do
check for existing records;
if !record then

add new record;
else

update the life-time of matched record;
end
for each neighbor record do

if lifetime >MaxNeighborTime then
delete the record;
delete route records refer deleted neighbor;

end
send triggered update;

end
end

Algorithm 1: Neighbor Management

(a) DVRP Hello Packet Header

(b) DVRP Update Packet Header

Figure 2: Routing Packet Headers

3.2.2 Processing Neighbor Advertisement Messages
At the router initiation time, when the ns3::NotifyInterfaceUp

callback is triggered, all local interfaces are added to the perma-
nent routing table. Consequently, the router broadcasts hello pack-
ets, among its local interfaces, using the packet structure given in
the Figure 2(a). After sending the first hello packet, the neighbor
module is programmed to broadcast keep-alive messages in each
KeepAliveIntrerval. This method has been designed to maintain
consistency among routers. The same packet structure given in Fig-
ure 2(a) is used to send keep-alive messages.

As soon as a router receives a hello packet, the router processes
the packet using the neighbor management algorithm (Algorithm

Figure 3: Neighbor Table

Figure 4: Main Routing Table

Figure 5: Route Message Encapsulation

1). Initially, the router checks the received neighbor record for a
match among existing neighbor records. If no match is found, the
record is added to the neighbor table as a new neighbor. Otherwise,
the router updates the last updated time of the matching record. In
addition, the router checks for outdated neighbors using (1).

Li f eT ime = currentT ime − lastU pdatedT ime (1)

In the event LifeTime exceeds MaxNeighbourTime:, the corre-
sponding neighbor record is first removed from the neighbor ta-
ble. Then, route records that refer the removed neighbor as the
forwarding gateway are also removed from both advertisement and
permanent routing tables. Finally, the router sends a triggered up-
date message among remaining neighbors regarding the modified
routing entries.

3.3 Route Management
DVRP module is a UDP-based protocol and uses UDP port num-

ber 272 for route updates. The DVRP module maintains two types
of routing tables: permanent and advertisement. In addition, the
DVRP module uses two types of route updates messages: periodic
and triggered. Routers broadcast periodic update messages in ev-
ery PeriodicUpdateInterval time. The triggered updates are par-
ticularly introduced to overcome the slow convergence limitation
inherited by the distance vector algorithm [10].

Triggered update messages are not currently designed to send
selective route records. Because triggered updates also broadcast
entire routing tables, triggered updates may cause excessive loads
on network links. Therefore, special handling is required to limit
the network congestion caused by triggered updates. To avoid such
loads, random intervals between 1 and 5 s are introduced as a provi-



purge routing table;
ROUTES <- collect routes and merge with purged records;
if !ROUTES then

return;
end
for each neighbor in neighbor-table do

create a empty packet;
maxRum = calculate number of records based on MTU;
for each record in ROUTES do

if gateway == "0.0.0.0" then
set the dest. address as this node;
increment the Seq. no by 2;
increment the hop count by 1;
set all other header fields;
update the routing table for new Seq. number;
add the header to the packet;

else
set the dest. address according to the route record;
if (Seq. % 2) == 0 then

increment Seq. number by 2;
increment the hop count by 1;

else
increment Seq. number by 1;
set hop count for infinity;

end
set all other header fields;
add the header to the packet;

end
if number of records == maxRum then

send the update packet to the neighbor;
end

end
if more records to send then

send the update packet to the neighbor;
end

end
Algorithm 2: Update Message Generation

sion. Therefore, after a triggered update is broadcasted, the router
must wait 1 to 5 s before it sends the next update.

