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ABSTRACT
In this paper we compare two simulators: ns-3 and Vienna,
in the context of LTE networks, on four basic scenarios for
which well-known analytical results exist. These scenarios
differentiate themselves by the nature of the traffic (data or
voice) and by the number of sources (infinite or finite). Our
goal is twofold. First, by confronting the results of the two
simulators with exact results, we can assess the accuracy of
both simulators and compare their efficiency. Second, and
maybe more importantly, we want to compare the ease of
handling and use of both simulators, and list the difficulties
encountered in the context of the four basic scenarios, that
will necessarily arise in more realistic simulated scenarios,
and explain how we worked around the problems. We hope
this comparison will help researchers who work on LTE net-
works to choose the simulator that best suits their needs.
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1. INTRODUCTION
The Long Term Evolution (LTE) standard, specified by the
3rd Generation Partnership Project (3GPP) in release 8, is
the next step forward in cellular 3G services. LTE offers
significant improvements over previous technologies such as
Global System for Mobile communications (GSM), Univer-
sal Mobile Telecommunications System (UMTS) and High-
Speed Packet Access (HSPA) by reforming the core network
and introducing a novel physical layer. The main reasons
of these changes in the Radio Access Network (RAN) sys-

tem design are the need to provide higher spectral efficiency,
lower delay and more multi-user flexibility than the currently
deployed networks [1].

The Idefix project [2] proposes intelligent network and ser-
vice control mechanisms that ensure constancy of QoS in
time and space, while maintaining energy consumption at
reasonable levels. For this goal there is a strong need for
testing the proposed mechanisms and algorithms by sim-
ulation. Many options of simulators were studied, among
them: ns-3, Vienna, SimuLTE and home-made simulators.
The project finally chose to compare ns-3 and Vienna, be-
cause they are felt as the best-suited simulators in the con-
text of LTE networks. Indeed Vienna is purely dedicated
to LTE networks, whereas ns-3 is much more general and
is based on standard modules designed to simulate different
technologies and scenarios. For our comparison we used the
LTE module developed by the LENA Project. This module
was designed following the 3GPP LTE standard specifica-
tions and is included in the main distribution of the ns-3
latest versions.

In order to provide an efficient and methodic comparison of
ns-3 and Vienna LTE simulators, we have chosen to con-
sider four basic scenarios, for which exact analytical results
exist. These scenarios differentiate themselves by the nature
of the traffic (Data or Voice) and by the number of sources
(Infinite or Finite). The “Voice Infinite source (VI)” and
“Voice Finite source (VF)” scenarios correspond to the well-
known Erlang and Engset results, whereas the“Data Infinite
source (DI)” and “Data Finite source (DF)” scenarios corre-
spond to open and closed Processor Sharing queues. We
compared the performance indexes obtained by both simu-
lators to the analytical expressions provided by models. The
objective was first to assess the accuracy of both simulators,
and compare their efficiency in terms of run-time, memory
usage and CPU occupation. Our goal was also to confront
the ease of handling and use of the two tested simulators
and evaluate the efforts that are necessary in both cases to
handle more realistic scenarios. Finally we list all the dif-
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ficulties we have encountered in the implementation of our
four basic scenarios, and propose possible solutions to work
around the problems. We believe that these problems will
arise in more complex scenarios and we hope that our so-
lutions may be helpful for researchers that will have to use
simulation in the context of LTE networks.

To the best of our knowledge this is the first work that pro-
vides a methodic comparison of simulators in the context
of LTE networks. However many comparisons of simulators
have been made in other contexts. In [3] authors compare
ns-3 with other simulators for a grid network simulation.
The comparison focuses on scalability, and they show that
ns-3 had the best overall performance of the five simulators
in their study. More recently [4] compares ns-3 to three
other simulators, including their precursor ns-2, by simu-
lating a MANET routing protocol. This paper also con-
cludes that ns-3 shows the best overall performance among
the studied simulators. In [5] a detailed comparison of the
main characteristics of many (discret event) network simu-
lators is presented, but the comparison remains qualitative
and they do not provide any performance evaluation of the
tools. Authors in [6] compare ns-2 and JiST/SWANS on
the specific case of Ad-hoc networks. Authors in [7] com-
pare the accuracy of ns-2 and OPNET to an experimental
setup. A comparison between the exact analytical model of
several queues (M/M/1,M/D/1,D/M/1) and simulations in
ns-2 can be found in chapter 9 of [8].

This paper is organized as follows. In the next section we
briefly present the analytical models corresponding to the
four basic scenarios used for comparison. Section 3 gives
an overview of the two simulators. The main results of the
comparison are provided in Section 4. Finally, Section 5
concludes this paper.

2. SIMULATED SCENARIOS
In order to provide an efficient and methodic comparison
of ns-3 and Vienna LTE simulators, we have first chosen
to consider four basic scenarios, for which exact analytical
results exist. In all of these scenarios, we consider a sin-
gle LTE cell and we only model the downlink traffic, i.e.,
traffic from central eNodeB to User Equipments (UEs). We
assume that UEs are static (no mobility is considered) and
make the assumption that all UEs use the same Modulation
and Coding Scheme (MCS) over the whole surface of the
cell. The total bandwidth of the cell can be divided into Ns
elementary resources (each one corresponding to a pair of
resource blocks). Assuming a single MCS for the whole cell
corresponds to having a constant number m of bits that can
be carried by any of the Ns elementary resource per frame.
If we denote by Tf the transmission duration of a frame
(1ms in LTE), the cell capacity is given by: C = mNs

Tf
bit/s.

In this section we rehash the exact analytical results corre-
sponding to the four scenarios. These scenarios differentiate
themselves by the traffic (data or voice) and by the num-
ber of sources (infinite or finite). Although these results are
well known (see e.g., [9]) we quickly rehash them so that the
paper becomes self-contained.

2.1 First scenario: data transmissions with in-
finite source (DI)

We first consider data traffic and assume that there is an
infinite number of sources that are likely to generate traffic
in the cell. We thus assume that requests for transmission
globally arrive to the cell according to a Poisson process
with rate λ. Each request brings an identically distributed
volume of data to be transferred of mean xon. The transmis-
sion capacity C of the cell is equally shared among all active
users, which is implemented by means of a Round-Robin dis-
cipline. It is well-known that this system can be modeled by
an M/M/1/∞/∞/Processor-Sharing (PS) queue with an ar-
rival rate λ and a service rate µ = C

xon
. The straightforward

Markov chain associated with the PS queue is given in Fig-
ure 1 (and is similar to that associated with a M/M/1/FIFO
queue).
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Figure 1: Markov chain associated with Scenario 1

If we denote by ρ = λ
µ

, it is widely known that the stability
condition of the queue is ρ < 1, and provided it is satisfied,
the stationary probabilities of having n ongoing transmis-
sions are given by:

p(n) = (1− ρ)ρn, n ≥ 0 (1)

Accordingly, the average number Q of active users in the
system is:

Q =

∞∑
n=1

np(n) =
ρ

1− ρ (2)

From Little’s law we obtain the average sojourn time of a
user in the cell:

T =
Q

λ
=

1

µ− λ (3)

Finally, we can derive the average throughput obtained by
users during their transfer in the cell (in bit/s) as:

γ =
xon
T

= C(1− ρ) (4)

2.2 Second scenario: data transmissions with
finite source (DF)

We still consider data traffic but we now assume that there
is a finite number N of sources that are likely to generate
traffic in the cell. Each one can be either idle or active, and
generate traffic in the cell only when it is active. We still
assume that the average data volume that any active user
has to transferred is xon, and we denote by toff the aver-
age time a user remains idle between two successive data
transfers. The state of each user can thus be modeled as
an ON-OFF process, and we assume that both the volume
transferred during an ON period and the time spent during
an OFF period are exponentially distributed (with respec-
tive means xon and toff ). This system can be modeled by
an M/M/1/N/N/PS queue with a service rate still given
by µ = C

xon
and an arrival rate λ = 1

toff
. The Markov chain

associated with this queue is given in Figure 2.
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Figure 2: Markov chain associated with Scenario 2

If we still define ρ = λ
µ

, the queue length distribution is now
given by:

p(n) =
N !