3.3.1 Routing Table
previously stated, DVRP maintains mainly two routing tables to

store permanent (stable) routes and recently received routes. As
shown in Figure 4, a DVRP module uses a host-address-based
routing table. Therefore, every route entry stores the following
attributes about the route: a destination IP address, last updated
sequence number, network address of the next hop, IP address of
the next hop, hop count for the destination, forwarding interface
address, and the last updated time. Further, a Boolean value is
used to specify whether the route entry can be changed. In addi-
tion, the DVRP module uses a sequence number for every route
record, while the sequence number is used for two purposes. The
first purpose is to maintain route consistency. In every route update,
sequence numbers of route records increment by one or two (to pro-
duce an odd or even value for the sequence number). The second
purpose is to indicate non-responsive records. Non-responsive and
responsive records have odd and even sequence number values, re-
spectively.

Newly received routes must wait at the advertisement routing
table until the SettingTime expires to determine whether the route

is stable. The route record is then moved to the permanent routing
table. A router does not send any advertisement about new route
records before those records are moved to the permanent routing
table. Stable routes are identified by the sequence number and hop
count. That process is explained in Section 3.3.3.

3.3.2 Route Advertisements
The route update packet is designed to have multiple route

records added to it. A record is added to the packet using a 13-
byte route message, the format for which is given in Figure 2(b).
As shown, a 32-bit wide sequence number is used in the DVRP to
incorporate the DVRP in large-scale networks. The hop count is
limited to one byte, because the distance between two end hosts is
assumed to be not more than 255 hops.

When a particular router generates a route update packet, as
shown in Figure 5, the router encapsulates all update records into
a single update packet based on the maximum transfer unit (MTU)
of a particular link. If a route update packet exceeds the MTU of a
particular link, the route update packet is split and broadcast among
neighbors.

Li f eT ime > HoldTimes ∗ PeriodicU pdateInterval (2)

At the route update generation time, as given in Algorithm 2,
the DVRP module first creates an empty route update packet. The
DVRP module then purges the routing table for any outdated en-
tries. All outdated route records are removed from the routing table
based on (2). Consequently, the removed route records are added to
the update packet by setting the sequence number to an odd value
and the cost to infinity. The DVRP module specially handles the
route records of the router’s local interfaces. First, all local inter-
face route records are added to the update packet by incrementing
the sequence number by two and the hop count by one. Thence-
forth, to maintain an up-to-date sequence numbers for local inter-
faces, the DVRP module updates the sequence number of the local
route records in the permanent routing table.

Finally, after adding the removed and local interface route
records to the update packet, the DVRP module adds remain-
ing routing records to the update packet .The DVRP module then
broadcasts the update packet among all neighbors.

3.3.3 Processing Update Packets
As the DVRP protocol broadcasts route updates, it is worthwhile

to confirm whether the update packet is from one of the router’s
own interfaces. Therefore, when the DVRP module receives a route
update packet, it checks the update packet for piggybacking. If the
received packet is piggybacked, the packet is discarded. Otherwise,
the packet is processed as given in Algorithm 3.

Three major factors are involved in the update packet process-
ing method: the destination IP address, sequence number and hop
count. The destination IP address of the extracted message is first
checked. If the destination is the same as the routers’s IP address,
the message is discarded. If the destination is not listed in both
routing tables, the message is verified for a new route with a valid
sequence number. If the route is a new route, the route is added
to the permanent routing table and broadcasts a triggered update
among its neighbors. Otherwise, as the router has a route record
for the destination IP address, the update message’s sequence num-
ber will be checked. If the sequence number is an odd value and the
message is intended for an unreachable host, certain route records
are removed from both routing and advertisement tables and an im-
mediate update is sent to neighbors. However, if the sequence num-
ber is even value, one of the following scenarios is used to update
the routing table.



if piggybacked packet then
discard packet and return;

end
for each RUM in the packet do

if (Seq. % 2) != 0 then
delete routes in routing table;
delete routes in advertisement table;
send a triggered update;

end
else

ROUTE <- find(destination);
calc HopCount;
if !ROUTE then

add a record to routing table;
add a record to advertisement table;

else
if Seq. >= ROUTE’Seq. then

if HopCount <= ROUTE’HopCount then
if different Gateway then

delete routes in both tables;
add route to adv. table;
schedule settling event;

else
update HopCount;
update the Seq.;

end
else if HopCount >ROUTE’HopCount &&

<16 then
if different Gateway then

update HopCount;
update the Seq.;

else
discard the message;

end
end

else
discard the message;

end
end

end
end

Algorithm 3: Route Processing

• If no route presents in the routing table, add new routes to
both routing and advertisement routing tables.