(N − n)!
ρnp(0), n = 0, ..., N (5)

with p(0) obtained by normalization. Note that there is no
stability condition for this system (as it is actually a closed
system). We can deduce the average number of active users
in the cell:

Q =

N∑
n=1

np(n) (6)

The average number of users that become active by unit of
time is:

D =

N−1∑
n=0

p(n)(N − n)λ (7)

From Little’s law we obtain the average time a user stays
active in the cell (between two successive idle times):

T =
Q

D
(8)

Finally, we can derive the average throughput obtained by
users during their transfer as:

γ =
xon
T

(9)

2.3 Third scenario: voice transmissions with
infinite source (VI)

We now consider voice traffic and assume, like in the first
scenario, an infinite number of sources. A voice transmission
requires a throughput of v bit/s. The total capacity C of the
cell thus enables a maximum number of simultaneous voice
calls given by:

S = bC
v
c (10)

If we assume that requests for voice calls arrive according
to a Poisson process with rate λ, and that call duration are
exponentially distributed with rate µ = 1

ton
(where ton is

the mean call duration), the system is modeled by a classi-
cal M/M/S/S Markovian queue with S servers and a total
capacity limited to S. Figure 3 gives the associated Markov
chain.
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Figure 3: Markov chain associated with Scenario 3

Still taking ρ = λ
µ

, the queue length distribution is given by
the classical Erlang-B formula:

p(n) =
ρn

n!
p(0), n = 0, ..., S (11)

with p(0) obtained by normalization. Note again that there
is no stability condition for this system (as it is limited).
We can then calculate the average number of ongoing voice
transmissions in the cell:

Q =

S∑
n=1

np(n) (12)

Finally, PASTA property enables us to derive the rejection
probability of a call request:

Pr = p(S) (13)

2.4 Fourth scenario: voice transmissions with
finite source (VF)

We finally consider voice traffic and assume, like in the sec-
ond scenario, a finite number N of sources. Each source fol-
lows an ON-OFF process, an ON corresponding to a voice
call and an OFF corresponding to the idle time between two
successive calls. We assume that both the time spent dur-
ing an ON period and the time spent during an OFF period
are exponentially distributed, with respective means ton and
toff . We define the arrival rate λ = 1

toff
and the service rate

µ = 1
ton

.

We need to distinguish two cases: 1) N ≤ S, in which
case the capacity of the cell is enough to serve all the N
users simultaneously. As a result, no call rejection can oc-
cur; 2) N > S, in which case the capacity of the cell is not
enough to serve all users simultaneously, and call rejections
can happen. Markov chains associated with the two cases
are given in Figure 4. In both cases there is no stability
condition for the system.
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Figure 4: Markov chains associated with Scenario 4
(up: N ≤ S, down: N > S)

For the first case, N ≤ S, the queue length distribution is:

p(n) =
N !

n!(N − n)!
ρnp(0), n = 0, ..., N (14)

with ρ = λ
µ

and p(0) obtained by normalization. The aver-
age number of active users in the cell is:

Q =

N∑
n=1

np(n) (15)

And as the capacity of the cell is enough to serve all users
simultaneously, there is no possible rejection (the rejection
probability is null).

If we now consider the second case, N > S, the stationary
probabilities have the same expression, excepted that there



are limited to n = S:

p(n) =
N !

n!(N − n)!
ρnp(0), n = 0, ..., S (16)

with p(0) obtained by normalization. The average number
of active users in the cell is now:

Q =

S∑
n=1

np(n) (17)

And the rejection probability can be expressed as the fol-
lowing rate ratio:

Pr =
p(S)(N − S)λ
S∑
n=0

p(n)(N − n)λ

(18)

3. VIENNA AND NS-3 LTE SIMULATORS
We present in this section the main characteristics of the two
simulators we compare on the four scenarios of Section 2.

3.1 Vienna Simulator
The Vienna LTE System Level Simulator was created by the
Institute of Telecommunications at the Vienna University of
Technology. It is an open source software developed in MAT-
LAB using the Object-Oriented programming (OOP) capa-
bilities that have been introduced with the release 2008a.
The simulator is available from [10]. The project first devel-
oped a link level simulator before extending it to a system
level simulator. While link-level simulations allow for the
research on issues such as Multiple Input Multiple Output
(MIMO) gains, Adaptive Modulation and Coding (AMC)
feedback, modeling of channel encoding and decoding, sys-
tem level simulations is more dedicated to network-related
issues such as scheduling, mobility handling, interference
management or signals propagation [11]. In system level
simulations, the physical layer is abstracted from link level
results and used for evaluating network performance. The
system level simulator follows the structure shown in Fig-
ure 5. Each network element is represented by a suitable
MATLAB class object.

The network topology is created as follows: a specific region
of interest (ROI) is generated and divided into transmission
sites or cells, to each one an eNodeB is appended. Each eN-
odeB contains a scheduler (see Figure 5). After creating the
topology, one or many User Equipments (UEs) are deployed
according to a specific spatial distribution model (only a con-
stant number of users per cell with random positions is sup-
ported). Users can be either fixed or mobile (with a specific
mobility model). Once the network created, the Vienna sim-
ulation main loop is carried out for each Transmission Time
Interval (TTI) of 1ms: Depending on the scheduling algo-
rithm and the received UEs feedbacks the scheduler assigns
Resource Blocks (RBs) and a MCS to each UE attached to
an eNodeB. At the UE side, the Signal-to-Interference and
Noise Ratio (SINR) is calculated per received subcarrier. At
the end of each time-step, link performance measurements
are performed to provide the simulation output which con-
sists of traces, containing link throughput and error ratios
for each user, as well as summary measures by cell, from
which statistical distributions of throughputs and errors can
be extracted.
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Figure 5: Block diagram of the LTE system level
simulator [11]

The simulator contains a main MATLAB file LTE sim main.m
which executes the pseudo-code below:

create the network
for each simulated TTI do
if mobile UEs then
move UEs
if UE outside ROI then
reallocate UE randomly in ROI
for each eNodeB do
receive UE feedback after a given feedback delay
schedule users
for each UE do
1- channel state → link quality measurements → SINR
2- SINR, MCS→ link performance measurements→ BLER
3- send UE feedback

For running the simulation, one has to write a MATLAB
script which must perform the following tasks:

• Either loading a configuration file (in the +simula-
tion config subfolder) which applies a specific pre-configured
simulation parameters, or configuring the parameters
manually.

• Executing the main simulation file.

3.2 NS-3 Simulator
Network Simulator 3 (ns-3) is a discrete-event network sim-
ulator, developed as a simulation environment for network-
ing research. It counts several modules, designed to sim-
ulate different technologies and scenarios. Here we work
with the LTE module developed by the LENA Project [12].
This module was designed following the 3GPP LTE stan-
dard specifications and is included in the main distribution
of the ns-3 latest versions.



NS-3 was developed using the C++ programming language
and is a free simulator under GPLv2 License. It can be
downloaded from the ns-3 webpage [13], where a manual
and tutorials can also be found. We used for this comparison
the ns-3.20 version. Figure 6 shows the hierarchy of the ns-3
classes.

Figure 6: Software organization of the ns-3 simula-
tor [13]

In ns-3 one has to write a script in C++ (or Python) with
the include files, the topology of the network, the rout-
ing, the tracing and the applications. This script is run
using a waf command: waf --run myProgram --command-

template="%s --RngRun=2", where “RngRun” gives the sim-
ulation run number. In order to compute statistics using
independent runs one has to set a different number for each
run.

4. SIMULATOR COMPARISON
In this section, we compare the easiness to simulate on both
tools the four scenarios described in Section 2, and analyze
their accuracy in terms of run-time duration and memory
and CPU usage.

4.1 Generalities
As detailed in Section 2, for comparing the two simulators
we defined four simple scenarios1: (DI) data traffic with in-
finite source, (DF) data traffic with finite source, (VI) voice
traffic with infinite source, and (VF) voice traffic with finite
source. The comparison is essentially carried out with re-
spect to accuracy. However, for the most loaded scenario we
also compare memory usage, computation time and CPU
utilization. We also want to give a glimpse on their ease of
handling, the realism of modeling assumptions and the ease
of obtaining performance from traces of simulation.