• If the received sequence number is greater than or equal to
the existing sequence number, then (3) is used to calculate
the shortest path and to update the routing record in the ad-
vertisement table.

• If the hop count of the received record is less than or equal
to the existing hop count, as given in Algorithm 3, update
that particular record of the advertisement routing table based
on the gateway address. If the sender address is different
compared to the gateway address, delete the existing route
records and add new route record to the advertisement table.
An event will then be scheduled to expire after SettingTime.
At the time the scheduled event triggers, the route record will
be moved from the advertisement routing table to the perma-
nent routing table. In particular, the hop count, sequence

Figure 6: Average Processor Consumption

number, and last updated time of the route record will be up-
dated.

• If the sender address is same as the gateway address, particu-
larly hop count and the sequence number get updated accord-
ing the route update message. In addition, the last updated
time will also be updated.

• If the hop count is greater than the route’s hop count and is
lesser than sixteen, then hop count and the hop count will be
updated if the gateway is same as the sender. Otherwise, the
message will be discarded

• If the received sequence number is shorter than the existing
sequence number, the message will be discarded, because the
node has a most updated record than does the received up-
date.

CX(Y,Z) = C(X,Z) + minw{CZ(Y, w)} (3)

CX(Y,Z) : distance between X to Y via Z
C(X,Z) : distance between X to Z, where Z is the neighbor of X
minw{DZ(Y, w)} : shortest hop path from Z to Y

3.4 Packet Buffering
Per-router packet buffering is introduced in the DVRP module as

an additional function. If a router does not have a route through
which to forward a packet, instead of the packet being dropped, it
will be buffered in the local packet buffer. The packet buffering fea-
ture is enabled by default to store 1000 packets in each router. Ad-
ministrators can control the packet buffer option by controlling the
EnableBuffering, MaxQueueLen and MaxQueueTime control vari-
ables given in Table 1.

The PacketQueue class was implemented to store packets using
the QueueEntry class. The QueueEntry class stores following: the
packet, packet’s source IP address, packet’s destination IP address,
and the maximum permitted time to remain in the packet buffer.
Packets will be buffered in the packet buffer until: a router receives
a route to forward the packet, or the the maximum permitted time
to remain in the packet buffer has expired.

4. EVALUATION AND DISCUSSION
The ns-3.18 version was used to evaluate the DVRP protocol im-

plementation. To evaluate the functionalities of the implemented
routing protocol, we implemented six mesh topologies containing
10, 20, 30, 40, 50, and 100 routers. Because the DVRP module is
an Interior Gateway Protocol (IGP) routing protocol, we assumed
that a maximum of 100 routers is sufficient for a network topology.
The network links of those topologies were randomly created. A



Figure 7: Sample ns-3 Topology Consists of 100 Nodes

Figure 8: Route Decision Making Time (Avg.)

sample topology (of 100 routers) is given in Figure 7. The pro-
posed DVRP protocol is compared with the ns-3 NIX-vector and
ns-3 global routing protocols using the six topologies. Note: due
to the fact that [5], [18] and [1] are wireless routing protocols, the
proposed protocol is not compared with those routing protocols.

The topologies were implemented on a computer with an Intel i7
3.4 GHz processor having 8 GB of memory. The "sar" [12] Unix
command was used to measure the process consumption. The ob-
tained process usage result is plotted in Figure 6. According to the
Figure 6, the topology consists of 100 routers consumed an average
of 13.08% of the processor. Therefore, the DVRP module was able
to utilize the processor usage to a reasonable degree.