The main differences between these two simulators are:

• NS-3 is a general network simulator that can be used
to simulate many protocols and technologies, not only
LTE. Instead Vienna is a specialized LTE simulator.

• Vienna advances the time by time-slices (of 1ms), while
ns-3 does by the date of the next event: ns-3 is a dis-
crete event simulator.

1all code are available upon demand to authors

• Vienna is very precise on the modeling of the physical
layer. At each TTI it performs many calculations at
the physical layer level. These computations drasti-
cally slowdown the simulation which may make unfea-
sible the simulation of more realistic scenarios. On the
other hand,ns-3 uses a correspondence table provided
by the 3GPP LTE specifications, that directly links a
certain MCS, the number of RBs the antennas are us-
ing and the transport block (TB) size [14]. Therefore,
at each transmission, the simulator just retrieves such
information, instead of calculating them, which results
in an substantial gain.

• The code organization in ns-3 is very clear: each tech-
nology has a separate module and each class corre-
sponds to a network real object. In Vienna modularity
is not well exploited and it is not easy to create new
classes without modifying many other files.

• Traces provided by Vienna are simple to treat and one
can also easily add other type of traces if needed. In
ns-3 traces collection and processing is cumbersome.

In order to perform the simulation of our four basic scenar-
ios, we had to overcome some intrinsic limitations of the two
simulators:

• Due to its lack of modularity, it is very complicated to
make any code modifications in Vienna. The solution
we found to improve the speed of the simulator was to
perform the physical layer calculations only when an
UE perceives a change in channel conditions, instead
of doing them at each TTI.

• Vienna requires a constant number of users deployed
per cell. For the DI and VI scenarios, where the total
number of UEs in the cell varies with time, we had
to make changes in the code of the simulator in order
to allow the creation of new users on-the-fly. From
the ns-3 side, the simulator limits to 320 the number
of nodes to be created and connected to an eNodeB.
We thus have to re-use nodes after a certain time of
inactivity for overcoming such limitation.

• To simulate the DF scenario, we had to implement the
ON-OFF traffic as a new application in both simula-
tors. Indeed, such a traffic with an ON period charac-
terized by a downloaded size (instead of a time) was
not part of existing modules.

• For the voice cases (VF and VI) we had to implement
a new scheduler policy in order to take into account
rejection.

In Vienna, the mean number of active UEs can be easily
measured using the traces from traffic model type where the
state (ON or OFF) of each UE is stored at each TTI. The
average throughput of a user can be obtained by dividing
the average downloaded size (extracted from the N used bits
output), by the mean ON period. The call rejection prob-
ability is calculated as the number of rejections divided by
the total number of call demands. We added the blocked ids
vector as attribute of the scheduler. It is updated at each



time-step to store the IDs of rejected UEs if a rejection takes
place. At each time-step event and following the blocked ids
values, the blocked parameter, which we have created as at-
tribute of each UE, takes“true” if he is rejected and “false” in
the other case. An output vector, rejected, with total TTIs
as length has been added to the UEs traces.mat output trace
file. This vector stores for each UE all the values taken by
the blocked attribute from which we can extract the number
of times that an UE was rejected.

In ns-3, we used the trace files to derive the performance
measures. Among the files, the DLPdcpStats.txt provides
for each TTI the amount of data downloaded by the active
users. We filtered that file to extract the mean ON and OFF
periods of each user, their average throughput and the mean
number of active users. Moreover, we added to the system
output the ability of identifying all rejections of UE’s, when-
ever they take place. By combining the number of times a
rejection occur for an UE with the statistics obtained from
the DLPdcpStats.txt file, we obtained the rejection proba-
bilities of the system.

4.2 DI: data traffic with infinite source
For this scenario we implement the mechanisms described in
Section 2.1. In our simulation the transmission ends when
the corresponding user completes the download of an expo-
nentially distributed amount of data with mean xon. We
assume that new data transfers arrive according to a Pois-
son process, meaning that the time between two successive
arrivals is exponentially distributed with mean toff = 1

λ
.

As aforementioned, the Vienna simulator did not address
this “open” case (where new UE demands arrive from the
outside according to a Poisson process). We thus modified
the simulator in order to be able to add, remove and reuse
UEs during the simulation.

In order to simulate this scenario with ns-3, we came across
a problem: the number of nodes (UEs that request service)
that can be created is limited to 320. This limitation is
due to LTE specifications. Therefore, instead of creating a
node for each new arrival, we reused those already created
and served. But this forced us to create a mechanism for
differentiating the reused nodes in the traces.

In both simulators we consider a Single Input Single Output
(SISO) single cell of diameter 500 meters. 10 UEs are static
in the cell and make data transfers with mean parameters
xon = 1.7Mbits and toff (the inter-arrivals time) mean dis-
tribution varied from 100ms to 150ms. We have configured
the system bandwidth to 5MHz which is equivalent to 25
RBs. For the link quality measurements we used a simple
channel model with only path-loss supported. The transmis-
sion power has been set to 1watts which allow all users to
give the same and best MCS anywhere in the cell. With 25
RBs and for the best given MCS, we obtain a cell capacity
C of 18336 bits/ms (according to the technical specifica-
tions described in [14]). Each simulation was executed 300
seconds.

For this scenario the simulated parameters are in Table 1.
Each simulation has been executed 10 times and 95% confi-
dence intervals were computed.

System frequency 2.6GHz
System bandwidth 5MHz (25 RBs)

Channel model Only pathloss supported with
the Free space model

Diameter of the cell 500m
Transmission power 1W (best MCS in the cell)
Transmission mode SISO

Scheduler Round Robin
Mean size xon 1.7Mbits

Mean inter-arrival time toff from 100ms to 150ms
Simulation time 300s

Table 1: Simulation parameters of the DI model

Figure 7 depicts a performance comparison on the accuracy
between the two simulators and the theoretical model in
terms of the mean number of active users (eq. (2)) and the
average throughput (eq. (4)).
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Figure 7: Average number of active users (Q) and
mean throughput for the DI scenario.

One can see from this figure that both simulators are ac-
curate. But ns-3 seems more accurate with a relative error
(Er) less than 0, 5% (i.e., Er < 0, 005) while Vienna shows a
Er inferior than 3, 9% for the mean number of active users.
For the mean throughput ns-3 still having the same relative
error and Vienna has a Er less than 2, 5%. Note however
that in all cases the theoretical values are covered by the
confidence intervals.

4.3 DF: data traffic with finite source
The theoretical model used to compare this scenario is de-
scribe in Section 2.2. We follow the same procedure of the
DI model for implementing this scenario in Vienna. In this
scenario, however, the number of users is constant and their
behavior is modeled as an ON-OFF process. Each user al-
ternates between an active period (ON state), during which
traffic is generated, and an idle period (OFF state) of inac-
tivity.



The two parameters that change with respect to the DI sce-
nario are depicted in Table 2.

Number of users in the cell 10
Mean OFF period toff from 200ms to 1200ms

Table 2: Simulation parameters of the DF model

Figure 8 compares the average number of active users (eq. (6))
as well as the mean throughput (eq. (9)) for a varying toff .
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Figure 8: Average number of active users (Q) and
mean throughput for the DF scenario.

Results reveal again no significant errors between simulation
and analysis. In this case, Vienna provides a better accuracy
on parameterQ than ns-3, with a Er of 0.7% instead of 1.9%.
Concerning the mean throughput, the Er provided by ns-
3 is of almost 1% while Vienna has a Er of around 1.9%.
Moreover, we observe that the 95% confidence intervals are
quite narrow and include the true values in all cases for both
simulators.

4.4 VI: voice traffic with infinite source
As explained in Section 2, the main difference between data
traffic and voice traffic resides in the fact that ON periods
are not characterized anymore by a size (of downloaded el-
ements), but instead by a time (of conversations). We thus
characterize the activity session by an exponential distribu-
tion of mean ton.