4.1 Topology Development
The simulation topologies were configured using peer-to-peer

links of 100 Mbps and 2 ms of delay. As shown in Figure 7, we used
two links, 10 Mbps and 1 ms delay, to connect UDP echo client
and UDP echo server to the network topology. We programed the
client to send packets with 500 bytes payload at random intervals.
The server was programmed to reply when the packet arrived. The
DVRP, ns-3 NIX-vector, and ns-3 global routing protocols were
configured to the aforementioned topologies. Each simulation sce-
nario was simulated five times and the average results were used
for the evaluation.

4.2 Results and Discussion
This section discusses the obtained results in detail. Tests were

conducted to evaluate the DVRP for the route decision time (RDT),
packet delivery ratio (PDR), round trip time (RTT), and routing
overhead (RO).

4.2.1 Route Decision Time (RDT)
The RDT value is the average time used by a router to discover

Figure 9: Packet Delivery Ratio (Avg.)

a route from the routing table to a packet. For this experiment,
we used topologies that consist of 10, 50, and 100 routers. The
measured RDT values for the routing protocols are given in Figure
8. As depicted, the NIX-vector routing protocol consumes an av-
erage of 0.1µs for all three topologies. This is because, as given
in [19], the routing path for a particular data packet is determined
during packet generation. Therefore, routers do not consume time
to determine routes for incoming packets, so route decision time is
extremely low compared to that in the other two routing protocols.

Both DVRP and ns-3 global routing protocols display increments
of the RDT value proportional to the number of routers. The rea-
son is that, latency of finding a route record is depending on size
of the routing table and the size of the routing table is proportional
to number of nodes in a network. However, according to Figure
8, the ns-3 global routing protocol consumes a steady time to de-
termine a route. As an example, 28µs are consumed for the 100
routers topology. As explained in [20], this happens because when
a data packet arrives, the ns-3 global routing protocol returns the
first record of the routing table that matches the destination address
of the received packet. Therefore, time consumption of finding a
route in the routing table is stable. But, given the fact that the ns-3
global routing protocol maintains a routing table, the RDT value is
high compared to that of NIX-vector routing.

Similarly, as Figure 8 shows, the RTD value of the DVRP also
increases based on the number of routers in a topology. Further, as
depicted in Figure 8, the RDT values also fluctuate according to the
time. This is because the DVRP protocol must allocate resources
to process both route update messages and incoming data packets.
As an example, the routing table must be shared between the route
update and packet forwarding modules. Therefore, as Figure 8 re-
veals, DVRP protocol displays an average of 10-20 µs increments
of the RDT value compared to the ns-3 global routing.

4.2.2 Packet Delivery Ratio (PDR)
The PDR value is calculated at the UDP echo client by divid-

ing the number of received reply packets by the number of sent
packets. According to the Figure 9, both NIX-vector and global
routing protocols display 100% PDR. This is because these two
routing protocols do not use any route update messages. Thus, the
network is neither occupied nor congested. The DVRP protocol
is programmed to send periodic and triggered updates as well as
hello packets to maintain the topology consistency and adapt to
topological changes. Route update packets occupy both the router
and network to a certain percentage depending on the size of the
update packet. Therefore, the proposed protocol displays 99.05%
of the packet delivery ratio, which represents 0.95% packet loss
compared to that of existing ns-3 routing protocols.

4.2.3 Round Trip Time Delay (RTT)



Figure 10: RTT measurement at the client (Avg.)

The third experiment in this study involved measuring the RTT
values of reply packets at the UDP echo client. According to Fig-
ure 10, all topologies configured with both NIX-vector and global
routing protocols result in an average of 35 ms of RTT. Topologies
configured with the DVRP protocol resulted in an average of 25ms
of the RTT value. This means that the DVRP protocol is 10 s faster
than the existing ns-3 routing protocols in terms of packet delivery.