As in this scenario the number of sources is infinite, we reuse
the procedure for creating users, as explained in the DI sce-
nario. We assume that new call demands arrive according
to a Poisson process, meaning that the time between two
successive arrivals is exponentially distributed with mean
toff = 1

λ
.

For the VI scenario we simulate a single cell with the pa-
rameters listed in Table 3. We are aware that ton and toff
of the order of hundred of milliseconds do not correspond to
reality. But based on theoretical results, we know that the

performance parameters of the system is only sensitive to
the ratio of ton and toff . Consequently we chose small val-
ues in order to significantly reduce the simulation run-times.
This is even more important in the case of Vienna simulator
that runs at a TTI time-step.

Diameter of the cell 500m
Scheduler Round Robin (modified to

reject calls)
Number of servers 10

Mean ON period ton 1000ms
Mean OFF period toff from 100ms to 150ms

Simulation time 300s

Table 3: Simulation parameters of the VI model

Figure 9 compares simulation results with analytical values,
for both performance parameters of interest, the average
number of active users Q (eq. (12)) and the rejection prob-
ability Pr (eq. (13)). It shows that ns-3 yields little more
precise estimation than Vienna. The relative error on Q is
less than 0, 38% for ns-3 and less than 0, 59% for Vienna.
Concerning Pr errors are inferior to 0, 36% and 4, 86% for
ns-3 and Vienna respectively. Despite this difference, we can
say that both simulators produce comparable results, as in
both cases the 95% confidence intervals always contain the
actual values and no significant deviation between the exact
and the simulated statistics is observed.
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Figure 9: Average number of active users (Q) and
rejecting calls probability (Pr) for the VI scenario.

4.5 VF voice traffic with finite source
For this scenario we configured our two simulation scripts to
model a single-cell system with a constant number N = 15
of users that perform an ON-OFF traffic with a ton = 950ms
for the exponential distribution. We vary toff from 200ms
to 1200ms. The number of servers S was first set to 10,
corresponding to the case where N > S, and secondly to 20,
corresponding to the case where N ≤ S. As before, each
simulation was executed for 300 seconds in a cell area of



diameter 500 meters. The parameters are summarized in
Table 4.

Diameter of the cell 500m
Scheduler Round Robin (modified to

reject calls)
Number of servers 10,20
Number of users 15

Mean ON period ton 950ms
Mean OFF period toff from 200ms to 1200ms

Simulation time 300s

Table 4: Simulation parameters of the VF model

The average number of active users Q (eq. (17)) as well as
the probability of rejecting a call Pr (eq. (18)) are compared
in Figure 10 for the case where N > S. Figure 11 only gives
Q in the case where the N ≤ S (as in this case the rejection
probability is null, see eq. (15)). The 95% confidence inter-
vals estimated from a sample of 10 replications are indicated
for each value.
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Figure 10: Average number of active users (Q) and
rejecting calls probability (Pr) for the N > S VF.

Again, the results of both simulators match exact results
with a pretty good accuracy. In the first case (N > S),
relative errors for Q are smaller than 0, 59% for ns-3 and
less than 0, 83% for Vienna. Concerning Pr, the difference
remains small for ns-3, less than 0, 58%, but becomes bigger
for Vienna, around 9, 5%. In the second case (N ≤ S), the
relative errors on Q remain inferior to 0, 9% for ns-3 and to
0, 64% for Vienna. In this case, Vienna is thus slightly more
accurate than ns-3.

4.6 Performance comparison
In order to compare the simulation run-time, memory usage
and CPU occupation we conducted simulations on a 8 cores
Intel(R) Xeon(R) CPU E5-2450 v2 @ 2.50GHz workstation
with 64GB of RAM, running Ubuntu Linux 14.04 LTS.
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Figure 11: Average number of active users (Q) for
the N ≤ S VF.

Tables 5, 6 and 7 show the different measured performance
metrics for each simulator. These results correspond to the
simulation of the most loaded scenario.

In both ns-3 and Vienna, the run-time performance is di-
rectly provided as an output of our scripts. For the mea-
surement of the memory and CPU occupation performance,
we used the top program of Linux which provides a dynamic
real-time view of the system: when a simulation is running,
we periodically observed the used amount of memory and
the CPU utilization and the final results were averaged over
the number of observations.

model VF DF VI DI
ns-3 37min 27min 465min 608min

Vienna 780min 390min 270min 300min

Table 5: Comparison of the run-time

The performance comparison discloses large differences be-
tween the two simulators. In the finite source scenarios ns-3
has proven to be largely faster than Vienna. The first needs
around 37 minutes to simulate the VF scenario and 27 min-
utes for the DF model, while Vienna takes 780 and 390 min-
utes to execute these simulations. We conclude that ns-3 is
advantageous and capable of carrying out long simulations
of large-scale networks in an efficient way. Note that the VF
scenario needs higher run-times than the DF ones for both
simulators because the first model is more loaded and use a
larger-scale network (15 UEs vs 10 UEs in DF). We observe
for Vienna a big difference of almost 400 minutes between
these two scenarios. We explain that by its behavior of ad-
vancing the time by time-step of 1ms and performing a lot of
calculations for the PHY layer at each event. Therefore, ex-
ecuting these loops with five UEs more at each TTI makes
an important difference. Moreover, the fact that we have
more active UEs in the VF case (around 12 vs 8 in the DF
case as shown in figures 12 and 9) leads to higher computa-
tional load. In the infinite source scenarios ns-3 need higher



computation time than Vienna. This difference is due to
the fact that the two simulators use different networks with
different scales to carry out infinite source simulations. In-
deed, ns-3 models the infinite source by a large number of
UEs per cell (320 nodes) while in Vienna we can create and
eliminate nodes at runtime.

model VF DF VI DI
ns-3 52MB 44MB 71MB 64MB

Vienna 1.6GB 1.25GB 2.25GB 3GB

Table 6: Comparison of the memory usage

model VF DF VI DI
ns-3 3.05% 3.05% 3.1% 3.1%

Vienna 8.1% 8% 7.5% 7.6%

Table 7: Comparison of the CPU occupation

Regarding the memory we can clearly see the superiority
of ns-3 over Vienna which uses as much as 46 times more
memory. We saw a big difference in memory between infinite
and finite source scenarios.

For CPU utilization, ns-3 uses less resources than Vienna
but the difference is not as high as for memory.

5. CONCLUSIONS
We have compared two simulators, ns-3 and Vienna, in the
context of LTE networks, on four basic scenarios for which
well-known analytical results exist. We evaluated both of
them in terms of accuracy, ease of handling and use, execu-
tion time, memory and CPU usage. Our conclusions are the
following:

First, in terms of accuracy, both simulators provide good
results. Both give small errors when compared to theoretical
values and narrow confidence intervals for the four scenarios
we tested.

Second, regarding the execution time, there are important
differences between simulators. For the scenarios with a fi-
nite number of sources, ns-3 is clearly faster than Vienna.
However, Vienna becomes faster for infinite source scenar-
ios. This can be explained by the fact that in ns-3 we need
to create at the beginning of the simulation a fixed and suf-
ficiently big number of UEs, whereas in Vienna, UEs can be
created and deleted on-the-fly.

Third, in terms of CPU and memory usage, ns-3 is much
better than Vienna. While ns-3 is based on C++, Vienna is
based on the MATLAB environment, which requires enor-
mous amounts of memory to run.

Fourth, concerning the ease of handling and use, the choice
is somehow subjective, it depends on the skills of the pro-
grammer, in C++ or in MATLAB language. However, we
find that output traces are easier to manipulate in Vienna
than in ns-3. In the other hand, ns-3 is quite well docu-
mented which is not the case for Vienna.

Finally, taking into account the four aforementioned points
and the experience acquired with this simulation compar-
ison, we believe that ns-3 is a better choice for simulat-
ing more complex scenarios, including different coding zones
within the cell, different cells, inter-cell traffic and UE’s mo-
bility. These more complex scenarios correspond to the re-
cent work we are carrying out in the framework of the IDE-
FIX project.
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