The NIX-Vector routing protocol has a comparatively high RTT
value because the routing protocol analyzes data packets in each
router to determine the next forwarding router. Therefore, a packet
has considerable time in a router until the packet is forwarded to the
next hop. In addition, the RTT value of the global routing protocol
is high. According to [20], this is because the global routing mod-
ule returns the first route of the routing table. Usually, the returned
route is not the shortest path. Therefore, packets may travel in long
distance paths.

According to the Figure 10, DVRP displays fluctuations of the
RTT value proportional to the number of routers in the topology.
One reason for this is that the DVRP module stores destination-
based instead of network-based route records. Therefore, the size
of the routing table is proportional to the number of routers in the
networks. Another reason is that the number of update messages
and update packet size is proportional to the size of the routing
table. The route update messages are directly affect network con-
gestion. Data packets may thus travel through congested routers
or links. As a result, RTT values fluctuate based on the number of
nodes in the network and because of network congestion.

In the next experiment, some routers were deactivated in the mid-
dle of the simulation. In addition, the behavior of the routing pro-
tocols was observed. In the case of NIX-vector routing, the packets
were not delivered if the broken link was in the pre calculated rout-
ing path of a data packet. Similarly, for the global routing, if the
deactivated router was referred by a route record, the packets were
not delivered. However, DVRP module behavior was completely
different compared to the NIX-Vector and global routing modules.

The DVRP module used keep-alive messages to identify the dis-
abled router. After a router detects the deactivated router, it re-
moves the deactivated router from its routing table and advertises
among its neighbors. The entire topology then recalculates the
shortest path according to the new topology. And packets are routed
using the newly calculated shortest path. In addition, routers buffer
the packets that cannot be delivered (because of the unresponsive
router) until routers receive new routes.

4.2.4 Routing Overhead (RO)
The fourth experiment was conducted to measure the link occu-

pancy ratios of routing protocols. As the NIX-vector and the ns-3
global routing protocols do not use update messages to exchange
route information, the comparison was not successful. However,

Figure 11: Routing Overhead(Avg.)

the RO value of the DVRP is provided and discussed in this sec-
tion.

The RO value is calculated dividing the number of bytes used
for the route management by the bandwidth of the link. The re-
sults are plotted in Figure 11. It shows that the DVRP protocol
consumed an average of 0.003% of a 100 Mbps link in a 50-router
network topology. In addition, the DVRP module displays 0.005%
increments of the RO value proportional to the number of nodes in
a topology. As previously stated, this is because the routing table
size and number of update messages increase based on the number
of nodes on a topology. However, the number of update packets
did not drastically increase proportional to the number of nodes in
a topology. Because the DVRP module encapsulates more than one
route update message in a single update packet in order to maintain
network utilization.

5. CONCLUSION AND FUTURE STUDIES
In this study, we introduced and implemented an IPv4 table-

driven wired routing protocol for an ns-3 simulator. The protocol
was designed as a distance vector routing protocol (DVRP). This
paper provides a detailed explanation of the design, classes, and
test results. The test results showed that the DVRP could deliver a
packet on an average of 10-13 ms faster compared to existing ns-
3 IPv4 routing protocols. Furthermore, the DVRP module utilized
only 0.003% of links in its route management. However, test results
showed that the DVRP is 0.95% low in packet delivery because of
the limitations inherited from the distance vector routing algorithm.

The DVRP protocol was able to address successfully the limita-
tions of the existing IPv4 routing protocols of the ns-3. Specifically,
it used route update messages to populate the routing table and
adapt to topological changes. In addition, the DVRP was enhanced
to buffer undelivered packets for a pre-programmable time instead
of dropping those packets. However, due to the fact that [5], [18]
and [1] are wireless routing protocols, the DVRP protocol is not
evaluated based on those protocols. Further the DVRP is not eval-
uated based on the RIPng protocol [11] because it a IPv6 based
routing protocol.

The source code of the current version of DVRP can be found
in [29]. In the future , the DVRP module will be developed to
support both VLSM and CIDR.
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